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Abstract
Exploring temporal coherence among light transport paths is very important to remove temporally perception-sensitive
artifacts in animation rendering. Using the contribution of a light transport path to all frames in an animation as the
sampling distribution function allows us to adapt Markov Chain Monte Carlo (MCMC) algorithms to exploit the tem-
poral and spatial coherence among paths in order to generatea perceptually pleasant animation. A new perturbation
technique calledtime perturbationis developed to explore the temporal coherence among paths.Furthermore, in order
to make animation rendering plausible, we distribute iterative computational tasks to a pool of computers for parallel
computation. Each task is rendered with a set of parameters adapted according to the local properties of each task. We
demonstrate that this local adaptation does not introduce bias statistically. The resulting animations are perceptually
better than those rendered in a frame-by-frame manner.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Raytracing

1. Introduction

A large number of movies employ visual effects using computer
graphics. Photorealistic rendering is a critical element to create
realistic visual effects. An animation is generally rendered as a
sequence of static images in a frame-by-frame manner by using
Monte Carlo algorithms describe in [PH04,DPSaB06]. As a result
the rendered animations normally contain annoying temporal arti-
facts such as flickering and shimmering if the computation time is
not long enough. Therefore, some research on global illumination
has started to pay attention to enhance the temporal coherence
among frames in order to remove temporal artifacts. Cachingpho-
tons and irradiances of sample paths [CJ02,VMKK00,MTAS01,
DBMS02, WMM∗04, TMS04, SKDM05, GBP07] from preced-
ing and following frames can greatly improve the computational
efficiency as well as reduce temporal aliasing. [MA06] caches
computed irradiances from different moments of time on the sur-
faces. The cached values are used to create a basis for tempo-
ral interpolation of irradiance in order to greatly reduce tempo-
ral artifacts. However, the fundamental problem of these tech-
niques is that the invalidity of cached samples across frames in-
troduces bias and error into the final result. When only the cam-
era and the point lights are allowed to move inside an animation
scene, it is easy to reuse all light paths by re-evaluating the path
contributions [BSH02,HBS03,SSSK04,SC04,SCH04,HBS03]
or reweighing samples based on the multiple-importance frame-
work [MFSSk06]. However, movement limitations reduce the
utility. Havran et al. [HDMS03] reused the static-object paths
from bi-directional path tracing to reduce temporal flicking. For
each static candidate path, they first check the validity of the path,

i.e. no edge is blocked by moving objects and then the contribu-
tion of valid static paths is evaluated by recomputing the BRDF
value at the first hit point from the camera. The reweighting
scheme introduces bias and causes unwanted artifacts. In addi-
tion, they only intended to reuse static paths not all paths.Ghosh
et al. [GDH06] applied the framework of Sequential Monte Carlo
to exploit the temporal coherence among paths by reweighingthe
samples in previous frames to generate good samples for the cur-
rent frame. However, their work is limited to environment map
lighting. In this work we intend to exploit the temporal coherence
among all path integrals in the entire animation whose animated
entities are described by key-framed rigid transformation.

Markov Chain Monte Carlo (MCMC) algorithms such as
Metropolis Light Transport (MLT) [VG97, KSKAC02], En-
ergy Redistribution Path Tracing (ERPT) [CTE05], and Popu-
lation Monte Carlo Energy Redistribution (PMC-ER) [LFCD07,
LLZD08] have demonstrated the strengths of exploring the spatial
coherence among path integrals when rendering a static image.
However, all these algorithms are originally formulated torender
a static image without considering the temporal coherence among
frames in an animation. Thus, the temporal flickering artifacts is
perceptually unpleasant in the rendered animations. But weex-
pect that they are good candidates for exploring the temporal co-
herence among path integrals. We formulate the contribution of a
light transport path to all frames in an animation as the sampling
distribution for MCMC algorithms. This formulation allowsus to
extend from rendering a static image to rendering an animation.
As a result, a newtime perturbationmethod is designed to reuse
path samples with similar properties at different moments of time
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Figure 1: The image sweep is a set of three dimensional hyper-
cubes which correspond to the frames, Frame1, . . . ,FrameN and
formed by all image planes aligned with the movement of the cam-
era at different frame periods. Please notice that k is used to index
the frame and t is used to indicate the moment when a path is sam-
pled. Valid path samples for frame k are generated between T and
T +∆T, where T is the moment when the shutter opens. In addi-
tion, all pixel samples in the valid period must also spatially pass
through the image planeIt centered at the center of the camera.
In other words, the image sweep is the sweep of the image plane
along the camera’s locomotion in space along the time between
T and T+∆T.

