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ABSTRACT
This paper proposes a new parallel execution model where pro-
grammers augment a sequential program with pieces of code called
serializersthat dynamically map computational operations intose-
rialization setsof dependent operations. The runtime system ex-
ecutes operations in the same serialization set in program order,
and may parallelize the execution of operations in different sets.
For many types of applications, writing and debugging such pro-
grams is significantly easier than using existing parallel program-
ming techniques, and results in deterministic parallel execution.

We describe the API and design of Prometheus, a C++ library
that implements the serialization set abstraction through compile-
time template instantiation and a runtime support library. We eval-
uate a set of parallel programs running on the x86_64 and SPARC-
V9 ISAs and study their performance on multi-core, symmetric
multiprocessor, and ccNUMA parallel machines. We find that par-
allel execution of programs written with serialization sets achieves
performance comparable to traditional parallel execution models.

1. INTRODUCTION
As multicore processors become the default for mainstream com-

puting, the search for parallel execution models has become one of
the most important challenges facing the computer industry: mod-
els to achieve parallel execution of mainstream software must be
developed. Meanwhile, the explosion of software applications has
been enabled by modern programming practices that enable rapid
construction and testing of software. These include programming
in object-oriented languages such as C++, C# and Java, coupled
with other concepts such as separate compilation, dynamic linking,
and managed run-time systems. For the computer and informa-
tion technology industry to continue to grow as it has in the past,
it is critical that we find a solution that allows parallel execution of
programs without compromising programming productivity. Such
a solution should not hinder, and in fact even encourage, modern
programming practices.

Almost all the solutions that are being explored by most of the re-
search community build upon several decades of knowledge about
parallel execution. These approaches can generically be described
as follows: an entity (e.g., programmer or compiler) analyzes an
application to determineindependenceamong computations. Such
independence is expressedstatically, and when the independent
computations interact (i.e., some sub-computations aredependent),
they must besynchronizedto ensure correct execution. An canon-
ical example of this approach is the multithreading model which
has, to date, been one of the most widely used models for express-
ing and achieving parallel execution in applications.

This template for parallel execution suffers from several diffi-
cult problems that are likely to place significant barriers for its

widespread adoption. First and foremost, some entity must rea-
son about the applications to determine which computations are
independent. (The first step in doing so is determining which com-
putations are, or may be, dependent.) Second, such independent
computations are expressed statically and when they are dynami-
cally executed, they execute in a non-deterministic manner. Third,
when threads interact via operations on shared data, they must be
carefully synchronized to ensure mutual exclusion. Incorrect syn-
chronization can lead to data race errors, where the result of the
computation depends on the arbitrary interleaving of thread oper-
ations. Fourth, employing threads admits other types of errors not
present in sequential programs, including deadlock, livelock, and
priority inversion. Lee argues that these problems, rooted in non-
determinism, make the use of threads infeasible for many applica-
tions [11].

Considering the foremost challenge above, namely the analysis
of the application, observe that much more information about de-
pendence relationships amongst computations—the first step in de-
termining independence—is available at run time. Thus one can
conceive of an execution model where the "threads" of the canoni-
cal static multithreaded program can be determined by dynamically
learning about independence (by first learning about dependence).
If that could be done, then there may be no reason to also repre-
sent the threads statically: the static program will essentially look
like a sequential program. And if the static representation leads
to a deterministic execution, there is no need for synchronization
constructs such as locks, and the problems due to non-determinism
will disappear.

This paper proposesserialization sets(Section 2), a program-
ming abstraction that retains much of the simplicity of sequen-
tial programming, and conveys dependence information to a run-
time system to facilitate opportunistic parallelization of indepen-
dent computations. Programmers specify dependence calculations
by writing additional code, calledserializers, that dynamically de-
termine the data on which a computation operates. The runtime
system (in the form of library support or a managed runtime envi-
ronment) executes the serializer before a computation occurs, map-
ping operations on the same data to the same serialization set, and
computations on different data to different serialization sets. Mem-
bers of the same serialization set are executed sequentially to honor
data dependences, and members of different serialization sets may
be executed concurrently to exploit dynamic independence. As a
consequence of the serial ordering of operations on each data struc-
ture, parallel execution of programs written with serialization sets
is deterministic, without requiring the programmer to use locking.
Writing serializers places a modest additional burden on the pro-
grammer, but is significantly easier than reasoning about correct
synchronization of threads. We believe that serialization sets can
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provide programmers with a gentle path to unlocking the perfor-
mance potential of multicore processors, while encouraging the use
of modern programming languages and practices.

To study the implementation and performance of programs paral-
lelized with serialization sets, we have written a C++ library called
Prometheus (Section 2.2). Using Prometheus, programmers write
programs in a familiar imperative, object-oriented language. To
achieve good parallel performance, Prometheus programs should
strive to perform computations on private object state, and structure
programs hierarchically. In our experience, this dovetails nicely
with the principles of encapsulation and modularity inherent to
object-oriented programming.

Prometheus uses C++ templates to instantiate run-time support
structures at compile time, and provides a run-time library that can
be adapted to the parameters of the execution environment, such
as the number and performance of cores (Section 4). Prometheus
also provides a library of useful programming tools, including pre-
written serializers, and a set of shared data structures. Finally,
Prometheus includes support for compiling executables into a de-
bugging version that simulates serialization set execution, so that
all development and debugging is done on a sequential program.

We have evaluated the parallel execution of several applications
written in C++ using the Prometheus library on a variety of real
machines (Section 5), including multi-core, symmetric multipro-
cessors (SMPs), and cache-coherent non-uniform memory access
(ccNUMA) machines running the SPARC-V9 and x86-64 ISAs.
We study the scalability and performance limitations of Prometheus
programs, and compare our results with existing parallel program-
ming models.

