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Abstract

Packet classification is a central component of modern network functionality, yet satisfactory mem-
ory usage and overall performance remains an elusive challenge at the highest speeds. The recent
emergence of chip multiprocessors and other low-cost, highly parallel processing hardware provides
a promising platform on which to realize increased classification performance. In this paper we analyze
the performance of packet classification in the context of parallel, shared-memory architectures. We be-
gin with two classic algorithms–Aggregated Bit Vector and HiCuts–and parallelize each of them multiple
ways. We discuss the tradeoffs of different architectures in the context of these algorithms, and we eval-
uate the schemes on both chip multiprocessor (CMP) and symmetric multiprocessor (SMP) hardware.
Our experiments show that for CMPs, resource-sharing replaces synchronization scaling as the primary
speedup-limiting bottleneck. Further, while SMPs providemore processing power core-for-core, CMPs
nevertheless provide the best overall performance when allavailable execution contexts are employed.

1 Introduction

Packet classification is a central component of modern network functionality and is used for a variety of
services, including routing, firewalls, and quality of service. Even so, achieving satisfactory performance
with reasonable memory usage remains an elusive challenge at the highest speeds, and new techniques
continue to be proposed to advance the state of the art. In large part, this ongoing challenge arises due to the
tradeoffs between memory usage and execution time imposed by the nature of packet classification itself,
combined with the need for very fast routines that can keep upwith ever-increasing network speeds.

The recent emergence of Chip Multiprocessors (CMPs) [2, 9] and other low-cost, highly parallel archi-
tectures provide a promising platform for realizing increased performance for packet classification and for
other common tasks in the forwarding path. This naturally leads to the question: what are the consequences–
both positive and negative–of performing classification onparallel architectures? Increased performance is
the primary motivator, but in addition, some CMPs provide more attractive performance per unit power than
their uniprocessor or traditional multiprocessor cousins[11]. In addition to a potential power advantage,
the use of multiple processing elements on a single chip has significant performance per unit cost advan-
tages over multi-chip systems and clusters of networked workstations [19]. On the other hand, migrating
to parallel architectures is no simple feat, and the parallelization process gives rise to hidden pitfalls and
other constraints that limit scalability and must be addressed. These include extracting sufficient parallelism
out of existing algorithms, devising altogether new algorithms, controlling inter-processor communication
overhead, and limiting synchronization bottlenecks.

This work details our experiences in parallelizing packet classification algorithms and evaluating them
on various multiprocessor architectures. We start with twoclassic but different classification algorithms–
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Aggregated Bit Vector (ABV) [1] and HiCuts [8]–and parallelize each of them in multiple ways. We discuss
the tradeoffs inherent to different parallel architectures in the context of these algorithms, and we evaluate
their behavior on both Chip Multiprocessor (CMP) and Symmetric Multiprocessor (SMP) hardware. We
consider the costs and benefits of parallel classification along three different axes. The first axis is the degree
of parallelization, determined by number of processors available on the host machine. The second axis
captures the features of the parallel hardware platform itself, including variables such as synchronization
and locking costs, processor topology (CMP or SMP), and memory hierarchy differences. Third is the
classification algorithm used and its parallel variants.

Our results show that parallel classification performance depends strongly on many factors, including
algorithm selection, hardware platform, and parallelization scheme. In general, we find that each of the axes
above affects the performance of classification dramatically and non-orthogonally with respect to the other
axes. More specifically, we find that for CMPs, resource-sharing replaces synchronization scaling as the
primary speedup-limiting bottleneck. Further, while SMPsprovide more processing power core-for-core,
CMPs nevertheless provide the best overall performance when all available hardware execution contexts are
employed. Finally, for intermediate numbers of allocated processors, performance strongly depends on the
allocation order itself. In the best cases, hardware costs and constraints are mitigated by the parallelization
scheme (and vice versa), and we observe near-linear performance increases as the degree of parallelization
increases.

In summary, at the very highest speeds packet classificationmay continue to be performed using custom
hardware and software solutions. Nonetheless, the computing industry’s trend toward multi-core parallel
processing is clear. In this paper, we take a step towards understanding the costs of moving packet classifi-
cation to parallel architectures and determine what benefits we can reasonably expect to obtain. Our results
suggest that parallel classification on modern CMP hardwareopens the door for further performance gains.

The remainder of this paper is organized as follows. Section2 defines the packet classification prob-
lem and gives the related work, and Section 3 describes the architectural aspects relevant to our study. In
Section 4 we briefly describe the ABV and HiCuts algorithms, and in Section 5 we present a taxonomy
of parallelization schemes for these algorithms. Section 6contains our experimental results, and Section 7
concludes.