to explore the temporal coherence among path integrals in order
to reduce the temporal artifacts of an animation. In addition to
having an algorithm to explore the temporal coherence, we also
need to face computational limitation when rendering the entire
animation sequence. Therefore, our rendering system is designed
to render an animation by distributing a subset of iterativecom-
putational tasks to a pool of computers for parallel computation.
Each computational task contains initial paths traced by a general
path tracing algorithm from a designated frame for energy redis-
tribution. For efficient usage of parallel computation, we present a
formulation to allow us locally adjust the rendering parameters in
each task without introducing bias. In this paper we demonstrate
the strength of exploiting the temporal coherence among paths by
building the temporal perturbations on the PMC-ER algorithms
for parallel rendering. The animations rendered with temporal
perturbations are perceptually more pleasant. However, wealso
present a short discussion about applying the entire structure to
other MCMC algorithms.

2. Animation Formulation for Markov Chain Monte Carlo

When rendering an animation, the intensity of the j-th pixelof the
k-th frame,Ik

j can be expressed as path integrals:
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wheret is the moment when the light transport event happens,Ω
represents the set of all valid light transport paths that begin on a
point of a light surface, interact with the scene surfaces, and end

at the camera for the entire animation denoted asx̃t , µ(x̃t ) is the
surface area product measure for the pathx̃t , f k

j is the contribu-
tion brought by a light transport path to pixel j of frame k,fs is the
bidirectional scattering distribution function,Le is the emittance
radiance of a light source,Wk

j is sensor response,G is the geom-
etry term, andf is the radiance carried by the path. The contri-
bution function can be decomposed into two components: sensor
response,Wk

j , and the radiance carried by the path,f . Because
the radiance is independent of the response of the given pixel, the
radiance can be reused for all pixels (which is the same for all
pixels in all frames). In other words,b =

R

Ω f (x̃t)dµ(x̃t ) can be
used to express the total radiant energy delivered through the im-
age sweep as shown in Figure1. The intensity for each pixel can
be estimated by Monte Carlo integration

Ik
j =

Z

Ω
Wk

j (x̃t) f (x̃t)dµ(x̃t ) ≈
1
N

N

∑
1

Wk
j (X̃

Ti
i )

f (X̃Ti
i )

p(X̃Ti
i )

wherep(X̃Ti
i ) is the importance sampling function used by Monte

Carlo integration. The idea of Markov Chain Monte Carlo algo-
rithms is to generate a set of correlated paths according to their
radiance brought to the image sweep. Through the process, paths
mutate, and newly mutated paths are accepted or rejected with
a carefully chosen probability to ensure that paths are sampled
according to their radiance brought to the image sweep. In other

words, p(x̃t) = π(x̃t ) =
f (x̃t )

b is implicitly used as the target dis-
tribution density. Under this formulation, we can design tempo-
ral and spatial mutations by considering the coherence among all
valid paths in the entire animation.

Veach [Vea97] purposed that using importance energy,
f /p, of the seed path to weigh each mutation of a Markov
Chain can remove the start-up bias if the detail balance is
maintained at each mutation. Therefore, we can naturally come
up ERPT balance energy transfer which a hybrid algorithm com-
bining the independently sampling path tracing algorithm with
the correlatedly sampling Metropolis algorithm. The idea is to
generate a set of independent samples by path tracing as seed
paths. Then each seed path is used to correlatedly explore a lo-
cal path space,Ωx̃, around the seed path by Metropolis.Ωx̃ is
a sub-space ofΩ and defined as the domain of all paths which
can be reached through a sequence of perturbations from the seed
path. This definition is to guarantee that the local exploration can
reach and stay at the local stationary probability,f (x̃t)/bx̃ where
bx̃ =

R

Ωx̃
f (x̃t)dµ(x̃t ). The estimation of the pixel intensity can be

calculated as
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The variance analysis in [APSS04] allows us to bound the vari-
ance of the Markov Chain of a seed path asVMCMC(X̃ i) ≤

1
NMCMC

bX̃ i
NpixelẼ

k
j (1 +

2R(1)
q(1−q)−R(1)) where Npixel is the num-

ber of pixels,Ẽk
j is the average importance energy of the path

associated with this pixel,q is the probability that path con-
tributes to the pixel under considerations, andR(1) is the cor-
relation between random variance indicating that two subse-
quent paths go through the same pixel. The variance for the
entire hybrid estimator can be calculated asVC(Ik

j ) = 1
N2

MC
×

NMC× 1
N2
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∑NMCMC

l=1 VMCMC(X̃Ti
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2R(1)
q(1−q)−R(1)

). Thus the variance of the entire algorithm is

O(1/NMC), and the algorithm converges to the correct answer if
the number of independent samples go to infinity. The expectation

of the Markov Chain isE(X̃ i) = 1
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f (x̃t )
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1 and then the expectation of the entire algorithm becomes
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p(X̃
Ti
i )

= Ik
j

Veach [Vea97] also purposed that we can use an equal weight-
ing scheme if we resample the paths according to its impor-
tance energy. Thus, we can use a similar deterministic sampling
strategy in [Fan06] to generate totally∑Ei(X̃)/Ẽ paths where

Ei(X̃) =
f (X̃)

p(X̃)
. In other words, each seed path has a number of

Markov Chains proportional to its energy.

