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Abstract
In recent years, the use of symbolic analysis in systems for testing
and verifying programs has experienced a resurgence. By “sym-
bolic program analysis”, we mean logic-based techniques toana-
lyze state changes along individual program paths. The three ba-
sic primitives used in symbolic analysis are functions thatperform
forward symbolic evaluation, weakest precondition, andsymbolic
compositionby manipulating formulas.

The conventional approach to implementing systems that use
symbolic analysis is to write each of the three symbolic-analysis
functions by hand for the programming language of interest.In
this paper, we develop a method to create implementations ofthese
primitives so that they can be made available easily for multiple
programming languages—particularly for multiple machine-code
instruction sets. In particular, we have created a system inwhich,
for the cost of writing justonespecification—of the semantics of
the programming language of interest, in the form of an interpreter
expressed in a functional language—one obtains automatically-
generated implementations of allthree symbolic-analysis func-
tions. We show that this can be carried out even for programming
languages with pointers, aliasing, dereferencing, and address arith-
metic. The technique has been implemented, and used to automat-
ically generate symbolic-analysis primitives for multiple machine-
code instruction sets.

1. Introduction
This paper presents new ways to create implementations of the ba-
sic primitives used in certain kinds of verification and testing tools
that are based on symbolic program analysis. By “symbolic pro-
gram analysis”, we mean logic-based techniques to analyze state
changes along individual program paths.1 The basic primitives used
in symbolic analysis are functions that performforward symbolic
evaluation, weakest precondition, and symbolic compositionby
manipulating formulas.

The conventional approach to implementing systems that use
symbolic analysis is to write each of the three symbolic-analysis
functions by hand for the programming language of interest (which

1 This is in contrast to the situation addressed by many abstract-
interpretation/dataflow-analysis techniques, which usually consider the
problem of analyzing the effects of acollection of program paths—e.g.,
to identify program invariants.
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we call thesubjectlanguage).2 Our goal is to develop a method to
create implementations of symbolic-analysis primitives easily, so
that they can be made available for different subject languages—
particularly for different machine-code instruction sets. Such in-
struction sets typically have (i) several hundred instructions, (ii) a
variety of architecture-specific features that are incompatible with
other architectures, and (iii) the ability to perform address arith-
metic and dereferencing of addresses, which means that memory
states can have complicated aliasing patterns. Moreover, most in-
struction sets have evolved over time, so that each instruction-set
family has a bewildering number of variants.3 Consequently, our
goal is togenerateimplementations of such primitives automat-
ically from a specification of the subject language’s concrete se-
mantics.

Semantic reinterpretation. Our approach is based on factoring
the concrete semantics of a language into two parts: (i) aclient
specification, and (ii) a semanticcore. The interface to the core
consists of certain base types, function types, and operators (some-
times called asemantic algebra[27]), and the client is expressed
in terms of this interface. This organization permits the core to be
reinterpretedto produce an alternative semantics for the subject
language.

Semantic reinterpretation for abstract interpretation. The idea
of exploiting such a factoring comes from the field of abstract in-
terpretation [7], where factoring-plus-reinterpretation has been pro-
posed as a convenient tool for formulating abstract interpretations
and proving them to be sound [23, 24, 21]. In particular, soundness
of theentireabstract semantics can be established via purelylocal
soundness arguments for each of the reinterpreted operators. (An
example of semantic reinterpretation for abstract interpretation is
presented in§2.)

Semantic reinterpretation for symbolic analysis. This paper
presents a new application for semantic reinterpretation,namely,
to create implementations of the basic primitives used in symbolic
program analysis.

In recent years, the use of symbolic analysis in systems for test-
ing and verifying programs has experienced a resurgence because
of the power that they provide in exploring a program’s statespace.

2 Semantic reinterpretation is a program-generation technique, and thus
we follow the terminology of the partial-evaluation literature [16], where
the program on which the partial evaluator operates is called the subject
program. (§3.2 and§8 discuss the connections between our approach and
partial evaluation.)

