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Abstract—Anecdotal evidence and intuition suggest that an
operator’s ability to manage a network decreases as the network
becomes more complex. However, there is currently no way
to systematically quantify how complex a network’s design is
nor how complexity may impact network management activities.
In this paper, we develop a suite ofcomplexity models that
describe the routing design and configuration of a network in
a succinct fashion, abstracting away details of the underlying
configuration languages. Our models, and thecomplexity metrics
arising from them, capture the difficulty of configuring specific
control and data plane behaviors in various routers. They also
enable measurement of the inherent complexity of reachability
constraints that a network implements via its routing design.
Our models simplify network design and management by facil-
itating comparison between alternative designs for a network.
To demonstrate their value, we use the metrics to perform a
comparative study of the complexity of five different networks,
including three university networks and two enterprise networks.

I. I NTRODUCTION

Experience has shown that the high complexity underlying
the design and configuration of enterprise networks generally
leads to significant manual intervention when managing net-
works. While hard data implicating complexity in network
outages is hard to come by, both anecdotal evidence and
intuition suggest that more complex networks are more prone
to failures, and are difficult to upgrade and manage.

Today, there is no way to systematically quantify how
complex an enterprise configuration is, and to what extent
complexity impacts key management tasks. In this paper, we
develop a family ofcomplexity modelsthat describes the
complexity of the design and configuration of an enterprise
network in a succinct fashion, abstracting away all the details
of the underlying configuration language. We designed the
complexity models to have the following characteristics: (1)
They align with the complexity of the mental model operators
must use when reasoning about their network—networks with
higher complexity scores are harder for operators to manage,
evolve or reason about correctly. (2) They can be derived
automatically from the configuration files that define a network
and its design. This means that automatic configuration tools
can use the metrics to choose between alternative designs
when, as frequently is the case, there are several ways of
implementing any given policy.

The models we present in this paper are targeted toward
the Layer-3 design and configuration of enterprise networks.
As past work has shown [12], enterprises employ diverse
and unique routing designs. Routing design is central both to

enabling network-wide reachability and to limiting the extent
of connectivity between some parts of a network.

We focus on modeling three key aspects of routing design
complexity: (1) the complexity behind configuring network
routers accurately, (2) the complexity arising from identifying
and defining distinct roles for routers in implementing a
network’s policy, and (3) the complexity of the policies them-
selves (e.g. whether policies are conservative or permissive).

Configuration Complexity. To model the complexity of
configuring a network’s routing design, we use thereferential
dependencegraph. This models dependencies in the definitions
of routing configuration components, some of which may span
multiple devices. We mine the graph to compute key metrics
such as the number of atomic units of routing policy in a
network, the configuration dependencies within and across
units, and the number of units to which each router belongs.

Router Roles. We identify the implicit roles played by
routers in implementing a network’s policies. Networks be-
come more complex to design and manage as the number
of different roles increases or as routers simultaneously play
multiple roles in the network. Our algorithms automatically
identify roles by finding routers that share similar configura-
tions. The algorithms also identify the roles played by routers
in forwarding packets between different portions of a network.
Using this, we are able to identify whether or not a network
organizes its routing in a tiered fashion, the number of such
tiers, and the number of routers in a tier.

Reachability Constraints and Implementation.We quan-
tify the impact of the reachability and access control policies
on the network’s end-to-end connectivity. Networks that at-
tempt to implement conservative policies that control which
hosts can communicate are more complex to engineer and
manage than more permissive networks. However, a network’s
policies are frequently not in any machine-readable form, and
they cannot be directly read from the network’s configuration.
Our paper explains how the complexity of the policies can
be automatically extracted by extending the concept ofreach-
ability setsfirst introduced by Xieet al. [15]. Reachability
sets quantify the set of packets that a collection of network
paths will allow based on the packet filters access control rules
and routing/forwarding configuration in routers on path. By
measuring thevolumeof the reachability set, which estimates
the total number of packets contained in the set, we can
expose how conservative the policies of a network are and
also highlight the constraints imposed by control- and data-
plane mechanisms. We develop algorithms based on firewall



rule-set optimization to compute reachability set volumes.
In addition to developing these metrics, another key con-

tribution of our paper isan empirical study of complexity
of network designs. We have applied the complexity mod-
els to the configurations of three university networks and
two commercial enterprises. We find that the networks vary
significantly in their routing designs, in the complexity of
their configuration, the reachability policies implemented and
the conservativeness of the policies. We are able to rank the
networks in terms of their complexity. We find that while some
networks define a small set of roles for their routers (making
design and configuration very simple), others organize them
in multiple groups containing a few routers each. We also find
that while an unrestrictive network can be implemented with
little complexity, operators may sometimes introduce complex-
ity into their configuration as a means acheiving greater control
over certain aspects of the network. Finally, we did not observe
any correlation between the type of the network (University
vs. Private network) and the overall conservativeness. Our
empirical study shows that the metrics make it possible to
directly compare distinct network configurations and argue
about which design simpler and easier to manage.

This paper has 8 sections. Section II provides additional
background and motivates the design of our metrics. In
Section III, we discuss referential dependence and related
complexity metrics. Section IV describes our approach to clas-
sifying routers in terms of their filtering roles. In SectionV, we
discuss complexity models pertaining to reachability policies.
Section VI describes our empirical results. We present related
work in Section VII and conclude in Section VIII.

II. BACKGROUND

A. Controlling the Complexity of Networks

To ease the burden of managing and evolving their net-
works, operators use several common-sense strategies when
designing and configuring their networks. In essence, the
complexity measures we define in this paper quantify how
well a network adheres to these strategies, and our evaluation
shows how widely they are used.

Uniformity. To the extent possible, operators attempt to
make their networks and configurations as homogenous as
possible. Special cases not only require more thought and
effort to construct in the first place, but often require special
handling during all future network upgrades. The notion that
uniformity makes networks simple pervades the definition of
all our complexity metrics.

Roles.To limit the number of special cases operators must
cope with, they often define a small number of archetypal
configurations which they then reuse any time that special
case arises. We call these archtypesroles. In Section IV,
we provide a more formal definition of roles and outline
algorithms for identifying them by looking for commonality
in the configurations of the routers.

