
  
  

 

Computer  
Sciences  
Department  
 

  

Internet Multi-Resolution Analysis: A vision and framework in 
support of representing, analyzing, and visualizing internet 
measurements 
 
Paul Barford 
Craig Partridge 
Walter Willinger 
 
Technical Report #1646 
 
September 2008 

 
 

 

 



Internet Multi-Resolution Analysis: A vision and
framework in support of representing, analyzing, and

visualizing Internet measurements

Paul Barford
University of Wisconsin

pb@cs.wisc.edu

Craig Partridge
BBN Technologies

craig@aland.bbn.com

Walter Willinger
AT&T Labs Research

walter@research.att.com

ABSTRACT
Empirical analysis has been the foundation for a great deal
of network research and has resulted in significant improve-
ments to Internet systems, protocols and practices. Recent
progress applying a constantly expanding set of increasingly
more sophisticated statistical tools suggests the emergence
of a new type of empirical network research that could ben-
efit from a more principled approach for representing, an-
alyzing, and visualizing a wide variety of Internet-related
measurements. To this end, we propose and introduce in
this position paper the concept of an Internet-centric multi-
resolution analysis (MRA). Internet MRA is a structured
approach to Internet data representation and establishes a
framework for systematically applying statistical analysis,
signal processing or machine learning techniques to provide
critical insights into a number of challenging network re-
search problems. Ultimately, the success of Internet MRA
will be gauged by its ability to solve important problems
in network research and operations and in the new lines of
inquiry that it enables.

1. INTRODUCTION
Over the past few years, researchers have started to use

an ever wider set of analytical techniques to discover and ex-
tract information from network measurement data. Some of
these techniques are based on traditional time series analysis
(e.g., [32])or rely on classical signal processing tools such as
Fourier or Wavelet transforms (e.g., [1, 21, 16, 49, 22, 5]).
Others make use of more sophisticated statistical concepts
such as multi-dimensional scaling in the form of Principal
Component Analysis (e.g., [46, 25, 27]). Still others have
started to borrow more heavily from ideas developed in the
fields of machine learning and data mining (e.g., [18, 19,
44]). Finally, tools are emerging that combine these analytic
techniques with visualizations that enable new types of ex-
ploratory analysis and support for network operations [45,
14, 34].

An exciting feature of these techniques is that they ap-
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pear to be pertinent to a range of important challenges fac-
ing empirical network research. On one end of the spec-
trum, they can be used to extract information that is not
readily visible on inspection of largely semantic-free network
measurements (e.g., encrypted traffic). On the other end
of the spectrum, they can be used to discover structure in
seemingly unlimited and unstructured, semantic-rich mea-
surements (e.g., full packet traces). For example, recent
studies have demonstrated the ability to trace traffic flows
in encrypted wireless networks with high reliability [10]. At
the same time, there have been significant advances in effec-
tively combining intra-AS routing information with intra-AS
SNMP measurements to estimate the intra-AS traffic matrix
at different levels of granularity [30, 56, 57]. Both examples
represent a compelling demonstration of combining informa-
tion from network measurements with operational expertise
to move a known but seldom realized concept into daily net-
working practice. In fact, there is a sense that we are on the
verge of developing a suite of tools and algorithms that will
allow us to peer far deeper into the behavior and structure
of networks than ever before.

The initial successes of new analytical techniques can in-
spire the community to push ideas as fast as possible toward
the horizon. There is, however, also a critical challenge – the
challenge of convincing the network research community to
rigorously test, examine, and validate newly proposed tech-
niques so that we can be assured that they do, indeed, per-
form as expected or claimed. We have at times in the past
become enamored with new and sophisticated-looking tech-
niques (for instance, multi-fractal analysis), only to find out
through experience that they did not live up to expectations.

The objective of this paper is to sketch a research vision
that allows us to make the best possible use of new ana-
lytic techniques and increase their relevance for empirical
networking research, while avoiding their pitfalls.

The challenge in sketching such a research vision is that it
is far from clear exactly which questions the emerging new
techniques and algorithms will be best-suited/well-suited to
answer. So, rather than focusing solely on the questions,
we aim in this paper at outlining a formal framework and
practical implications of what we call an Internet-centric
Multi-Resolution Analysis (MRA).

Internet MRA is a structured approach to Internet data
representation, specifically designed to accommodate the
vertical (e.g., layers) and horizontal (e.g., domains) decom-
positions of the Internet architecture. It also captures in
a systematic manner the “multi-scale” nature of the tem-
poral (different time scale granularities), spatial (different



IP address space granularities), and functional (different
layer-specific granularities) aspects of traffic flows across the
network. We will describe how Internet MRA technology
facilitates dealing with, (i) multi-scale representations of
very large and diverse Internet-specific graph structures,
(ii) dynamic processes on these structures, and (iii) aggre-
gated spatio-temporal-functional network data representa-
tions and their associated analyses and visual representa-
tions. In short, we advocate the development of a mathe-
matically inspired, practically useful, and computationally
efficient framework for choosing, developing, using, and vali-
dating newly proposed analysis tools and techniques for rep-
resenting, analyzing, and visualizing network measurement
data of all kinds.

To help provide perspective and context we begin by dis-
cussing trends in network measurements which are the start-
ing point for Internet MRA. These highlight an urgent need
for a coherent and self-consistent framework for represent-
ing, understanding, and processing network-related data.
We then describe the basic principles of the proposed In-
ternet MRA technology. Analogous to wavelet techniques,
these are based on the ideas of coarse-to-fine data represen-
tations in conjunction with decomposition and reconstruc-
tion algorithms. Finally, we describe a set of Internet MRA
target problems to illustrate the Internet MRA methodol-
ogy, and to highlight the critical problems of choosing, test-
ing, calibrating, and validating statistical and data mining
algorithms for the purpose(s) for which they have been pro-
posed.

Our success in these efforts can be assessed in several
ways. In the short term, it will be reflected in attempts
by the network research community to refine the notion of
Internet MRA, provide additional showcase examples, and
organize existing or new measurement efforts in a MRA-like
fashion. In the longer term, success will be measured by the
ability of Internet MRA to solve existing hard problems and
to open up new lines of inquiry. Of course, only time will
tell, however we believe that a threshold has been reached
at which a strong case can be made for the broad utility of
Internet MRA methods and the viability of Internet MRA
as a research domain in its own right.

2. TRENDS IN NETWORK MEASUREMENT
Our research vision for Internet MRA is shaped by the

types of network measurements that we expect will emerge
and dominate in the near future. They include the fol-
lowing three categories: semantically limited network-wide
measurements, semantic-rich network-wide measurements,
and opportunistic measurements. The common features be-
tween each class of measurements include the potentially
vast quantity of diverse data collected from multiple sites
over time. In each instance there are unique challenges that
must be addressed before the data can be used to its fullest
potential in research and operations.

