Computer
Sciences
Department

Symbolic Analysis via Semantic Reinterpretation

Junghee Lim
Akash Lal
Thomas Reps

Technical Report #1640

July 2008

Symbolic Analysis via Se

Junghee Lim

Akash Lal

mantic Reinterpretation

Thomas Reps

University of Wisconsin
{junghee, akash, reps}@cs.wisc.edu

Abstract

In recent years, the use of symbolic analysis in systemsefiing
and verifying programs has experienced a resurgence. Byp-“sy
bolic program analysis”, we mean logic-based techniqueante
lyze state changes along individual program paths. Theathee
sic primitives used in symbolic analysis are functions fferform
forward symbolic evaluatignveakest preconditigrand symbolic
compositiorby manipulating formulas.

The conventional approach to implementing systems that use
symbolic analysis is to write each of the three symbolichzsia
functions by hand for the programming language of interkst.
this paper, we develop a method to create implementatiothesé
primitives so that they can be made available easily for iplelt
programming languages—patrticularly for multiple machéoele
instruction sets. In particular, we have created a systewhich,
for the cost of writing jusbne specification—of the semantics of
the programming language of interest, in the form of an priter
expressed in a functional language—one obtains autorfigtica
generated implementations of dhree symbolic-analysis func-
tions. We show that this can be carried out even for progrargmi
languages with pointers, aliasing, dereferencing, andesgdrith-
metic. The technique has been implemented, and used to atitom
ically generate symbolic-analysis primitives for muléphachine-
code instruction sets.

1. Introduction

This paper presents new ways to create implementation® dfeth
sic primitives used in certain kinds of verification and itegtools
that are based on symbolic program analysis. By “symbol@ pr
gram analysis”, we mean logic-based techniques to analgte s
changes along individual program patfiBhe basic primitives used
in symbolic analysis are functions that perfofanward symbolic
evaluation weakest preconditignand symbolic compositiorby
manipulating formulas.

The conventional approach to implementing systems that use
symbolic analysis is to write each of the three symbolichsis
functions by hand for the programming language of intenshtch

1This is in contrast to the situation addressed by many atistra
interpretation/dataflow-analysis techniques, which Ulgueonsider the
problem of analyzing the effects of @llection of program paths—e.g.,
to identify program invariants.

[Copyright notice will appear here once "preprint’ opti@rémoved.]

we call thesubjectlanguage¥. Our goal is to develop a method to
create implementations of symbolic-analysis primitivesily, so
that they can be made available for different subject laggsa-
particularly for different machine-code instruction sessich in-
struction sets typically have (i) several hundred instand, (ii) a
variety of architecture-specific features that are incarbfgawith
other architectures, and (iii) the ability to perform addrarith-
metic and dereferencing of addresses, which means that pemo
states can have complicated aliasing patterns. Moreovast im-
struction sets have evolved over time, so that each instruset
family has a bewildering number of variaritonsequently, our
goal is togenerateimplementations of such primitives automat-
ically from a specification of the subject language’s cotecise-
mantics.

Semantic reinterpretation. Our approach is based on factoring
the concrete semantics of a language into two parts: €lieant
specification, and (ii) a semant@re The interface to the core
consists of certain base types, function types, and opsrétome-
times called ssemantic algebrd27]), and the client is expressed
in terms of this interface. This organization permits theedo be
reinterpretedto produce an alternative semantics for the subject
language.

Semantic reinterpretation for abstract interpretation. The idea
of exploiting such a factoring comes from the field of abdtiae
terpretation [7], where factoring-plus-reinterpretatiwas been pro-
posed as a convenient tool for formulating abstract inetgtions
and proving them to be sound [23, 24, 21]. In particular, sowss
of the entire abstract semantics can be established via puoebl
soundness arguments for each of the reinterpreted opgréfar
example of semantic reinterpretation for abstract intggtion is
presented i§2.)

Semantic reinterpretation for symbolic analysis. This paper
presents a new application for semantic reinterpretatiamely,
to create implementations of the basic primitives used imimylic
program analysis.

In recent years, the use of symbolic analysis in system®fbr t
ing and verifying programs has experienced a resurgencaibec
of the power that they provide in exploring a program’s stgiace.

2Semantic reinterpretation is a program-generation tegtmi and thus
we follow the terminology of the partial-evaluation litewee [16], where

the program on which the partial evaluator operates is aate subject
program (§3.2 and§8 discuss the connections between our approach and
partial evaluation.)

In logic and linguistics, the programming language wouldched the
“object language”. We avoid that terminology because ofjids confu-
sion in§7, which discusses the application of semantic reintesipicet to
machine-language programs. In the compiler literatureplgact program
is a machine-code program produced by a compiler.

3 See http://en.wikipedia.org/wikiX86,ARM_architecture,PowerPC For
instance, the article about ARM lists 18 different arcHiteal versions.

2008/7/22

¢ Model-checking tools, such & AM [1] and BLAST [14], as
well as hybrid concrete/symbolic program-explorationlgpo
such asDART [10], CUTE [28], YOGI [13], SAGE [11],
BITSCOPE [5], and DASH [2] use forward symbolic evalua-
tion, weakest precondition, or both.

Symbolic evaluation can be used to create path formulas.
When it is possible that a path being analyzed might not
be executable, a call on an SMT solver to determine whether
«'s path formula is satisfiable can be used to decide whether
m is executable, and if so, to generate inputs that drive the
program downr. Weakest precondition can be used to create
new predicates that split part of a program’s state spact3[1,

2].

Bug-finding tools, such a8RCHER [32] and SATURN [31],

as well as commercial bug-finding products, such as Coverity
PREVENT [8] and GrammaTech'€§ODESONAR [12] use sym-
bolic composition.

Formulas are used to summarize a portion of the behavior of a
procedure. Suppose that proceditreallsQ at call-sitec, and
thatr is the site inP to which control returns after the call at
Whenc is encountered during the explorationBf such tools
perform the symbolic composition of the formula that expess
the behavior along the pafbntry,, . . ., ¢] explored inP with
the formula that captures the behavior@to obtain a formula
that expresses the behavior along the petitry,, . .., r].

The aforementioned systems apply symbolic analysis torprog
written in languages with pointers, aliasing, dereferegcand ad-
dress arithmetic. This paper demonstrates that the rphet@tion
technique provides a way to create symbolic-analysis pixies for
such languages.

As mentioned earlier, our motivation is to be able to cre-
ate implementations of symbolic-analysis primitives foultiple
machine-code instruction se{gncluding multiple variants of a
given machine-code instruction set). However, our worklso a
useful for creating tools to analyzegh-level-language programs
starting from source code. Moreover, most of the principhest
we make use of can be explained using two variants of a simple
high-level language: PL, defined in§4, and Pk, defined in§6.

For this reason, the paper is couched in terms of high-level |
guages up untik7, which discusses an idealized machine-code
language, MC. This has the benefit of making the paper aecessi
ble to a wider number of readers, but might cause readers veho a
mainly familiar with analysis techniques for C, C++, C#, avd

to under-appreciate the benefits that one obtains from qamaph
when creating machine-code-analysis tools.

Three for the price of onel In §8, we describe how, using
binding-time analysis [16] and a two-level intermediategaage
[25], the reinterpretation technique can be used to gemeénat
plementations of symbolic-analysis primitives autoneltic using
a meta-system that generates program-analysis compadinemts
a specification of the subject language’s semantics. Iricpdat,
we have created a system in which, for the cost of writing just
onespecification—of the semantics of the programming language
of interest, in the form of an interpreter expressed in ational
language—one obtains automatically-generated impleatiens
of all three symbolic-analysis functions. We show that this can be
carried out even for programming languages with pointdiasa
ing, dereferencing, and address arithmetic.

This has been achieved using fRgL system [20], and the im-
plementation has been used to generate symbolic-analggis p
tives for multiple machine-code instruction setsL* consists of

4TsL stands for TransformerSpecificationLanguage”.

(i) a language for specifying the concrete semantics of ehinae
code instruction set (i.e., a collection of concrete-steaasform-
ers), (ii) a mechanism to create implementations of diffeiab-

stract interpretations easily by reinterpreting th&L base types,
function types, and operators, and (iii) a run-time systersup-
port the (re-)interpretation and analysis of executablattem in

that instruction set.

Moreover, withTSL each reinterpretation is defined at theta-
level by reinterpreting the collection AFSL base types, function
types, and operators. When a reinterpretation is perforiméiis
way, it is independent of any given subject language. Caresaty,
with our implementation, all three of the symbolic-anadyprim-
itives can be generated automatically &weryinstruction set for
which one has a TSL specification.

The contributions of the paper can be summarized as follows:

e From the conceptual standpoint, we present a new applicatio
for semantic reinterpretation. In particular, the papemsghhow
semantic reinterpretation can be applied to create asdiyse-
tions that compute formulas for forward symbolic evaluatio
weakest precondition, and symbolic compositigh.{, §5.2,
and§5.3, respectively).

From the systems-building perspective, we show that this ob
servation has algorithmic content: the paper describesvew
created a meta-system that, given an interpreter thatfegseai
subject language’s concrete semantics, uses bindingatirzig-
sis, a two-level intermediate language, and semanticagirg-
tation to automatically generate implementations of akéhof
symbolic-analysis primitives, faveryinstruction set for which
one has a TSL specificatiofg).

We demonstrate that semantic reinterpretation can haadte |
guages with pointers, aliasing, dereferencing, and adawéth-
metic §3, §6, and§7). In particular, in§3 and§6.4.1, we show
how reinterpretation can automatically generate a weakest
precondition primitive that implements Morris’s rule oftsu
stitution for a language with pointer variables [22].

§6.4.2 shows how the semantic-reinterpretation approanh ca
also generate a weakest-precondition primitive that implets

the pure substitution-based approach of Cartwright ande®pp
[6] (again for a language with pointer variables). This pres
insight on how Morris’s rule and Cartwright and Oppen’s rule
are related: both are based on substitution; the differésnce
merely the degree of algebraic simplification that is penfed.