Tiered Structure. Operators often organize their routers
into tiered layers to control the complexity of their network
topology. For example, defining some routers to be border

routers that peer with other networks, some routers to be core
routers that are densely connected, and the remaining routers
as edge routers than connect hosts.

Short Dependency Chains.Routers cannot be configured
in isolation, as frequently one router’s configuration willnot
behave correctly unless the configurations on other routersare
consistent with it. We define this to be a dependency between
those configuration lines. The set of all dependencies among
the configuration files in the network forms a graph. Operators
attempt to minimize the number and diameter of connected
components in this graph. This is because making a change
to one configuration file but not updating all the other config-
urations in that connected component will introduce a bug. In
Section III, we discuss how to mine these dependencies. We
also discuss metrics which quantify the extent of dependencies.

B. Overview of a Configuration File

Fig. 1. A sample configuration file.

The configuration file for a Cisco device consists of several
types of stanzas, each encapsulating a different piece of
the router’s functionality. In Figure 1, we show a simple
configuration file consisting of the three most relevant classes
of stanzas: interfaces in lines 1-5, routing protocol in lines 7-
14, and packet filtering in lines 16-19. Packet filters are widely
known as ACLs due to the common “access-list” syntax for
defining them (in Cisco’s IOS, for example). The functionality
exhibited by a router can be explained by the interactions
between various instances of the identified stanzas.

Ingress filtering, i.e., preventing local hosts from sending
traffic with IP addresses that cannot belong to them, has be-
come a popular way to combat IP-address hijacking. Networks
implement ingress filtering by defining a packet filter for each
interface and creating a reference to the appropriate ACL
from the interfaces. Line 3 exemplifies the the commands an
operator would use to setup the appropriate references.

The purpose of any layer 3 device is to provide network
wide reachability by leveraging Layer 3 routing protocols.
Network wide reachability can be implemented by adding a
routing stanza and making references between the stanza and
the appropriate interfaces. Lines 16-19 declare a simple routing
stanza with lines line 10 making a reference between this
routing protocol and the interface defined earlier. Even in this



simple case, the peer routing protocol stanza on a neighboring
device must be configured consistent with this stanza before
routes can propagate routes between the devices and through
the network. More complex reachability constraints can be
imposed by controlling route distribution using ACLs. Line
14 is a filter used to control the announced received from the
peer routing process on a neighboring router.

VLANs. VLANs are widely used in enterprises, but greatly
complicate the behavior of the network by providing an
alternative means for packets to travel between hosts that is
independent of the layer-3 configuration. Most of the models
we discuss for routing design must account for VLAN usage
in a network. To provide the necessary background, we briefly
discuss how typical VLAN usage and configuration.

In typical usage, each port on a switch is configured as
layer-2 or layer-3. For each layer-3 port there is an interface
stanza in the configuration file describing the properties ofthe
port. Each layer-2 port is associated with a VLANn, which
we denote asVn. The switches use trunking, spanning tree,
and bridging protocols to ensure that packets received on a
layer-2 port belonging to VLANVn can be received by every
host connected to a port onVn on any switch.

Layer-2 VLANs interact with layer-3 mechanisms via vir-
tual layer-3 interfaces — an interface stanza not associated
with any physical port but bound to a specific VLAN. Packets
“sent” out the virtual interface are sent out the physical ports
belonging to the VLAN using the rules of transparent bridging,
and packets received by the virtual interface are handled using
the layer-3 routing configuration. As the same VLAN can have
a virtual interface on multiple routers, packets can flow into
and out of the VLAN at multiple places in the layer-3 topology.

III. REFERENTIAL DEPENDENCE

In the next few sections, we gradually develop our complex-
ity metrics and models for routing design. In what follows,
we develop a set of metrics which measure the complexity
of configuring the routing design. These metrics measure the
extent of referential dependencies in network configuration.

Referential Dependency Graph.The dependency graph
captures references between stanzas in a configuration file
(intra-file dependencies) as well as across stanzas in different
configuration files (inter-file). Intra-file references are explic-
itly stated in the file. Examples of such references include the
links in line 10 from a routing stanza to an interfaces, line
14 a routing stanza to an ACL, and finally in line 3 from
an interface to the routing stanza. Inter-file dependenciesare
created when multiple routers refer to the same network object
(e.g., a VLAN or subnet). For example, when the same subnet
is mentioned in the configurations of several routers, it implies
a relationship among those routers that the operator must take
into account when configuring either. To capture the inter-file
links, we use basic objects like VLANs and subnets as hints
of links between stanza on different configuration files.

We use a two-step approach to parse configuration files and
create a “configuration dependency graph”:

1. Parsing, Symbol Table Creation.We parse each configu-
ration file using a grammar we created which groups related
configuration lines together into stanzas. Cisco documentation
lists the commands that can appear within each stanza; Juniper
identifies stanzas with{. . . }. Using the grammar, the parser
identifies the tokens in the configuration file that indicate
a dependency between stanzas, and records these tokens in
a symbol table along with the stanza in which they were
found and whether the stanza defined the token or referred
to it. For example, the access-list definitions in lines 16-19 of
Figure 1 define the token ACL 9 and line 3 adds a reference to
ACL 9. Our parser handles ACLs, interfaces, subnets, VLANs,
and routing policies. The parser has rules to handle special
configurations like line 9 that define a default behavior. In
these special cases, the rules populate the symbol table with
the appropriate references; for line 9, the rules adds references
to interfaces into the symbol table.
2. Creating Links.In the linking stage, we create reference
edges between the stanzas based on the entries in the symbol
table. The table entries are used to create unidirectional links
from the stanzas referencing the labels to the stanza declaring
the label. Because every stanza mentioning a subnet or VLAN
is both declaring the existence of the subnet or VLAN and
referencing the subnet/VLAN, we create a separate node in
the reference graph to represent each subnet/VLAN and create
bidirectional references to it from stanzas that mentions it.