2 Background and Related Work

A packet classifier compares packets to a database of rules todetermine the lowest-cost rule matching each
packet. Packets are classified according to the values of specific fields in their headers, which typically in-
clude source and destination addresses, source and destination ports, and the protocol. Rules in the database
contain values for each of the five fields, a label, and a cost. Entries in the fields of a rule may contain
explicit values (such as a specific IP address), a prefix, a range of values (e.g.a port range of [1024:65535]),
or a wildcard to indicate that the field’s value in the packet header is of no interest in the rule. When the
lowest-cost matching ruleR is found,R logically affixes its label to the packet. In the case of routing, for
example, the label specifies the route the classified packet should take on its next hop. In practice, a rule’s
cost is determined by its index into the table of rules, with lower cost rules occurring first.

Conceptually, a classifier compares a packet’s header against each rule in sequence until a match is
found. But practically this approach is unacceptably slow,since rule databases often contain hundreds to
thousands of entries, and classification must be performed at wire-speed to avoid creating a bottleneck.
Further constraining the space of solutions, Lakshman and Stiliadis [10] showed that packet classification
is an instance of a space-time trade-off [3], requiring either O(log nk−1) time orO(nk) space forn rules
andk header fields. Thus, proposals for efficient packet classification center on novel ways for achieving
acceptabletrade-offsbetween time and space. Rather than describe the myriad techniques in detail, we
refer the reader to available summaries [7, 15, 17] and briefly describe here the higher-level qualitative and
structural differences between them.
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Most classification techniques can be divided along two axes: software vs. hardware (TCAM), and
decomposition-based vs. heuristic approaches. Along the software–hardware axis, software-based classifi-
cation is the most flexible and enables more sophistication and complexity at the cost of slower execution
time. TCAM-based approaches, on the other hand, use specialized circuitry to classify a packet against all
rules in parallel. TCAMs are fast but require large amounts of power and physical space and are expensive
compared to commodity hardware. In addition, they have limited matching capabilities, since port ranges
cannot be directly matched and must first be converted to lists of prefixes requiring extra capacity. A detailed
summary of the trade-offs involved between software and TCAM-based approaches can be found in [6,15].

Along the decomposition vs. heuristic axis we can see the influence of the space-time trade-off. De-
composition techniques perform classification by subdividing the problem into smaller, easier-to-compute
components and combining the partial results in subsequentphases of the computation. From a paralleliza-
tion perspective, these approaches are comparatively straightforward to parallelize since the work performed
by each subtask is relatively constant and easy to determinea priori. In contrast, heuristic approaches use
decision trees [8,14,18], prefilters [6], and other techniques to find the lowest-cost matching rule as quickly
as possible. For these techniques, the amount of work per packet varies depending on the contents of the
packet’s fields and the structure of the heuristic. Parallelizing these approaches is more difficult, since
balancing the work of each processor is not as straightforward.

In relation to these paradigms, our work investigates software-based techniques and rests on the as-
sumption that multi-core processors with large numbers of cheap, lightweight cores may become viable
platforms upon which classification is executed. For our experiments we parallelize and evaluate both a
decomposition-based algorithm (Aggregrated Bit Vector [1]) and a heuristic decision-tree based approach
(HiCuts [8]). We describe both of these techniques in Section 4.

With regard to network processing architectures, Yi and Gaudiot [20] have recently explored the applica-
bility of extending network processing architectures withSimultaneous Multi-Threaded (SMT) capabilities.
They evaluated all nine applications (none include packet classification) in the NetBench suite [13], con-
cluding that simultaneously executing applications from different layers in the protocol stack gave the great-
est performance improvement. In contrast, we study packet classification in detail and examine the effect
that processor architecture has on parallelization schemeand vice-versa. In earlier work along these lines,
Crowley et al. [5] found that SMT processors outperformed CMPs, Fine-Grained Multi-Threaded proces-
sors (FGMT) and other architectures. While there are many differences, our results are roughly consistent
with theirs.

Finally, recent work has looked at approaches to parallelizing packet classification itself. In [21], Zheng
et. al.propose a TCAM-based technique that uses chip level parallelism to exploit increased performance. In
[22], the authors parallelize bypartitioning the rule setsand running multiple decision tree-based classifiers
in parallel. Each tree covers a distinct subset of the rules.The purpose of our work is not to propose new
parallel classification algorithmsper se, although we do parallelize some classic algorithms. Instead, we
focus on the costs and behaviors of parallelization with regard to the architectures they are run on in an
attempt to better guide current and future parallelizationefforts.

3 Architecture Preliminaries

We study packet classification algorithms in the context of two shared-memory architectures.Symmetric
Multiprocessors(SMPs) employ multiple processingchips to provide a parallel execution environment.
Each such chip is allocated a single processor and a large, private cache. In contrast,Chip Multiprocessors
(CMPs) integrate multiple processors onto a single chip, commonly sharing cache resources as well. While
SMPs and CMPs present identical programming interfaces, applications will see very different performance
characteristics due to architectural differences.