Organization. §2 presents the basic principles of semantic rein-
terpretation by means of an example in which reinterprataits
used to create abstract transformers for abstract intatfe. §3
provides an overview of our techniques and the results oedai
with the symbolic-analysis primitives that are created bynan-

tic reinterpretation§4 defines the logic that we use, as well as the
programming languages PL§5 discusses how to use reinterpreta-
tion to obtain the primitives for forward symbolic evaluatj weak-
est precondition, and symbolic compositig6.defines Pk, which
includes pointer variables and dereferencing, and showsthe
weakest-precondition operation that is obtained autaakyivia
semantic reinterpretation implements Morris’s rule ofsithtion.

§7 introduces a simplified machine-code language, whicluded
address arithmetic and dereferencing, and shows that thiere
pretation technique applies at the machine-code level,edls §8
describes how these ideas are implemented using shesystem
[20]. §9 discusses related work. (Proofs of two lemmas appear in

App. A.)

2008/7/22

s1: T =zDY; t1: *pxr = *pxr @ *py;

s2: yYy=xdDYy; ta: xpy = xpxr O *py;

s3: T =xTDY; t3: *pxr = *pxr @ *py;
(@ (b)

Figure 1. (a) Code fragment that swaps twats; (b) (buggy) code
fragment that swaps twints using pointers.

2. Semantic Reinterpretation for Abstract
Interpretation

To illustrate factoring-plus-reinterpretation in the text of ab-
stract interpretation, and as a warm-up exercise for theofebe
paper, this section presents the basic principle of semegititer-
pretation using a simple example in which, both the concsete
mantics, for a language of assignment statements, and &actbs
sign-analysis semantics are defined via semantic reimetztpon.

Example 2.1. [Adapted from [21].] Consider the following frag-
ment of a denotational semantics, which defines the mearfing o
assignment statements over variables that hold signedt32rb
values (whereb denotes exclusive-or):

Ield EcExpru=1|E1®E>|...
S € Stmt::= 1 = F; o € State= Id — Int32

& : Expr — State— Int32
El]o =0l E[EL @ E2]o = E[E1]o @ E[E2]o

7 : Stmt— State— State
I[I = Es]o = o[l — E[E]o]

This specification can be factored into client and core $igations
by introducing a domaival, as well as operatopsor, lookup and
store The client specification is defined by

xor : Val — Val — Val
lookup: State— Id — Val
store: State— Id — Val — State

& : Expr — State— Val

E[I]o = lookupo I E[EL @ E2]o = E[Er]o xor E[Ez]o

7 : Stmt — State — State
I[I = E;]o = storec I E[E]o

For the concrete (or “standard”) semantics, the semantie
defined by

o XOfstd = AV1.AVa.Vi @ va
gtitvalsf q m_)tSVZal lookup,y = Ao Aol
€ = storew = Ao Al v.o[l — v]

Different abstract interpretations can be defined by udiegsame
client semantics, but giving a different interpretationtio¢ base
types, function types, and operators of the core. For exanfipi
sign analysis, the semantic core is reinterpreted as fellow

v € Valws = {neg zerq pos} ' Statens = Id — Valaps

v2
neg zero pos T
XOlaps = Av1.AVa. neg | T neg neg T
v1 | zero|| neg zero pos T
pos |[neg pos T T
T T T T T

lookup,s = Ao Al.ol

storeps = Ao Al .ol — v]

For instance, for the code fragment shown in Fig. 1, which
swaps twoints, sign-analysis reinterpretation creates abstract

transformers that, given the initial abstract state = {z —
neg y — pos}, produce the following abstract stafes:

oo = {z — neg y — pos}

o1 :=I[s1: 2 =2 P y;]oo = storewsco x (N€g XOkps POS)
= {z — negy — pos}

o2 = I[s2 :y =z ®Dy;Jor = storewso1 y (Neg X0kps PO
= {z — negy — neg

03 = I[ss:x =x P y;]|o2 = storewscz x (N€g XOkps NEQ)
= {z+— T,y neg

O

3. Overview

This section presents intuition about some of the eleméatsare
used in our work, and provides an overview of how it is possibl
to automatically generate the three symbolic-analysimitiries.
§3.1 defines a stripped-down version of a lodithat is sufficient
for the discussion in this section. (The full logic is definied
84.1.) §3.2 presents examples of semantic reinterpretation applie
to forward symbolic evaluatior§3.3 discusses issues relevant to
weakest precondition and symbolic composition. We usewle t
swap-code fragments shown in Fig. 1 as a running example.

Because tools that check path feasibility (1a\M [1]) or per-
form path exploration (a I®ART [10], CUTE [28], SAGE [11],
and DASH [2]) only analyze traces, we can concentrate on non-
branching statement sequences. For this reason, our progng-
language definitions contain only assignment statemeitstate-
ment sequences, and do not have either if-then-else stateme
loop constructs.

3.1 A Simple Logic
The syntax ofL is defined as follows:

I € 1d,T € Term ¢ € Formula
F € Funcld FE € FuncExpt U € FOUpdate

T:=1|T T2 | FE(T)

o u=Ti[=]T2 | 501%02 |...
FE = F [FE.[T1 > T3]

U := ({Ii = T:},{F; — FE;})

Names of the forn¥ € Funcld, possibly with subscripts and/or
primes, are function symbols. We distinguish sae constructor of
L from the programming-languager (§2) by putting the former
in a box. A FuncExprof the form FE;[T1 +— T3] denotes a
function-update expression

An expression of the fort{ I, < T;}, {F; <> FE;}) is called
a structure-update expressiohe subscriptg and j implicitly
range over certain index sets, which will be omitted to redciat-
ter. To emphasize thd and F; refer to next-state quantities, we
sometimes write structure-update expressions with prif{gs <
Ti},{Fj < FE;}). (Also, if a component has only a singleton set,
we omit the set brackets{); < T;} specifies the updates to the
constants andF; < FE;} specifies the updates to the functions.
Thus, a structure-update expressidd; «— T}, {F; — FE;})
can be thought of as a kind of restrictedocabulary (i.e.2-state)

5For numbers represented in two’s complement notation,
POS XOpbs N€J = Neg XOkps POS= neg

because, for all combinations of values representegds/and neg the
sign bit of the result is set, which means that the result arauteed to be
negative. However,

POS XOkps POS= Neg XOkpsnNeg= T

because the concrete result could be eitharpositive, andera_ipos= T.

2008/7/22

formula
N\ =T~ \(F] = FE)).
i j
We definelUig to be
({I—1|I€ld},{F < F|F €Funcld}).

Example 3.1. In §5, we work with a simple high-level language,
PL,, that only hasint-valued variables. (PLis the language
from §2, extended with some additional kinds of expressions.) In
§6, we introduce P}, which extends PL with pointers. Here we
confine ourselves to sketching how the semantics of varimgsk

of assignment statements can be expressédri; | and L[PL].

¢ In PL;, a stater € Stateis a mapld — Int32. This is modeled

in L[PL:] by using a constant, € Id for each Pl identifier

x. (However, to reduce clutter, we will merely usefor such
constants instead af;.)

In PLy, a stater is a pair(n, p), where environment) € Env=

Id — Loc maps identifiers to their associated locations and
store p € Store = Loc — Int32 maps each location to the
value that it holds. l{oc stands forlocations—e.g., memory
addresses—and we identiboc with the setint32 of values.)
This is modeled inL[PL;] by using a function symbak}, for
storep, and a constant symbel. € Id for each Pl identifier

x. (Again, to reduce clutter, we will use for such constants
instead ofc,..) The constants and their values correspond to the
environmenty.

The following table illustrates how the semantics of a fewigis-
ment statements are expressed/gBL,| and L[PL] structure-
update expressions:

PL; IPL]
z=17; | (2" — 17,0)
r=y; | (@ <~y 0)
P TPL]
z=17; | (0, F, < F,[x — 17])
v=y; | (0,F; < Fylz— Fp(y)])
T = *q; ((Z):F;;‘_’Fp[x’_’Fp(Fp(Q))D

]

The semantics of. is defined in terms of #ogical structure
which gives meaning to thiel and Funcld symbols of the logic’s
vocabulary.

¢ € LogicalStruct= (Id — Int32) x (Funcld— (Int32 — Int32))

We use(:11) and(.12) to denote the first and second components
of ¢, respectively.(:11) assigns meanings to constant symbols;
(¢12) assigns meanings to function symbols.

T : Term — LogicalStruct— Int32
T = ()1
Tn [T = T[hee T[]
TIFE(T)]e = (FEFE])(TT1]e)

F : Formula — LogicalStruct— Bool
FITi[=]12]e = T[T1]e = T[12]e
Fler 2] = Flpa]e A Flen]e

FE : FuncExpr — LogicalStruct— (Int32 — Int32)
FEF]e = (\112) F
FEFRTy — T2][e = (FE[FEL(T[T1]e) — (TT2]0)]

U : FOUpdate — LogicalStruct— LogicalStruct
U[({L: — T3}, {F; < FE; D]
= (D[l = TTi]d], (12)[F; — FE[FE;]])

={z—ay—yh0)

= ({z < E[=]Uu| @ |EWW1U), y < v}, 0)
({z = @[@]v),y — v} 0)

U1

({z = @[@]y),y = El:[&[EWIv1)},0)
= ({z = @[a]n.v < ([a]n][e]n}0)
({z = (z|®|y),y — z},0)

Uz

({2 = Cl=]U:[@ |EWIUs), y = =},0)

= ({z < (=[@]v[@]e),y < 2},0)

({z —y,y — x},0)
Us

- Uig
Iz = $y;ﬂUid

Iy = «[@]yl

Iz = 2[& |y:]U2

Figure 2. Symbolic execution of Fig. 1(a) via semantic reinterpre-
tation, starting with th&OUpdateUis = ({z < z,y <« y},0).

Note how the meaning of a structure-update expression is@ fu
tion that maps a pre-state logical structur® a post-state logical
structure:{I; < T;} specifies the updates to the constants and
{F; < FE;} specifies the updates to the functions.