2. SERIALIZATION SETS
To use serialization sets, the programmer divides program exe-

cution into two types of phases:aggregation epochs, andisolation
epochs. Aggregation epochs comprise traditional sequential exe-
cution, and are the default mode. During isolation epochs, com-
putational operations execute in one of two abstractcontexts—the
program context, and thedelegate context. The program context
executes code according to standard sequential semantics. The pro-
grammer (or compiler) identifiespotentiallyindependent computa-
tional operations, and these may be assigned (ordelegated) to the
delegate context, which executes them on behalf of the program
context.

In an isolation epoch, the programmer partitions data into a num-
ber of disjoint domains:read-onlydata that may be freely accessed
by any operation; andprivately-writabledata that may be read and
written only by its owner. This partition is fixed during a par-
ticular isolation epoch, but may be different in subsequent isola-
tion epochs. The program context initially owns all writable data.
When the programmer identifies a computational operation for del-
egation, she associates it with aserializer, code that executes at
runtime to identify aserialization setfor the operation. The seri-
alization set becomes the owner of the writable data accessed by
the operation until the program context reclaims ownership, or the
isolation epoch ends.

The programmer must specify the serializer such that all compu-
tational operations on the same writable domain are mapped to the
same serialization set. She should also endeavor to have the serial-
izer map computations on different writable data to different sets.
The delegate context executes operations composing a particular
serialization set in serial order, i.e., the order they are encountered
in the program. It may execute members of different serialization
sets concurrently in order to improve performance. Executing these
operations in parallel does not affect the appearance of sequential
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Figure 1: Execution of a program using serialization sets is divided
into aggregation and isolation epochs. During an isolation epoch,
computational operations (x , y , z) are assigned to a delegate con-
text, where they are applied to data (a, b, c , d). The delegate con-
text applies operations to the data in each set in a serial fashion, and
parallelizes operations in different sets.

semantics, because the writable domains owned by various serial-
ization sets are disjoint.

When operations on a particular writable domain are no longer
independent, the program context may reclaim ownership of that
domain, and then safely intermingle operations on that domain with
other domains that it owns. Note that this transfer of ownership
need not be specified by the programmer, as it is implicit in the
presence of operations dependent on a particular writable domain.
At the end of an isolation epoch the program context reclaims own-
ership of all domains, and may resume traditional sequential exe-
cution.

Parallelization using serialization sets results in deterministic ex-
ecution that is indistinguishable from sequential execution of the
same set of operations. Specifically, data races cannot occur be-
cause each writable data element is accessed by at most one oper-
ation at a time. Other types of concurrency bugs such as deadlock,
livelock, and priority inversion, are also precluded, because there
is a single logical ordering of all operations, even if the delegate
context is overlapping execution of independent computations.

Figure 1 illustrates the execution of a program using serializa-
tion sets. In the first isolation epoch, disjoint data elementsa and
b are designated as writable, andc andd are read-only. Operations
x , y , andz are identified as potentially independent and thus may
be assigned to the delegate context. For the purposes of this figure,
we assume the serializer is specified so that the data elements are
all mapped to different serialization sets (e.g. by using the address
of the particular element). This enables operations ona to be ex-
ecuted concurrently with the operations onb, as well as with the
operations in the program context. All operations are allowed to
read (but not write)c andd, as shown in the figure. At the end of
the isolation epoch, the program context uses a special operation to
reclaim ownership of all domains, as depicted in gray.

The second isolation epoch in Figure 1 uses a different data par-
tition: this timeb andd are writable, anda andc are read-only.
Operationz on data elementd is independent of other operations
in the program context, and is thus assigned to the delegate context.
Later the program context needs to read part of data elementd using
operationq. Becauseq has not been designated as independent, the
program context must first reclaim ownership ofd as shown before
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performing this operation. Later, when independent operationx is
reached, ownership is once again assigned to the delegate context
to re-enable concurrent execution of operations on this domain.

2.1 Specifying Serializers
Serializers provide a flexible mechanism for expressing depen-

dences between operations. The programmer or compiler needs no
a priori knowledge of the dependences between operations that are
delegated; the serializer dynamically determines the degree of in-
dependence in the operations, which may vary depending on the
input to the program. The serializer reveals the degree of indepen-
dence present in the operations as the program executes, and the
Prometheus runtime automatically parallelizes them.

The simplest serializer would identify the data manipulated by
an operation, for example by computing the address of the data in
memory. For object-oriented programs, the serializer might use a
sequence number that reflects the order in which an object was in-
stantiated from a class specification. In some cases, identifying the
data accessed by the operation may represent a significant fraction
of the work done by the operation, and it is beneficial to use some
other mapping of operations to serialization sets, so long as com-
putations on the same data are mapped to the same set.

While it is generally desirable to specify a serializer so that dis-
joint data elements are mapped to different serialization sets, it may
be advantageous to map operations on different elements to the
same serialization set. Assigning data elements stored in the same
cache line to the same set ensures that they will be operated on by
the same processor, alleviating false sharing effects. It may also
be useful to assign data elements stored in contiguous memory to
the same serialization set to leverage the prefetching mechanisms
present in modern processors.

Serializers may be specified as a special operation that is implic-
itly associated with a data type (aninternal serializer) and auto-
matically used whenever operations on that type are performed, or
they may be explicitly specified at the point of delegation (anexter-
nal serializer). Internal serializers are typically used when the data
structure contains identifying information. For example, an object
may have a special method that serves as the serializer, computing
the serialization set using its internal state. External serializers are
used when the identifying information is not stored in the object.