SMPs devote the vast majority of the area of a particular chipto a single processor and its cache hi-
erarchy. The SMPs in this study provide a great deal of resources to a single execution context (thread),
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including large unshared caches that greatly reduce average memory access latency. The consequence of
this chip allocation is that inter-thread (and, in this case, inter-processor) communication must cross at least
two sets of pins, which incurs latency comparable to a cache miss or longer. While this operation is log-
ically transparent to the programmer by virtue of cache coherence, it is costly, especially if it occurs with
regularity.

In contrast, inter-thread communication is much less costly in a CMP environment. Communication
between two threads residing on the same chip does not require any off-chip data movement and is therefore
fast. The threads in our CMPs share a single unified (L2) cacheon-chip which reduce communication time
to only a few processor cycles. As a result, applications that are sensitive to inter-thread communication
time are well-suited to a CMP environment. Unlike the SMP, however, the CMP must share some on-chip
resources with other threads. Notably, additional cores and thread-private caches consume chip area and
effectively reduce the performance of an individual threadin isolation. Ideally, this reduction in single-thread
performance can be ameliorated by use of additional threads, though many applications do not trivially
exhibit abundant thread-level parallelism.

The CMPs in our study also employmultithreaded processors, which greatly increase the number of
available hardware threads by time-sharing each processing core at a fine granularity, but has the tendency
to further reduce single-threaded performance. Specifically, as increasingly more thread contexts are used,
the performance of each individual thread suffers as the thread’s timeshare of its CPU is further reduced.

To illustrate these costs, consider the code se-

Thread 1 Thread 2
L.lock(); L.lock();
A = 27; S = A + B;
B = 19; L.unlock();
L.unlock(); do work(W);
do work(W);

Figure 1: Simple synchronized code segment

quences in Figure 1, depicting a synchronized criti-
cal section. Thread 1 writes two cache lines (A and
B) which are protected by lock L. Thread 1 then
performs W units of independent work requiring
no communication. At a later time, Thread 2 ac-
quires lock L and then reads cache lines A and B.
Suppose Threads 1 and 2 execute in an SMP envi-
ronment (i.e. on Chip 1 and Chip 2, respectively).
Data requests for L, A, and B must all travel from
Chip 2 to Chip 1 in the common case, and the data

must then return to Chip 2. Each of these round-trip accessesmay require hundreds of processor cycles to
complete, incurring a large execution latency for a short synchronized section of code. However, if Threads
1 and 2 execute on the same chip, thenno inter-chip traffic occurs, resulting in much faster execution. Since
the threads in question share a common on-chip cache, communication time is reduced from comparable to
a cache miss to comparable to a cache hit.

The whole of the execution does not consist of communicationalone, however. For SMPs, work W is
typically performed faster overall than on CMPs due to the superior single-thread performance of the SMPs.
Hence, thefrequency of communicationbecomes a vital indicator of SMP- or CMP-affinity. Simply put,
when communication dominates CMP-based systems will tend to outperform SMPs. Conversely, SMPs
tend to outperform CMPs when computation.

4 Classification Algorithms

We parallelize two distinct types of packet classification algorithms: the Aggregated Bit Vector [1] algo-
rithm, which is decomposition-based, and HiCuts [8], whichuses decision trees. We briefly describe each
algorithm to provide context for the parallelization we describe later.

4.1 Aggregated Bit Vector

The Aggregated Bit Vector (ABV) scheme is itself an extension of the Lucent Bit Vector approach (LBV)
[10]. LBV is a classic divide-and-conquer algorithm that subdivides the classification problem, solves the
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subtasks, and combines the intermediate results to computea final answer. To perform the decomposition,
LBV partitions the rule database by projecting along each ofthe k fields in the rules. In each of thek
resulting sets, LBV then constructs a trie from the binary representation of the values in the rules for the
given field. Values in a field that are ranges are converted to prefixes prior to trie construction. Each node
in the tries contains a bitmap whose length is equal to the number of rules. For fieldj, bit i is set in the
bitmap at a nodeN of trie j if the path from the root of the trie toN matches the prefix in fieldj of rule i.
Altogether, the bitmap atN denotes the set of rules that match the prefix traced by the path toN .

When a packet arrives for classification, each of itsk header fields is classified independently by follow-
ing the associated tries as far as possible, resulting ink bitmaps which give the set of rules that match each
field independently. To combine these subresults, LBV then intersects thek bitmaps and looks for the set
bit whose rule has the lowest cost. If rules are ordered according to cost, the algorithm needs only to find
the first bit that is set in the intersected bitmap.