3.2 Symbolic Evaluation via Reinterpretation

A primitive for forward symbolic-evaluation must solve tfedlow-
ing problem:

Given the semantic definition of a programming language,
together with a specific programming-language statement
(or instruction)s, create a logical formula that captures the
semantics os.

To apply semantic reinterpretation to this problem, we asmé-

las of logic L as a reinterpretation domain for the semantic core of
PL,. The base types and the state type of the semantic core e rei
terpreted as follows (our convention is to mark each repmeged
base type, function type, and operator with an overbar):

BVal= Formula State= FOUpdate

The operators used in the factored versions of #ieaning func-
tions&, B, andZ are reinterpreted over these domains; in particular,
operations that are used in the;Pdemantics—e.gxor—are inter-
preted as syntactic constructorsigPL,] expressions—e..

By extension, this produces reinterpreted meaning funsiip B,
andZ with the types listed below:
Standard Reinterpreted
£: Expr — State— Val
: Expr — FOUpdate— Term

B: BoolExpr— State— BVa|B: BoolExpr— State— BVal

: BoolExpr— FOUpdate— Formulg

7: Stmt— State— State
: Stmt— FOUpdate— FOUpdate

Val = Term

&: Expr— State— Val

Z: Stmt— State— State

The reinterpreted functioff translates a statemestof PL; to a
phrase in logicL[PL;].

Example 3.2. The steps of symbolic execution of Fig. 1(a) via se-
mantic reinterpretation, starting with tR®©UpdatelUiq = ({z <«
z,y < y},0) are shown in Fig. 2. The fin&lOUpdateUs can be
considered to be the 2-vocabulary formula

@' =y) Ay =u).

This expresses a state change in which the values of program
variablesx andy are swapped3

Algebraic simplification of the resulting terms and fornaila
also plays an important role. The simplification technigineg we

2008/7/22

use are similar to ones used by others, such as the prepragess
steps used in decision procedures (e.g., the ite-liftimyaad-over-
write transformations for operations on functions [29, B}) 1

We assume that the reinterpre performs bit-vector sim-
plification according to the algebraic laws feor. For example,
wheny is updated i/, by y — ((z[@]y)[@]y) (see Fig. 2),
this is simplified toy <« z. We assume that the other bit-vector,
relational, and Boolean constructors of the logic behavelaily.

Relationship to partial evaluation. In general, the semantic def-
inition of an imperative programming language is a meaning{
tion Z with typeZ : Stmtx State— State Given our goal, namely,

Given the semantic definition of a programming language,
Z : Stmtx State — State together with a specific
programming-language statement (or instructior) Stmt
create a logical formula that captures the semantics of

itis not surprising that partial-evaluation techniquesiednto play.

In essence, we wish to partially evaludtevith respect tdStmt
s, while at the same time translatingfo Semantic reinterpretation
permits us to do this: L be theFOUpdateZ [s]Uia. ThenUs is
the partial evaluation of with respect ta;, translated to logic.

We show in§5.1 that U, has the desired semantics. Note
that to model PL programs inL[PL;], we do not require any
function symbols. Thus, a RLstates can be identified with
the LogicalStruct (¢,0).° In §5.1, we show that for all ¢
LogicalStruct evaluatingUs is equivalent to runnin@ on s—i.e.,
(U[U]e)T1) = Z[s](+11) (see Cor. 5.3).

In our implementation, discussed 8, theTSL system is sup-
plied with a TSL program for the meaning functiold, and the
way that it performs semantic reinterpretation is to creaténd
of generating extension [16]-gen for Z.” The full explanation is
complicated by the number of language levels involved wimen t
partial-evaluation machinery is included in the discusskeor this
reason, we have chosen to delay the discussion of geneextieig-
sions and partial-evaluation machinery ugél and instead to base
the discussion on the simpler principle of semantic repritation.
This has benefits and drawbacks:

¢ The benefit is that the explanation is simpler, and could ladso
useful for direct hand implementation when a meta-systezh su
asTSL is not available.

e The drawback is that in some of the sections bef@& may
appear that many steps perform rather trivial translikenabf
expressions from programming language; Rito expressions
of the corresponding logid.[PL;]. In part, this is an artifact
of trying to present the method in an easy-to-digest marnner;
part, it mimics the behavior of a generating extension: aupy
(or transliterating) the appropriate residual expresssoone
of the principles of “writing a generating extension by hand
[3, 18].

3.3 Other Symbolic-Analysis Operations

For weakest precondition and symbolic composition, weragae
L[] as a reinterpretation domain; however, there is a trickoimc

6Similarly, for PL, a Statec = (n,p) can be identified with the
LogicalStruct(n, [F, — p]).

71f p is a two-input program, thep-gen is any program with the property
that for every input pait andb,
[p-gen](a) = p,, where[p,](b) = [p](a, b).
Thus,Z-gen is a program such that for every statememind Stateo,
[Z-gen](s) = Zs, where[Zs](o) = [Z](s,0).

trast with what is done to generate symbolic-evaluatiomitives,
we use thé=OUpdatetype of L[] to reinterpret the meaning func-
tionsi/, FE, F,andT of L[] itselfl The general scheme is outlined
in the following table:

Meaning Type Replacement Function created

function(s) reinterpreted type

7,E,B State FOUpdate Symbolic evaluation
F, T LogicalStruct FOUpdate Weakest precondition
U, FE,F, T LogicalStruct FOUpdate Symbolic composition

To keep things simple if3.2, we did not present the semantics
of L[] in factored form (se€4.1). Thus, the discussion in the rest
of this section merely surveys a few of the results that ataiobd
by the techniques presented in later sections.

Weakest precondition. The weakest (liberal) precondition
WLP(s,) characterizes the set of statesuch that the execu-
tion of s starting ino either fails to terminate or results in a state
o’ such thatp(o”) holds. For a language like RLwhich only has
int-valued variables, th&VLP of a postcondition (specified by
formula ¢) with respect to an assignment statemeat = rhs;
can be expressed as the formula obtained by substittitsigr all
(free) occurrences ofar in : p[var < rhg.

For the swap-code fragment shown in Fig. 1(a), repeated sub-
stitution and simplification shows that the weakest preit@rdof
the progranmswapwith respect to postcondition = 2 isy = 2.
(This will be derived using semantic reinterpretatior§?2.)

Complications from pointers. When Hoare logic is extended for
a language with pointer variables, such as; Piyntactic substi-
tution is no longer adequate for finding weakest-precoowlifor-
mulas. For instance, suppose that we are interested in diralin
formula for theWLP of postconditionz = 5 with respect to

xp = e;. This cannot be accomplished merely by performing the
substitution(z = 5)[*p < e]: the substitution yields the formula
x = 5, whereas th&VLP depends on the execution context in
which xp = e; is evaluated:

o |If p points tox, then theyV LP formula should be = 5.

e If p does not point tar, then theWWLP formula should be
xr = 5.

In this case, th&VLP formula can be expressed informally as
(p=&x)?(e=5):(z=05).

Example 3.3.1n §5.2, such formulas are expressed as shown below
on the right.

Informal Formal
QuenyWLP (xp = e,x = 5) WLP(xp = e, Fp(x)[=15)
ite(F, (p)[=],
Resuli(p = &z)? (e =5) : (z =5) Fy(e)[=]5,
(o) [=]5)

]

For a program fragment that involves multiple pointer Vialea,
the WLP formula may have to take into account all possible
aliasing combinations. One of the most important featufesuo
approach is its ability to create correct implementatidigdarris’s
rule of substitution [22] automatically—and basically foze.

Symbolic analysis of machine code.

Example 3.4. Fig. 4(a) shows a source-code fragment; Fig. 4(b)
shows the corresponding assembly code. To simplify theudisc
sion, the source-level variables are used in the assembly ice
stead of having operations to access variable locationsdbas
their frame-pointer-relative offsets in the activatiooos.

2008/7/22

Before After

o [——— % | [—F—— %]
e [———(% | [%]
px: px:

|, =
py: py:
0 o
px: &py px: &py
py: py:

Figure 3. Before and after configurations for the (buggy) code

fragment shown in Fig. 1(b), which attempts to swap tivas
using pointers. Note that the swap is not successful in therse
and third examples.

[1] void foo(int e, [1] mov eax, p;
[2] int x, int* p) { [2] mov ecx, e;
[3] . [3] mov [eax], ecx;
[4] *p = e; [4] cmp x, 5;
[5] if(x == 5) [6] jz ERROR;
[6] goto ERROR; [61 ...
71} [7] ERROR: ...
(a) (b)

Figure 4. (a) A simple source-code example written ing2[b) A
snippet of the assembly code for (a).

The answer to the querWWLP(xp = e,x = 5) discussed
in Ex. 3.3 describes the largest set of states just befoee4im
Fig. 4(a) that will cause the branch to ERROR to be taken at3in
For the machine-code program shown in Fig. 4(b), the ecgixal
query isSWLP (mov eax, p; mov ecx, e€; mov [eax], ecx, X),

which describes the largest set of states just before line 1 i

Fig. 4(b) that will cause the branch to ERROR to be taken.

Even when starting from the machine-code semantics, seman-

tic reinterpretation will obtain the formula discussed ir. B.3:
ite(Fimer(p) [=], Fmen(€)[=5, Fmen(x)[=]5), or, using infor-
mal notation in source-level term@ = &x) ? (e = 5) : (x = 5).
|

4. Definitions and Terminology

This section defines quantifier-free first-order bit-vedtmic and
a simple high-level language, PLwhich only hasint-valued
variables.