Metrics. Since our focus is on the routing design, we
abstract a sub-graph specific to routing from the dependency
graph. We define “complexity metrics” based on the sub-graph.

Using the referential graph, we first identify “routing in-
stances” in the network [12]. A routing instance is a collection
of routing processes of the same type in a network (e.g.
all OSPF processes, or all BGP processes) which are all
configured to be adjacent pairwise. There could exist multiple
routing instances of the same type (e.g. OSPF instances);
typically, these are configured to not distribute routes into each
other directly. The referential dependency graph can be used
to derive these adjacencies by tracing relationships between
routing processes across subnets.

Each routing instance is an “atomic block” reflecting how
the operators have organized the network’s routing substrate
to implement policy. The first complexity metric we employ is
thus thenumber of routing instancesin a network. The greater
the number of instances the more difficult it is to track and
configure the overall routing policy in a consistent manner.

Alongside this, we model theorganization of devicesacross
routing instances: consider two networks with the same num-
ber of devices and similar number of routing instances. The
network where a large fraction of routers are configured to be
part of a single instance, with small numbers routers being part
of special routing instances, is simpler than the network where
routing instances span multiple overlapping sets of devices
each. To track this, we compute themean and the median
number of routing processesconfigured on each router.

Finally, we measure theaverage complexity of configuration
for each router. For a routerR, we useR’s referential graph



to count the number of reference edgesEPR
which are

required to fully configure a routing processPR. In particular,
EPR

accounts for “reference chains” which are sequences of
configuration stanzas that refer to one another. We compute
the mean ofTotal routing confR =

∑
PR

EPR
across all

routersR. The higher the value of this metric, the greater the
configuration required to correctly set-up routing. In a similar
manner, we can define the average complexity of configuration
of a routing instance. This is the sum total of the number
of reference edges required to correctly configure the routing
processes pertaining to the instance on each individual routers.
As before, we track reference chains within each router.

IV. ROUTER ROLES

When operators create a network, they typically start by
defining a base set behaviors (e.g. filtering behaviors) thatwill
be present across all routers and interfaces in the network.
They then specialize the behavior of routers and interfacesas
needed to achieve the objectives for that part of the network,
for example, adding rate shaping to the dorm subnets, and
additional packet filters to protect the administration subnets.
Designers often implement these behaviors usingconfiguration
templates[4]. They create one template for each behavior, and
the template specifies the configuration lines needed to make
the router provide the desired behavior. Since the configuration
might need to be varied for each of the routers, template
systems typically allow the templates to containparameters
and fill in the parameters with appropriate values each time
the template is used. For example, the template for an ingress
filter might be as shown in Figure 2, where the ACL restricts
packets accepted by interface 3 to those originiating from
the subnet configured to the interface. The designer creates
specific configuration stanzas for a router by concatenating
together the lines output by the template generator for each
behavior the router is supposed to implement.
interface III

ip access-group 5 in
ip address AAA SSS

access-list 5 permit AAA SSS
access-list 5 deny any

Fig. 2. Example of a configuration template

A common application of templates is to generate router
ACLs which may apply at the control or data planes. Although
templates simplify configuration of ACLs, it is quite possible
that the ACLs must be modified by hand as the network
evolves over time. Future operators who need to manage
the network must start with the actual configuration stanzas
themselves, not the templates that originally created them.

We hypothesize that we can work backwards from the text
of the ACL configuration stanzas to retrieve the templates that
created them. By doing so, we can measure the following
issues related to the difficulty of configuring the filtering
behaviors: how many distinct filtering behaviors are defined
in the network routers? How many routers implement each
behavior? Are there differences from the behavior template?

Copy-Paste Detection.We identify filtering behaviors that
are shared across routers using a “copy-paste” analysis that
looks for similar configuration stanzas on different routers.

We build this functionality on top of CCFinder [11], a tool
that has traditionally been used to identify cheating among
students by looking for text or code that has been cut and
paste between their assignments. Briefly, the tool convertscode
portions to a standard form to detect copy-pasted code portions
that have different syntax but have similar meaning.

We found that CCFinder by itself does not identify tem-
plates of the sort that may used in packet filter configuration
(e.g., Figure 2). To discover templates, we first applygen-
eralization that replaces the command arguments that may
vary with wild card entries – for example, IP addresses are
replaced by the string “IPADDRESS”. Our implementation
uses the grammar of the configuration language to identify
what parameters to replace, and handles IP addresses, link
weights, VLAN and interface names, ACL numbers, etc..

In addition to finding filtering templates that are shared
across routers, we also use CCFinder to locate stanzas that are
identical between routers. We refer to stanzas that are based
on the same template asshared-template filters, and stanzas
that are identical asclone filters.

Metrics. We define complexity metrics that capture the
mental load placed on operators by the use of shared stan-
zas when configuring Layer-3 filtering. The metrics can be
extended in a straightforward fashion to cloned filters.

The most important metric is thenumber of behaviors.
Each template found through copy-paste analysis represents
one behavior. As the number of behaviors increase, the basic
complexity of the network increases.

Second, we model theuniformity among devices in terms
of the behaviors defined on them. If all devices in the net-
work exhibit the same behaviors because they all have the
same shared-template or clone stanzas, then once an operator
understands how one router filters control or data, he or
she will understand how all the routers function. If devices
contain different subsets of behaviors, each device will require
individual study to understand the subset of behaviors.

We capture both uniformity and number of behaviors by
identifying theshared template-device setof a behavior. This
is the set of devices on which the configuration template
for that behavior is present. We write the device set for a
shared-template stanza asSTi = {Di

1,D
i
2, . . . ,D

i
ki
} where

the Di
j represent a router that contains a configuration stanza

generated from shared-templatei. After obtaining the shared
template-device sets, we scan them to identify identical sets.
If two different shared-template stanzas are present on exactly
the same set of routers, then the stanzas can be considered to
have arisen from a single, larger template. The stanzas are
merged and one of the device sets is discarded. The final
number of distinct device sets which remain is the number
of shared template behaviors,STB. To track uniformity, we
simply compute the median and mean numbers of devices
in the device sets. In a similar fashion, we can define clone
device sets, the number of “cloned behaviors”,CB, and the
uniformity based on the clone filters.