The ABV algorithm extends LBV by drawing on the observation that the intersected bitmap is large and
sparse, leading to a large number of unnecessary memory accesses and wasted cycles when looking for a
set bit. In the extension, a small aggregate bitmap is also associated with each trie node that summarizes the
regular bitmap. If A is the aggregate size, a biti is set in the aggregate bitmap if there is at least one bit in
the range[i ·A, (i+1) ·A) that is set in the regular bitmap. During classification, theaggregated bitmaps are
intersected and examined first. When a set bit is observed, the corresponding bits in the intersected regular
bitmap are then examined. ABV reduces the number of bits to beexamined from|R| (the number of rules)
to |R|/A, which can lead to large decreases in memory accesses for large values of A. Further improvements
are possible by extending the aggregation beyond a single level to create a multi-level hierarchy of aggregate
bitmaps.

4.2 Hierarchical Intelligent Cuttings (HiCuts)

Hierarchical Intelligent Cuttings (HiCuts) [8] is a heuristic, decision-tree [4] based procedure for performing
classification. In this technique, nodes in a decision tree serve as filters that successively reduce the number
of matching rules until a small enough number of rules remains for which linear search is feasible. Geo-
metrically, rules can be viewed as points in ak-dimensional hypercube, where as beforek is the number of
header fields involved in the classification. Nodes in the decision tree correspond to planes that recursively
subdivide the hypercube into smaller subcubes that classify the rules they contain. The goal of the decision
tree problem is to provide a good partition of the rules whilesimultaneously performing as few cuts as pos-
sible (thus reducing the height of the tree). Determining the best possible decision tree is NP-Complete [17],
so heuristics with reasonable performance are used to approximate an exact solution.

HiCuts uses heuristics that seek to balance the space and time costs and are based on providing the best
balance based on locally optimal criteria. Large trees are fast but require large amounts of storage space,
whereas small trees can use very little space but are slow since they result in nodes with large number of
rules to be linearly matched. Tunable heuristics guide the construction of tree to some acceptable footprint
between either extreme. Once the decision tree is constructed, performing classification is simple. A packet
is classified by traversing the tree, evaluating the nodes’ predicates in succession and following the appro-
priate child pointers. When a leaf node is reached, the classifier linearly scans the rules contained in the
node and affixes the label of the lowest cost rule to the packet.

5 Parallel Classification: Techniques and Analysis

Packet Classification is computation-bound from a high performance linespeed networking perspective, but
it is lightweight in comparison to many traditional parallel problems such as large scale scientific simula-
tions. Communication overhead can be relatively, and understanding inter-thread communication cost is key
to achieving high-performance packet classification via parallel software. We considered and implemented
many parallelization schemes for the ABV and HiCuts algorithms, including data parallel, control parallel,
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and pipelined parallel approaches. Each of these schemes optimizes a different trade-off between various
parallelization overheads. We describe each approach below as well as specific implementation issues.

5.1 Data Parallel Approaches

The simple data parallel approach is analogous
ABV

ABV

ABV

ABV

Incoming 

packets

Figure 2: Data parallel Aggregated Bit Vector. Each
processor executes the complete algorithm.

to theSingle Instruction Multiple Data (SIMD)ex-
ecution model. In this approach, the classification
algorithm is fully replicated onto each processor,
and packet headers are multiplexed to an arbitrary
processor for parallel classification. This method
is straightforward and scales reasonably well, as
virtually no inter-thread communication is required
when classifying two separate packets. Initializa-
tion tasks that construct data structures are performed
prior to the replication, and a single copy of these
and other read-only data structures is shared among
all instances of the algorithm.1

Figure 3 illustrates the data parallel approach for the ABV algorithm; the HiCuts data-parallel imple-
mentation is structured identically. A shared queue holds packets that have been received from the network
and are awaiting classification, and a mutual exclusion lockguards the queue and arbitrates access to it
among the competing processors. As with all our parallelizations, this lock simulates the synchronization
that must occur when retrieving a packet from the network interface. On each processor, the classification
cycle consists of three steps: busy-waiting to acquire the lock, retrieving a header from the queue (more
generally, retrieving a set ofN headers), and classifying and outputing the header (orN headers).

There are two primary advantages to data parallel schemes. The first is simplicity: parallelizing the
algorithm requires only the addition of a lock and some logicat the entry point of the algorithm to synchro-
nize the queue. The steps involved in the classification algorithms themselves remain intact; no surgery is
required to extract the parallelism out of an algorithm. Secondly, this approach minimizes the dependencies
between processors, which is not true of the other parallelization schemes we consider. Here, processors
classify packets independently and do not need to execute intight synchrony. Each processor can classify
packets as fast as its capabilities allow, without regard tothe speed or duty cycle of other processors.