Ik
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where Npath = Nf loor + (E(X̃Ti
i ) − Nf loor + U(0,1)) × Ẽ and

Nf loor = ⌊
E(X̃Ti

i )

Ẽ
⌋ The equally weighting scheme now becomes

ERPT equal deposition. We can observe thatE(Npath) =
E(X̃Ti

i )

Ẽ
.

The convergence and expectaction analysisis similar to theone
discussed in the previous paragraph. [CTE05] described two cri-
teria to maintain the unbiasedness of ERPT equal deposition: first,
the detail balance of mutation is maintained through the process
for reaching and staying in the stationary probability; second, the
number of Markov Chains is proportional to the energy carried
by the path. Later, we will show that although our kernel function
for each path adapts from iteration to iteration, it is fixed inside
a single Markov Chain. In addition, the acceptance probability
is chosen to maintain the detail balance at each perturbation and
thus the stationary probability requirement is achieved for us to
reach convergence and maintain unbiasedness. Furthermore, our
algorithm deposits the remaining energy of an eliminated path by
the equal deposition methods back into the image sweep before
a path is removed from the population in resampling process or
terminated at the end of a task. This achieves the second criterion
of unbaisedness.

3. Population Monte Carlo Energy Redistribution

When rendering an animation, we distribute the computationac-
cording to the starting time of initial paths belonging to the same
frame to a task. Thus, in the following we will present PMC-ER
Equal Deposition (PMC-ER-E) for a single computational task.
Then we describe the details of time perturbation. Finally,we
present the formulation to let us locally adjust the sampling pa-
rameters for each task without introducing bias.

3.1. Population Monte Carlo Energy Redistribution with
Equal Deposition

Figure 2 shows the PMC-ER-E algorithm executed in a single
computational task in a single computer. At the beginning ofeach
computational task, a pool of pixel positions and a pool of caus-
tics paths are generated for the initial population and the replace-
ment paths used in the resampling process. In each inner loop,
z, we spatially or temporally perturbed each member pathNequal

times to redistribute the energy to the neighborhood of the path
according to a mixture distribution:

K(o)
i (Ỹ(z−1)

i → ỹ(z)
i ) = ∑

dh

α(o)
i,dh

Tspatial(Ỹ
(z−1) : dh → ỹ(z))

+ ∑
th

α(o)
i,th

Ttemporal(Ỹ
(z−1) : th → ỹ(z))

When perturbing a path, we first choose one perturbation
from the set of spatial and temporal perturbations according

to the weights,α(o)
i , where ∑perbα(o)

i = 1. The current path
is perturbed to generate a new perturbed path according to
the perturbation parameterdh for a spatial perturbation and
th for a temporal perturbation. The acceptance probability

is chosen as a(Ỹt1 |X̃t0) = min

{

1.0,
f (Ỹt1)Top−type(X̃t1)|Ỹt1

f (X̃t0)Top−type(Ỹt1|X̃t0)

}

where Top−type is the type of perturbation chosen.
We can observe that the detail balance of this per-
turbation is maintained by f (X̃t0)Top−type(Ỹt1|X̃t0) =

f (Ỹt1)Top−type(X̃t0|Ỹt1)
f (Ỹt1)Top−type(X̃t1 |Ỹt1)

f (X̃t0)Top−type(Ỹt1|X̃t0)
if

f (Ỹt1)Top−type(X̃t1|Ỹt1) ≥ f (X̃t0)Top−type(Ỹt1|X̃t0); oth-

erwise f (X̃t0)Top−type(Ỹt1|X̃t0)
f (Ỹt1)Top−type(X̃t1|Ỹt1)

f (X̃t0)Top−type(Ỹt1|X̃t0)
=

f (Ỹt1)Top−type(X̃t0|Ỹt1). After each perturbation,Ed = Rk
i ∗ ed

energy is deposited at the pixel position of the newly mutated

path, Ỹ(z)
i , anded energy is removed from the path’sEi,remain.