2.1 A comment on measurements
Scientific data are often imperfect or contain errors, and

Internet measurements are no exception. Although a great
variety of different measurement capabilities and measure-
ments appear to be readily available to the research com-
munity, as discussed in detail by Paxson in [37], conducting
Internet measurement studies in a sound fashion is in gen-
eral not as easy as it might first appear. The challenge is to

know whether or not “the results we derive from our mea-
surements are indeed well-justified claims” [37], and at issue
are the quality of the measurements themselves as well as
the quality of their analysis. To prevent measurement er-
rors from adding up and measurement imperfections from
tarnishing subsequent analysis or modeling efforts, it is es-
sential to first assess and determine the quality of the avail-
able data within the context of its intended use.

Consider for example the case of traffic-related Internet
measurements. Given a measurement tool has been tested
and works correctly under normal operating conditions, as-
sessing the quality of the data that result from a particu-
lar application of the tool typically involves checking for (i)
accuracy, i.e., imperfections incurred when using the tool;
(ii) precision, i.e., problems that may be inherent in the
basic design of the tool; and (iii) misconceptions, i.e., po-
tential mismatches between what the tool is supposed to
measure and what it actually does measure [37]. For exam-
ple, when collecting packet-level traffic measurements via a
packet recorder (e.g., tcpdump [47]), it is well known that
accuracy can be compromised in a number of different ways.
For one, the packet recorder may not be able to keep up with
the rate at which the packet filter (e.g., BPF or libpcap) ac-
cepts packets; or the filter may not keep up with the rate
at which the network tap processes the raw packet stream;
and last but not least, the tap itself may fail to keep up
with the raw bit rate on the link. Each of these situations
will give rise to “drops” leading to discrepancies between the
actual and the recorded traffic. All trace collection efforts,
past and present, are prone to this type of inaccuracy, as
well as reordering and duplication. For researchers to make
informed decisions about whether or not such data sets are
adequate for the type of analysis they have in mind, it is
paramount to know how often such (or similar) conditions
occur, when they happen, and what the precision of timing-
related measurements is (e.g., timestamps may not be syn-
chronized between data sets gathered at the same time at
different locations).

Another example are connectivity-related measurements
that are notorious for their ambiguities, inaccuracies, and
incompleteness. Many of these can, at best, be described
as being of “limited quality.” This is true at the physical
layer, where to date traceroute-based measurements have
formed the basis for inferring router-level connectivity, even
though traceroute was never intended to be used in this con-
text (see for example the discussion in [2]). It remains true
at the higher layers of the protocol stack (where Internet
connectivity becomes more virtual), but for very different
reasons. For example, as far as measurements for inferring
AS-level connectivity are concerned, ASs are generally re-
luctant to disclose information regarding their peering rela-
tionships with other ASs and routing policies; they typically
consider such information to be proprietary. This makes it
practically impossible to measure AS connectivity and peer-
ing relationships directly, and requires the collection of al-
ternative or “surrogate” measurements that are feasible and
can shed light on the quantities of interest. For example,
the measurements that are often used for inferring AS-level
maps consist of BGP routing table snapshots such as those
collected by the University of Oregon Route Views Project
[51]. To illuminate the degree of ambiguity in the inferred
AS connectivity data, note for example that due to the way
BGP routing works, snapshots of BGP routing tables taken



at a few vantage points on the Internet over time are un-
likely to uncover and capture all existing connections be-
tween ASs. Indeed, [8] reports that AS graphs inferred from
the Route Views data typically miss between 20-50% or even
more of the existing AS connections. This is an example
of the general problem of vantage point mentioned in [37],
whereby the location(s) of exactly where the measurements
are performed can significantly skew the interpretation of
the measurements, often in quite non-intuitive ways. Other
problems that are of concern in this context have to do with
ambiguities that can arise when inferring the type of peering
relationships between two ASs or, more importantly, with
the dynamic nature of AS-level connectivity, whereby new
ASs can join and existing ASs can leave, merge, or split at
any time. As before, before embarking on any analysis or
modeling effort, it is paramount to understand the types of
ambiguities inherent in these data, as well as their severity.

2.2 When information is scarce: Inference and
encrypted traffic

The needs of many commercial and military applications
drive the deployment and use of more secure forms of data
communication in wired and wireless networks. The result
is increasingly ubiquity of payload encryption in network
packet traffic. While this traffic is typically straightforward
to record and collect, measurements may provide little more
than simple timestamps and sizes of the individual packets
seen on one or more links. This would certainly be the case
for traffic traversing an encrypted tunnel e.g., via IPSec,
which is common in virtual private networks. In the case
of application-level encryption e.g., via SSL, packet header
information would also be available. Encrypted traffic traces
are an important example of network measurements with
low semantic content.

One vital problem is to determine how much informa-
tion about the original applications can be extracted from
such semantically poor data sets. This can be viewed as a
straightforward security problem (”how much information
is encryption successfully hiding”) or as a more subtle net-
work management question (”are the applications on the
encrypted virtual private network getting adequate quality
of service?”). In either case, the challenge is to develop
techniques that enhance the data and enable recovery of
as much information as desired or required to reconstruct
traffic flows with high reliability and high fidelity. One ap-
proach is to rely on domain-specific knowledge or auxiliary
meta-data that is available about the network at the time
the measurements were collected.

Another vital problem is to understand how much or what
sort of noise (i.e., jitter) in measurements a given technique
can tolerate and still be effective. Consider the example of
applying Internet MRA techniques in a network manage-
ment context. When the network becomes overloaded and
there is substantial interaction between traffic, will the algo-
rithms still be able to extract enough information to operate
the encrypted network effectively? Similarly, understand-
ing specific failure modes of Internet MRA algorithms will
enable them to become the foundation of robust and pre-
dictable systems.

A third problem is having confidence in our results. Unlike
the other measurement situations described below, we often
cannot confirm our results by looking at the original data
because that data is encrypted. So we need to take extra

care to test our algorithms and their results so that actions
based on those results can be taken with confidence that
they reflect underlying reality.

2.3 When information is plentiful: Inference
and network-wide measurements

The efficient management, secure operations, and effec-
tive control of a large Internet Service Provider or content
distribution network requires a network-wide measurement
infrastructure capable of supporting real-time decision mak-
ing processes. Monitors in these infrastructures often in-
clude SNMP MIB-based systems, end-to-end active probe-
based systems, and highly sophisticated hardware-based sys-
tems (e.g., [24, 39]). Management decisions are ideally made
by having a comprehensive perspective of an infrastructure
which means collection and analysis of voluminous, high-
dimensional data sets typically with very rich semantic con-
tent.

One challenge in this case is that even though available
information is plentiful, the input data for some key decision
making processes may not be directly observable or measur-
able but must be inferred or estimated from the right subsets
of relevant measurements contained in the often huge sets
of available network data. Thus, the problem becomes one
of purposefully mining the network-wide measurements and
developing techniques that ultimately provide the desired in-
puts to the tools and algorithms that the network operator
considers essential.