4.1 L: A Quantifier-Free Bit-Vector Logic with Finite
Functions

The logic L is quantifier-free first-order bit-vector logic over a
vocabulary of constant symbolg (¢ Id) and function symbols
(F € Funclg). Strictly speaking, we work with various instantia-
tions of L, denoted byL[PL,], L[PL,], and L[MC], in which the
vocabularies of function symbols are chosen to describectspf
the values used by, and computations performed by, the grogr
ming languages PL, PL., and MC, respectively.

c€Cms2 = {0,1,...}
op2, € BinOp, = {[+]
rop; € RelOp, = {{=],

The syntax ofZ[-] is defined as follows:

I € 1d, T € Term ¢ € Formula
F € Funcld FE € FuncExpt U € FOUpdate

T .= C| I | Th ODZL Ts | itE(QO, Tl,Tz) | FE(T)
o = [T]|[E]| T2 rop,, T2 | [Z]¢1 | w1 bop, 2
FE := F |FE[T1 — T3]

U == ({Ii = Ti}, {F; < FE;})

The semantics of.[-] is defined in terms of &gical structure
which gives meaning to thiel and Funcld symbols of the logic’s
vocabulary. (Motivated by the needs of later sections, wanmehe
convention from§2 of working with the domairVal rather than
Int32. Similarly, we also us&Valrather tharBool.)

¢ € LogicalStruct= (Id — Val) x (Funcld— (Val — Val))

The types of the functions that operateTarns, Formulas, and
FuncExps are as follows:

const:

cond,, :
lookupld :
binop;, :
relop;, :
boolop, :
lookupFuncld:
access:
update:

Ciniz2 — Val

BVal — Val — Val — Val
LogicalStruct— Id — Val

BinOp, — (Val x Val — Val)

RelOp, — (Val x Val — BVal)

BoolOp, — (BVal x BVal — BVal)
LogicalStruct— Funcld — (Val — Val)
(Val — Val) x Val) — Val

((Val — Val) x Val x Val) — (Val — Val)

The meaning functions are defined as follows:

T : Term — LogicalStruct— Val
Tc]e = consfc)
T[I]e lookupld: I
T[Ty op2;, T2]t = T[T1]e binop, (op2;) T[12]e
Tite(p, T1,T2)]e = condy (Flele, T[T1]e, T[T2]e)
T[FE(T1)]e acces§FE[FE]e, T[11]e)

F : Formula — LogicalStruct— BVal

.7: L T
.7: L
F[T1 rop;, T2

Fll~]eie = ~Flea]e
Flp1 bopy, p2]u = Flp1]e boolop, (bop,) Flpz]e

FE : FuncExpr — LogicalStruct— (Val — Val)
FE[F]e = lookupFuncld. F
fg[[FEl [T1 — TQ”]L = update{}'g[[FEl]]L, T[[T1]]L, THTQHL)

U : FOUpdate— LogicalStruct— LogicalStruct
U[{1L: — T} {F; < FE; D]

= (D = T[T:]d], (12)[F; — FEFE;]])
LetU = ({I; «— Ti},{F; < FE;}). Becausé{[U]. retains
from . the value of each constaftand functionF' for which an
update is not defined explicitly ity (i.e., I € (Id — {[;}) and
F € (Funcld— {Fj;})), as a notational convenience we sometimes
treatU as if it contains an identity update for each such symbot; tha
is, we say thatU11)I = I for I € (Id—{I;}), and(U12)F = F
for F' € (Funcld— {F}}).

F
T[T1]e relop; (rop;) 7 [T2]e

4.2 PL : A Simple High-Level Language

PL, is the language fror§2, extended with some additional kinds
of expressions. It is a simple high-level language that balint-
valued variables.§6 discusses P1, which is PL; extended with
pointers.)

S € Stmt E € Expr,BE € BoolExpr I € Id, ¢ € Cintz2

2008/7/22

c € Cinzz = {071,..4}
op2€ BinOp = {+,—,®,...}
rop € RelOp= {=,#,<,>,...}
bope BoolOp = {&&,||,...}

E = C|I|E10D2E2|BE?E1:E2
BE ::= T | F | E1 rop E> | -BE; | BE: bop BE:
S = 1=F;|5 52

The (factored) semantics of PPLis defined in terms of the
following operators:

Clntz2 — Val

BinOp — (Val x Val — Val)
RelOp— (Val x Val — BVal)
BoolOp— (BVal x BVal — BVal)
BVal — Val — Val — Val
State— |d — Val

State— Id — Val — State

const:
binop :
relop :
boolop :
cond :
lookup :
store :

These appear in the meaning functighds, andZ:

& : Expr — State— Val
ElcJo = constc)
E[I]o = lookupo I
E[E1 0p2Ez]o = E[FE1]o binop(op2) E[E:]c
E[BE? Ey : Ex]lo = B[BE]o ? E[E1]o : E[E2]o
B : BoolExpr — State— BVal
B[Tle = T
B[F]oc = F
B[Ey rop Ex]lo = E[Eh]o relop(rop) E[Ez]o
B[-BE:]o = —B[BEi]c
B[BE, bop BE]o = B[BE;]o boolopbop) B[BE;:]c
7 : Stmt— State— State
I[I = E;]Jo = storec I (E£[FE]o)
Z[S1 S2]o = Z[S2](Z[S1]o)

5. Symbolic-Analysis Primitives via
Reinterpretation
This section gives technical details of how to use semasiit-r

terpretation to obtain primitives for forward symbolic &ation
(85.1), weakest precondition§§.2), and symbolic composition

(55.3).

5.1 Symbolic Evaluation via Reinterpretation

The discussion i§3.2 of how semantic reinterpretation can be used
to generate a symbolic-evaluation primitive was alreadyfaom-
prehensive. No new issues arise in extending the mategaépted

in §3.2 to handle the full definitions at[-] and PL from §4, and
thus the extensions will not be discussed here.

Correctness considerations. We now show thaf andZ have the
right relationship.

Lemma 5.1(Relationship of to £ andB to B).

(1) T[E[E]U] = E[E[(U[U])11)
(2) FIB[BE]U]. = B[BE|(U[U])11)

Proof. See App. A. a

Theorem 5.2. For all . € LogicalStruct, evaluating/[Z[s]U]:
is equivalent to running on s with an input state obtained from
UU]e; thatis, (U[Z[s]UTe)11) = Z[s]((U]U]e)11).

Proof.

(1) (U[Z[I = E;JUT)TT)

(UIUTHI — E[E]U], (U12))]4)11)
(UIUINDL = TIETETU, (U[U])12))T1)
(UIU)TOI — E[EJ(U[U])TD] // by Lem. 5.1
= I[I = EJ(U[U])11)

(i) ((U[[I[[51§2}]U}]L1T1)
= (U[Z[S=1Z[5:]U)])11)
= Z[S:)(U[Z]S:]UT)11) // by induction
= Z[S2J(Z[S:](U[U])11)) // by induction
= Z[S1S:]((U[U]e)11)

Corollary 5.3. For all « € LogicalStruct,
(U[Z[s]Uia]e) 11) = Z[s](e11).

5.2 Weakest Liberal Precondition

In this section, we discuss how to use semantic reintetjwatto
obtain a symbolic-analysis primitive for weakest libere¢gondi-
tion. As mentioned i1§3.3, one trick is to usé -] to reinterpret the
meaning functions(, &, F, and7 of L[] itself. By this means,
the “alternative meaning” of @ermFormulaFuncExpfFOUpdate
is a (usually different) TermFormulaFuncExpfFOUpdate in
which some substitution and/or simplification has takecq@la

In §4.1, we wrote the semantics bf-] in factored form so that it
would be possible to perform semantic reinterpretationvéier,
one small point needs adjustment:§#.1, the type signatures of
LogicalStruct lookupFuncld accessupdate and 7€ include oc-
currences oal — Val. This was done to make the types more
intuitive; however, for a reinterpretation scheme to wanhk,addi-
tional level of factoring is necessary. In particular, tleewrences
of Val — Val need to be replaced ByVal. The standard semantics
of FValis Val — Val (i.e., Int32 — Int32); for creating symbolic-
analysis primitivesVal is reinterpreted aBuncExpr

After this change, we use the logiE as a reinterpretation
domain for the semantic core &f defined ing4.1. The base types
and the state type of the semantic core are reinterpretedlasd:

Val = Term FVal = FuncExpr
BVal = Formula LogicalStruct= FOUpdate

The operators used in the factored versiondfof 7€, F, and
7T, are reinterpreted over these domains. (In particldarop, ,
relop, , and boolop, are interpreted basically as syntacfierm
and Formula constructors of.—although, as discussed §3, the
reinterpreted base-type operations perform simplificatishen-
ever possible, when constructiigrns andFormulas.) By exten-

s_ion, this produces reinterpreted meaning functigng&, F, and
T with the types listed in Fig. 5.

WLP via semantic reinterpretation. To compute a formula for
WLP via semantic reinterpretation, we make use of hétithe
reinterpreted logic semantics, ahgthe reinterpreted programming-

language semantics. As we show in Thm. 5.6, we can compute a

weakest-precondition formula for with respect to statementby
performing the following computation:

Flel@ls1Ua) €]

Example 5.1. In Ex. 3.2 and Fig. 2, we derived the following
FOUpdate which expresses in logit the semantics of the swap-
code fragmenswapfrom Fig. 1(a):

Uswap := f[[swadUid = ({:C, - y,y' — x},0)

2008/7/22

Standard
Reinterpreteq

: FOUpdate— LogicalStruct— LogicalStruct]
: FOUpdate— LogicalStruct— LogicalStruct]
: FOUpdate— FOUpdate— FOUpdate

FE : FuncExpr— LogicalStruct— FVal

FE : FuncExpr— LogicalStruct— FVal

Standard
Reinterpreted 7€ :
: FuncExpr— FOUpdate— FuncExpr
: Formula — LogicalStruct— BVal

: Formula— LogicalStruct— BVal

: Formula— FOUpdate— Formula

: Term — LogicalStruct— Val

: Term— LogicalStruct— Val

: Term— FOUpdate— Term

Standard
Reinterpreteq

Standard
Reinterpreted

e I

Figure 5. Types of the reinterpreted meaning functiéhsF&, F,
and7.