V. REACHABILITY POLICIES & I MPLEMENTATION

The common approach to implement reachability policies
in networks is to classify hosts (or users) into groups and
services, and then define reachability constraints that govern
the groups’ access to the services. A network’s routing de-
sign plays a crucial role in implementing these constraints.
In particular, the routing set-up can be used to influence
reachability in two ways: (1) control plane restrictions, which
limit whether or not routes exists between two subnets of a
network (the subnets cannot communicate if no routes are
present); and (2) data plane restrictions, which filter (i.e., drop)
packets that match specified attributes. Upgrading or changing
an enterprise’s Layer-3 reachability constraints is challenging
because both data and control plane functionality must be
changed in a consistent manner across multiple routers. This
is particularly difficult in networks where the reachability
constraints themselves are highly sophisticated, meaningthat
users are divided into multiple small groups that differ in the
constraints that apply to them.

We argue that based just on the network configuration files,
we can model: (1) the reachability policies that a network
has implemented on its end-to-end Layer-3 paths, (2) whether
the constraints are conservative or permissive, and how this
varies across network paths and network locations; and (3)
the contribution of network control and data planes, and the
role played by different routers, in constraining reachability.

Our models are based on the common framework ofreach-
ability sets, which we describe next.

A. Reachability Sets and Routing

Conceptually, a reachability set is the set of packets that a
network will permit to travel between two points.

The reachability set for the path between two routersA

and B, denoted byRAll(A,B), is the set of all packets that
can originate on any ofA’s interfaces, traverse theA → B

path, and leave via any ofB’s interfaces. Thus, the path’s
reachability set includes packets that are “sinked” by B (i.e.
the packets are destined for subnets directly attached to B)as
well as those that B forwards on to downstream routers.

We compute the reachability set of a network path using
the following three steps: (1) compute valid forwarding paths
between the network routers; (2) calculate the reachability set
for each individual interface; and (3) compute reachability sets
for end-to-end paths by intersecting the reachability setsfor
all interfaces along the path. In computing the reachability
steps we consider three separate yet interacting mechanisms:
control-plane mechanisms (such as routing protocols), data-
plane mechanisms (such as packet filters on interfaces), and
Layer-2 mechanisms (such as VLANs).

To implement the above steps we leverage ideas from Xie
et al.’s models for static reachability in IP networks [15].
However, our approach differs from Xieet al.’s in three
key ways. First, Xieet al. derive abstract set-theoretic rep-
resentations that allow them to compute lower and upper
bounds on the true reachability of the network. In contrast,
we compute a single valid forwarding state for the network,

and we estimate reachability constraints and their inherent
complexity from this state. Second, we alter the representation
of reachability sets using techniques from firewall rule-set
optimization. These changes allow us to accurately compute
the key attributes of reachability sets, such as the volume of the
set, even for networks that have highly complex reachability
constraints. Third, as mentioned above, our approach takesinto
account how VLAN usage impacts reachability in an enterprise
network. Prior work does not model the effect of VLANs.

Next, we describe reachability set computation. Then, we
define complexity metrics pertaining to reachability policies.

Routing Simulation. Our goal is to measure the complexity
of the network’s reachability policies, and doing so requires
computing the reachability set between router pairs. The
reachability set between a pair of routers depends on what path
packets traveling between the routers will take, and this, in
turn, is determined by the routing protocols run in the network.

Simulating a run of all the Layer-3 routing protocols within
the network to compute the exact paths that packets will take
through the network is challenging because of the diversityand
complexity of protocol implementations. However, to compute
the reachability sets, and hence the complexity metrics, itis
sufficient to compute one single set of paths that are valid and
internally consistent. A path between two routers is valid if it
is among the paths the real routing protocols might produce,
and the paths are internally consistent if there are no black
holes that would not exist in the real network.

The paths in a network are determined by the contents of
the routers’ forwarding tables, or FIBs. Each FIB consists of
entries that specify the interface out of which packets to a
each destination subnet should be sent. To compute a set of
valid and internally consistent paths, we begin by using the
method of Xieet al. [15] to compute asupersetof the actual
contents of the FIB for each router by analysis of the router
configuration files. For each destination subnet, a supersetFIB
lists all of the interfaces out of which the routing protocols
might decide to send packets to that destination.

From the superset FIBs we construct a set of internally
consistent paths. We provide a summary of the algorithm
we use in the interest of space. For each subnets directly
connected to deviced, create a Breadth First Search treet

rooted atd: (1) For each deviced′ with a link to d, check the
FIB of d′ for a route to destinations where the next hop isd. If
such a route exists, then stored′ as a child ofd in the BFS tree
t. If multiple such routes exist, pick the most specific route to
simulate longest prefix matching ind′. Remove fromd′’s FIB
all other entries that point tos. (2) Recursively execute step
(1) on each of the leaves int. The FIBs that result from the
above algorithm contain a set of valid and internally consistent
paths from every router to every reachable subnet.

B. Reachability Set Calculation

First we discuss the reachability set for a single interface
and then discuss how to compute the set for an entire path.

Data Plane Reachability.For each interfacei on a device
d we define the set of packets that the data plane mecha-



nisms allow in that interface (Din(i, d)) and out that interface
Dout(i, d)). In and out are defined separately as the router
configuration allows separate ACLs to be applied to incoming
and outgoing packets.

Control Plane reachability. A device d will not send
packets out an interfacei unless its FIB contains an entry
that directs packets to some destination out that interface. We
define the control plane reachabilityCout(i, d) as the union of
all packets thatd’s FIB directs out interfacei.