To achieve this objective requires first and foremost a
clear understanding of the available measurements. Most
important is understanding what information the measure-
ments can and cannot provide (with or without the use of
domain-specific knowledge), and which class of techniques is
appropriate for mining the desired information. The overall
process can also be enhanced by understanding what sort
of additional measurements would be feasible to collect in
support of rigorous tool calibration and validation. As men-
tioned earlier, there is also the issue of data quality, and
techniques that are more or less robust to the known defi-
ciencies in the data are highly prized.

A salient feature of the proposed Internet MRA approach
is its focus on effective data representations that ideally sup-
port an informative mapping of the data to the underlying
architectural structure of the Internet. In the context of vo-
luminous network-wide measurements, such a mapping typ-
ically reveals the measurements’ value (i.e., information re-
garding directly observable quantities versus quantities that
need to be inferred) and quality, and identifies other mea-
surement experiments that either complement the existing
measurements or play a critical role in the validation phase.

2.4 When information is spontaneous: Infer-
ence and opportunistic measurements

A different type of semantically rich measurements arise
when aspects of the network are measured at times when it
is under stress or duress due to events such as hardware fail-
ures, software errors, misconfigurations, congestion, or ne-
farious intrusions and attacks. These “opportunistic” mea-
surements [7] are often relatively easy to collect (once the
decisions of what, where, and when to measure have been
made), and have the potential of providing unique insights
into the structure, dynamics, and operations of the Internet
as a whole, typically well beyond the confines of what is vis-



ible to individual network operators. For example, it would
have been difficult to predict the inability of many of the
major news portals to handle the observed volume of traffic
during the 9/11 attacks [43]. Challenging problems in this
context concern the features of large-scale networks that can
be discovered via opportunistic measurements, and the class
of statistical/machine learning, or other analysis techniques
that are amenable to these measurements.

3. OUR VISION: INTERNET MULTI- RES-
OLUTION ANALYSIS

Past experience has taught us that important aspects of
the dynamics and structure of the Internet often manifest
themselves in very different empirical phenomena that are
observed in data measured at different scales in time and
space. Also, while many analysis, inference and visualiza-
tion techniques were originally developed for Internet data
measured at a specific scale, they often led to methods that
were more multi-scale in nature, ultimately enabling a more
accurate analysis and a more comprehensive perspective.

It is clear that there are many challenges in understand-
ing Internet phenomena at different scales, and we believe
that these efforts would benefit from a more principled and
rigorous approach. In the past, once the first demonstra-
tions of a technique have been reduced to a set of excit-
ing graphs, it has often been unclear what the next step
should be. We argue that a “conceptual roadmap” would
help make progress in this regard. Furthermore, practical
considerations in dealing with massive and complex data
sets from emerging/envisioned measurement tools suggest a
set of requirements for future empirical analysis that even
by themselves would be a tremendous asset.

In this section we suggest a framework in support of (i)
providing effective data representations, (ii) developing ef-
ficient analysis and visualization techniques, and (iii) es-
tablishing rigorous calibration and validation procedures.
To this end, we are inspired by the mathematically ap-
pealing properties of multi-resolution analysis (especially
wavelet decomposition [13, 1]) and advocate development
of a broader multi-resolution framework that can be applied
to Internet data. The Internet MRA framework includes
the ability to incorporate the multi-scale nature of the un-
derlying physical network structure, and the generic ability
to support aggregated spatio-temporal network data repre-
sentations across protocol layers as well as the their analysis
and visualization.

3.1 Basic Principles of Classic MRA
By providing general methodologies and mathematical tools

for studying complex objects such as high-dimensional, semantic-
rich data sets, or large-scale network structures, MRA is a
technology that supports the representation and processing
of scientific data. It has had enormous impact in many areas
of science including Signal Processing, Computer Graphics,
and Geometric Modeling. Assuming that the data sets are
defined on some domain whose elements are indexed by a
set of homogeneous or heterogeneous coordinates, it orga-
nizes them into strata of coarse-to-fine resolutions, where
fast and compact, low-resolution descriptions that have ap-
proximately the correct large-scale behavior can be succes-
sively refined by adding finer details either locally or glob-
ally. Key principles of any MRA are scale invariance – in

the sense that algorithms are largely independent of the res-
olution level – and efficiency in the sense that it favors the
design of very fast and robust implementation algorithms.

One of the successes of MRA research has been the devel-
opment of a quantitative mathematical theory for compara-
tive evaluation of a large class of MRA algorithms known as
‘wavelet representations’ [13]. A key reason for this success
has been the fact that for data defined on domains whose
points are indexed by a set of homogeneous, regularly-spaced
coordinates (e.g., in the traditional MRA for images or sig-
nals, the coordinates are typically pixel coordinates, or the
time values in a time series of observations, respectively),
the construction of appropriate coarse-to-fine resolution do-
mains is relatively straightforward. More formally, the fol-
lowing three concepts figure prominently in any MRA con-
struction:

1. Coarse-to-fine resolution domains,

2. Decomposition algorithms,

3. Reconstruction algorithms.

The first concept refers to a methodology for extracting
from the data’s original domain two new domains: the ‘ag-
gregation’ domain, and the ‘detail’ domain. The key princi-
ple is that the ‘aggregation’ domain will be, loosely speak-
ing, a coarser version of the original domain of the data.
The latter is now split by the same methodology, thereby
leading to a hierarchy of ‘detail’ domains complemented by
‘aggregation’ domains, where the number of scales or levels
in the corresponding hierarchy of domains is flexible.

The two other concepts are complementary. By using a
‘decomposition’ algorithm, one derives from the data defined
on the original domain two new data sets: one defined on
the ‘aggregation’ domain and one on the ‘detail’ domain.
Continuing iteratively (i.e., decomposing the aggregate data
further) the original data is decomposed into a hierarchy of
fine-to-coarse ‘detail’ scales. The resulting representations
enable consistent analysis by highlighting key features that
exist in the data at each of the different resolution domains.

In contrast, a ‘reconstruction’ algorithm inverts the de-
composition process by starting with the data defined on
the ‘detail’ domains and reconstructing the data defined on
the original domain. This process may be best understood
in terms of coarse-to-fine prediction/residuals. Starting with
the data at the coarsest level, this algorithm combines that
data with the data from the corresponding level of detail
resulting in “predicted” values at the new grid points of the
next finer level. By carrying this prediction from level to
level, one obtains a description on the original (finest) do-
main that is derived solely from the coarse approximation.
The true object typically has more detail than given by this
smoothed description. This means that going from one level
of description to the next finer one, the values at the new
grid points are in general not identical to those given by the
coarse-to-fine prediction rule; the residual difference at every
scale is given by the detail data stored at that level. Recon-
struction is critical in MRA for validating the robustness of
the decomposition.

It is important to stress that for a given data set, there are
typically many different MRA decomposition/reconstruction
algorithms each leading to a potentially different represen-
tation of the same original data set. The choice of the ‘right’
or ‘correct’ representation is often critical for the success of



a particular application. Unfortunately, finding the right
representation for a given application and data set is often
a time consuming trial and error process.