Using the method given in Eqgn. (1), we obtain the following
Formulaof L for WLP (swap z[=]2):

WL’P(SWG.Q $E|2) = Z[[mEp]] Uswa_p
T[] U =] T [2] Uswap

O

Correctness considerations. Although weakest liberal precondi-
tion is sometimes confused with the formula-manipulatipera-
tions used to obtain a formula that expresses it, or with tdre f
mula ¢ that results, weakest liberal precondition is really a se-
mantic notion—the set of statelescribedby . For example, for
any statemens: var = rhs; in a language like PLthat only has
int-valued variables, and postcondition formuyta the formula
p[var < rhs] obtained by substitution is not the only formula that
expresse3VLP(s, ¢). In fact, there are an infinity of acceptable
formulas. Thus, to address the correctness of the answirismeth
via Egn. (1), we characterize what constitutes an acceptai
mula as follows:

Definition 5.4 (AcceptableYVLP Formula.) v is anacceptable
formula forWLP (s, o) iff, for all . € LogicalStruct,

Flle = Flel(ZTs](e11), (¢12)).)
That is,) holds in the pre-state structurexactly wheny holds in
the post-state structuf@[[s](:11), (:12)). (Recall that a PL state
o is identified with theLogicalStruct(o,), and thug:12) = @ in
Eqgn. (2).)

It is pleasing to observe that the method for computing a
weakest-precondition formula, Eqn. (1), is nearly ideaitisyn-
tactically to the right-hand side of Eqn. (2), which defindsew a
formula is an acceptable formula fRVLP (s,).

Lemma 5.5(Relationship ofF to F, T to T, FE to FE).

(1) FIZ[elUle = FlelU[U]e)
(2) T[T[TU]e = T[T]U[U]e)
(3) FE[FE[FE]U]. = FE[FEJU[U]L)

Proof. See App. A.

a

Theorem 5.6. For any Stm and Formulay, ¢ := F[¢](Z[s]Uia)
is an acceptable weakest-precondition formula gowith respect
to s.

Proof. For all . € LogicalStruct
Fl¥le = FIFle]l Zls]Ua)le
= Fle]U[Z][s]Uia]e)
= Flel@[s1(:11), (¢12))

// by Lem.5.5
// by Cor. 5.3

and therefore, by Defn. 5.4F[¢](Z[s]Uq) is an acceptable
weakest-precondition formula for with respect tos. a

5.3 Symbolic Composition

The goal of symbolic composition is to have a method thagmiv
two symbolic representations of state changes, computgsa s
bolic representation of their composed state change. $rstttion,
we describe how to use semantic reinterpretation to create 3
method automatically: each state change is representeditl|-]
by anFOUpdate and the method computes a nE@Updatethat
represents their composition.

To accomplish thisL[-] is used as a reinterpretation domain,
exactly as in§5.2; the reinterpreted meaning functidds 7€, F,
andT have the types listed in Fig. 5. Moreovéf,turns out to be
exactly the symbolic-composition function that we seek.

U, the reinterpretation df, works as follows:

U : FOUpdate— FOUpdate— FOUpdate
= (UL = T[T3]UL, (U12)[F; — FE[FE;]U])

In the remainder of this section, we show thiperforms symbolic
composition ofFOUpdates.

Example 5.2. For the swap-code fragment from Fig. 1(a), we can
demonstrate the ability @i to perform symbolic composition by
showing that
T[s1; s2; 83]Uia = U[Z[s3]Uia](Z[51; 52]Uia), 3
where in this cas&iq = ({z <« =,y < y},0).
Consider the left-hand side of Egn. (3). As shown in Ex. 32 an
Flg. Z,Uswap:: I[[SW&@]UM = ({:c Y, Y x}, 0).
Now consider the right-hand side of Eqn. (3). L&, andUs
be defined as follows:
Uiz = I[s1;52]Uua =
Us = I[s3]Uq

= ({z—z|[a|y,y —2},0)
= ({z—=z|a|y,y —y}0).
We want to compute

Uus]tsz = Ul({z < z[@]y,y < y},0)]U1»
= (U21)[z — Tﬂwy}]Ul,z, y — TylU12],0)

= (Ur21)[z = ((= y)mm — a],0)
((U172T1)[‘T =Y,y = l‘],)
({z — y,y < z},0)

U swap

Therefore Z[s1; s2; s3] Uia = U[Us]U1,2. O

At the semantic level, the ability dif to perform symbolic
composition is captured by the following theorem:

Theorem 5.7. For all U1, Uz € FOUpdate and € LogicalStruct,
UTUTU2]UL]le = U[U](UUL]L).-

2008/7/22

Proof. Let U, = ({I; « T:},{F; < FE;}). Let I, and F},,

: v € Val,l € Loc = Val, o € State= Storex Env
range ovetd andFuncld respectively.

const : Cinz2 — Val

UTUTU]UL]e lookupState : State— Id — Val

= U - TII0L@ 2, = FEREIL e - Sae—lo - Lox

_ {Ie = (UM)[L; = T[TUL)) Ik}, : . Loo— Val

=U [K{Fm . (([}1T2)[Fj L }'S[[Fllij}]Ul])Fm})H updateStore : State— Loc — Val — State

= (DU = TI(ULIY L = T[L]U)], gig[[E’]‘]pr - fé?}ff) val
(L12)[Fm = FE[((U211)[F} > FE[FE;JUL]) Frn]d]) o — X
— ()L T L — T, elitle = lookupemo
/(;Tg))/[fg;nH JES[[(Ulﬁ) Fuld[F) — FE[FEIFE; U0 - 52[[EE o= ?EEUEStgrwgfﬂgﬂg[%E :

op2Eslo = o binop(op 2]o

(D[= TIUO) L]][I — TLJU[UL]L)], SHBE?lEl : Egllo = B[[Bllf]]a?g[[Eﬂ]o : E[E2]o
(L12)[Fm = FE[(UL12) En]d][Fy — FEFE;J(U[UL])]) . _ ~
= (@)L~ TIT)), B By = pe v
(UUL])12)[F; — FEFE;JU[U1])]) B[Floc = F

= U[U2](U[U:]) B[E}SE[OF)BEEQ o= 5%}‘3&1Bﬂg}]relop(rop) E[E2]o

m B[BE: bop BEJo — B[BE: | boolop(bop) B[BE:]o

7 : Stmt — State— State

6. Reinterpretation for a Language with Pointers I[I = E;Jo = updateStorer (lookupEnvo I) (E[E]o)
. . . o I[*I = E;]Jo = updateStorer (E[I]o) (E[E]o)
In this section, we extend our subject language to have groiari- Z[S1 Se]lo = Z[S2](Z[S1]o)

ables, and show how reinterpretation of the factored sensamito-
vides an easy way to deal with aliasing issues that arise suith
a language. In particulag6.4.1 andg6.4.2 discuss two different
reinterpretations, one that automatically carries outattéons of

Figure 6. The factored semantics of PL

Morris_,'s rule of_substitution [22] (see I_Ex. 6.2), and onettha- 6.3 Reinterpretation and Symbolic Execution for PLy
E))?‘lzétl:;:)ally carries out those of Cartwright and Oppen' risiee The reinterpretation used for symbolic execution is simitathe

one given in§3.2. Some of the reinterpreted operations from the
. . core semantics of RPlLare as follows:
6.1 PL;:PL; Extended with Pointers I
PL; is PL; extended with an address-generation expression, a lookupState: FOUpdate- 1d = Term
2 1 - ’ TaoklinState—
dereferencing expression, and an indirect-assignmetgnséamt. lookupState= AU.AL((UT2)F,) (1)

The syntax of PL is defined below, with changes from Phigh- updateStore: FOUpdate— Term— Term— FOUpdate

lighted in bold: updateStore
= AU \T> (UTL)
S € Stmt E € Expr,BE € BoolExpr, I € Id, ¢ € Cintz2 : “\(U12)[F, — updatd(U12)F,, T1,T>)]
cu=0]1].. Example 6.1. The steps of symbolic execution of Fig. 1(b) via
E:=c|I|&I|*E|FE i 0p2E, |BE? E;: Es semantic reinterpretation, starting with &@Updatethat corre-
BE ::= T | F | E1 rop E» | -BE; | BE; bop BE sponds to the third configuration of Fig. 3 are shown in Figitie
Su=1=EF;|*xI =FE;|S5 5 FOUpdateshown in the last line of Fig. 7 can be considered to be
the 2-vocabulary formuld), = F,[0 — v][px — py][py — v].
6.2 Semantics of Pk This expresses a state change that does not usually perfsua a

. L A .) cessful swapd
The semantics for PLis given in Fig. 6. The semantic domain

Loc stands fonocations(or memory addresses)_ We ident[f_pc Thm. 5.7 holds for PL, although it is now stated as follows:
with the setVal of values. (Note that we do not worry about Theorem 6.1. For all Uy, U, € FOUpdate and € LogicalStruct,
type-checking issues in this paper, and locations can tayfre UIZ[s]U]e = Z[s]U[U]e).
manipulated as values.) In contrast with,Pwhere a stater €
Stateis a mapld — Val, o is now a pair(n, p), where, in the 6.4 Reinterpretation and WLP for PL
concrete semanticgnvironmenty € Env = Id — Loc maps
identifiers to their associated locations astdre p € Store =
Loc — Val maps each location to the value that it holds.