The energy-deposit constant,Rk
i , is computed according to the

properties of this frame such as the number of samples in each
pixel and the number of caustics paths in order to maintain the
energy delivered from each pixel or each type of paths statisti-
cally the same. At the end of eacho loop, the resampling process
is applied. Paths in the population are eliminated according to its
Ei,remain. If there is any energy remaining in the eliminated paths,
the remaining energy is deposited by equal deposition into the
image sweep. To maintain the constant number of population,
we replace the eliminated path with newly generated paths from
the pool of stratified and variance-regeneration pixel positions or
unused paths from the pool of caustics paths [LLZD08]. We also
adaptα values according to the performance of perturbations. We
use the acceptance probability of each perturbation as indication
to determine the probability of perturbation choice [LFCD07].
After finishing theo loop, the algorithm deposits the remaining
energy of the population paths onto the image sweep before
exiting.The remaining energy in eliminated paths and termi-
nated population paths at the end of the task is deposited to
the image sweep to guarantee the number of Markov Chains
starting from each path proportional to its initial energy f or
maintaining unbiasedness.

3.2. Time Perturbation

In order to exploit the temporal coherence, we design a new path
perturbation strategy calledtime perturbation. In this section we
first describe how to use our temporal perturbation method tore-
construct the path temporally and how to calculate the tentative
transition probability accordingly.

The main idea behind time perturbation is that when a pathX̃t0

exists at timet0, there may be a correlated pathỸt1 whose ver-
tices areobject-basedrigid transformations of the vertices in the
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1 getẼ, ed, T, k, Rk
C2G, Nk

sample, Nk
caustics, Nequal,γk

Npopulation, Nuni f orm from the host
2 generate a pool of pixel positions and a set of caustics paths
3 generate initial population of paths ins= 1 at the momentT
4 for o = 1, · · · ,Niteration

5 determineα(o)
i for each perturbation

6 for i = 1, · · · ,Npopulation
7 if Ei,remain+U(0,1)Ẽ > Ẽ
8 for z= 1, · · · ,Nequal

9 generatẽY′(z)
i ∼ K(o)

i (ỹ(z)|Ỹ(z−1)
i )

10 Ỹ(z)
i = (U(0,1) < a(Ỹ′(z)

i |Ỹ(z)
i )) ?Ỹ′(z)

i : Ỹ(z−1)
i

11 depositEd = Ri
k ∗ed on Ỹ(z)

i
12 Ei,remain− = ed

13 w(o)
i = Ei,remain

14 resample the population: elimination and regeneration
15 deposit remaining energy in all population paths

Figure 2: The PMC-ER equal deposition iteration loop.Ẽ is
averaging path energy, ed is deposition energy of each pertur-
bation, Rk

C2G is the ratio between caustics and all paths in this
frame, Npopulation is the size of the population, Nksample is the
total number of initial seed paths, Nuni f orm is the number of

stratified samples per pixel, Nkcaustics is the number of caustics-
generation paths, T is the time when the shutter opens, k is the
index of the frame, Nkiteration is the total number of task iterations,
Nk

variance is the number of variance-regeneration paths, andγk
j is

the variance-regeneration distribution function. The system use
path tracing with a fixed number of samples per pixel to estimate
Ẽ, ed, Rk

C2G, andγk
j which is proportional to the variance of the

sample radiances in the given pixel in a frame-by-frame man-
ner. U(0,1) generates a random number uniformly distributed
between0 and 1. Ei,remain is the energy remaining in the popu-
lation path i after the inner energy redistribution loops. Ri

k is the
energy-adapted constant discussed in Section3.3.

pathX̃t0 [BS96]. The object-based rigid transformation of a sur-
face point fromt0 to t1 is computed asxt1 = Mt1(Mt0)−1xt0 where
Mt denotes the rigid transformation for the surface from the ob-
ject space to the world space att andxt is the world coordinate
of the surface pointxob j at t. A valid perturbed path̃Yt1 can be
generated if the visibility check passes in each edge. However,
this simple time perturbation method may fail if a path con-
tains a specular vertex because the relation between the input
and output direction of a specular vertex is a delta function.
Thus, a more complex scheme is developed for paths containing
specular vertices.

Figure 3 shows an example of a valid time perturbation of
a path with specular vertices. The step we take to perturb the
path is as follow: First, we identify the specular sub-pathsof the
form {L|[(D|L)D]}(S+D|S+)+{[D(D|E]|E}. Second, the specu-
lar sub-paths are reconstructed by eithersampling backwardor
sampling forward. The criterion for choosing a sampling direc-
tion and the details of reconstruction will be described shortly.
Finally, un-updated diffuse vertices are object-based rigid trans-
formed to new locations and un-updated edges are linked and up-
dated accordingly.