3.2 Towards an MRA for the Internet
The goal of Internet MRA is to apply the experience and

insight from classical MRA in a broader context. This is
done by viewing Internet data as being defined on some do-
main whose elements are indexed by a set of coordinates and
organizing them into strata of coarse-to-fine resolutions. In
this case, compact, low-resolution descriptions with approx-
imately correct large-scale behavior can be successively re-
fined by adding finer details either locally or globally. In this
process, the key requirements of any mathematical MRA
(i.e., scale invariance in the sense that algorithms are largely
independent of the resolution level, and efficiency in the
sense that it favors the design of fast and robust implemen-
tation algorithms) may have to be reinterpreted to allow for
efficient, but possibly scale-dependent algorithms that will
exploit layer-specific aspects of Internet data. We now look
at how that reinterpretation might be done.

The first challenge is in the structure of the data. Classic
MRA assumes that data is indexed by a set of homoge-
neous, regularly-spaced coordinates or can be transformed
in a straightforward fashion into such a representation. Un-
fortunately, Internet data are notorious for their highly het-
erogeneous and irregular domains. For example, “points”
can represent geographical or topological router or link lo-
cation; time; packet header information such as protocol
type, source/destination IP address, source/destination port
number; flow attributes; and other possible variables; or any
combination thereof. General MRA representations appli-
cable to data with such irregular domains are by and large
non-existent, and even the construction of coarse-to-fine res-
olution domains is a formidable challenge, typically repre-
senting a significant research effort by itself.

Another challenge is classical MRA’s focus on invertible
decomposition and reconstruction algorithms as a method
of validation. Irregular domains make invertibility difficult
to achieve. For instance, one way to get irregular data into
a form for MRA is to (re)sample it to make it regular – if we
wish to use invertibility to check our result, we would like to
invert back to the original (irregular) data but some infor-
mation is likely lost/modified in the resampling. Validation
is, of course, essential. For Internet MRA, however, we need
to find acceptable methods of validation that do not depend
on invertibility.

Given that the current state-of-the-art MRA technology
cannot readily cope with the fascinating new challenges posed
by the available and anticipated Internet data, our primary
focus is on sketching an Internet MRA technology appro-
priate for dealing with multi-scale representations of large
graph structures, dynamic processes on them, and for aggre-
gated spatio-temporal network data representations across
multiple network layers and the analysis and visual repre-
sentations of them.

Whenever necessary, we favor hand-crafted representa-
tions that capture the underlying Internet structure more
faithfully over alternatives that are more classically MRA-
like from a strictly mathematical perspective. At the same
time, we seek to adopt the mind set of classical MRA, with
its emphasis on changing or adjusting resolutions in verifi-
able ways to provide the necessary intellectual focus.

3.3 A comment on algorithms
Before presenting details of our Internet MRA framework,

a short discussion of the analysis algorithms is useful to set
context.

The analysis techniques that are currently available for
Internet MRA are generally statistical mechanisms. Many
of these are familiar to anyone with a background in signal
processing or numerical analysis, however others come from
newer fields of study such as machine learning. A feature
they all tend to share is that they transform their data, that
is, they take input data in one domain and produce an out-
put in another domain. One example is the Fourier Trans-
form, which converts a time series into a frequency map.
Another is Principal Components Analysis, which seeks to
convert multiple, interrelated, measurements into a smaller,
more coherent, space that reflects the underlying drivers of
the phenomena being measured.

Three benefits of these algorithms are, (i) they are fairly
robust to their input type (one could equally well feed the
Fourier Transform a series of packet arrival times or an
hourly count of the number of routing updates received and
get extract frequency information), (ii) they are robust to
a wide range of variability in measurement quality (it often
tends to wash out as white noise), and (iii) they shine a
brilliant light on the features they are designed to measure.

The biggest challenge in working with these algorithms is
that they produce results in a transformed space where it is
often difficult to determine or interpret what aspect of the
measured space is reflected in the transformed result.

4. INTERNET MRA IN PRACTICE
One of the premises of the envisioned Internet MRA is

that despite the Internet’s size and complexity, it may nev-
ertheless be possible to analyze and visualize it as a whole
at suitably chosen coarse levels, and to zoom in on areas
of specific interests and consider them in greater detail. A
number of observations and findings obtained to date from
analyzing a wide range of Internet data strongly suggest
that thinking more carefully in terms of appropriate MRA
representations can provide a powerful framework for illumi-
nating the often rich information contained in Internet data,
for developing novel techniques for uncovering this rich in-
formation, and for adhering to a rigorous standard when
it comes to calibrating and validating the newly proposed
techniques and algorithms. In many ways, this can be con-
sidered a road map for the “day in the life of the Internet”
metaphor described in [42], which aims at a global, empirical
understanding of Internet behavior. In the following, we il-
lustrate these three topic areas with examples that highlight
some of the key MRA concepts and principles.

4.1 Internet Data and MRA
Early Internet data gathering was heavily focused on packet

traffic measurements, and typically consisted of high-precision
packet arrival times and individual packet sizes (e.g., [28]).
Recorded on a single physical (uni- or bi-directional) link
and at a particular layer in the TCP/IP protocol stack (link-
or network-layer), this type of Internet data has formed the
basis of classical studies of the temporal dynamics of Inter-
net traffic, with the 1-D time series representing the number
of packets or bytes per time unit attracting most of the at-
tention. Dedicated hardware has traditionally been used to



gather this data, and current technology enables lossless col-
lection at multiple points in a network over extended periods
of time. For these data, the most simple notion of Internet
MRA refers to classical wavelet decompositions that support
the efficient analysis of the traffic rate process at a given
link and a specific layer within the larger Internet structure
across a range of different time scales.

When aggregated over sufficiently large time intervals (e.g.,
5 or 10 minutes), there exists operational support in the form
of SNMP measurements to collect these 1-D time series from
all the interfaces in an ISP’s network. The resulting data
provide a broad view of traffic activity on all links in the
network. Together with detailed information about the net-
work’s physical infrastructure and its internal routing ma-
trix, these 1-D time series (2 per interface, one for inbound
traffic, one for outbound traffic) have been critical for recent
work on intra-AS traffic matrix estimation which has imme-
diate application in the network management domain [41].
Traffic matrices offer a first glimpse at the spatio-temporal
behavior of Internet traffic within the confines of an ISP or
AS, albeit at rather coarse time scales and strictly from a
link-layer perspective. For these data, no known MRA tech-
nology is readily available, and they serve as an example that
the development of a practically relevant Internet MRA de-
mands new innovations, representing a dramatic widening
of MRA technology as it is known and used today.