The standard interpretation of the operators used in the PL
semantics is as follows:

BVakqg

The semantic-reinterpretation approach provides insightecon-
ciling two different approaches that have been developeaxe
pressing the weakest precondition of a formula with respeet
state transformation. On the one hand, one has Morris’salile
substitution [22], which generalizes Hoare’s axiom of gssient
BVval [15] to a language with pointer variables by explicitly cimltes-

Valsig = Int32 l eSItEnvsm _ :_d - Locs‘\t/dl ing possible aliasing combinations. On the other hand, asette
LoGsg = Int32 p € Sl0M&w = LOC — Vals approach of Cartwright and Oppen [6], the essence of whith is
use a referentially transparent meta-language; this pepre-state
lookupStatgy = A(n, p).A.p(n(1)) properties to be expressed usimly formula substitution, even in
lookupEny, = A(n, p).A.n(1) the presence of aliasing.
lookupStorgy = A(n, p).Al.p(1) Although these approaches do not seem to be connected, the
updateStorgy = A(1, p).Al.Av. (1, p[l — v]) semantic-reinterpretation approach provides an exptamanf

9 2008/7/22

Ipe = pz[@ |+py;] (0, Fp — Fp[0— v][px— pyl[py — pyl)

I[xpy = pa[@ |#pys)(0, F = F,[0 — v][pxi— pyi[py — 0]) =

I[+pz = +pz| @ |*pyil (0, Fy — F,[0 — v][px— pyl[py — 0)

0, Fp — Fp[0— v][px— pyilpy— (Fp(pX) [@] Fo (py))])

0, F, < F,[0 — v][px+— pylpy — (py[@ [py)])
0, Fp < Fp[0 — v][px— py][py — 0])

(
E
(0, Fp = F,p[0— (Fp(py)[@ | Fo(0))][px — pyi[py — 0])
= (0, F, — F,[0 — (0] &]v)][px+— pyl[py— 0))
(0, Fp <= Fp[0 — v][px+ py][py — 0])
(0, Fp — F,[0 — v][px— pyi[py — (F,(py) [@] F,(0))])
(
(

0, Fp — F,[0— v][pxi— pyl[py — (0] @ Jv)])
0, Fp < Fp[0 — v][px — py][py — v])

Figure 7. Symbolic execution of Fig. 1(b) via semantic reinterprietatstarting with arfFOUpdatethat corresponds to the third configura-

tion in Fig. 3.

how they are related. In particular, the semantic-reimeggpion
approach can actually achiewmth methods—the difference is
merely the degree of algebraic simplification that is perfed.

It may not be obvious why this is so, particularly because we
have never introduced an explicit operation of substitufimr our
logic. However,a symbolic substitution operation is produced as
a by-product of reinterpretatianin particular, in the standard se-
mantics forL, the return types of meaning functidh and helper
function lookupld of the semantic core are boWal. However,
in the reinterpreted semantics,Val is a Term—i.e., something
symbolie—which is used in subsequent computations. Thus, when
¢t € LogicalStructis reinterpreted a8 € FOUpdate the reinter-
pretation of formulay via F[o]U substitutesTerms found inU
into ¢: F¢]U calls T[T]U, which may calllookupldU I; the
latter would return &ermfetched fromU, which would be a sub-
term of the answer returned BY[T]U, which in turn would be a
subterm of the answer returned B] U.

To understand how pointers, aliasing, and dereferencieg ar
handled during théVLP operation, the key reinterpretations to
concentrate on are the ones for the operations of the semcamé
of L[PLy] that manipulaté=Vals (i.e., arguments of typ¥al —
Val)—in particular,accessandupdate

We wantaccessand updateto enjoy the following semantic
properties:

TﬂmsFEmTo)]]L = (fSHFEoﬂL)(T[[ToﬂL)
T[[UpdatQFEmeTl)]]L = (fSHFEoﬂL)[T[[ToﬂL — T[[Tﬂ]b]

Note that these properties require evaluatingaatessor update
expression with respect to an arbitrang LogicalStruct As dis-
cussed i3, it can be desirable for reinterpreted base-type opera-
tions to perform simplifications whenever possible, whaytton-
structTerns, Formulas, FuncExps, and-OUpdates. However, be-
cause the value of is unknown,accessand updateoperate in an
uncertain environment. As shown below, the essential reiffee
between Morris’s rule and Cartwright and Oppen'’s rule isdbe
gree of algebraic simplification attempted in the absendefof-
mation about.

§6.4.1 shows how reinterpretation automatically generates
weakest-precondition primitive that implements Morrisisle;
§6.4.2 shows how the semantic-reinterpretation approach ca
also generate a weakest-precondition primitive that implets
Cartwright and Oppen’s rule. Thm. 5.6 holds for JPWith both
WLP primitives, although the proofs are more involved than the
one given for PL in §5.2.

6.4.1 Reinterpretation and WLP a la Morris

To use semantic reinterpretation to create a weakest-pdétm
primitive that implements Morris’s rule, simplificationseaper-
formed duringaccessand updateusing the rewriting rules given
below, where=, #, and = denote equality-as-termsdefinite-

10

disequality andpossible-equalityrespectively.

m@l,kl) :

(CL1 = F) —— F(kl)

(a1 = ag[kz — dg]) A\ (k‘l = kz) — ds

(a1 = a2[k2 — dQ]) A\ (lﬁ 76 k)g) - m&lg,kl)
(a1 = a2[k2 — dQ]) A (k1 = k)g)

— ite(k:l EIIC27 d27m$a27 kl))

update{ah k1, dl) :

(CL1 = —— F[k‘1 — d1]
(a1 = ag[kz — dg]) A\ (k‘l = kz) — a2[k1 — d1]
(a1 = ag[kz — dg]) A (k‘l ;é kz) — update(a%kl,dl)[kz — d2]
(a1 = azlke — d2]) A (k1 = ko) = a1[k1 — di]

In particular, the rules foaccessthat involve possible-equality
comparisons causiée terms to arise. As illustrated in Ex. 6.2, it

is thesdte terms that cause the reinterpreted operations to account
for possible aliasing combinations, and thus are the redsan

the semantic-reinterpretation method automaticallyiesuout the
actions of Morris’s rule of substitution [22].

Example 6.2. We now demonstrate how semantic reinterpreta-
tion arrives at the weakest-precondition formula ¥WLP (xp =

e,z = 5) thatwas claimed in Ex. 3.3. (The definitionlobkupState
andupdateStoravere given ing6.3.)

U := I[*p = e]U

= updateStoréUi, € [p] Ui, €[] Uia)

= updateStorélq, lookupStatéUy, p), lookupStatéUiq, e)
updateStor&Uia, F,(p), F,(e))
(UaT1), F, = Fp[F,(p) — F,(e)])

WLP(xp = e, Fp(x)[=]5)

FlF,(x)[=]5]U

T[F,(2)]U[=]T[5]U

accessFE[Fp]U, Tx]U)[=]5
accesglookupFuncldU, F,), lookupld U, z))[=]5
aCTESEE, [F, (p) — Fy(e)], 2)[=]5
ite(F,J(p):an(e),m £y) [=]
ite(F, (p) =]z, Fole), Fyp(2))[Z]5

Note how the formula-simplification rules @iccessthat involve
possible-equalitgomparisons causes éa term to arise that tests
the condition 'F),(p) [=]z". The test determines whether the value
of p is an alias for the address of which, as discussed §B.3, is
the only aliasing combination that matters for this example

5

6.4.2 Reinterpretation and WLP a la Cartwright and Oppen

§6.4.1 gave one version @ccessand update whereaccessper-
forms simplification using a set of rules that can introdibeéerms.

2008/7/22

A less ambitiousiccesgust creates a residuderm

accessa, k) : a(k) // constructs &erm 4)
Similarly updatejust creates a residuBuncExpr
updatéa, k, d) : alk — d] // constructs &uncExpr (5)

When these definitions are used in the context of the methah gi
in §5.2 for computing a weakest-precondition formula via seiian
reinterpretation, i.e. WLP(s,¢) = F[](Z[s]Ua), the WLP
operation performs substitution (and no simplificatiomd ahe
result is the same as the one obtained using Cartwright apdi®p
method.

Example 6.3. Whenaccesss defined as in Egn. (5), the second
half of Ex. 6.2 changes as follows:

WLP(xp = e, Fp(z)[=]5)
FFp(z)[=]5]U

. Il same as Ex. 6.2
accessk,[F,(p) — Fy(e)], z)[=]5
Fp[Fp(p) = Fp(e)](m)ES

O

7. Reinterpretation of Machine-Code Semantics

In this section, we discuss how to apply the reinterpretatizh-
nigue at the machine-code level.

7.1 MC : A Simple Machine-Code Language

We first define a simple machine-code languadé€’; it is based
on the x86 instruction set, but greatly simplified.

r € reg := EAX| EBP| EIP
feflag : F

do € dstoperand:

so € src.operand :=

o € operand:

Instr € instruction :

Indirect(reg Val) | DirectRedreg)
dstoperandu ImmediatéVal)
src_operand

MOV(dstoperand srcoperand
CMP(dstoperand srcoperand
XOR(dstoperand srcoperand

|
| JZ(dstoperand

MC has 3 registers and one flag. There are 3 kinds of operainds an

4 instructions.

7.2 Semantics of MC

The informal semantics of MC is as followgtOV moves the value
of the source operand to the destination oper@MP setsZF ac-
cording to the difference of the values from the two operakK@R
computes the exclusive-or of the values from the two opesandl
stores the result to the destination operand. Each ingiruictcre-
ments the program-counter regisiP. JZ updatesIP depending
on the value of flagZF.

A formal semantics for MC is given in Fig. 8. In contrast with
PL; and Plz, in MC a stater is a triple(memreg, flag). R, K, O,
andZ are the evaluation functions feeg, flag, operand and MC,
respectively.

7.3 Reinterpretation of MC

Semantic reinterpretation works similarly to what was ddéoe
PL,, PL;, andL. The base types are redefined as follows:

BVal = Formula Val = Term
State= FOUpdate= ({ZF, EAX EBP, EIP}, { Finem})

Example 7.1. Fig. 9 shows the assembly code that corresponds
to the swap code in Fig. 1(a). lines 1-3, lines 4-6, and lires 7
correspond to line 1, line 2, and line 3 in Fig. 1(a), respetyi

11

const : Cinzz — Val
storgeg : State— reg — Val — State
lookupey : State— reg — Val
storgag : State— flag — BVal — State
lookupy,g : State— flag — BVal
stor@nem : State— Val — Val — State
lookupyem : State— Val — Val
storep : State— State

storeip = Ao.Storaeg(o, EIP, R[EIP]o + 4)

R :reg — State— Val, R[rJo = lookupeg(c,)
K : flag — State— BVal, K[f]o = Iookup|ag(a, 1)

O : operand — State— Val
O[lIndirect(r ¢)]Jo = lookupyen(o, R[r]o + constc))
O[DirectRedr)]o Rr]o
O[Immediatéc)]o constc)

7 : instruction — State— State

Z[MOV(Indirect(r ¢) so)]o

= storeip(Storanen(o, R[r]o + constc), Ofso]o))
Z[MOV(DirectRedr) so)]o = storesp(storgeg(o, r, O[so]o))
Z[CMP(do so)]o = storesip(storegjag(c, ZF, Odo]o — O[so]o = 0))
Z[XOR(Indirect(r ¢) so)]o = Z[XORdo so)]o

= storeip(Storanen(o, R[r]o + constc), Ofdo]o & O[so]o))
Z[XORDirectRedr) so)]o = Z[XORdo so)]o

= storep(Storgeg(o, r, O[do]o & Ofso]o))
Z[IZ(do)]o = storaeg(o, EIP, K[ZF]o ? R[EIP]o + 4 : O[do]o)

Figure 8. The factored semantics of MC.