In logic and linguistics, the programming language would becalled the
“object language”. We avoid that terminology because of possible confu-
sion in §7, which discusses the application of semantic reinterpretation to
machine-language programs. In the compiler literature, anobject program
is a machine-code program produced by a compiler.
3 See http://en.wikipedia.org/wiki/{X86,ARM architecture,PowerPC}. For
instance, the article about ARM lists 18 different architectural versions.
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• Model-checking tools, such asSLAM [1] and BLAST [14], as
well as hybrid concrete/symbolic program-exploration tools,
such asDART [10], CUTE [28], YOGI [13], SAGE [11],
BITSCOPE [5], and DASH [2] use forward symbolic evalua-
tion, weakest precondition, or both.

Symbolic evaluation can be used to create path formulas.
When it is possible that a pathπ being analyzed might not
be executable, a call on an SMT solver to determine whether
π’s path formula is satisfiable can be used to decide whether
π is executable, and if so, to generate inputs that drive the
program downπ. Weakest precondition can be used to create
new predicates that split part of a program’s state space [1,13,
2].

• Bug-finding tools, such asARCHER [32] and SATURN [31],
as well as commercial bug-finding products, such as Coverity’s
PREVENT [8] and GrammaTech’sCODESONAR [12] use sym-
bolic composition.

Formulas are used to summarize a portion of the behavior of a
procedure. Suppose that procedureP callsQ at call-sitec, and
thatr is the site inP to which control returns after the call atc.
Whenc is encountered during the exploration ofP , such tools
perform the symbolic composition of the formula that expresses
the behavior along the path[entryP , . . . , c] explored inP with
the formula that captures the behavior ofQ to obtain a formula
that expresses the behavior along the path[entryP , . . . , r].

The aforementioned systems apply symbolic analysis to programs
written in languages with pointers, aliasing, dereferencing, and ad-
dress arithmetic. This paper demonstrates that the reinterpretation
technique provides a way to create symbolic-analysis primitives for
such languages.

As mentioned earlier, our motivation is to be able to cre-
ate implementations of symbolic-analysis primitives for multiple
machine-code instruction sets(including multiple variants of a
given machine-code instruction set). However, our work is also
useful for creating tools to analyzehigh-level-language programs,
starting from source code. Moreover, most of the principlesthat
we make use of can be explained using two variants of a simple
high-level language: PL1, defined in§4, and PL2, defined in§6.
For this reason, the paper is couched in terms of high-level lan-
guages up until§7, which discusses an idealized machine-code
language, MC. This has the benefit of making the paper accessi-
ble to a wider number of readers, but might cause readers who are
mainly familiar with analysis techniques for C, C++, C#, or Java
to under-appreciate the benefits that one obtains from our approach
when creating machine-code-analysis tools.

Three for the price of one! In §8, we describe how, using
binding-time analysis [16] and a two-level intermediate language
[25], the reinterpretation technique can be used to generate im-
plementations of symbolic-analysis primitives automatically, using
a meta-system that generates program-analysis componentsfrom
a specification of the subject language’s semantics. In particular,
we have created a system in which, for the cost of writing just
onespecification—of the semantics of the programming language
of interest, in the form of an interpreter expressed in a functional
language—one obtains automatically-generated implementations
of all threesymbolic-analysis functions. We show that this can be
carried out even for programming languages with pointers, alias-
ing, dereferencing, and address arithmetic.

This has been achieved using theTSL system [20], and the im-
plementation has been used to generate symbolic-analysis primi-
tives for multiple machine-code instruction sets.TSL

4 consists of

4TSL stands for “TransformerSpecificationLanguage”.

(i) a language for specifying the concrete semantics of a machine-
code instruction set (i.e., a collection of concrete-statetransform-
ers), (ii) a mechanism to create implementations of different ab-
stract interpretations easily by reinterpreting theTSL base types,
function types, and operators, and (iii) a run-time system to sup-
port the (re-)interpretation and analysis of executables written in
that instruction set.

Moreover, withTSL each reinterpretation is defined at themeta-
level, by reinterpreting the collection ofTSL base types, function
types, and operators. When a reinterpretation is performedin this
way, it is independent of any given subject language. Consequently,
with our implementation, all three of the symbolic-analysis prim-
itives can be generated automatically foreveryinstruction set for
which one has a TSL specification.