2.2 Effecting Shared State
A key aspect of any parallel execution model is how it manages

shared data that must be accessed by multiple processors (aside
from the trivial case of read-only data). Because the use of serial-
ization sets requires partitioning data into disjoint domains, it might
seem to overly restrict how sharing can occur. Indeed, limiting how
data is shared among processors is central to how serialization sets
avoid traditional concurrency bugs. The remainder of this section
describes three techniques for effecting computation that would re-
quire shared state using more conventional parallel models.

The first technique is to use different partitions of data in differ-
ent isolation epochs, as shown in Figure 1. By alternating which
data is in read-only vs. writable domains in an iterative fashion,
serialization sets may achieve the effect of coarse-grain sharing.

The second technique leverages the fact that many operations
amenable to parallel execution are both associative and commuta-
tive, and thus may be performed in any order. We refer to these
asreducible, because operations may access a local version of the
data1, and a reduce (also known as a fold) operation is performed
to summarize these versions into the final result at the end of the

1Because the local version is writable only by single processor,
reducible data is thus a special case of privately-writable data.

isolation epoch. The reduce operation onN elements is performed
usingNi�1=2 parallel operations at each stepi. Reducible oper-
ations are used in many parallel execution models; notable exam-
ples in the realm of imperative programming are Google’s MapRe-
duce [3], Cilk’s inlets [4], and hyperobjects in Cilk++ [12]. We
note that many non-reducible operations may be transformed into
reducible operations by deferring the components of the operations
that do not commute or associate into the reduction itself.

Third, we note that many operations on shared data are not al-
lowed to execute concurrently under parallel models such as mul-
tithreading. Critical sections are used to ensure mutual exclusion,
preventing simultaneous uncoordinated accesses that could corrupt
the shared data. In this case, the data is never simultaneously ac-
cessed by multiple threads at all, and thus calling it “shared” is
a misnomer. Consider a hash table that is accessed by multiple
threads. Typically a lock on the overall hash table is acquired, pro-
tecting the metadata and structure of the hash table while the de-
sired data is located. Another lock is acquired on the underlying
data, and then the lock on the hash table itself is released. The
time spent in the hash table lock must necessarily be short, lest the
entire program be serialized through these accesses. Using serial-
ization sets, accesses to container data structures is performed in
the program context, and then operations on the underlying data
are assigned to the delegate context. Many operations amenable to
shared access in multithreading can be handled in this way, since
the necessarily brief accesses to the overall structure do not unduly
burden the program context. Furthermore, there is no composabil-
ity problem for these operations, since they are always performed
in the program context.

There are likely some sharing patterns that may not lend them-
selves to efficient implementation using serialization sets. In prac-
tice, we have found that a large number of sharing patterns map
nicely onto the techniques described in this section.

3. THE PROMETHEUS C++ LIBRARY
This section describes Prometheus, a C++ template library that

implements the serialization set execution model. The use of C++
allows programmers to write parallel applications using a famil-
iar imperative, object-oriented language, using existing compil-
ers and libraries, and provides a path for parallelizing existing se-
quential programs. Templates are the C++ mechanism for generic
programming; briefly, the declarationtemplate <typename A,
typename B, ...> before a class or function indicates a generic
specification that can be instantiated by the compiler when it en-
counters a use of the class or function, replacingA, B, ... with
the appropriate types. The use of templates affords Prometheus
several advantages. First, the compiler automatically synthesizes
the necessary code for run-time support based on the types used
for classes and methods involved in parallel execution. Second,
Prometheus operates above the type system (rather than casting
data throughvoid pointers), allowing many programming errors
to be caught at compile time. Third, templates provide a mecha-
nism to implement the new language features needed for serializa-
tion sets viatemplate metaprogramming[2, 20], which provides a
Turing-complete language for compile-time execution.

3.1 The Prometheus API
Prometheus uses C++ objects to encapsulate data into disjoint

domains. Method calls serve as the granularity of operation
that may be delegated, and thus potentially executed in parallel.
Prometheus leverages the C++ type system to provide some en-
forcement of the data partitioning requirements, but provides addi-
tional support for detecting errors via template metaprogramming.
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Function / Method
Class Description
initialize ()
global Initializes the Prometheus run-time library.

terminate ()
global Shuts down the Prometheus run-time.

sleep ()
global Puts the threads used to implement the delegate context to sleep.

begin_isolation ()
global Begins a new isolation epoch. Wakes up delegate context processor resources if necessary.

end_isolation ()
global Synchronizes the program and delegate contexts, starts new aggregation epoch.

template <typename R, typename T, paramtypes... , argtypes... >
R call (R (&T::method) ( paramtypes... ), args... )
read_only <T> Calls method with specified arguments, returns value of type R. During an aggregation epoch, any method

may be called. During an isolation epoch, calling non-const methods results in an error.
reducible <T> Calls method with specified arguments on the current context’s view of the object, returns value of type R.

The first call in an aggregation epoch causes the reduce method to execute, reducing the multiple views of
an isolation epoch to the final view.

writable <T, S> Calls method with specified arguments, returns value of type R. Valid use includes calls toconstmethods
when object is in a read-only state, or calls to any method when object is in a private state. Other uses
generate an error.

template <typename T, paramtypes... , argtypes... >
void delegate (void (&T::method) ( paramtypes... ), args... )
writable <T, S> Assigns a potentially independent method call to the delegate context in the serialization set computed

by executing the serializer method of class S. If object is in the read-only state, generates an error. Valid
parameter types include native types passed by value, and subtypes of shared passed by reference or
pointer. Delegated methods must have a return type of void and arguments must either be passed by value,
or must be pointers or references to classes derived from shared.

template <typename T, paramtypes... , argtypes... >
void delegate (ss_t serializer, void (&T::method) ( paramtypes... ), args... )
writable <T, S> Assigns a potentially independent method call to the delegate context in the serialization set specified by

the serializer argument. If object is in the read-only state, generates an error. Valid parameter types include
native types passed by value, and subtypes of shared passed by reference or pointer. Delegated methods
must have a return type of void and arguments must either be passed by value, or must be pointers or
references to classes derived from shared.

template <typename T, paramtypes... , argtypes... >
void doall (vector <writable <T, S> > v, void (&T::method) ( paramtypes... ), args... )
writable <T, S>
(static)

Executes method on all objects in vector objs. The specified method must have a return type of void and
arguments must either be passed by value, or must be pointers or references to classes derived from shared.