[1] mov eax, [ebp—10]
[2] xor eax, [ebp—14]
[3] mov [ebp—10], eax
[4] mov eax, [ebp—10]
[6] xor eax, [ebp—14]
[6] mov [ebp—14], eax
[7] mov eax, [ebp—10]
[8] xor eax, [ebp—14]
[9] mov [ebp—10], eax

Figure 9. The assembly code corresponding to Fig. 1(a).

For the swap assembly code in Fig.B(swap Ug) produces
the followingFOUpdate
U = (EAX— Fmen{EBP
Fiem < Fmen{EBP 14)]
[EBP 10)])

14),
10 — Fmerr(EBP
14 — Fren{ EBP
O

8. Implementation

We have implemented the approach to creating symbolioysisal
primitives described in the paper using fRéL system [20]. The
implementation has been used to generate primitives fovaiat
symbolic evaluation, weakest precondition, and symbadimgo-
sition for multiple machine-code instruction sets.

TheTSL language is a strongly typed, first-order functional lan-
guage with a datatype-definition mechanism for defining n&ce
datatypes, plus deconstruction by means of pattern magckinch
of what aTSL user writes when developing an instruction-set spec-
ification is similar to writing an interpreter for an insttign set in
first-order ML. That is, the meaning functidhof §7.2 is written
as aTsL function

state interpInstr(instruction I, state S) {...};

whereinstruction and state are user-defined data types that
represent the syntactic objects (i.e., instructionsestants, ex-
pressions, or formulas) and the semantic states, reselctiv

2008/7/22

To implement the work described in this paper, we ussd to
create semantic reinterpretations that are based on ldgiozaulas.
We specified both the syntax and semantics of ldgi¢tin TSL—
the latter involved writing functions ifnTSL that correspond to
T, F, etc.—and then reinterpreted the semantic cord.[of as
described ir§3.3 and§5.2.

These reinterpretations were applied to tWeL instruction-
set specifications that we had on hand from our work on gener-
ating abstract interpretations [20]. The specification h# tntel
x86 instruction set is about 2700 lines ®&L; the specification
of the PowerPC instruction set is about 1200 lines. USiisg,
we obtained automatically-generated implementationdl dhiee
symbolic-analysis functions from each of the specification

Moreover, each of the reinterpretations can be reusedsin
reinterpretation is performed at the meta-level: the s&isaf prim-
itive operations on base types forms the semantic core ddrall
guages specified usingsL. An analysis designer adds a new anal-
ysis component to th&SL system by (i) redefining th&SL base
types (e.g.INT32 INT8, BOOL, etc.), and (ii) providing a set of al-
ternative interpretations for the primitive operationshase types
(e.g.,+int32, +inTs, €tc.). This implicitly defines an alternative in-
terpretation of each expression and function in an indooeset’s
standard semantics (includingiterpInstr). Consequently, im-
plementations of allhreesymbolic-analysis functions can be gen-
erated for the next instruction set of interest, Ejymerely by writ-
ing aTSL specification of the standard semantics®f

8.1 Binding-Time Analysis and 2-Level Semantics

As mentioned earlier, i§3.2, one of the key techniques that we
use is related to partial evaluation. In essence, we pgréahluate
7 with respect toStmts so that the residual object captures the
semantics of, while at the same time the result is translated to
TSL is not a partial-evaluation systeper se however, for rea-
sons discussed in [193.4], theTSL compiler performs binding-
time analysis [16], and annotates the codeitoterpInstr to cre-
ate an intermediate representation in a two-level lang{2%je In
our case, level 1 corresponds to param@tef interpInstr, and
level 2 corresponds to parametarate. To generate implementa-
tions of symbolic-analysis primitives via semantic reiptetation,
we use two different reinterpretations for the two levels:

e concrete semantics (C) for level 1

e something close to the Herbrand interpretation (H) forll@ve
(operators of. are used as syntactic constructors, but algebraic
simplifications are performed whenever possible)

LetinterpInstr-CH denoteinterpInstr-2level reinterpreted
in this fashion. WheninterpInstr-CH is executed, it creates a
residual expression as output. Because concrete semamntissd
for level 1, all parts ofinterpInstr that are not relevant to the
form of I are eliminated.

Overall, the TSL compiler and the two interpretations cre-
ate something that is very similar to a generating extenfi6h
interpInstr-gen for interpInstr (See footnote 7). Generat-
ing extensioninterpInstr-gen would be a program with the
following property:

interpInstr,, where
[interpInstr](I,S).

[interpInstr-gen](I)
[interpInstr,](S)

interpInstr-CH has similar properties:
[interpInstr-CH](I, Uid)
UU](s)

The difference betweetmterpInstr-gen andinterpInstr-CH

is very small: interpInstr-CH still requirestwo inputs to be
supplied (but we can use the trivial vallig for the second input).

Uz, where
[interpInstr](I,S)

12

Weakest liberal precondition.

9. Related Work

Forward symbolic evaluation. Symbolic execution has been em-
ployed in many recently developed systems for programngsti
and verification. In particular, hybrid concrete/symbaiecution

tools, which are able to generate inputs that increase ¢gstage,
start with the path formula for an executable patlthange the for-

mula to be one for a nearby pattithat follows the same sequence
of edges asr, except that at the final branch nodébranches in

the direction opposite to the one takenshyand call an SMT solver
to determine if there is an input that drives the program dawn

Recently these techniques have been employed on x86 ekt=uta
in the SAGE [11] andBITSCOPE [5] tools.
Our work provides a way to create the core primitives of such

systems automatically. It would allow one to easily buildsiens

of such tools that can be applied to other instruction setsv-H
ever, there is a significant difference between the apprtrattwe

use and the way symbolic-analysis primitives are impleexatim

existing tools.

¢ |n existing tools, the semantics of the subject languagedag-
sulated in atranslation procedurehat translates the subject-
language instructions into a form more suitable for syntboli
manipulation.

¢ We use aleclarative approachthe tool writer provides a spec-
ification of the subject language’s standard semanticshen t
form of an interpreter expressed in a functional language. O
system then applies semantic reinterpretation to the s@enan
core, using the methods explained in the paper.

Our approach does not need any of the preprocessing steps
that are sometimes performed on the subject program, such
as converting the program into a single assignment form and
translating it into an intermediate form on which symbolic
operations are carried out [4].

An intriguing aspect of the semantic-
reinterpretation approach is that it provides insight aroreiling
two different approaches that have been developed for sspre
ing the weakest precondition of a formula with respect toagest
transformation, for languages with pointer variables alsig:

(i) Morris’s rule of substitution [22], which explicitly atsiders
possible aliasing combinations, and (ii) the pure sultitubased
approach of Cartwright and Oppen [6B.4.1 shows how reinter-
pretation can automatically generate a weakest-pregonditimi-
tive that implements Morris’s rulé6.4.2 shows how the semantic-
reinterpretation approach can also generate a weakasifuligion
primitive that implements Cartwright and Oppen'’s rule. Spio-

vides an account of how Morris’s rule and Cartwright and Oype

rule are related: both are based on substitution; the dife is
merely the degree of algebraic simplification that is penfed on
Terns that express function accesses.

In particular, in§6.4.1 the rules foaccesghat involvepossible-
equality comparisons causite terms to arise. As illustrated in
Ex. 6.2, itis thesée terms that cause the reinterpreted operations to
account for possible aliasing combinations, and are theorethat
the semantic reinterpretation fro§6.4.1 carries out the actions of
Morris’s rule. In contrast, the simpler rules used§fi4.2 cause
semantic reinterpretation to implement the pure subgiittibased
approach of Cartwright and Oppen.

Symbolic composition. Symbolic composition arises in many
computational contexts. It provides one way to addressepriib-
lem of “dissolving” module boundaries in software systeros f
the sake of run-time efficiency. In the context of imperage-
grams, in-line expansion (followed by simplification/apization)
can be thought of as a kind of symbolic composition. Howetver,
techniques used to perform symbolic composition are oftgocal

2008/7/22

deal more sophisticated than what is obtained by simpléna-I
expansion. For exampldeforestatioris a particular kind of sym-
bolic composition relevant when the producer functjooreates a
tree-structured output that is consumedghf80]. The idea behind
deforestation is to transform the program so that the irgelim
ate tree structure is never constructed. Simildiltgr fusion[26]
looks for situations in whiclread operations cancel withrite
operations.

Our work addresses symbolic composition of logic formulas.
As explained irg1, this operation is useful when a tool has access
to a formula that summarizes a called procedure’s behakier.
exploration of the procedure can be avoided by symbolicaiiy-
posing a path formula with the procedure-summary formute T
potential gain in efficiency comes from cancellationsupfates
and access, as well as simplification ofipdates and subsuming
updates.

References

[1] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Auntatic
predicate abstraction of C programs.RhDI, 2001.

[2] N. Beckman, A. Nori, S. Rajamani, and R. Simmons. Proafsnf
tests. INNSSTA 2008.

[3] L. Birkedal and M. Welinder.
generators. IPLILP, 1994.