The primary disadvantage of this approach is the use of a single lock guarding the shared queue. As char-
acterized by Mellor-Crummy and Scott [12], this construction limits scalability for even small numbers of
processors, especially on traditional parallel architectures such as SMPs that have high communication costs
(Figure 12). Only one processor can hold the lock at a time, and acquiring the lock becomes a chokepoint
as the number of processors increases. As we show later, our experimental results are generally consistent
with those described in [12], although the bottleneck is mitigated somewhat in CMPs, where locking costs
are cheaper.

There are many variants to the data parallel approach, including techniques that subdivide the computa-
tion tasks into smaller components and summarily optimize scheduling of subtasks (e.g., a master thread or
use of multiple thread-private queues). These techniques tend to increase the communication time overhead
in addition to having the same locking problems as above.

5.2 Control Parallel Approaches

In contrast to data-parallelism,control parallelismsubdivides analgorithm into multiple subparts that
can be executed in parallel. Control-parallel approaches work well on algorithms that repeat the same tasks
for different data values. For subparts that cannot be parallelized, such as bitmap intersection in the ABV
algorithm, all processors performing tasks leading up to the serial subpart must communicate their results

1On most machines, no inter-thread communication is necessary when threads share cacheable data in a read-only manner.
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to a designated processor. When a designated processor has received all the partial results, it executes
the algorithm subpart serially until a parallelizable subpart is again reached. Thus a control-parallelized
algorithm is often characterized by alternating parallel and serial components.

At first, control parallelization seems to be a

T1

T2

T3

T4

T5

AgBits

1-26

AgBits

27-52

AgBits

53-78

AgBits

79-104

AgBits

104-128Sync

Point

Select lowest 

cost rule

Incoming 

packets

Figure 3: Control-parallel Aggregated Bit Vector.

good fit for the decomposition-based ABV algo-
rithm. Trie traversals over header fields offer in-
dependent operations can be performed on distinct
processors, and analysis of the aggregate bitmaps
and rule bitmaps can be allocated among several
processors as well. Figure 4 depicts a control par-
allel scheme for the ABV algorithm that leverages
two parallel components, each followed by a serial
component. The first component parallelizes trie
traversal so that each header field’s best matching
prefix is identified on a distinct processor. Next, the
aggregation bitmaps from each trie are intersected
together in a serial operation. In the second parallel
phase, the intersected bitmap is divided among the
available processors and aggregation is performed.
Finally, a single processor selects the lowest cost
rule from each of the partial results produced.

Unfortunately, this parallelization has serious shortcomings. First, there is a heavy synchronization cost,
as tight synchrony is required at all serialization points following the parallel phases, and barriers must be
employed to ensure that serial phases do not execute until all dependencies have communicated their results.
Time is lost as processors idle while waiting for a previous processor to reach the synchronization point and
communicate its results. Second, the parallelization doesnot scale gracefully to more than five processors,
since this is the limit of the available parallelization in the first phase of the ABV algorithm. Combined
together, these two costs yield an unworkable solution, andinitial results demonstrated that a performance
slowdownoccurs as the number of processors is increased. Further, the HiCuts algorithm admits no obvious
amenity to such parallelization, since each node in the decision tree is dependent on its parent.

From another perspective, the poor behavior can be understood by considering the communication costs
involved. For the ABV algorithm, our experiments have shownthat, on average, 12-14 nodes are accessed
during trie traversal, most of which reside in the cache, so that the computation time for the first paral-
lelizable subtasks is fairly small compared to the aggregation steps. As a result, the communication costs
are comparatively high, but these do not contribute to the algorithm and count as overhead. Control par-
allelization works well for tasks that have large, balancedcomputation times, unlike the disparity between
ABV’s trie traversal and aggregation steps. Thus, we conclude that control-parallel schemes are unsuitable
for packet classification.

5.3 Pipelined Parallelism

Pipelined techniques are a special case of control parallelism restricted to an assembly-line model for
data movement. Here, the classification task is partitionedinto multiple stages; processors are connected
together in sequence, and each processor is assigned a specific stage to execute. Small queues between each
processor decouple the read and write operations of adjacent processors in the pipe and allow for a limited
amount of buffering. During operation, each processor waits for data on its input queue, reads in the data
when it arrives, executes its assigned stage(s), and placesthe intermediate results in its output queue for the
next processor in the chain.
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T1-T3 T4-T5 Ag Bits

1-42

Ag Bits

43-85

Ag Bits

86-128

Incoming

packets

Figure 4: Pipelined Aggregated Bit Vector algorithm. Each processor completes a portion of the task and
hands off the intermediate results to the next processor.