The first and last step are trivial. Thus, we describe the details

Figure 3: This is a path with the form LDDSSE and is used to
demonstrate thesample backwardmethod. We would like to trans-
form the pathX̃t0 at t0 with 6 vertices to a new path̃Yt1 at t1. Since
the original path has the form of case 1, we have to reconstruct
the sub-path bysampling backward. Thus, we first object-based
rigid transform the position of vertices,xt0

5 andxt1
4 to yt1

5 andyt0
4

and link the edgeyt1
5 yt1

4 to form the tracing ray at time t1. Then,
we extend the sub-path through the same specular bounce atyt1

4
as the correspondingxt0

4 to getyt1
3 and the same specular bounce

at yt1
3 as the correspondingxt0

3 to getyt1
2 . Sincext0

1 andxt0
0 are dif-

fuse surfaces, we only need to object-based rigid transformtheir
positions to getyt1

1 andyt1
0 and link the edges ofyt1

2 yt1
1 andyt1

1 yt1
0

to form a new path̃Yt1.

of step 2. The criterion used to choose eithersampling backward
or sampling forwardis:

• Case 1: if the path is an eye sub-path of the form
{L|[(D|L)D]}(S+D|S+)+E, sample backwardfrom the eye
vertex is chosen to reconstruct the sub-pathto ensure that the
eye sub-path passes through the camera.

• Case 2: if the path is a light sub-path of the form
L(S+D|S+)+D(D|E), sample forwardis chosen to reconstruct
the sub-pathto ensure that the light sub-path starts from a
valid light source.

• Case 3: if the path has the form(L|D)D(S+D|S+)+D(D|E),
sample forwardandsample backwardare randomly chosen to
reconstruct the sub-path.

After we make the choice of the reconstruction direction, we
have to reconstruct the sub-path in the chosen direction. The fol-
lowing we provide how to reconstruct a sub-path backward. A
sub-path can be constructed forward in a similar manner except
that the direction of transverse is reverse. We would like tore-
construct the sub-path,xt0

l · · ·xt0
m of the formD(S+D|S+)+D by

usingsampling backward. First, the position of vertexm−1 and
m is object-based rigid transformed fromt0 to t1 to createyt1

m and
yt1

m−1. Next, the edgeyt1
myt1

m−1 is linked to form the starting ray

for constructing the sub-path. Sincext0
m−1 is a specular vertex, we

choose a specular bounce atyt1
m−1 to find the next vertexyt1

m−2.
Then, according to the bounce at the vertices in the originalpath,
we use two different methods to construct the sub-path to have the
same length as the original one. Ifxt0

n wherem− 2 ≥ n ≥ l + 1
is a specular vertex, we choose a specular bounce to find the next
vertex; otherwise we first transform the vertexxt0

n−1 to getyt1
n−1

by the object-based rigid transform method and linkyt1
n to yt1

n−1
to form the new edge.

After the path is reconstructed temporally, the tentative transi-
tion probability for the time perturbation method is computed by
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considering all possible ways to reconstruct the path. Since we
divide into specular sub-paths and diffuse sub-paths, the tentative
transition can be computed by multiplying the tentative transition
probability for each sub-path. For a diffuse sub-path, the tentative
transition probability is one because the transformation and the
edge linking is deterministic. For a specular sub-path, thetenta-
tive transition probability is computed according to threedifferent
cases discussed in the previous paragraph. The overall tentative
transition probability can be computed as:

Tth,time (X̃t0 → Ỹt1) =
Nsub

∏
i=1

T i
specular and

Tspecular =

{ Tbackward Case1
Tf orward Case2

0.5 ·Tf orward +0.5 ·Tbackward Case3

where

{ Tf orward = 1
th ∏m−1

j=l+1

{

G(yt1
j ,yt1

j+1)

|cosθ j ,out|
: 1?yt0

j ⊂ S

}

Tbackward= 1
th ∏l+1

j=m−1

{

G(yt1
j ,yt1

j−1)

|cosθ j ,in|
: 1?yt1

j ⊂ S

}

whereyt1
j+1, Tf orward is the tentative transition probability when

reconstructing the sub-path forward,Tbackward is the tentative
transition probability when reconstructing the sub-path backward,
andθ j,in,θ j,in is the angle between the normal of the surface and
the direction of the incoming/outgoing light ray atyt0

j .