Aggregating even further in time (e.g., over hours or days),
but also in space, we can, in theory, consider objects such as
the Internet’s inter-AS traffic matrix – a coarse-scale global
spatio-temporal view of how raw traffic volume (e.g., bytes
per day or week) is exchanged over the Internet at the level
of individual ASs. The practical difficulties in obtaining
such a global picture are that the Internet data necessary
for estimating an inter-AS traffic matrix are either highly
ambiguous or simply not available. An example is under-
standing AS-level topology as described in Section 2.1. At
the same time, no measurement infrastructure at present is
capable of collecting raw traffic volumes on peering links on
a global scale.

4.2 Internet Data Analysis and MRA
For the 1-D time series representing the number of pack-

ets or bytes transmitted over a given link per time unit, ele-
mentary MRA technology in the form of simple time domain
aggregation led to the discovery of the self-similar scaling be-
havior of Internet traffic over medium-to-large timescales [28,
38, 11]. More recently, wavelet-based MRA techniques have
been successfully applied to the analysis of similar data sets
and have contributed significantly to an improved under-
standing of the scaling properties associated with the tem-
poral dynamics of Internet traffic as observed on a single
link [32]. Critical to the success of these wavelet-based
MRA techniques was the efficiency and compactness of the
underlying large datasets whose domains simply consist of
regularly-spaced coordinates on the time axis. In fact, be-
cause all of the different detail data can be organized along
the same basic coordinate (i.e., time), the original data can
be reconstructed selectively by choosing detail coefficients
only in areas of interest. This provides a concrete illustra-
tion of the powerful time-localization or adaptive “zoom-in”
capabilities of wavelet-based MRA techniques. These capa-
bilities have already been put to good use in the analysis
of Internet traffic traces, where they have aided the detec-

tion and identification of structural properties of network
traffic that are localized in time such as volume anoma-
lies (e.g., [3]). The various findings obtained to date from
these applications of wavelet-based MRA techniques to the
analysis of the temporal dynamics of Internet traffic have
demonstrated that by relying on a combination of empirical
studies and mathematical tools, the underlying data can be
exploited to a degree where success is no longer measured
by how well a technique can be used to describe the data
in a statistical sense, but rather by how useful and accu-
rate it is in seeking and providing physical explanations of
observed phenomena and relating them to elementary net-
working mechanisms or concepts. In other words, establish-
ing genuine cause-effect relationships for important observed
phenomena is another key objective of Internet MRA.

Unfortunately, existing MRA technology cannot yet cope
effectively with the more general situations that Internet
data demand and where the basic coordinates along which
the data are organized are more complex and heterogeneous.
Consider for example the data set consisting of one days
worth of SNMP data from every interface in an ISP’s net-
work. This data can be thought of as being defined on
a highly irregular domain representing the ISP’s physical
network infrastructure and consisting of nodes representing
routers (with their interfaces) and links representing phys-
ical connections between two interfaces (where each link is
considered to be uni-directional and associated with its cor-
responding time series of SNMP measurements). To develop
an Internet MRA of this data in support of traffic matrix
estimation requires the construction of coarsened versions of
the original data domain, preferably in such a way that each
coarsened domain reflects some new graphical/spatial struc-
ture with either an intrinsic geographical (i.e., metropoli-
tan areas, regions, countries) or networking-specific (e.g.,
router-, PoP-, AS-level) meaning.

4.3 MRA and Validation/Calibration
A compelling aspect of Internet research is that we often

have the ability to measure characteristics of the network
and thereby obtain data (at least in principle) necessary
to support or refute claims based on either some empirical
analysis or some proposed mathematical model. Here we
emphasize how being rigorous about Internet MRA is es-
sential for examining newly proposed statistical techniques
so that we can be assured that they do, indeed, perform as
claimed. Several recent papers outline important aspects of
this issues, in particular [37, 52].

Consider again the case of the 1-D time series representing
the number of packets or bytes per time unit. To validate
the findings of a classical wavelet-based or some other analy-
sis of these data, we typically rely on packet traces collected
at the same link, consisting of partial or full packet head-
ers and containing perhaps some amount of the payload.
With these measurements, we can, among other things, eval-
uate TCP/IP flow sizes, and more basic path characteristics
such as RTTs. While the former figures prominently in a
networking-centric explanation of the main underlying cause
for the observed self-similar scaling behavior of the traffic
rate process over medium-to-large time scales, the latter is
a major cause for the observed deviations from self-similar
scaling of the measured traffic rate process over small-to-
medium time scales.

Next, consider the case of the network-wide SNMP data



and their use for traffic matrix estimation. To validate find-
ings derived from recently developed traffic matrix estima-
tion techniques (e.g., good agreement with certain types of
gravity models [56]), access to network-wide packet traces
would certainly do, but is clearly unrealistic/unreasonable.
Instead, in large ISPs, there exists widely-deployed opera-
tional support for flow export (e.g., Cisco’s NetFlow) mea-
surements. With NetFlow data collected from every router
inside an ISP’s network, we can, for example, obtain the ac-
tual traffic flows between every pair of origin-destination or
ingress-egress points in the ISP’s network and thus check the
fidelity and accuracy of any estimated gravity-type model.

Finally, consider the case where the desire for validation is
currently hampered by a lack of adequate/appropriate pub-
licly available data. Such a situation arises, for example, in
the context of inter-AS traffic matrix estimation. However,
far from being a show-stopper, such situations can often
outline whole new research agendas in their own right. For
example, in the case of inter-AS traffic matrix estimation,
challenging open questions are “What are good ”surrogate”
data?” or “How to measure/collect such “surrogate” data?”
or “How good/useful are these data in view of the original
problem?” or “Do these data contain other interesting in-
formation that can be mined?”

5. INTERNET MRA TARGET PROBLEMS
In the prior sections we have outlined a vision for an

Internet MRA that provides multi-scale representations of
large graph structures and the spatio-temporal traffic activ-
ity that takes place on these structures. In this section, we
provide three examples of challenging open problems that
are amenable to multi-resolution analysis as a means for
demonstrating how to map a problem to our Internet MRA
framework. In each instance we describe the available mea-
surements, proposed analysis techniques including domain-
specific knowledge used in addressing the problem, and cal-
ibration/validation methodology.