The chief advantage of the pipelined approach is reduced lock contention. Each intermediate queue be-
tween processors has a lock that regulates access to the queue’s contents. Since these queues are shared by
only two processors, contention for the lock is considerably reduced compared to data-parallel approaches.
In principle, throughput can be higher than a data parallel approach since lock manipulation and wait time
can be much lower in a pipelined implementation. The chief obstacle to this approach is that overall through-
put is throttled by the worst-performing task in the pipeline. Thus, in practice, increased throughput depends
strongly on a balanced workload among all the processors in the pipeline.

Figure 4 shows a pipelined parallelization of

dport < 1024 dport > 49151

Stage 1

Stage 2

Stage 3

Figure 5: Pipelined HiCuts. Processors in the pipeline
are assigned to distinct levels in the decision tree.

the ABV algorithm for five processors. A lock guards
access to each intermediate queue. Stage 1 busy-
waits for packets to be received from the network,
and Stages 1 and 2 together perform the trie traver-
als. The remaining three stages perform the tasks
of intersecting the bitmaps from the tries and find-
ing the lowest cost matching rule. We scale the
parallelization up to higher numbers of threads by
spreading the tries among distinct processors and
by dividing the bitmap evaluation step into smaller
subranges. In our implementation, to avoid expen-
sive (and unnecessary) copies of intermediate re-
sults, packet headers along with their intermediate
results are maintained in globally visible memory,
and pointers to their location in memory are communicated between processors.

With regard to packet classification, our experience has been that decomposition-based techniques such
as ABV are easy to parallelize since they can be decomposed into smaller tasks that are relatively determin-
istic in their execution time, leading to well-balanced pipelines. Designing a pipelined parallelization (or
a more general control parallelization) for heuristic approaches is not as straightforward. The overarching
requirement is to produce a well-balanced decomposition that can keep all processors utilized. However,
heuristic decision-tree based algorithms such as HiCuts interleave evaluation of different fields at all lev-
els of the tree, rendering ABV-style decompositions impossible. An alternative approach, and the one we
employ, is to decompose the decision tree so that each level in the tree is assigned to a distinct processor.
Figure 5 depicts this technique for the first three levels of atree. In addition, when available we dedicate
one or more processors to performing the linear traversals at the leaves. As above, a small queue with a
lock sits between each level. When the processing at any level has been completed, the processor places the
intermediate results along with a child node identifier on its output queue.
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Server Sun T2000 (CMP) SunFire v880 (SMP)
Processors 8 UltraSPARC-T1 8 UltraSPARC-III+
Threads 32 8
Chips 1 8
L1-I 16 KB 32 KB
L1-D 8 KB 64 KB
L2 3 MB(on chip,shrd) 8 MB(off chip, prvt)
Interconnect Crossbar Shared Bus
Main Memory 16 GB 32 GB

Figure 6: Characteristics of CMP and SMP platforms.
The Sun T2000 (Niagara) provides a CMP execution en-
vironment; the SunFire v880 is an SMP.
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6 Experimental Results

We implemented data-parallel and pipelined parallelizations of both the ABV and HiCuts algorithms and
evaluated them on CMP and SMP hardware, repeating all of our experiments for processing quantum sizes
ranging from 1 to 100 packet headers. We briefly summarize ourfindings as follows:

• Processor AllocationOn CMPs, resource-sharing is the primary speedup-limitingbottleneck. Further,
thread/processor allocation order can significantly affect performance for intermediate numbers of allo-
cated threads.

• Synchronization CostsSynchronizationscalingcosts did not produce significant bottlenecks on either
platform, although SMP communication costs limited scalability and far outweighed CMP communica-
tion costs.

• Parallelization SchemesIn part because of the above, Data Parallel approaches achieve close to ideal
speedups, whereas workflow imbalances restrict pipeline performance.

• PerformanceCore for core, SMPs provide superior performance. When all available processor resources
are used, though, CMPs yield the best overall performance.

6.1 Execution Environment

Figure 6 provides the details of the CMP and SMP platforms in our study. We used a Sun T2000 server
(Niagara) for our CMP environment, which has 8 cores and 4 hardware threads per core for a total of 32
independent hardware contexts (threads). We used a SunFirev880 for the SMP platform containing 8 chips
for a total of 8 hardware contexts. For some experiments, we also employed an older Sun E6000 16 processor
SMP system as a comparison point. All experiments were performed on idle machines and repeated twice
with the best result retained. We use the termquantumto refer to the number of packets processed between
locking events. Unless otherwise noted, we use a quantum of 1. For our tests, we used synthetic classifiers
and traces produced with the Classbench [16] framework.