3.3. Iteratively Distribute Samples in a Frame-by-Frame
Manner

Since variance-regeneration and caustics-regeneration purposed
in [LLZD08] can enhance the rendering efficiency, we would like
to have them in our rendering system. The weighting scheme is
important to guarantee unbiasedness of the final result but the
computation must consider the distribution of pixel positions and
caustics paths in the entire animation. This limits us to take full
advantage of the parallel rendering. Carefully observing the en-
ergy distribution algorithm, we found that the energy delivered to
the entire image sweep can be computed byẼ = ∑NMC

i=1 E(X̃)×
NMCMC × ed where theE(·) is the energy of a seed path. The
average path energy can be expressed in a iteration-frame-based

manner as̃E = ∑Niteration
m=1 ∑

Nf rame

k=1

{

∑
Nm,k

sample

n=1 E(X̃)×NMCMC×ed

}

=

∑Niteration
m=1 ∑

Nf rame

k=1

{

Ẽ(m,k)

}

. whereNiteration is the total iterations

used,Nf rame is the total number of frames in the animation,

Nm,k
sample is the total number of samples distributed to thek-th

frame inm-th iteration, andẼ(m,k) = ∑
Nm,k

sample

n=1 E(X̃)×NMCMC×
ed denotes the energy delivered at framek in iterationm. If we
can keepẼ(m,k) statistically unchanged in each frame of each
iteration, the energy delivered to the entire image sweep can keep
unchanged. This derivation allows us to calculate the energy de-
position ratio in each frame according to the number of assigned
stratified pixel position to each pixel, the number of variance-
regeneration pixel positions in each pixel, and the total number
of generated caustics-regeneration paths in that frame without in-
troducing bias [LLZD08].

4. Results

The formulation in Sec.2 allows us to exploit the temporal and
spatial coherence among paths when rendering an animation.
However, rendering a physically-correct animation on a single
computer seems implausible. Thus, our animation renderingsys-
tem distributes iterative computational tasks to a pool of comput-
ers. Each computational task contains a set of initial seed paths
from a designated frame for energy redistribution. According to
the discussion in Sec.3.3, we can locally adjust the energy deposi-
tion ratio of each path according to each frame’s properties. Then,
the iterative computational result from each task is collected to
update the intermediate result and create the iterative computa-
tional tasks for the next iteration. The process repeats until the
rendering process reaches the desired iteration.

To evaluate the performance of exploring temporal coherence
among path integrals, we compared animations rendered with
time perturbations against animations rendered in a frame-by-
frame manner on the Cornell Box (CB) scene, a room scene,
a chessboard scene, and a basement scene using the criterion
of starting with the same number of initial PT paths and using
the same setting for the regeneration methods. Table1 shows
the scene-specific parameters and the statistics gathered from the
computation of the first frame in the first iteration for each ani-
mation. The reason behind this is that since Condor determines
the distribution of computational tasks based on the load ofthe
system and the priority of the user, the completion time of each
task is not predictable. It is not fair to compare the overallrender-
ing time between different rendering methods because the load
of Condor varies from time to time. As a result even the same
rendering algorithm may result in very different overall rendering
time. Therefore, we use the time needed for the first frame in the
first iteration as a representative of the computation time.Simi-
larly, since intermediate computational result arrives atdifferent
time when using Condor, and we used asynchronous update of the
intermediate results. Thus, we use the time to load the result from
the first frame in the first iteration to update the intermediate re-
sults as a representative of the update time. Time needs for render-
ing an iterative task of an animation with temporal perturbations
requires about 10% more than in a frame-by-frame manner. In
addition, rendering with temporal perturbations requiresroughly
additional 60 s to update the intermediate result. In each task we
allocate extra 20 frames around the center frame of the task to
record the majority of perturbed samples to avoid frequently writ-
ing off-center sample records to the disk and save disk spacefor
the off-center records, and this requires extra 200 MB memory.
However, when a perturbed sample falls outside this range, the
task writes a off-center record of time, pixel position, andradi-
ance into the disk. At the end of the task, the center frames and
out-of-core records are all sent back to the system. The rendering
task with temporal perturbations generates additional 48∼ 54.2
times more data than in the frame-by-frame manner.

In Fig. 4, the brightness around the edge of the caustics re-
gion rendered in a frame-by-frame manner changes drastically in
consecutive frames. In comparison, the caustics region in the an-
imation rendered with time perturbations looks smooth and has
similar shape and brightness in consecutive frames. In accompa-
nied animations, the animation rendered in frame-by-frameman-
ner has seriously flickering artifacts in the caustics regions. We
demonstrate the strength of temporal exploration to createtem-
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Figure 4: The top row of images is coming from the cropped
images of the caustics region of the 27th and 28th frame of the
Cornell Box animation rendered in a frame-by-frame manner.The
second row of images is coming from the cropped images of the
caustics region of the 27th and 28th frame of the Cornell Box an-
imation rendered with our time perturbations. Our results gener-
ate a smoother and temporally consistent caustics region inthese
two consecutive frames and the animation also has a smoother
and more consistent caustics region. The caustics region rendered
in frame-by-frame manner is noisy and looks different in shape
for consecutive frames. As a result the animation has noisy and
twisting caustics regions.