Reachability for a Path. To compute the reachability set
RAll(A,B) of a pathA → B, we combine the per-interface
sets for interfaces on the path. We first compute the following
subsets: (1) ForA, we compute theEntry set which is the
set of all packets that can potentially enterA (reflecting the
inbound ACLs). In fact, we allow hosts on subnets attached to
A to send packets with arbitrary source IP, port and protocol
fields. (2) ForB, we compute theExit set which is the set of
all packets that can potentially leaveB’s interfaces (reflecting
B’s forwarding table and per-interface outbound ACLs). (3)
For intermediate routers, we compute the intersection of the set
of packets entering the device and those leaving it (reflecting
inbound and outbound ACLs and the device’s forwarding
entries). The overall setRAll(A,B) is simply the intersection
of Entry, Exit and the intermediate sets.

Computing the reachability set to or from a VLAN requires
an extra step, as there may be multiple virtual interfaces in
the network where traffic can enter or leave the VLAN. We
first compute the sets to and from each of the VLANs virtual
interfaces as described above, and take the union of the sets
to compute the reachability set to/from the VLAN as a whole.
This works as VLANs are typically policy-free, meaning that
packets are not filtered as they traverse the VLAN. If VLAN
policy mechanisms become common, our approach must be
extended to model the policy enforcement points.

C. Computing with Reachability Sets

Computing the properties of the reachability sets requires
us to calculate intersections and unions of sets of packets,
and these sets can be very large. To work efficiently with
these sets, we represent each set as a linear series of rules
like those used to define ACLs in the router configuration
language, that is, a sequence of permit and deny statements
that specify attributes of a packet and whether packets having
those attributes should be allowed or forbidden, where the first
matching rule determines the outcome.

ACL Optimization. Before computing any operation on
reachability sets, we first optimize the ACL representationof
the sets. This allows us to efficiently compute set operations.

ACL optimization is the process of taking a group of ACLs
G and reducing them to an equivalent groupG′ which has the
same functionality asG, but with two additional properties:
(1) no two ACLs inG′ have an overlap, and (2) the number
of ACLs in G′ is minimal. ACL optimization is commonly
employed to reduce the number of rules and dependence
across rules in firewalls and to make packet filtering more

efficient. We employ standard techniques from firewall rule-
set optimization to optimize ACLs [2], [7].

ACL Unions. The union of two ACLS is the set of packets
that both accept. Given two optimized ACLs we merge the
rules to create one ACL and then we optimize the resulting
ACL to obtain the Union.

ACL Intersections. The intersection of two ACLs is the set
of packets that both ACLs accept. Given two optimized ACLs
a andb, we take each rule froma and compute its intersection
with each rule inb. Each rule defines a range of allowed values
for each dimension of the packet filter (e.g., source address).
The intersection of two rules is a new rule that allows only the
values from overlap between the two inputs. After computing
the intersection of rules froma andb, we compute the union
of the resulting rules and again apply ACL optimization.

D. Models and Metrics

To this point we have defined the reachability set of a
network path between two routers. Next we describe metrics
based on the computed sets that summarize the reachability
constraints implemented by a network.

Most importantly, for the path between each pair of network
routers, we compute theconservativenessof the path. Con-
servativeness estimates the restrictions on the communication
between subnets attached to either end of the path. Second, we
compute theforwarding ratio for a network path, which mea-
sures the extent to which different network routers contribute
to end-to-end forwarding, and in turn to enabling end-to-end
reachability. To compute either metric, we must first compute
the volumeof a reachability set.

Volume. The volume of a reachability set is the number of
packets in that set. Assuming reachability decisions are made
using the connection 5-tuple, we can think of a reachabilityset
as a collection of regions in a 5 dimensional space with axes of
source and destination address, source and destination ports,
and protocol number. For example, a singlepermit ACL
rule defines a hypercube in this space, as the rule specifies a
range of values for each of the five dimensions (if a dimension
is not mentioned in the rule, the range is assumed to be the
minimum to the maximum allowed value).

As described earlier, our final reachability sets are composed
of optimized ACLs. In an optimized ACL, the rules are non-
overlapping, so the number of packets permitted by the ACL is
the sum of the number of packets allowed by the ACL’s permit
rules. Since each rule defines a hypercube packet space, the
number of packets permitted by a rule is found by multiplying
out the number of values the rule allows on each dimension.

Conservativeness.We characterize the conservativeness of
the network’s policies applied to the path fromA → B as
the set of packets that can enter the network atA, travel
to B, and thatB “sinks”, that is, packets whose destination
address belongs to subnets directly attached toB. We denote
this reachability set asRSink(A,B). The maximum size of
this subset isMaxSink = 232 × 2|B| × 216 × 216 × 28, where
|B| is the total number of IP addresses in the subnets attached
to B. When first sent, the source addresses on the packets



could take any of the possible232 values — if mechanisms,
such as ingress filters, are configured in the network to drop
packets with illegal source addresses, this will be reflected
during computation ofRSink(A,B).

We define the conservativeness of a network path to be the
ratio of the volume ofRSink(A,B) to the value ofMaxSink.
The closer this value is to 0, the more conservative is the
network path. As we will see, networks with more conservative
paths are more complex and more difficult to maintain.

To estimate the complexity of the control-plane alone, we
recompute the reachability sets while ignoring data plane
filters. We denote this set asRControl

Sink (A,B) and use the

ratio RControl

Sink
(A,B)

MaxSink
to evaluate the constraints imposed by the

control plane on theA → B path.
Forwarding Ratio. Our second metric captures the extent to

which a network router participates in forwarding end-to-end
traffic. We define this metric for a pathA → B as RSink(A,B)

RAll(A,B) ,
which is the fraction ofA’s packets “sunk” by subnets attached
to B’s interfaces, relative to the total number ofA’s packets
leavingB’s interfaces (including those sunk byB). We refer
to this as theforwarding ratio for theA → B path. If the ratio
is 1, thenB does not forward traffic fromA any further. If
not, thenB plays a role in forwardingA’s packets to the rest
of the network. Comparing the forwarding ratios for different
network level paths allows us to identify the distinct roles
different routers play in enabling end-to-end reachability.