Table 1: The Prometheus API.

Prometheus provides a set of wrapper classes that implement the
different types of data domains. These classes inherit from the
classshared , and are specialized on type they wrap. The wrap-
per classes wall off objects and mediate all method calls so that
the safety of operations on them can be monitored via a combi-
nation of static and dynamic checks. Wrapped objects must be
constructed inside the wrapper; they cannot be created by passing
in a pointer or reference to an existing object. This prevents the
programmer from accidentally using the unwrapped object to per-
form unchecked calls. The programmer calls methods on wrapped
objects using thecall interface, which accepts a pointer to the
desired method in the underlying object and the arguments to the
method. After performing the necessary checking,call executes
the specified method.

During an aggregation epoch, calls to all methods are allowed
through any wrapper type. During isolation epochs, the wrapper
classes provide special handling for calls according to the type of
the wrapper. Theread_only wrapper allows only calls toconst
methods2. The reducible wrapper class performs the call on a

2In C++,const methods are not allowed to modify the data mem-
bers of an object.

local view of the object that may differ in different instances of
methods on the object; the first call to a method in the following
isolation epoch executes thereduce method specified by the user
to summarize the effects of the parallel operations into the final
state. Thewritable wrapper allows an object to be treated as
read-only or privately-writable, but not both, for the duration of an
isolation epoch. When used as a read-only object, calls toconst
methods are allowed anywhere, but calls to non-const methods
generate an error. When used as a privately-writable object, inde-
pendent methods can be assigned to the delegate context via the
delegate interface; later calls through thecall interface auto-
matically reclaim ownership of the object before executing. The
writable class maintains a state machine that signals an error if
the object is treated as read-only and privately-writable in the same
isolation epoch.

The writable class is also specialized on a class that imple-
ments the serializer for the object. The programmer may select
from a set of predefined serializers provided by the Prometheus
library, or they may write their own. The predefined serializers in-
clude theobject serializer, which serializes on the address of an
object, thesequenceserializer, which serializes on the instance
number of the object, and thenull serializer, which is used when
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Embarrassing parallelism
vector <writable <object_t> > objects;
writable <object_t>::doall (objects, &object_t::method, args…)

Task parallelism
writable <object_A_t> object_A (args…);
object_A.delegate (&object_t:start ());
writable <object_B_t> object_B (args…);
object_B.delegate (&object_t:start ());

Data parallelism
vector <writable <object_t> > objects;
for (i = 0; i < objects.size (); i++) {

objects[i].delegate (&object_t::method, args…);
}

Pipeline parallelism
vector <writable <object_t> > objects;
for (i = 0; i < objects.size (); i++) {

objects[i].delegate (&object_t::pipe_stage_1, args…);
objects[i].delegate (&object_t::pipe_stage_2, args…);
objects[i].delegate (&object_t::pipe_stage_3, args…);

}

Figure 2: Prometheus implementation of common parallelization schemes.

external serialization is desired.
The key parts of the Prometheus API are shown in Table 1. In

addition to the wrapper class methods, the API provides meth-
ods to initialize and terminate the Prometheus run-time. For
long aggregation epochs, the API provides asleep method that
can be used to temporarily release the processor resources used
by the delegate context. Isolation epochs are delimited with the
begin_isolation andend_isolation methods.

Prometheus only allows delegation of methods with certain sig-
natures. The first requirement is that the return type must bevoid .
Allowing return values would require the program context to wait
for delegated methods to complete before continuing execution,
which is contrary to our goal of concurrency. To achieve better
performance, programmers should restructure independent meth-
ods to store return values inside the object, and provide a method
to read results at a later time.

The other restriction on methods that can be delegated is that
the types of their arguments must meet certain requirements. Any
argument may be passed by value, although this is only advisable
for primitive types, because copying large structures is expensive.
If an argument is passed through a pointer or reference, its base
type must beshared ; in other words, only wrapped objects may
be passed by pointer or reference. Furthermore,read_only argu-
ments may only be passed byconst pointer or reference.

The goal of the wrapper classes and the restrictions on arguments
to delegated functions is to ensure that delegated method calls can-
not interfere with each other, under the assumption that the state of
distinct objects does not overlap. This is guaranteed for data inside
the object, but if objects contain pointers to outside state they may
interfere with each other. Therefore Prometheus also provides a set
of smart pointer types that can track ownership of pointed-to ob-
jects, and detect errors when they are accessed by more than one
owner in an isolation epoch.

Figure 2 gives sketches of several parallelization schemes, as
they would be implemented in Prometheus. However, serialization
sets do not restrict programmers to these methods, and give flexible
support for exposing dynamic independence in many other ways.

3.2 An example Prometheus program
Figure 3 shows a simplified Prometheus implementation of the

reverse_index benchmark.reverse_index recursively reads
a directory tree containing HTML files, extracts the links, and pro-
duces an index of all files that contain each link. This benchmark
is a C++ reimplementation of a program in the Phoenix suite [18].

The classes used in this benchmark include afile_t class,
which stores the path to a file, and implements all the necessary

operations on the file, including thefind_links method. In the
Prometheus implementation, thefile_t class is wrapped in the
writable class(A), using thesequence serializer, which adds an
instance number to each object which will be used as the serializa-
tion set identifier. Using thewritable wrapper aroundfile_t
allows for delegation of method calls. Thelink_t class stores the
URL of the link, as well as the set of files in which the link has
been found. Operations on objects of this class are reducible(B),
because adding files to the set in which the link has been found
can be performed in any order. This program also uses two data
structures from the Prometheus library: areducible_set (C) to
store files in the link class, and areducible_map to look up the
link_t object for a particular text link found in the file.