One implicit degree of freedom in each of the algorithms we studied is the choice of synchronization
primitive. We considered three distinct synchronization mechanisms: condition variables, pthread mutexes
using busy-wait loops, and the atomiccompare-and-swap (CAS)SPARC instruction. The relative through-
put achieved using each of these mechanisms is given in Figure 7. Condition variables are the most expensive
since they communicate synchronization via signals relayed through the operating system. Using busy-wait
loops with pthreads eliminates much of the OS-signalling overhead and gives a 70% relative improvement.
Finally, using the CAS instruction with busy-wait loops further reduced lock acquisition time and yielded
135% improvement over condition variables. Consequently,all our experiments use an inline CAS-based
macro for synchronization in lieu of condition variables orlibrary-provided locking.
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Figure 8: Data Parallel ABV
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Figure 9: Data Parallel HiCuts

Parallel. Algorithm Platform # Performance (pps) Speedup
Scheme 1 8 32 8 32

Data ABV CMP (Striped) 50,004 388,115 651,879 7.76× 13.03×
Parallel SMP 51,933 374,226 – 7.21× –

HiCut CMP (Striped) 113,523 888,203 1,777,0197.82× 12.67×
SMP 211,444 1,283,264 – 6.07× –

Pipe ABV CMP (Striped) 43,448 200,460 195,006 4.61× 4.49×
Parallel SMP 45,990 150,463 – 3.27× –

HiCut CMP (Striped) 100,908 149,838 383,0241.60× 2.76×
SMP 166,088 28,900 – 0.17× –

Table 1: Raw performance (in packets per second) and speedups for 1, 8, and 32 concurrent threads.

6.2 Data Parallel Results

Figures 8 and 9 depict the speedup of the data-parallel ABV and HiCuts algorithms, respectively. The dashed
line shows the ideal speedup as a reference. On the CMP, performance increases for intermediate thread
counts (i.e. less than 32) strongly depend on the order in which threads are allocated. Atiled allocation uses
all threads in the current core before allocating a thread from another core. Thestripedallocation scheme,
on the other hand, balances thread allocation among all cores by allocating threads so that they are spread
across all cores as evenly as possible. Since threads on the same core share resources, striped allocations
that do not share resources outperform their tiled counterparts for intermediate thread counts. As expected,
the distinct allocations converge at full utilization.

For both algorithms, CMP speedup is near the ideal for eight or fewer striped threads (each on a distinct
core) and gradually falls off as threads on the same core compete for processor resources and become
increasingly constrained. For CPU-intensive workloads, CMP scalability is limited by CPU performance
saturation rather than communication costs. Note that on the SMP platform, scalability falls from the ideal
in both algorithms. We attribute this to the relatively increased communication cost of the SMP architecture.
Further, since HiCuts is a more efficient algorithm than ABV, the ratio of communication to computation
is higher and the fall-off from the ideal is larger in Figure 9than in Figure 8. Table 1 shows the raw
performance numbers in packets per second and the resultingspeedups.
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Figure 10: Pipelined ABV
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Figure 11: Pipelined HiCut

6.3 Pipelined Parallel Results

Pipelined parallelizations exhibit characteristically different behavior as shown in Figures 10 and 11 (Fig-
ure 11 also shows behavior for larger quantum sizes as discussed in the next section). Most significantly,
the observed speedup is quite modest compared to data parallel approaches, due to both increased commu-
nication costs and processor load-balancing issues. Increasing the number of threads increases the number
of synchronization points that must be traversed; even though only two threads contend for a given lock,
the frequency of communication is larger and thus communication costs contribute larger overhead. Sub-
dividing the algorithm into small enough pieces so that it can be spread among the available processors
further increases relative communication costs, althoughthis can be addressed somewhat by increasing the
processing quanta. At some point, tasks are broken down intotheir smallest “atomic units”, which do not
necessarily have uniform processing requirements. This imbalance in the processing loads of the pipeline
constrains overall performance to that of the slowest thread. Such imbalance manifests itself partially as
non-monotonic architecture-specific “sweet spots” shown in the figures.

Second, CMP performance does not converge at 32 threads as isthe case for the data parallel results.
This behavior stems from the variable synchronization costs that occur between pipeline stages. Stages that
reside on different cores will have different communication costs than those that reside on the same core.
These costs lead to significant speedup differences even when all processors are utilized since different paths
between the threads and cores are followed.

Finally, SMP behavior varies widely between the two algorithms. Pipelined ABV loosely follows the
pipelined CMP trend, but no significant speedup is observed with pipelined HiCuts. This stark contrast
between SMP and CMP behavior comes (again) from the relatively heavy synchronization costs for SMPs
compared to CMPs as well as the shared on-chip L2 cache on the CMP. When combined with the reduced
computation requirements of HiCuts over ABV, the resultinghigh communication to computation ratio of
HiCuts on SMPs effectively constraints any speedups.