[4] D. Brumley, J. Caballero, Z. Liang, J. Newsome, and D. gon
Towards automatic discovery of deviations in binary impdetations
with applications to error detection and fingerprint getiera In
USENIX Sec. SympAug. 2007.

[5] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, P. Poosanka
D. Song, and H. Yin. Automatically identifying trigger-lebs
behavior in malware. IBotnet Analysis and Defens8pringer,
2008.

[6] R. Cartwright and D. Oppen. The logic of aliasingcta Inf, 15:365—
384, 1981.

[7] P. Cousot and R. Cousot. Abstract interpretationP@PL, 1977.

[8] Coverity, Inc. Coverity Prevent.www.coverity.com/html/
coverity-prevent.html.

Hand-writing program geator

[9] V. Ganesh and D. Dill. A decision procesure for bit-vast@and
arrays. InCAV, 2007.

[10] P. Godefroid, N. Klarlund, and K. Sen. DART: Directedt@mated
random testing. 1fPLDI, 2005.

[11] P. Godefroid, M. Levin, and D. Molnar. Automated whitebfuzz
testing. INNDSS 2008.

[12] GrammaTech, Inc. CodeSonafiw . grammatech.com/products/
codesonar.

[13] B. Gulavani, T. Henzinger, Y. Kannan, A. Nori, and S. &aani.
SYNERGY: A new algorithm for property checking. FSE 2006.

[14] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Ldwtraction.
In POPL, 2002.

[15] C. Hoare. An axiomatic basis for computer programmi@gmmun.
ACM, 12(10):576-580, 583, Oct. 1969.

[16] N. Jones, C. Gomard, and P. SestofRartial Evaluation and
Automatic Program GeneratiorPrentice-Hall International, 1993.

[17] D. Kroening and O. Strichmarecision Procedures: An Algorithmic
Point of View Springer-Verlag, 2008.

[18] P. Lee and M. Leone. Optimizing ML with run-time code geation.
In PLDI, 1996.

[19] J. Lim and T. Reps. A system for generating static aretyZor
machine instructions. TR-1622, CS Dept., Univ. of Wisconsi
Madison, WI, Oct. 2007.

[20] J. Lim and T. Reps. A system for generating static aretyZor

13

machine instructions. 1€C, 2008.

[21] K. Malmkjeer. Abstract Interpretation of Partial-Evaluation Algo-
rithms. PhD thesis, Dept. of Comp. and Inf. Sci., Kansas State Univ.
Manhattan, Kansas, 1993.

[22] J. Morris. A general axiom of assignment. In M. Broy and38hmidt,
editors, Theor. Found. of Program. Methodology, Proc. of the 1981
Marktoberdorf Summer Schoglages 25-34. Reidel, 1982.

[23] A. Mycroft and N. Jones. A relational framework for atast
interpretation. IrPrograms as Data Object4985.

[24] F. Nielson. Two-level semantics and abstract intagtien. TCS
69:117-242, 1989.

[25] F. Nielson and H. Nielson. Two-Level Functional Languages
Cambridge Univ. Press, 1992.

[26] T. Proebsting and S. Watterson. Filter fusionP@PL, 1996.

[27] D. Schmidt.Denotational SemanticAllyn and Bacon, Inc., Boston,
MA, 1986.

[28] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unittiag
engine for C. INFSE 2005.

[29] A. Stump, C. Barrett, and D. Dill. A decision procedu@ fin
extensional theory of arrays. LiCS, 2001.

[30] P. Wadler. Deforestation: Transforming programs tmilate trees.
TCS 73:231-248, 1990.

[31] Y. Xie and A. Aiken. Saturn: A scalable framework for@rdetection
using Boolean satisfiabiliyTOPLAS 29(3), 2007.

[32] Y. Xie, A. Chou, and D. Engler. ARCHER: Using symboliath-
sensitive analysis to detect memory access error6SE 2003.

2008/7/22

A. Appendix Lemma 5.5.

Lemma5.1. (D) TIT[TIU]e = TTIU[UT)
(1) T[EIEJU] = E[ENU[UT)TL) (2) F[F[e]U]e = Fle]UU])
(2) F[B[BE]U]. = B[BE|(U[U]:)11) (3) FE[FEFEJU] = FE[FE]U[U]e)
O O

Proof. The two lemmas are simultaneously proved using structural Proof. The three lemmas are simultaneously proved using struc-

induction onE£' and BE, as shown below. Let be ({Ii « tural induction orl’, ¢, andF’, as shown below. LV be ({I; <«

T¢}7 {Fj — FEJ}) :
Note that the standard interpretations kifiop, relop, and Ti}, {F; — F&;}), andf be (112)[Fy — FE[FE;]1).

boolopcoincide with those obinop;,, relop,,, andboolop, . Thus, (1) (3) T[T []U]e = T[c]e = constc) = T[cJ(U[U]e)
reasoning steps of the fordinop, (op2;) ~ binop(op2) are
shorthands for reasoning about each case, submap,, () ~ (i1)
binop(+), etc. IES = ;H?[{ﬂ({]ﬂb = Tg[o?kuplciUII}]L :TTY[L(UTl)I]]L
(1) () TIELVY: = T[eomsto)]s = Tele ook T o ey 1 k)
= constc) = E[)(U[U])T1) = TUT)I]e
(@) _ ii7) T[T[Tx op2, T2]U]e
hs : T[E[I]U]. = TliookupU I]e = T[(U11)1] (i) - T[[[[T[[[Tﬁ]%* Opzf TH[TQ]] UL

ths « ELI(UU])11)
= EMIN(V[L — TIHUT) L], (¢12)[Fy — FE[FE;]e)
— Jookup((V[T — TLUTV) L], (12)[F, — FE[FE,)T
— TIUT)I]

= T[T [T1]U]e binop, (0p2,) T[T [T>]U]:
— //byind. via(1)

T[Th](U[U]e) binop, (op2,) T [T2](U[U]e)
= T[T op2, T2 (U[U]e)

(iv) Tg?ﬂ[[it((a(_? Tﬂl,TTz)[[}]U}]]]L L]

£ . ~ = T[ite(F[e)U, T[T]U, T[T2]U)]e

= TIELEU]: b, (o62,) TELE:1U]: — cond. (FIZ IV, TIT (U} TETII01)
e inop(op? E[ESl (@I L) - f/ [[fy [[sion}]g J\]/LI;UT) [[;1 [[(;F(12]])U}]L CT[T[T2)U]e

_ £[E op2 B] (U[UT) 1) FlelUUT) ? T[T WU[U]e) : T[T]U[U]e)

= Flp ? Ty : To]J(U[U]e)

(iii) T[E[E10p2 E2]U]e
= T[E[Er]U op2, E[E=]U]e

(iv) T[E[BE? E1 : E2]JU]
= T[ite(B[BE]U, E[E1|U, E[E]U)]e

— cond, (F[B[BE|U]e. T[E[E:]UTe, TIE[E]U]L) (v) TIZ[FE(DUT.

- FIBBEUL T 0] T AL A -
= //byind. via(1) an _ ind. vi
BIBE](U[U]1)11) ;%‘EHEF(E]])}(]L(Q[,[[{%)L))(T[[T](u[[U]]L)) //byind. via(3)

?E[EA]((UIUT)T) = E[E](U[UT)TL)
= E[BE? Ey : E)(U[U])11)

@) (i) FIF[TUe = FIT o = T = F[T J@U[U]e)
(1) FIFF Ul = FIF I = F = FI[F J@[U]e)

(iid) F[F[T1 rop; To]U]e

(2) (i) FIB[TIU] = F[T]e = T = BIT](U[U])11)

(i7) FB[FIUTe = F[F]e = F = BIFJ(U[U])11)

(ii1) F[B[Ex rop E2]U]: = F[T[T1]U relopy (rop,) T[T2]U]e
= F[E[EA]U rop,, E[EL]UTe = T[T[1:]U]. relop, (rop,) T[T [T2]U]«
= T[E[E1]U]e relop,, (rop;) T[E[E2]U]. = // by ind. via(1)
= //byind. via(1) T[T1](UU]e) relop,, (ropy,) T[T2](U[U]e)
E[EA]((U[U])11) relop(rop) € [E](U[U]:)11) = F[T1 rop,, To]U[U]¢)
= B[E1 rop E2](U[U]e)11) B
_ _ _ () FIF[[=]er]U]e
(iv) F[B[-BE]U]: = F[[=]B[BE:JU]. = ~F[B[BE[U]: = ff«pﬂ]U]]L
= -B[BE(U]U]:)11) // by ind. via(2) = ~F[F[e1]U]e
= B[-BEJ(U[U])11) = —F[p1J(U[U]) // by ind. via(2)
(v) F[B[BE: bop B&U]: = P dwiv]y
= F[B[BE:]U bop, B[BE]JU]. (v) F[F[p1 bop, 2]UTe
= ﬁ[[ls[[slfjlﬂ(f_]]t(g)oo'o&(bc’pﬁ FIB[BE]U]: = F[F[e1]U boolop, (bop,) Flw2]U]:
= y ind. via = F[FlolUTe FlooUTe
B[BE:] (U]U]:)11) booloptbop) B[BE2](U[U]e)11) = /f/ﬂgﬂ‘iﬁ](}]l[{,]i]ag‘;o'omb"pL) FiZlealU]

= B[BE: bop BE](U[U])T1) FLer)U[U]e) boolop, (bop,) Fle=]U[U]e)

O = F[1 bop,, @2]U[U]e)

14 2008/7/22

3) (&)
lhs = FE[FE[F|U] = FElookupldU FJ. = FE[(U12)F]e
rhs = FE[F](U[U]e)
= FEFI(DL — T[T3]d], f)
= lookupFuncld((¢.11)[L; — T[T3]e), f) F
= FEN(UT2)F].

(it) FE[FE[FE[Th — To]JUNe
= FE(FEFEU)TITU — T[TV
= FE(FEFE)T T[T JUTe — T[T [T2]U]]
= // byind. via(1)

FEFEJUU)T [T]U[U]) — T[T2]U[U])]
= FE[FE [Ty — To)J(U[U]e)

15 2008/7/22