VI. EMPIRICAL STUDY OF COMPLEXITY

A. Enterprise Configuration Data

We analyzed the routing configurations of five US-based
networks, all of which use Cisco routers. Three of the net-
works are large US universities: Univ-1 (12 routers) , Univ-2
(19 routers), and Univ-3 (24 routers). Two are commercial
enterprises: Enet-1 (83 routers) and Enet-2 (10 routers).
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Fig. 3. Figure (a) displays the distribution of files in the various networks
studied. Figure (b) shows the router functionality that accounts for the lines
in the configuration files.(a)

Figure 3(a) plots the distribution of configuration file sizes
for the five networks. The networks cluster into two groups:
Univ-2, Enet-1, and Enet-2 consist of relatively small files,
with 50% of their files being under 300 lines, while 90%
of the files in Univ-1 and Univ-3 are over 1000 lines. As
we will see, configuration file size is not a good predictor of
network complexity, as Univ-1 is among the most complicated
networks and Univ-3 among the simplest.

Figure 3(b) breaks down the lines of configuration by type.
It shows networks differ significantly in the fraction of their
configurations devoted to ACLs and routing stanzas. Univ-1,
Enet-1 and Enet-2 spend the same proportion of configuration
lines on routing stanzas and ACLs, while Univ-2 and Univ-
3 define proportionately more ACLs than routing stanzas.
Interface definitions, routing stanzas, and ACL definitions—
the key building blocks for defining layer-3 reachability—
account for over 60% of the configuration in all networks.

B. A Summary of Complexity Metrics

To briefly review, we define three metrics to measure routing
configuration complexity: Configuration Complexity, which
counts the number of links between routers in the configuration
dependency graph and measures the complexity of configuring
routing; and Shared Template and Behaviors, which count the
number of routers with stanzas having the same pattern and
measure the number of roles in the network. We define two
additional metrics to measure the inherent complexity of a
network’s reachability policy. Conservativeness (RSink(A,B)

MaxSink
)

is the fraction of packets allowed by a path. Forwarding Ratio
(RSink(A,B)

RAll(A,B) ) measures the fraction of packets a router receives
that it will forward, and is used to classify routers into tiers.

Next, we delve into the differences between the networks
in terms of their design and complexity.

C. Complexity of Routing Configuration

First we study the complexity of the routing configuration.
Our observations are summarized in Table I and column 8
provides a rank order of the complexity of the networks.

We envision that network designers or computer-assisted
design tools could use our complexity metrics to compare
alternate designs for given network. To convert the various
complexity metrics we define into a single rank order we
compare each pair of networks on each metric. If all metrics
show one network is more complicated than the other, we
order them appropriately. When metrics disagree we rank the
networks of equal complexity. We ignore network size. The
discussion below highlights several interesting comparisons
and what can be learned from them.

Table I column 3 shows the number of routing instances for
each network. The more routing instances, the more complex
the network as each routing instance requires a distinct routing
policy that the network operator must keep track of. To
evaluate the complexity introduced in defining the routing
policy, we look at the properties of the networks’ routing
referential dependency graphs.

We first compare the configurations of Univ-1 and Enet-
2. The two networks have similar sizes, being the smallest
networks in our collection. However, they differ vastly in
their complexity. With only 2 more devices, Univ-1 contains
many more routing instances than Enet-2. Furthermore, the
definition of Univ-1’s routing instances requires 2.5 times
more references to other parts of the configuration as compared
to Enet-2.



Network # Routers # Routing Mean #Ref links Mean ref links Median, Mean, Max Median, Mean, Max Overall rank
instances per router per instance # routers per instance # routing processes per router

Univ-1 12 14 41.75 35.8 1, 1.8, 12 2, 2.5, 4 4
Univ-2 19 3 8.3 58.3 3, 7.7, 19 1, 1.1, 3 3
Univ-3 24 1 4.1 99 24,24, 24 1,1, 1 2
Enet-1 83 10 7.5 62 1.5, 9.3, 71 1, 1.2, 3 4
Enet-2 10 1 1.6 16 7, 7, 7 1, 0.7,1 1

TABLE I
REFERENTIAL COMPLEXITY OF ROUTING CONFIGURATION. THE NETWORKS ARE RANKED FROM SIMPLEST(RANK 1) TO THE MOST COMPLEX.

Network # Routing # Data plane ACLs # Control plane ACLs
instances per instance per instance

Median Mean Median Mean
Univ-1 14 2 3.6 2 2.5
Univ-2 3 6 51 0 1
Univ-3 1 20 20 0 0
Enet-1 10 2 3.3 2 2.8
Enet-2 1 6 6 0 0

TABLE II
ACL USAGE IN CONFIGURING ROUTING IN DIFFERENT NETWORKS. WE

COUNT THE NUMBER OF DISTINCTACLS USED.

Univ-2 is the next largest network with 19 routers. Although
Univ-2 and Enet-2 both have few routing instances, Univ-
2 has more complex routing policy as it requires a larger
number of reference links per router (5X - see column 4)
and per routing instance (4.5X - see column 5). Comparing
Univ-2 against Univ-1, the number of routing instances is 5X
smaller for Univ-2 (3 vs 14). Also, the average router in Univ-
2 participates in fewer routing instances compared to Univ-1.

Our final network, Enet-1, has 83 routers. Univ-1 and Enet-1
contain an equivalent number of routing instances (14 and 10
respectively). However, Enet-1 requires on average 62 links to
define each instance (column 5), and each of these instances is
spread over 9 devices on average (column 6). Based on these
metrics, we can predict that making routing-related changes
will require manipulation of several routers.

In contrast to Enet-1, Univ-1 requires half as many links to
maintain its instances (36) which are spread over fewer devices
on average (2). However, when we look at the router level con-
figuration requirements, we observe Univ-1 is more complex
than Enet-1. In Univ-1, the average router belongs in more
routing instances (2.5 vs 1.2, column 7) and requires many
more reference links to maintain the routing configuration (42
vs 7.5 in column 4). Thus, despite their difference in size, the
two networks have equally complex routing configuration.

D. Filtering Roles

We now examine the control and data-plane filters (i.e.,
ACLs) in the five networks. ACLs are important because
data-plane ACLs directly drop packets; control-plane ACLs
indirectly stop packets by dropping routing information; and
the patterns of ACLs a router uses allows us to classify its
role. Table II shows the number ofunique ACLs that are
configured per routing instance in the five networks. An ACL
is unique if and only if it no other ACL contains the same
sequence of deny and permit statements.