5.1 Network Traffic Analysis for a Single Link
in the Wired Internet

As mentioned earlier, for the 1-D time series of traffic rates
derived from the full packet traces measured on a particular
link within an ISP’s physical infrastructure, the notion of
Internet MRA typically refers to classical wavelet decompo-
sitions that support the efficient (temporal) analysis of these
time series across a range of different time scales. However,
the utility of full packet traces goes well beyond this use.
In fact, they naturally extend the information content con-
tained in the 1-D packet rate process time series by reveal-
ing much of the vertical decomposition (i.e., layering) of the
traffic in the sense that individual packets passing through
the given link can now be associated uniquely with their
corresponding higher-layer entities such as flows, TCP con-
nection, and possibly even application-layer sessions [15, 35,
53]. They also extend the information content contained in
the 1-D packet rate process time series by illuminating the
traffic’s horizontal decomposition in terms of the packets’
IP source and destination addresses. While all the pack-
ets traverse the common link where they are recorded, they
arrive at that link coming, in general, from a number of
different places (in IP space, and/or geography), and they
depart from that link heading generally towards a huge va-
riety of different destinations. In this sense, these semanti-

cally rich packet traces motivate the development of a richer
Internet MRA that goes beyond the link- and layer-specific
temporal analysis of the 1-D packet rate processes and ac-
counts for their more complex structure that becomes ap-
parent once the particular link is properly placed within the
vertical and horizontal components of the Internet architec-
ture. Clearly, they provide a rich source of data that invites
a deeper look into the behavior and structure of the Inter-
net, and by aggregating across layers and over all IP source
and destination addresses, we fully recover the original 1-D
packet rate processes. In effect, their analysis requires the
development of new techniques and tools, thereby repeating
the whole data representation-analysis-validation cycle, al-
beit with data that extends beyond the link of interest – for
example, flow data.

Like packet traces, flow data are semantically rich and
can be used for many purposes other than validating esti-
mated traffic matrices. Flow data require in general the de-
velopment of problem-specific analysis techniques and algo-
rithms, but since they don’t provide any information about
within-flow packet dynamics, they are of limited use in situ-
ations where these dynamic effects are critical. Due to their
network-wide availability, flow data sets are extremely help-
ful for analyzing or validating various aspects of the spatio-
temporal behavior of traffic on a network-wide scale. They
naturally augment our hand-crafted Internet MRA above
for a single link by supporting network-wide constructions
of the coarse-to-fine resolution domains via the use of flow
attributes such as source/destination IP addresses, prefixes,
or AS number. Moreover, by exploiting (where appropriate)
the flows’ port numbers, we can support the sort of multi-
layer MRA representation alluded to earlier. Other applica-
tions of this extended MRA technology (or slightly modified
versions thereof) loom as real possibilities and have already
been pursued to some degree in the context of detecting and
identifying anomalous network traffic [25, 26].

5.2 Understanding Encrypted Traffic
Encryption is widely used in today’s Internet to protect

sensitive traffic. The use of encryption has lead to two (com-
plimentary) challenges. First, many people wonder what in-
formation can be extracted from an encrypted data stream.
Second, ISPs are finding themselves challenged to manage
customer’s encrypted traffic streams and are trying to de-
termine what information they can glean from examining
the encrypted traffic stream. (The issue of managing en-
crypted traffic has also led to proposals to expose parts of
traffic headers while encrypting others, to give ISPs more
information).

5.2.1 MRA issues
From the perspective of Internet MRA, these challenges

tend to reduce to variants of a single challenging question:
How much information can be gleaned from one or more
discrete event time series representing packet arrival times?
Each time series typically represents the traffic between two
intermediate points in a network and can optionally be en-
hanced with additional information such as packet sizes.

Work on this question is still preliminary, but the early
results are exciting. Published work has demonstrated the
ability to reconstruct the topology of wireless networks, to
extract traffic round-trip times and other signatures [33],
to identify individual traffic sources and sinks in the net-



work [10], and to infer whether a network denial of service
attack is originating from more than one source [22]. (Note
that the denial of service attack traffic is not encrypted but
suffers a comparable problem – the attack streams’ contents
all look alike).

All of this work originates in simple time series mea-
surements: packet traces. And, with the exception of the
work deriving sources and sinks (which uses a causal prob-
ability model to generate a traffic matrix), all this work
uses MRA or MRA-like methods such as Fourier transforms
and wavelet decomposition to extract frequency information
from the traces. There has been work that seeks to split the
data into aggregates and details and use that split to ad-
vantage: in particular, the denial of service attack problem
benefits from examining the detail domain.

As such, it might seem that understanding encrypted net-
work traffic could be handled straightforwardly using Clas-
sical MRA and does not need an Internet-centered MRA
approach. But the central problem in this research is one of
validation. When running an MRA algorithm over an en-
crypted packet trace, how does one know that the result of
the algorithm actually says anything about the underlying
traffic stream(s)? Expressing this problem somewhat more
formally, what these techniques typically do is transform the
traffic trace into another dimension (e.g., frequency) rather
than aggregate or decompose the trace and the challenge is
to clearly relate the results in the new dimension with the
original trace. Aggregation and decomposition may help in
this process, but are not the central feature.

5.2.2 Validation
At this point, the development and validation of tech-

niques is still one of trial and error. One typically takes an
unencrypted traffic trace (either from simulation or a real
network), converts it to a time series (as if the traffic were
encrypted) and then transforms the time series using the
proposed algorithm.

The algorithm has been chosen with the expectation it will
reveal certain properties of the traffic in the trace. Once the
transformation is performed, one seeks to see if the proper-
ties are, indeed, present and also to explain any additional
information that may not have been expected but is present
in the transformed result.

If, indeed, the algorithm appears to reveal important prop-
erties of the trace the next step is to validate the algorithm
using a two-party process. One party takes the trace and
extracts the time series. The second party (which has not
seen the trace), applies the algorithm to the time series and
then interprets the result. Only after the interpretation is fi-
nalized do the two parties meet and compare interpretation
with the original trace. If the interpretation proves correct,
the algorithm can be deemed sound.

5.2.3 Likely Future Work
The next step in the evolution of Internet MRA for un-

derstanding encrypted traffic appears to be to construct de-
composition techniques. Based on the output of the initial
algorithms, one reprocesses the input time series to extract
new time series which are then processed again (either with
the same algorithm or a new one). This technique has al-
ready been used for denial of service attacks [22].

In summary, the current research trajectory for under-
standing encrypted traffic is the validation of algorithms to

interpret time series at various levels of resolution, and the
development of informed decomposition techniques that add
in clarifying data for finer grained interpretation.

5.3 Traffic Matrix Estimation

5.3.1 The case of a single ISP
An important responsibility of network managers is to in-

sure that their infrastructure operates within specified per-
formance bounds. This is a very challenging problem in large
service provider networks whose physical infrastructures are
global and diverse, and where the traffic dynamics are com-
plex and unpredictable. One aspect of enabling effective
network management is to be able to accurately estimate
in (near) real-time the volume of traffic flowing across the
network at different levels of granularity of the underlying
network infrastructure (e.g., routers or PoPs) This is the
challenge in traffic matrix estimation, and is in many ways
a prototypical problem for Internet MRA.

To illustrate a concrete Internet MRA framework for the
traffic matrix estimation problem, we consider in this sec-
tion a single service provider and note that large service
provider networks support network-wide SNMP measure-
ments as part of normal network operations. The resulting
data can be viewed as being defined on a domain A that
is a (directed multi-) graph and represents the ISP’s physi-
cal (i.e., layer-2) network connectivity structure: nodes are
routers/switches and links are uni-directional physical con-
nections associated with a physical interface at the nodes on
both ends – the outbound interface on one router/switch for
the outgoing traffic and the inbound interface on the other
router/switch for incoming traffic. The domain’s “points” or
“coordinates” are these links, and the data value associated
with each point consists of the time series of SNMP measure-
ments associated with that link (i.e., number of bytes/time
unit, where the time unit is typically between 5-60 minutes).