6.4 Varying the Quantum Size

As alluded to earlier, varying the quantum size–the number of packets processed between synchronization
events–lowers the communication to computation ratio and can positively affect performance. We examined
the impact of this by executing the algorithms as the quantumsize varies from 1 packet to 100 packets per
synchronization event. Table 2 summarizes these results. In the table, the second column contains the
best performance with quantum 1 using the maximum number of threads available to the platform. The
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Performance Max Best
Algorithm & Platform (Quantum 1) Perf. Quantum % Improv.

ABV DP CMP 651,879 743,559 70 14.1%
ABV DP SMP 374,226 427,908 60 14.3%
ABV PIPE CMP 195,006 232,875 50 19.4%
ABV PIPE SMP 150,463 198,303 40 31.8%
HiCuts DP CMP 1,777,019 2,024,021 70 13.9%
HiCuts DP SMP 1,283,264 1,622,839 40 26.5%
HiCuts PIPE CMP 383,024 476,740 100 24.5%
HiCuts PIPE SMP 188,840 240,248 100 27.2%

Table 2: Performance improvements obtained when the numberof processed headers per synchronization
event (quantum) is increased.
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Figure 13: Comparing the relative performance of
ABV and HiCuts using various parallelizations.

third column contains the best overall performance we observed, using the same number of threads, as
the quantum is varied. The fourth column contains the quantum size at which the best performance was
observed, and the rightmost column shows the percentage improvement.

Overall, the best improvements come from the HiCuts algorithm. Relatively high communication over-
head is a natural consequence of the increased efficiency of that algorithm; increasing the quantum size
provides an easy way to reduce the overhead. Somewhat surprisingly, performance does not monotonically
rise with continued quantum size increases, as indicated byquantum sizes that are less than 100. As the
quantum size grows, the amount of buffering (and copying) between processors increases. Further, pipeline
imbalances can lead to full buffers that may induce blockingduring processing. Thus, the best quantum size
is not the largest possible, but rather the size that minimizes the total throughput delay.

Despite these improvements, the trends in Figure 11 put themin perspective: increased quantum size can
improve performance, but it does not fundamentally tip the scales in favor of one algorithm or architecture
over another. Further, it is not clear whether the delay introduced by batch-processing up to 100 packets
at a time falls within acceptable bounds. Thus, varying the quantum size is better employed to enhance
performance rather than as a selection factor.
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6.5 Discussion

Classification Performance.Our experiments have focused on the scalability of parallelclassification algo-
rithms rather than the raw performance as a means for gaugingthe potential of CMP and SMP architectures
and also to ensure an even evaluation. Looking specifically at performance, Figure 13 summarizes the re-
sults for many configurations normalized for display purposes to the slowest configuration (ABV pipelined).
Our results confirm others [17] that indicate HiCuts outperforms ABV. Further, SMPs provide superior per-
formance thread-for-thread. At eight threads, SMP performance dominates CMP performance on the target
platforms. However, we find that when all computational resources are employed, data-parallel HiCuts CMP
provides the best overall performance even in the presence of resource-sharing.
Parallelization techniques. Given that data parallel approaches consistently outperform their pipelined
counterparts, one may ask–what value are pipelined approaches? Historically, synchronization scaling [12]
has been a bottleneck to obtaining speedups for even modest numbers of processors. Figure 12 shows
a comparison of data parallel and pipelined ABV parallelizations on an older Sun E6000 16-processor
SMP. Here, synchronization scaling becomes a bottleneck with as few as four processors, and pipelined
approaches are needed to obtain linear speedups. In contrast, our current results show that for this problem,
the engineering constants impeding synchronization scaling have changed, and that data parallel approaches
are acceptable for larger numbers of processors.

7 Conclusion

This work details our experiences in parallelizing packet classification algorithms and evaluating them on
Symmetric Multiprocessor (SMP) and Chip Multiprocessor (CMP) architectures. We find that although the
CMP architecture provides the best overall performance, there are many significant factors that influence the
overall behavior. First, for smaller number of execution contexts, SMPs may provide the best performance.
In addition, resource-sharing replaces synchronization scaling as a speedup-limiting bottleneck, and CMP
performance is sensitive to processor allocation order. Wefind further that extracting sufficient parallelism
from the classification algorithms is challenging, and thatdata-parallel algorithms provide the easiest path
to improved performance.

CMPs are a promising environment for high-performance parallel packet classification in software.
While the highest-performing links will likely still be classified with hardware methods, CMPs offer attrac-
tive performance per watt and performance per unit cost though thread-level parallelism. The CMP’s natural
tolerance for inter-thread communication optimizes the necessarily small computation time per packet, and
does not mandate the processing of many packets at a time to provide scalability.
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