Interestingly, the networks in our data set can be categorized
by their ACL usage pattern. Univ-2, Univ-3 and Enet-2 make
little use of control plane filters but have extensive data-plane
ACLs. In contrast, Univ-1 and Enet-1 use significant numbers
of control plane filters but relatively few data-plane ACLs.

N/w # Rtrs Shared template Cloned Overall
behaviors behaviors rank

Number Device set size Number Device set size
Median Mean Median Mean

Univ-1 12 7 2 4.43 8 1 3.63 2
Univ-2 19 19 2 5.75 25 1 3.44 5
Univ-3 24 2 12.5 12.5 33 1 2 4
Enet-1 83 5 3 34.2 9 2 19.66 3
Enet-2 10 2 1.5 1.5 2 1.5 1.5 1

TABLE III
FILTERING BEHAVIORS IN THE DIFFERENT NETWORKS: DATA AND

CONTROL PLANE FILTERS COMBINED.

The first set of networks defines fewer routing policy units
(i.e. routing instances) than the second set. Thus, the first
set depends primarily on data-plane mechanisms to define
and control reachability in Layer-3, while the second set
of networks employs a mixture of control- and data-plane
mechanisms.

Next, we compare the networks according to the number
of different roles they contain. Summarizing the discussion
below, we find that networks become more complex as the
number of roles increases, as measured by cloned and shared-
template behaviors. The complexity increases further as the
number of devices in each behaviordecreases, as this frag-
ments the routers into many small groups that the operators
have to track and maintain identical filtering configuration
within. However, our metrics still enable an automatic, direct
comparison of the complexity of networks that are very distinct
in terms of their size and routing design.

Table III shows the number of shared-template and cloned
filtering behaviors in the five networks. Enet-2 has just two
shared template behaviors and two cloned behaviors, makingit
the simplest and most regular of the five networks. Univ-1 and
Enet-1 have similar numbers of shared and cloned behaviors.
However, the number of devices per behavior is different:
Enet-1 averages 20 devices per cloned behavior, compared to
the 3.6 devices for Univ-1.

Univ-3 is a good example of a complex network with a
large number of roles (two shared template and 33 cloned
behaviors), each of these roles involving only a small number
of routers. This forces the operators to be exceptionally careful
when applying updates to the network, as the update’s effect
must be verified against each role.

E. Inherent Complexity of Policy

In this section, we show how our complexity metrics alone
can be used to deduce the structure, function, and policies of a
network. This is a dramatic improvement over the state of the
art, where a human operator has to skim through the thousands
of lines of router configuration files in order to piece together
a picture of how the network functions.



Name Num Conservativeness Control Plane Rank
Routers Metric Restrictions

Mean stdev min Mean stdev Min
Univ-1 12 0.98 0.08 0.72 0.98 0.08 0.72 2
Univ-2 19 0.46 0.28 0.25 0.99 0.02 0.92 4
Univ-3 24 0.99 0.01 0.96 0.99 0.02 0.97 1
Enet-1 83 0.33 0.1 0.06 0.99 0.00 0.99 5
Enet-2 10 0.9 0.3 0.26 1 0 1 3

TABLE IV
CONSERVATIVENESS OFINHERENT REACHABILITY POLICY. NETWORKS

ARE RANKED FROM OPEN(RANK 1) TO MOST CONSERVATIVE.

1) Conservativeness:First, we compare the different net-
works according to the conservativeness metric for the paths
within each network. Our observations are summarized in Ta-
ble IV. For each network, we show the mean conservativeness
across all network paths, along with the standard deviationand
minimum value of the conservativeness metric.

We note that our networks fall into two distinct classes:
open networks with mean conservativeness≥ 0.9, and closed
networks with mean conservativeness of≤ 0.5.

In the two conservative networks, Univ-2 and Enet-1, the av-
erage router-pair permits 46% and 33% of all possible packets,
respectively, between subnets attached at either end. Referring
back to Table I, we see that both networks implement very
distinct control plane functionality to achieve roughly similar
restrictions on reachability: While Univ-2 defined very few
routing instances, Enet-1 made heavy use of control plane
functionality (using 10 routing instances). From table II,we
also see that the two networks differ significantly in their
usage of control plane ACLs, with Univ-2 using almost none.
However, both networks have one aspect in common: they are
heavy users of data-plane filters (Table II).

The two most open networks, Univ-1 and Univ-3 allow
unfettered access for over 98% of the packets sent between
hosts in the network (on average). Although the average pathin
Enet-2 seems open (0.9), a significant number of paths impose
serious restrictions. This is indicated by the minimum (0.26)
and standard deviation (0.3) of the conservativeness metrics.

Univ-1, Univ-3 and Enet-2 are not overly conservative.
However, they each use control plane functionality in a differ-
ent manner to create the openness. As we saw in Table I, Univ-
3 and Enet-2 use a single routing instance where Univ-1 uses
14 routing instances. We found that one main instance in Univ-
1 was used to distribute routes between network devices, and
another distinct instance was defined on each device. These
instances announce selected routes for the locally connected
subnets to the main routing instance for redistribution to
other routers in the networks. Thus, to achieve the same
reachability goals as Univ-3 and Enet-2, operators in Univ-
1 trade routing configuration simplicity for finer grain control
over redistribution of routes.

Although some networks are conservative, not all paths
may be equally restrictive. Similarly, networks which are
reasonably open may place severe restrictions on some paths.
Configuring network-wide reachability accurately is a non-
trivial task in such networks, since the lack of uniformity
requires constant attention to ensure changes do not alter any
of the different constraints. In our analysis, we found Enet-2
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Fig. 4. Conservativeness profiles for Univ-2 and Enet-2. Thepaths in each
network are grouped by the destination router.