To derive “aggregation” domains and related “detail” do-
mains that are associated with the data’s original domain
A and are meaningful for the TM estimation problem, re-
call that a (point-to-point) traffic matrix represents the traf-
fic demands between pairs of source/ingress and destina-
tion/egress nodes in the network. Depending on what these
source and destination nodes represent, we obtain different
kinds of TMs and rely in the following on the taxonomy used
in [57] and introduced in [30]. The latter can be viewed as
a first attempt at formalizing the hierarchical nature inher-
ent in TM estimation and is closest in spirit to what we
call Internet MRA. We refer in the following to nodes and
links that are wholly internal to the service provider’s net-
work as “backbone” or “core” routers and links, and call
the others “edge” or “non-core” routers and links. Edge
links are further categorized into “access” links, connecting
to customers, and “peering” links connecting to other (non-
customer) ASs. For simplicity, we assume that all access and
peering links terminate at edge routers and that backbone
links only terminate at backbone routers.

We first define a fine-scale “aggregation” domain A1 (and
related “detail” domain D1) associated with the data’s orig-
inal domain A as follows. A1 is given by a (simple directed)
graph, where the nodes represent routers and where two
nodes are connected by a directed link if there are uni-
directional physical connections between the two routers in
question. The domain’s “points” or “coordinates” are these



links, and the data value associated with each point in A1

is given by the superposition of those time series that are
associated with the points in the data’s original domain and
map to the link in question (i.e., the superposition of one or
more SNMP time series associated with the uni-directional
physical connections between the given router pair). We
do not formally describe the corresponding detail domain
D1, but require that it contains all information necessary
to determine which points in the data’s original domain
map to which element in A1 and how much of the corre-
sponding data value (i.e., router-to-router traffic demand)
is due to each to its constituent data values (i.e., individual
SNMP time series). A1 and its associated data set repre-
sent a coarsened version of the original domain/data and
are tailor-made for estimating the “router-level” TM that
represents the traffic demands exchanged between pairs of
routers (i.e., core or access routers). Note that these de-
mands aggregate the traffic on all the links between a given
router pair.

To obtain a coarser scale “aggregation” domain A2 (and
related “detail” domain D2), we again consider a (simple
connected) graph, where now the nodes represent PoPs and
(directed) links indicate that a given pair of PoPs is con-
nected by one or more backbone links. The links in this
graph represent the points in A2, and each point is associ-
ated with a data value that gives the (time series of) traffic
volume originating in one PoP and destined for the other
PoP. As before, the corresponding “detail” domain D2 is
required to contains all the information needed to disam-
biguate A2 and the data defined on A2 in terms of the
data’s original domain. Clearly, A2 is a coarsened version of
A1 (and A) and is well-suited for investigating “PoP-level”
TMs. A PoP-level TM represents the traffic demands ex-
changed between pairs of PoPs (e.g., cities) in a network.
PoPs are composed of a collection of routers (core and access
routers), and PoP-level traffic demands are typically aggre-
gates of demands between all the customers, peers, router,
and links associated with a given pair of PoPs.

When trying to infer a service provider’s router- or PoP-
level TMs, the basic problem is that there exists an inher-
ent mismatch between the data needed (e.g., ingress-egress
or source-destination demands) and the data most read-
ily available (e.g., SNMP measurements). Since the num-
ber of ingress-egress pairs is typically much larger than the
number of links in the network, this mismatch results in
formulations of the TM estimation problem that involve a
highly under-constrained system of equations. Recent re-
search efforts have focused on solving this problem using
a number of different methods, including linear program-
ming [17], Baysian estimation [48], expectation maximiza-
tion [6], and tomogravity [56, 57]. Most of these methods
are heuristic in nature, but the tomography approach can
be justified on information-theoretic grounds [57]. Valida-
tion in the sense of comparing an inferred TM against the
“ground truth” has been largely hampered by a lack of ade-
quate data, mainly because establishing the “ground truth”
in this context would require access to Netflow data from
every router in the service provider’s network and detailed
intra-domain routing information.

5.3.2 The Internet’s ISP-level ecosystem
By taking a more Internet-wide perspective and viewing

a service provider’s network as part of the Internet’s ISP-

level ecosystem, we can construct TMs at even coarser scales
than PoPs. In fact, since large ISPs often use a number
of different Autonomous Systems (ASs) to implement and
execute their business model, we can define the aggregation
domain A3 to be the (simple directed) graph whose nodes
are ASs and where two ASs are connected by a directed
link if one AS sends traffic to the other AS (or vice versa)
in accordance with an existing peering relationship between
the two ASs. These links define the “points” of A3, and
each point is associated with a data value that corresponds
to the total traffic sent on that (directed) link. As before,
the corresponding “detail” domain D3 is required to contains
all the information needed to disambiguate A3 and the data
defined on A3 in terms of the data’s original domain. By
collapsing those ASs that belong to one and the same ISP
into a single node, we obtain the aggregation domain A4 –
a (simple directed) graph that represents traffic exchanges
at the level of individual ISPs – and corresponding “detail”
domain D4 (defined in a similar manner as before).

Clearly, the aggregation domains A3 and A4 (together
with their detail domains D3 and D4) are well-suited for ex-
ploring the Internet’s AS- and ISP-level TMs. However, in
contrast to estimating the router- or PoP-level TMs for a sin-
gle ISP, due to the competitive environment in today’s ISP
market, neither the AS-specific domains A3 and D3 (and as-
sociated data sets) nor the ISP-specific domains A4 and D4

(and associated data sets) are directly measurable and have
remained by and large unexplored. In fact, when trying to
infer AS- or ISP-level TMs, the situation regarding available
measurements is highly precarious: as mentioned above, in-
ferred AS graphs are known to be incomplete and ambigu-
ous [8] and estimating inter-AS traffic demands is known
to be a difficult and largely unresolved problem [9] (similar
observations apply to ISP-level graphs and inter-ISP traffic
demands). As a result, inference for AS- or ISP-level TMs
has remained by and large an open problem, and the design
of innovative experiments for measuring AS/ISP-level con-
nectivity and traffic demands, and the development of novel
validation techniques are also challenging open problems.

5.3.3 Discussion
Recently developed techniques have been very successful

in accurately estimating intra-AS or ISP-specific traffic ma-
trices, but they have largely focused on the data’s original
domain (i.e., inferring traffic demands between every pair of
ingress-egress routers in the network), with little or no con-
cern for how they fare when applied across multiple “scales.”
In particular, little or no attention has been paid to how
these techniques combine with our hand-crafted decomposi-
tion/reconstruction algorithms to produce iterative methods
that exploit the hierarchical structure inherent in our pro-
posed MRA framework for the TM estimation problem.