To parallelizereverse_index with serialization sets, our strat-
egy is to start an isolation epoch withbegin_isolation , and re-
cursively traverse the specified directory using thefind_files
function (E). When a file is found, a newfile_t object is cre-
ated, and thefind_links method of this object is delegated(F).
This allows the searching of different files to occur in parallel.
Note that with serialization sets, the parallel portion of the pro-
gram (searching files for links) is overlapped with the sequential
part of the program (locating the files). Since the number of files
is initially unknown, a typical thread-based implementation would
first have to locate all the files, then parcel them into equally-sized
sets to evenly distribute work to the threads. This example demon-
strates that, while fine-grained parallelization must amortize over-
heads over smaller units of work, it can extract more concurrency
from the program.

The find_links method scans through the file searching for
links. When it finds a link, it checks the link map to see if the link
has been previously encountered; if it has, it adds the current file to
the existing link in the link map(G), (H). If the link has not been
seen before, a newlink_t object is created(I), (J) and inserted
into the link map(K) .

Once all the files have been located byfind_files , the func-
tion returns, and thenmain calls theend_isolation method.
This causes the program context to wait until all outstanding meth-
ods have completed in the delegate context, and then reverts to an
aggregation epoch. The next step inmain is to print out the link
map(L) , and this first use of the link map causes itsreduce to be
called. The reduction finds instances of the same link in different
views of the link map, and calls theirreduce method(M) to merge
them together. The links are combined by merging their file sets.
When the reduction is complete, the link map contains the final
index from links to the files that contain them.

The Prometheus implementation ofreverse_index illustrates
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typedef prometheus::writable <file_t, sequence> ss_file_t; 
typedef prometheus::reducible <link_t> ss_link_t;
typedef prometheus::reducible_set <ss_file_t*> file_set_t;
typedef prometheus::reducible_map <const char*, ss_link_t*> link_map_t;

void find_files(const char* path, 
link_map_t& link_map) {

if(is_file(path)) {

ss_file_t* file = new ss_file_t(path);

// delegate find_links method
file->delegate(&file_t::find_links,

link_map);        
}
else { // path is a directory

// open directory & recurse on contents
}

}

A

int main(int argc, char** argv) {
// start up Prometheus
prometheus::begin_isolation();
file_list_t file_list;
link_map_t link_map;

// begin parallel epoch
prometheus::parallel_begin();
find_files(argv[1], file_list, link_map);
// end parallel epoch
prometheus::end_isolation(); 

// print out results
cout << link_map;

// shut down Prometheus
prometheus::terminate();

}

class link_t {
private:

const char* url;
file_set_t file_set;

public:
link_t(const char* url, file_t* file) {

this->url = url;
file_set.insert(file);

}
file_set& get_file_set() {

return file_set;
}
void add_file(file_t* file) {

file_set.insert(file);
}
virtual void reducer(link_t& link) {

file_set.reducer(link.get_file_set());
}

};
file_t::find_links(link_map_t& link_map) {
while(!eof()) {

const char* link_text = find_next_link();
if(link_map.find(link_text)) {

link_map[link_text]->call      
(&link_t::add_file, this)

else {
ss_link_t* link = 

new ss_link_t(link_text, file);
link_map.insert(link_text, link);

}
} 

}
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Figure 3: Prometheus example program:reverse_index (some details have been omitted for clarity).

how writing programs with serialization sets is different from using
traditional multithreading techniques. Rather than thinking about
threads of control and managing their interaction, serialization sets
require the programmer to encapsulate data into classes and struc-
ture programs hierarchically. This thought process is consistent
with the principles of object-oriented programming. Contrasted
with multithreaded programming, we believe this represents a sig-
nificant reduction in complexity.

3.3 Detecting and Debugging Errors
Because the execution of programs parallelized serialization sets

is deterministic, the process of finding and debugging errors is sig-
nificantly easier than it is in multithreaded programs. Prometheus
provides a mechanism to detect errors in the parallel execution, and
the capability to perform all development and debugging on a se-
quential version of the program.

There are two sources of errors in Prometheus programs. The
first is the use of an improper serializer that maps the same object
to multiple serialization sets. This condition is detected by tagging
each object with the serialization set it is mapped to during the first
delegation in an isolation epoch. If a later delegation maps it the
object to a different serialization set, the runtime will observe the
discrepancy and signal an error. Note that these errors are usually
avoided by using the serializers that are provided by Prometheus,
which have been thoroughly tested on a large number of programs.

The second type of error occurs when an operation violates the
partitioning of data, such as performing a write on a read-only ob-

ject. Many of these errors are caught by the static and dynamic
checking that is performed via the wrapper classes. However, C++
limits the safety that can be enforced on the data partitioning. Using
the wrapper classes, Prometheus is able to ensure that all variables
passed as arguments to a delegated function respect the data parti-
tioning rules. Unfortunately, we have not yet been able to devise a
way to ensure that global variables and pointer data members are
wrapped in the appropriate classes. If a programmer neglects to
use the wrapper classes in these cases, Prometheus is unable to de-
tect incorrect accesses on these kinds of variables. For the small-
to medium-size programs used for our evaluation, it is straightfor-
ward to ensure the proper use of wrappers via inspection. How-
ever, inspection is not a viable solution for large programs. We
plan to develop a lint-like tool that will inspect class specifications
to identify cases where unwrapped accesses to pointers or global
variables are performed in any class that has methods that may be
delegated. Since this may be done with a simple-flow insensitive
analysis, there is no significant technical obstacle to identifying this
kind of error.