Figure 5: These are the cropped image for 5th frames in the
Cornell box scene. The left is rendered with a finite shutter open
period and the right is rendered with a delta period. We can ob-
serve that the motion blur is added naturally. We can see thatthe
caustics regions, the glass ball, and the shadow regions contain
blurred areas around the edge.

porally consistent lighting by intentionally using a less smooth
caustics region. Later in CB2, we use another set of parameters to
generate a smoother animation of the same CB animated scene.

Fig. 6 shows the 60-th frame of CB2, room, chess board, and
basement scenes rendered with temporal perturbation. Whenwe
check the accompanied animation results, we found that the tem-
poral artifacts in animations rendered with temporal perturbations
are far less than the results without the temporal perturbations. In
addition, the algorithm with temporal perturbations can generate
a converged animation faster than without temporal perturbations.

For comparison reasons, we rendered a frame in a transient mo-
ment. However, our system can easily be used to render frames
with motion blur by setting a non-zero shutter-open periodsbe-
cause our time perturbation can easily perturb a path to another
path in any moment of time in the entire animation. Fig.5 demon-
strate that motion blur can be added into a CB animation.

5. Discussion

Time perturbations find correlated paths across different frames
and our system needs to store the contribution of each correlated
path in a set of frames. Theoretically it is possible for our al-
gorithm to explore all temporal coherence in the entire anima-
tion but practically the system has a limited amount of memory.
Therefore, we made a trade-off between the extent of temporal
exploration and the amount of memory and disk usage and the
time for updating each process. We use a set of temporal per-
turbation radii and the number of perturbations in each Markov
Chain to get the samples distributed roughly in a 20-frame radius
from the center of the starting frame to limit memory usage for
center samples and disk space of out-of-center samples. Although
this limits the extent of temporal exploration when the perturbed
distance from the starting frame grows, the failure rate of tempo-
ral perturbations grows. This should have slight effect on the rate
of generating temporally consistent animations. A more efficient
memory and disk usage and update scheme or a better task dis-
tribution scheme is wanted in the future to avoid the limitation of
temporal exploration radii and to relieve the burden of memory
and disk space requirement and the time for updating task-based
data.

Currently we use visual inspection to check the rendering an-
imations. This is time consuming and less preferred. There are
several animation measurement metrics developed for videocom-
pression. The main issue for video compression is that data loss
causes the artifact of blockiness. However, the main issue for MC
algorithms is that noise pops up randomly in the scene and causes
serious temporal artifacts. A proper metric must take into account
this independent disturbance. Such a MC-based perceptual metric
can help us evaluate the rendering results and further adjust our
kernels to concentrate on perceptually important regions.

In the current implementation we used key-framed rigid trans-
formations to animate entities in the scene. It is obvious that
our algorithm can be easily adjusted to render objects with key-
framed properties such as material, light intensity, and other in-
formation. In addition, it is easy to extend the implementation to
include skin-skeleton animation and morph animation. For skin
skeletons each vertex’s position is related to the skeletonposition
and orientation at the moment. We can use the intersection point’s
parameters(u,v) and three vertices’ positions to compute the po-
sition of corresponding positions for different moments oftime.
Similarly, the morph animation also uses(u,v) to compute the
corresponding vertex position at different moments. This mech-
anism allows us to compute the same corresponding position for
each intersection point for different moments of time.

Our algorithm made a trade-off between the rendering speed
and the image quality by choosing the averaging path energy to
determine the number of Markov Chains for each seed path. As
a result, the image quality of the dark regions is generally more
noisy. When rendering a static image, the dark regions are percep-
tually less important and, therefore, the perceptual noiseis hard
to notice. However, since our perception is sensitive to temporal
inconsistency, the noisy dark regions become perceptuallyimpor-
tant when rendering an animation. Although temporal exploration
can reduce the variance in dark regions, the variance in darkre-
gions is still perceptible because the number of Markov Chains
distributed to the dark regions is low. Kelemen et al. [KSKAC02]
used multiple importance framework to combine the independent
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Figure 6: The images from left to right are the 60-th frame generated from CB, room, chess board, and basement scenes using PMC-ER
algorithms with temporal perturbations.