Name # Rtrs Mean stdev min
Univ-1 12 0.88 0.23 0.14
Univ-2 19 0.45 0.45 0.001
Univ-3 24 0.87 0.30 0.02
Enet-1 83 0.15 0.19 0.03
Enet-2 10 0.31 0.1 0.15

TABLE V
FORWARDING RATIO IN DIFFERENTNETWORKS.

to be an example of a network with the latter style of policies,
and Univ-2 to be an example of the former. To highlight this,
Figure 4 displays the conservativeness for various router-pairs
in Univ-2 and Enet-2. The paths in Univ-2 have widely varying
restrictions. For example, paths from core to edge devices,as
well as paths between pairs of edges (we discuss router roles
further below) place no restriction on reachability. In thecase
of Enet-2, we note that paths from a single source router are
all restricted to filter out 75% of the packets. This router has
an egress filter which prevents it from forwarding packets to
the space of Private IP addresses hosted by other routers in the
network. All other paths are permissive. Thus, one can argue
that Enet-2 has a simpler network-wide reachability policy.

2) Role of the Control Plane:Next, we examine the role
that control plane functionality plays in imposing reachability
constraints in the five networks. We focus our analysis on
Univ-2, Enet-1 and Enet-2, which had non-trivial values for
the conservativeness metrics. We refer to Table IV.

We first note that control plane functionality plays no role in
constraining reachability in Enet-2 (the mean conservativeness
metric for the control plane is 1). Thus, the small amount
of restrictions placed by Enet-2 on its paths (the overall
conservativeness metric averages 0.9) are via data plane filters.

Similarly, although Univ-2 is very conservative overall, we
find that the control plane again plays little or no role in
imposing the constraints (the conservativeness ratio for the
control plane is 0.99). As shown in Table II, Univ-2 makes
very heavy use of data plane filters.

3) Forwarding Ratio: Finally, we examine the forwarding
ratios to identify the forwarding roles of routers in different
networks and the number of distinct classes of forwarding
roles. Our observations are summarized in Table V.

Enet-2 has low forwarding ratios overall: the maximum
forwarding ratio itself is just 0.4 (not shown) and the minimum
is 0.15. Thus, we can deduce that all routers in Enet-2
play roughly identical forwarding roles and there is no real
distinction of core vs edge routers.
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Fig. 5. Forwarding profiles for Univs 1, 2. The forwarding profile consists
of the network level paths for the devices, group by the destination router.

Univ-1 and Univ-3 exhibit very similar forwarding ratio
profiles, with high means of 87% and 88% respectively
and moderately equivalent standard-deviations. The profile for
Univ-1, with a high mean and relatively low standard-deviation
of 23%, represents a network with a simple topology. A simple
topology consisting of two levels of hierarchy, the first layer
with core routers sinking at least 14% of the received traffic
while forwarding the remaining 86% to the edge devices on
the second layer. Univ-2 and Enet-1 have common forwarding
ratio profiles, with means below 50%, and standard-deviations
that are comparable to the mean. These networks seem to have
significant diversity the roles played by routers, even when
compared to Univ-1. In particular, the two networks seem
to have relatively fewer routers which play the role of edge
devices. To illustrate this point, in Figure 5, we compare the
forwarding ratios for different paths in Univ-1, Univ-2. We
note that, as mentioned above, Univ-2 contains roughly about
4 classes of devices: the edge (Group 2), the core (Group 1),
intermediate-core (Group 4), and intermediate-edge(Group 3).
Univ-1 consists of a two layered architecture with three core
routers and nine edge routers, respectively labeled Group 1
and Group 2 in figure 5.

VII. RELATED WORK

Models. To the best of our knowledge, our’s is the first
attempt at quantifying the complexity of enterprises. The
notion of “complexity” has been explored in domains such
as Software Engineering [13] and the metrics are similar to
our referential dependency metrics. Recently, Ratnasamy has
proposed that protocol complexity be used in addition to effi-
ciency [14] to compare network protocols. Just as Ratnasamy’s
metrics help choose the right protocol, our metrics help pick
the right network design.

Prior research has also developed abstract models of router
configuration. In [12], Maltz et al., introduced abstractions
for representing a network’s routing design. As mentioned in
Section III, we borrow from [12] the idea of a routing instance
and use it as a way to group routing protocols. Our referential
dependence graph is similar to the abstractions used in [4],[6].
Unlike [4], [6] our abstraction spans beyond the boundariesof
a single device which allows us to define the complexity of
network-wide configuration.

Measurement. In [12], the authors analyze the configura-
tions of several networks and highlight different practices in

routing designs. In contrast, we model complexity of routing
design and understand the contribution of the reachability
policies and router mechanisms toward complexity. Garimella
et al.[8] examine the layer 2.5 structure of a campus network
and discuss interactions with routing. Unlike [8], our study
focuses on the paths generated by the layer 3 and layer-2.5
routing. Also, while Garimella highlight the causes and effects
of inefficiencies in the paths themselves, we analyze the high-
level reachability constraints on network paths.

Several studies have considered how to make network
management simpler by building ground-up support (see [5],
[9], [3]). We hope that our study can inform such ideas on
clean slate alternatives. Finally, we believe that our metrics fits
nicely with existing tools for configuration management such
as AANTS [1] and OpenView [10], and can aid operators in
making informed changes to their network configurations.

VIII. C ONCLUSIONS

In this paper, we develop a set of complexity models that
describe the routing design and configuration of a network
in an abstract, succinct fashion. These models capture the
difficulty involved in configuring the routing design, and
they enable the automatic identification of roles each device
plays in a network. We also develop models that describe
the conservativeness and overall complexity of the policies
implemented by a network within its routing framework.

We apply these metrics to conduct a unique empirical
study of the complexity of five US-based networks. Using our
metrics, we are able to reverse-engineer key design decisions
made by network designers in implementing network-wide
reachability constraints. Our empirical study demonstrates that
the metrics make it possible to directly compare two distinct
network configurations and argue about which is simpler and
easier to manage. We believe that our complexity models
can be integrated into automated configuration tools and used
to compare design alternatives, as well as directly assist
network operators understand and verify the properties of their
networks as they conduct management tasks such as network
upgrades and network-wide configuration changes.
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