All development and debugging of Prometheus programs is done
on a sequential execution of the program. Using a compile-time
flag, programs may be compiled into a debug version that simu-
lates a serialization set execution by tracking the context and seri-
alization set of each operation. Debugging errors in serializers and
reductions is therefore no more difficult than debugging any other
type of sequential code. When the debug version executes correctly
for a given input, the parallel version will too (with the exception of
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the current limitations with respect to global variables and pointer
members, which are detectable in other ways).

4. IMPLEMENTATION
There are two main components to Prometheus: a set of tem-

plates used to instantiate the data structures used for serialization
sets, and a runtime that orchestrates the parallel execution using
these structures. The runtime currently supports x86 and x86_64
under Linux, and SPARC-V9 under Solaris. The system-specific
components are confined to a few files to facilitate porting to other
architectures.

The initialize function starts up the Prometheus runtime.
The initial thread of execution, orprogram thread, implements the
program context. The runtime detects the number of processors in
the system, and spawns a number of additionaldelegate threadsto
implement the delegate context. The number of delegate threads
is one less than the number of processors by default, but may be
configured to some other number via an environment variable. The
program thread and delegate threads are bound to distinct proces-
sors to ensure performance isolation.

The runtime then initializes a communication queue between
the program thread and each delegate thread. The communication
queue is based on FastForward [5], a cache-optimized lock-free
concurrent queue, which performs very low overhead data trans-
fers between processors. Prometheus augments FastForward with a
polymorphic interface to allow multiple types of data to be commu-
nicated via the same queue. Because the queues are single-producer
(the program thread) and single consumer (a delegate thread), the
only synchronization required is checking the full condition on the
producer side, and the empty condition on the consumer side. Ac-
cess to the communication queues is performance-critical, so these
conditions are checked in a spin loop rather than using blocking
OS synchronization, which would incur prohibitive overheads. The
x86 and x86_64 implementations insert thePAUSEinstruction in
these loops to limit consumption of processor resources on multi-
threaded cores.

The communication queues serve three purposes. First, they
transfer the data needed to execute the method in the delegate con-
text. Second, they preserve the ordering of operations in the same
serialization set. Third, they provide buffering to help tolerate
bursts of operations mapped to the same serialization set.

The presence of a call todelegate in the program causes the
compiler to instantiate aninvocation classfor the specified method
call. The invocation class contains a pointer to the object and
method to be delegated, as well as the specified arguments. It also
contains the serialization set identifier to allow the runtime to de-
tect erroneous serializers. All invocation classes share a common
execute_method interface, and the different types of invocations
implement this interface to correctly call the method stored in the
invocation. Because the invocation classes are instantiated via tem-
plates, many type errors (such as calling a method with the wrong
arguments types) are detected at compile time. If we had chosen
to implement invocation objects withvoid pointers, these errors
would not be detected until run-time.

The program thread executesdelegate directives in four steps.
First, it executes the serializer to compute the serialization set num-
ber for the method. Second, it performsdelegate assignment, which
identifies the delegate thread that will execute the method. Third, it
allocates an invocation object of the appropriate class. Fourth, the
invocation object is inserted into the communication queue for the
designated delegate thread.

The current Prometheus implementation performsstatic delegate
assignment. It takes the modulus of the serialization set number and

the number ofvirtual delegates. Because many programs contain
small sequential components, the program thread has little work to
do compared to the delegate thread, so Prometheus uses the pro-
gram thread to execute some of the delegated methods. Virtual
delegates allow runtime configuration of theassignment ratioof
serialization sets assigned to the program thread and the delegate
thread. The assignment ratio allows for run-time configuration of
work distribution to suit the environment the program is running in.

The delegate threads execute a loop to repeatedly read in-
vocation objects from the communication queue. They call
execute_method on each object, which executes the method.
Upon completion of the method, they deallocate the invocation ob-
ject, continuing on to the next entry in the queue.

Prometheus uses several special kinds of invocation objects to
coordinate the execution of the program thread and the delegate
threads.Synchronization objectsare used by the program thread to
reclaim ownership of a data domain so that the program thread may
perform dependent computations on that object. When thecall in-
terface of awritable object is invoked, it checks to see if there are
outstanding delegated method calls on that object. If there are, it
executes the object’s serializer, identifies the delegate thread oper-
ating on the object, sends a synchronization object to that thread,
and waits for a response. When the delegate thread reaches the se-
rialization object, it will be the last object in the queue, since the
program thread has ceased sending invocations, ensuring that all
methods have completed on the object. The delegate thread then
invokesexecute_method on the synchronization object, which
signals the program thread that it has regained ownership of the ob-
ject, and can then execute its call. The same mechanism is used by
end_isolation to synchronize with all delegate threads, before
returning the program thread to an aggregation epoch.

Termination objectsare used by theterminate function to send
messages to all delegate threads. Upon receiving this message,
the delegate threads have finished executing outstanding delegate
methods; they then signal the program thread that they have com-
pleted. Once the program thread receives replies from all delegate
threads, it is safe to terminate the program.

Reducible operations are handled by storing the thread id of each
delegate thread in thread-local storage. When methods on a re-
ducible object are called, they use the thread id to retrieve the ver-
sion of the object corresponding to that delegate thread. Later,
when thereduce method is called, it performs the reduction to
summarize the various versions into the final result.

While the current runtime implementation is fairly simple, it
yields very good performance on the programs we have studied so
far. In the future, we plan to extend the runtime to support hierar-
chical execution of delegates, and some form of dynamic delegate
assignment or work stealing to further increase the kinds of appli-
cations that can be efficiently executed with serialization sets.