The proposed MRA framework with its coarse-to-fine res-
olution domains appears to be rich enough to support a
coherent approach for studying TMs at different levels of
(spatial) granularity and to provide adaptive “zoom-in” ca-
pabilities for exploring structural properties of traffic ma-
trices that are localized in “space” (e.g., traffic matrix for
a single router or PoP which may be useful in diagnosing
performance problems or anomalous behavior). As a result,
a unified approach to traffic matrix estimation looms as a
real possibility, where at the finer scales, we deal with phys-
ical domains that consist of a single router (and its inter-



faces with adjacent links) or PoPs and support the estima-
tion of router- and PoP-level TMs, respectively. At coarser
scales, we are concerned with more logical or virtual con-
structs associated with the Internet-wide ecosystem (e.g.,
ASs or ISPs). Moreover, it is easy to envision augment-
ing the proposed framework with additional scales to rep-
resent yet other physical or logical structures with intrinsic
network-specific meaning (e.g., prefix-prefix TMs) or refin-
ing it to allow for the treatment of, for example, demand or
point-to-multipoint TMs [58].

An obvious benefit from providing an appropriate MRA
framework for the TM estimation problem is that it illu-
minates the different roles played by the different data sets
by associating them with specific components of the pro-
posed MRA framework. At the ISP level, the SNMP data
sets play a fundamental role, and are defined on a domain
whose points are the links of a particular graph. The vari-
ous TMs are inferred from more or less coarsened versions
of these original data, and validation of an inferred TM re-
quires access to NetFlow data from every node (i.e., router)
in the data’s original domain. At the Internet-wide level, the
situation is very different, because neither the basic graph
structure underlying AS- or ISP-level TM estimation nor
the associated traffic flow information are directly observ-
able/measurable and need to be inferred from auxiliary data
sets. The relevance, adequacy, and usefulness of the latter
can be judged by how well it reflects the key components of
the given MRA framework at the coarse resolution levels.

5.4 Network Intrusion Detection
Securing networks from malicious attacks and intrusions

is an extremely challenging problem. A basic principle of
network security is to have accurate and timely informa-
tion on all scans and attacks so that their effects can be
mitigated and countermeasures can be deployed. Network
intrusion detection is the task of accurately identifying ma-
licious traffic that flows across a link. This is done using
two different methods. Anomaly detection is done by es-
tablishing a baseline of “normal” behavior and then looking
for statistical deviations from this baseline (e.g., [3, 20]).
Misuse detection is done by comparing all traffic on a link
against a library of malicious signatures and generating an
alert when there is a match. Standard examples of systems
that employ misuse detection are SNORT [40] and Bro [36].
Both of these methods are complicated by the inherent vari-
ability and diversity of benign traffic and by the ingenuity
and persistence of malicious adversaries.

Intrusion detection systems (IDS) typically monitor all
packet traffic on a link (often an ingress/egress link) on-
line, or are used on packet traces collected for off-line anal-
ysis. In either case, packet headers, payloads as well as
meta-data such as timestamps on packets can be consid-
ered in the detection process. Recent studies have also sug-
gested the use of additional measurement systems such as
network honeypots – systems used to monitor routed but
otherwise unused IP addresses – as a means for augmenting
the perspective of the security analyst [55]. Further sources
of data include summaries of aggregate firewall/NIDS logs
from sources such as Dshield.org [50]. Additionally, forensic
off-line analysis of attacks and intrusions frequently draws
from a variety of data sources including system logs from
target hosts.

From the most local perspective, intrusion detection nat-

urally lends itself to multi-scale representation. As men-
tioned above, multi-resolution methods have already shown
promise when applied to the problem of anomaly detec-
tion [3]. Similarly, the alerts generated by an IDS on a
single link are typically organized in a hierarchy related to
their type, their scope vis-a-vis the attack target(s) within a
network, and their volume over time. This suggest an MRA-
based approach to assessing and visualizing alerts [29, 23].

More broadly, the task of intrusion detection resembles
the problem of traffic matrix estimation since IDS are of-
ten deployed at key vantage points through out a given ISP.
Both the traffic data itself and the alerts generated by each
of the individual IDS form the basis for aggregation and
detail domains as described in Section 5.3.1. In this case,
however, the problem is not to identify flows between source-
destination pairs, it is to highlight the most important as-
pects of attacks and intrusions as they encounter a network’s
defense perimeter. Distributed alert organization and fusion
is an open and active area of research (e.g., [4, 12, 59]) that
we believe will be enhanced by the systematic application of
Internet MRA methods.

While not well studied, it seems clear that extending the
notion of intrusion detection beyond the boundaries of a sin-
gle network to use data from a diverse set of IDS throughout
the Internet offers some compelling possibilities. For exam-
ple, if new types of attacks are detected in isolated portions
of the Internet, countermeasures may be able to be deployed
broadly before these attacks can spread widely. This vision
is the primary motivation for attack data sharing protocols
(e.g., [54, 31]) . This general idea is a different but clearly
related dimension of the Internet ISP-level ecosystem de-
scribed above.

Finally, the tasks of calibration and validation in network
intrusion detection are frequently costly and time consuming
since they are primarily ad-hoc. Signature sets for intrusion
detection systems are usually calibrated by hand as are the
thresholds or anomaly detection systems. This process is
typically conducted by experienced security analysts who
can study and interpret individual signature details. Val-
idation is closely related to the calibration process and is
often done by trial and error in live deployments. The focus
of the calibration/validation cycle is most often to reduce
the number of false positive alerts, thereby increasing the
utility of the IDS deployment.

6. SUMMARY
Recent advances in networking research based on the ap-

plication of analytic techniques from signal processing, statis-
tics and applied mathematics suggest significant opportu-
nities for addressing important empirical networking prob-
lems. In this paper we present a vision called Internet MRA
in support of a principled approach toward data-driven net-
working research. Our motivation for this work is to call
attention to the opportunities of Internet MRA to provide a
framework for its use designed to increase the potential for
successful application and limit misuse.

The key characteristic of Internet MRA is a structured ap-
proach to representing, analyzing, and visualizing Internet-
related measurements that respects the critical design as-
pects of today’s Internet architecture (e.g., layering, hori-
zontal decomposition). We argue that this approach is es-
sential for the effective treatment of the spatial, temporal
and functional decomposition of the traffic that flows across



the network and for the successful application of a broad
range of analysis methods to the existing and anticipated
types of network measurement data. We reinforce this ar-
gument by providing examples of the application of Internet
MRA methods to several key problems.

It is our hope that this position paper will catalyze the
use of Internet MRA methods in research that targets the
problem domains that we describe as well as others. We also
posit that this approach to network data analysis serves as
a touchstone for communication and collaboration between
network researchers and traditional data analysis commu-
nities. To that end, in the long term, we believe that the
true value of Internet MRA will be realized not only in its
successful application in networking, but also in the new re-
search directions that it opens across research communities.
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