Scene Method Nhost
iteration Nuni f orm Nvariance Scaustics Clt(s) Dt(s) Dk (M) Mk (M) Err

CB1 frame-by-frame 1 4 0 0 2532 1 5 256 1.93e-2
time perturbation 2788 59 240 453 1.82e-2

CB2 frame-by-frame 1 4 36864000 0 3213 1 5 266 1.5e-2
time perturbation 3559 62 243 463 6.29e-3

Room frame-by-frame 4 4 36864000 1.25 1743 1 5 606 3.94e-2
time perturbation 1844 65 263 803 8.37e-3

Chess frame-by-frame 8 4 36864000 1 2093 1 5 366 5.98e-2
time perturbation 2244 63 253 563 4.51e-1

Basement frame-by-frame 8 4 36864000 1 2743 1 5 746 2.61e-1
time perturbation 2954 68 271 943 2.08e-2

Table 1: Measurements comparing temporal exploration with frame-by-frame. In all cases, we used a population size of 5000, three
spatial perturbations having radii: 5, 10, and 50 pixels andtwo temporal perturbations having radii: 0.066 and 0.165 s.In the inner
loop z, we perturbed each member 20 times and eliminated 40% of the population based on its remaining energy and regenerated new
paths to maintain constant number of members in the population. In the preprocess we used 16 samples per pixel (SPPs) for estimating
Ẽ, ed, Rk

G2C, andγk. In the rendering process we chose Nhost
iteration as the total number of iterations, Nuni f orm as the number of sample

per pixel for stratified regeneration, and Nvarianceas the size of the variance-regeneration samples used in an iteration. We computed
the number of caustics-regeneration in each frame as Scaustics×Nk

expect. Thus, we use(Nhost
iteration,Nuni f orm,Nvariance,Scaustics) to specify

the parameters used to render the animation scenes. The seventh column is the time needed to finish the first frame in the first iteration
in each animation. The eighth column is the time required to update the data from the first frame in the first iteration. The ninth column
is the disk usage for the data when finishing the first frame in the first iteration. The tenth column is the memory consumption in
computing the task of the first frame in the first iteration. The eleventh column is the perceptual error defined in [Fan06] for the entire
animation.

path samples and correlated path samples to relieve this problem.
This inspires us to think about taking advantage of the fact that
our algorithm generates a set of independent sample paths before
the energy redistribution step. We would like to develop a hybrid
algorithm combining balance transfer and equal deposition. In the
algorithm balance transfer is designed to explore the low-energy
paths and equal deposition is designed to spending more compu-
tation on exploring the high-energy paths. This should be able to
relieve the problem of the relatively noisy dark regions. Inaddi-
tion, they also purposed to map the creation and mutation of paths
to a high-dimension uniform random number cube to increase the
success rate of mutations for enhancing rendering efficiency. Our
time and lens perturbation is designed to use small perturbation
on the time and image plane domain to increase the perturbation
success rate. A comparison in the success rate between localper-
turbations and uniform-cube perturbations is needed in thefu-
ture. We also would like to explore the possibility of combining
the uniform-cube perturbation methods with our adaptationalgo-
rithm and spatial and temporal perturbation method by system-
atically perturbing the random variables used to control the per-
turbation of time and the perturbation of lens sub-paths to further
increase the success rate of perturbation.

Although we demonstrate the strength of temporal exploration
based on PMC-ER, the temporal exploration and local adjustment
is easily adapted into the MLT and ERPT frameworks. The new
time perturbation method can be added into the choice of the mu-
tation methods in the ERPT and MLT algorithms with the im-
plementation of the image sweep. Parallel rendering the anima-
tion with all regeneration methods and locally adjusting parame-
ters is important to get a converged animation quickly. Since the
ERPT algorithm has a similar parallel energy-distributionstruc-
ture, we can use the same task distribution framework. Each task
contains the paths starting from the same frame. In the prepro-
cess we can estimateγk andRk

G2C for each frame with̃E anded.
The computation of energy deposition ratio discussed in Sec. 3.3
can be directly applied. However, applying parallel local adjust-
ment to MLT is different. We should first generate a seed path
per frame and then a pool of replacement paths consisting of
variance-regeneration and caustics-regeneration paths of the same
frame. Then, during the mutation process, we can replace thecur-
rent seed path with one of the paths from the pool similar to lens
replacement mutation. The acceptance probability can be com-
puted accordingly to decide whether the exploration path switches
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to the new replacement path. This should achieve a similar result
as presented in our demonstration.

6. Conclusion

In this paper our animation system is built on the PMC-ER frame-
work to demonstrate the enhancement in perceptually rendering
efficiency by exploring the temporal coherence among all light
transport paths in the entire animation. Our system is basedon the
Condor system, which allows us to iteratively render an animation
in a parallel manner. Our system demonstrates the ability ofad-
justing rendering parameters locally in each iterative task without
introducing bias into the final result. In addition, motion blur can
be naturally added into each frame when using our temporal per-
turbations. At the end a short discussion of applying the tempo-
ral perturbations and parallel rendering manner to other MCMC
algorithms is described. The results show that explorationof all
kinds of coherence among path integrals is definitely the correct
direction to enhance rendering efficiency.
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