5. EVALUATION
To evaluate serialization sets, we used benchmarks shown in Ta-

ble 2. We ported these benchmarks to Prometheus by first rewrit-
ing them as idiomatic C++ programs, using object-oriented features
and STL data structures. We then augmented them with serializa-
tion sets support. This required some further modification of the
programs, typically restructuring classes to include additional state,
so that methods calls could be rendered independent, and thus suit-
able for delegation.

The programs were compiled withgcc-4.3.1 -O3
-march=barcelona for the AMD Barcelona/Linux platforms
and withgcc-4.2.1 -O3 -mcpu=v9 for the SPARC-V9/Solaris
platforms. All programs were compiled as 64-bit executables.
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Program Source Description Baseline Inputs (S/M/L)
barnes-hut Lonestar [9] N-body simulation pthreads (1,000, 25) / (10,000, 50) / (100,000, 75) bodies, steps
blackscholes PARSEC [1] Financial analysis pthreads (16,384 / 65,536 / 10,000,000) options
dedup PARSEC [1] Enterprise storage pthreads (31 MB / 185 MB / 673 MB) file
freqmine PARSEC [1] Data mining OpenMP (250,000 / 500,000 / 990,000) transactions
histogram Phoenix [18] Image analysis pthreads (100MB / 400MB / 1.4GB) bitmap
kmeans NU-MineBench [16] Data mining OpenMP (5,000, 50 / 10,000, 100 / 50,000, 100) points, clusters
reverse_index Phoenix [18] HTML analysis pthreads (100 MB / 500 MB /1.0 GB) directory
word_count Phoenix [18] Text processing pthreads (10 MB / 50 MB / 100 MB) file

Table 2: Benchmarks used in experimental evaluation.

x86 Multicore x86 ccNUMA SPARC Multicore SPARC SMP
AMD Phenom 9850 AMD Opteron 8350 Sun Fire T2000 Sun Fire V880

Processor Type AMD Barcelona AMD Barcelona UltraSPARC T-1 UltraSPARC-III+
# Processors 1 4 1 8
Cores per Processor 4 4 8 1
Threads per Core 1 1 4 1
Total Execution Contexts 4 16 32 8
Clock Speed 2.5 GHz 2.0 GHz 1.0 GHz 900 MHz
Memory 8 GB 16 GB 16 GB 32 GB
OS Linux 2.6.18 Linux 2.6.25 Open Solaris Solaris 9

Table 3: Machine parameters used in experimental evaluation.

Note that we do not runfreqmine on the SPARC machines
due to portability issues in the original benchmark code. The
dynamic checks performed by Prometheus were disabled for the
performance measurements in this section.

5.1 Experimental Results
Table 3 lists the four machine configurations used for our ex-

periments. We studied two systems based on the AMD Barcelona
processor, including a four-core AMD Phenom system and a four-
socket four-core AMD Opteron system (16 cores total)3. We also
measured two systems using SPARC processors, an UltraSPARC T-
1 (Niagara) based CMP system composed of eight cores with four
threads each, and an UltraSPARC-III based SMP machine. All sys-
tems used a 64-bit OS capable of utilizing the full system memory.

There are several sources of overhead in Prometheus programs
that are not present in traditional parallel programs. Prometheus
introduces additional indirect calls, including internal serializers,
the execute_method interface of the invocation objects, and the
invocation of the method pointer stored in the invocation object.
Prometheus programs may also perform more loads and stores, due
to the use of the communication queues. Thus we expect absolute
performance of Prometheus programs to be slightly lower than con-
ventional parallel programs, although we expect similar scalability.

Figure 4 shows the performance of conventional parallel pro-
grams (BL) and Prometheus programs (SS) normalized to the exe-
cution time of theoriginal sequential program, not our C++ port.
The harmonic mean of the speedups is given in the final column.
Prometheus programs perform nearly as well as the conventional
parallel implementations in most cases, and actually perform better
for some benchmarks.

Several benchmarks exhibit performance disparities that are
not solely attributable to the additional overheads in Prometheus.
The freqmine benchmark is written in a very low-level hand-
optimized style, and we were unable to match its performance with
an object-oriented coding style. Our Prometheus implementation
of kmeans does not perform as well as the original benchmark due
to the use of an inferior algorithm.kmeans performs clustering of
n-dimensional data points by iteratively finding the nearest clus-
ter point for each data point, and then updating the mean of each
3We have also run the x86 benchmarks on Intel multicore systems
with similar results, but omit the results here for brevity

cluster point. The original benchmark iterates over the points and
updates the cluster points at the same time. The Prometheus imple-
mentation iterates over the data points and cluster points separately.
We believe we can reduce the performance difference by comput-
ing partial sums of the cluster means during clustering, and using a
reduction to summarize the results at the end of the computation.

Two of the Prometheus benchmarks perform better than their
conventional parallel counterparts. As described in Section 3.2,
reverse_index achieves better results by overlapping the direc-
tory recursion with finding links in the files; in the conventional
program, searching the files for links does not start until after the
entire directory has been read.

The Prometheus implementation ofword_count performs sig-
nificantly better on the machines with four and eight execution con-
texts, and comparably for the machines with 16 and 32 contexts.
The baseline implementation maintains its dictionary of words in a
set of lists, and uses all processors in the system to merge different
pieces of the lists at the end of the program. The Prometheus im-
plementation uses a reducible map based on the STL data structure,
which performs better during the word counting phase, but requires
more work to reduce to its final state.

Figure 5a breaks down the amount of time spent in each bench-
mark into aggregation, isolation, and reduction components, as
measured on the 16-core AMD Barcelona system. As expected,
better performance of the benchmarks generally correlates to a
higher percentage of time spent in isolation epochs, which al-
low parallel execution. Of the benchmarks that usereducible
objects,histogram spends a negligible amount of time, while
reverse_index andword_count spend about 30% of their ex-
ecution time in reductions.

Figure 5b shows how the performance of the Prometheus bench-
marks on the 16-core AMD Barcelona system scales as larger
inputs are used. The one exception isdedup , which performs
fingerprint-based compression [1]. The speedups of this program
depend on how much compression is needed for a particular file;
in this case, the medium input file achieves a significantly higher
compression ratio than the small and large files do.

Figure 6 shows the scaling of Prometheus programs on the
16-core AMD Barcelona system. The most parallel program,
blackscholes , achieves nearly linear scaling. Thebarnes-hut
andword_count benchmarks both achieve super-linear speedups

8



0
2
4
6
8

10
12
14
16
18

Sp
ee

du
p 

ov
er

 o
rig

in
al

 
se

qu
en

tia
l p

ro
gr

am

barcelona-4 BL 4.1 5.0 3.0 3.4 3.6 4.2 5.2 4.6 4.0

barcelona-4 SS 3.9 4.0 3.1 2.4 3.5 3.4 6.2 7.7 3.8

barcelona-16 BL 12.8 18.1 4.6 5.0 7.5 12.3 10.4 17.9 8.7

barcelona-16 SS 13.8 16.3 5.0 3.9 7.5 9.2 12.3 17.5 8.2

niagara-32 BL 16.6 16.2 6.2 13.9 3.0 10.0 16.7 8.3

niagara-32 SS 15.2 17.1 5.9 13.9 2.0 12.5 16.1 7.0

ultrasparc-8 BL 7.0 7.2 4.0 5.9 6.4 8.3 8.4 6.4

ultrasparc-8 SS 6.0 7.3 4.5 6.0 4.2 7.7 11.2 6.1

barneshut blackscholes dedup freqmine histogram kmeans reverse_index word_count H_MEAN

Figure 4: Performance of conventional parallel programs (BL) versus parallel execution of Prometheus programs (SS).
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Figure 5: Characterization of Prometheus programs on the 16-core AMD Barcelona system.

for smaller numbers of threads, but taper off at higher thread counts.
The least scalable benchmarks,dedup and freqmine , do not see
additional performance improvement beyond roughly eight dele-
gate threads. Since the conventional parallel version of these pro-
grams show the same scaling limitations, we believe the scaling
limitations of these programs is due to the algorithm used, and not
an inherent limitation of serialization sets.

The scaling ofhistogram is particularly interesting. This
benchmark improves in performance up to 10 delegate threads, but
then rapidly falls off as more delegate threads are added. We ob-
served similar behavior in the original benchmark as well. (For
this reason, the numbers reported earlier for this benchmark use
the 10-thread configuration on this system.) Because this pro-
gram rapidly reads through large portions of memory, we hypothe-
size that memory bandwidth becomes saturated beyond 10 delegate
threads, causing the performance to degrade.

6. RELATED WORK
Like serialization sets, actors [7] and active objects [10] avoid

data races by performing operations on data in a single thread. Un-

like serialization sets, these models tie objects to a single thread
of control, losing the flexibility to be used in different ways, and
communicate via asynchronous message passing, resulting in non-
deterministic execution.

Halstead’s MultiLisp [6] introduced the notion offutures, which
execute an expression concurrently with the program. This process
is similar to delegating a method call, but since futures provide
no coordination on shared state, MultiLisp cannot safely futurize
multiple expressions that involve the same data.

The Jade [19] language statically divides a program into tasks,
and usesaccess specificationsfor the inputs and output variables of
a task to determine when a task is ready to execute. Access speci-
fications are similar to serializers in that they execute dynamically.
However, access specifications determine when data is ready for a
computational operation, while serializers are used to identify the
owner of data to which the operation should be sent. Access spec-
ifications must be written for every input and output variable of a
task, while only a single serializer is needed to delegate a method
call.

Cilk [4], Cilk++ [12], TBB [8], and OpenMP [15] provide a
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Figure 6: Performance scaling of Prometheus programs on the 16-
core AMD Barcelona system.

sequential programming interface for writing multithreaded pro-
grams, but like threads, assume that tasks are independent. Explicit
synchronization is required to avoid data races on shared state.

Microsoft’s Task Parallel Library [14] and the .NET Thread-
Pool [13] provide mechanisms to delegate method calls to other
threads, but require manual synchronization of accesses to shared
memory.

Google’s MapReduce [3] exploits data parallelism by alternately
executing a function on each data element that maps it to a key
value, and then performing a reduction on all data with the same
key. MapReduce sacrifices generality for scalability, and many
kinds of applications are not amenable to the strict map-reduce data
flow.

Transactional Memory (TM) [17] provides atomic execution of
critical sections by dynamically detecting and undoing the results
of conflicting accesses. TM improves the ease of multithreaded
programming by providing composability and extracts the perfor-
mance of fine-grained synchronization from coarse-grained syn-
chronization. TM is not a panacea, and still requires programmers
to correctly identify critical sections and reason about nondetermin-
ism.

7. CONCLUSION
Serialization sets offer a new approach to achieving parallel ex-

ecution of programs, allowing programmers to unlock the power
of multicore processors. Instead of requiring the programmer to
reason about the nondeterministic execution of multiple threads of
control, they encourage hierarchical program structure, and encap-
sulation of state within objects. Programmers expose independence
by providing succinct serializers which dynamically classify opera-
tions into dependent sets, and allow a dynamic runtime to schedule
independent operations in parallel.

We have described Prometheus, our initial implementation of
the serialization sets model as a C++ template library. The re-
sults are promising—Prometheus programs perform as well or
nearly as well as threaded implementations, with significantly
lower programming complexity. In the future, we plan to improve
Prometheus to offer more features to exploit dynamic indepen-
dence, as well as to study more complex programs to see how they
mesh with the serialization sets paradigm.
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