The contributions of the paper can be summarized as follows:

• From the conceptual standpoint, we present a new application
for semantic reinterpretation. In particular, the paper shows how
semantic reinterpretation can be applied to create analysis func-
tions that compute formulas for forward symbolic evaluation,
weakest precondition, and symbolic composition (§5.1, §5.2,
and§5.3, respectively).

• From the systems-building perspective, we show that this ob-
servation has algorithmic content: the paper describes howwe
created a meta-system that, given an interpreter that specifies a
subject language’s concrete semantics, uses binding-timeanaly-
sis, a two-level intermediate language, and semantic reinterpre-
tation to automatically generate implementations of all three of
symbolic-analysis primitives, foreveryinstruction set for which
one has a TSL specification (§8).

• We demonstrate that semantic reinterpretation can handle lan-
guages with pointers, aliasing, dereferencing, and address arith-
metic (§3, §6, and§7). In particular, in§3 and§6.4.1, we show
how reinterpretation can automatically generate a weakest-
precondition primitive that implements Morris’s rule of sub-
stitution for a language with pointer variables [22].

• §6.4.2 shows how the semantic-reinterpretation approach can
also generate a weakest-precondition primitive that implements
the pure substitution-based approach of Cartwright and Oppen
[6] (again for a language with pointer variables). This provides
insight on how Morris’s rule and Cartwright and Oppen’s rule
are related: both are based on substitution; the differenceis
merely the degree of algebraic simplification that is performed.

Organization. §2 presents the basic principles of semantic rein-
terpretation by means of an example in which reinterpretation is
used to create abstract transformers for abstract interpretation. §3
provides an overview of our techniques and the results obtained
with the symbolic-analysis primitives that are created by seman-
tic reinterpretation.§4 defines the logic that we use, as well as the
programming languages PL1. §5 discusses how to use reinterpreta-
tion to obtain the primitives for forward symbolic evaluation, weak-
est precondition, and symbolic composition.§6 defines PL2, which
includes pointer variables and dereferencing, and shows how the
weakest-precondition operation that is obtained automatically via
semantic reinterpretation implements Morris’s rule of substitution.
§7 introduces a simplified machine-code language, which includes
address arithmetic and dereferencing, and shows that the reinter-
pretation technique applies at the machine-code level, as well. §8
describes how these ideas are implemented using theTSL system
[20]. §9 discusses related work. (Proofs of two lemmas appear in
App. A.)
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s1 : x = x⊕ y;
s2 : y = x⊕ y;
s3 : x = x⊕ y;

t1 : ∗px = ∗px⊕ ∗py;
t2 : ∗py = ∗px⊕ ∗py;
t3 : ∗px = ∗px⊕ ∗py;

(a) (b)

Figure 1. (a) Code fragment that swaps twoints; (b) (buggy) code
fragment that swaps twoints using pointers.

2. Semantic Reinterpretation for Abstract
Interpretation

To illustrate factoring-plus-reinterpretation in the context of ab-
stract interpretation, and as a warm-up exercise for the rest of the
paper, this section presents the basic principle of semantic reinter-
pretation using a simple example in which, both the concretese-
mantics, for a language of assignment statements, and an abstract
sign-analysis semantics are defined via semantic reinterpretation.

Example 2.1. [Adapted from [21].] Consider the following frag-
ment of a denotational semantics, which defines the meaning of
assignment statements over variables that hold signed 32-bit int
values (where⊕ denotes exclusive-or):

I ∈ Id E ∈ Expr ::= I | E1 ⊕ E2 | . . .
S ∈ Stmt::= I = E; σ ∈ State= Id→ Int32

E : Expr→ State→ Int32
EJIKσ = σI EJE1 ⊕ E2Kσ = EJE1Kσ ⊕ EJE2Kσ

I : Stmt→ State→ State
IJI = E;Kσ = σ[I 7→ EJEKσ]

This specification can be factored into client and core specifications
by introducing a domainVal, as well as operatorsxor, lookup, and
store. The client specification is defined by

xor : Val→ Val→ Val
lookup: State→ Id→ Val
store: State→ Id→ Val→ State

E : Expr→ State→ Val
EJIKσ = lookupσ I EJE1 ⊕ E2Kσ = EJE1Kσ xor EJE2Kσ

I : Stmt→ State→ State
IJI = E;Kσ = storeσ I EJEKσ
For the concrete (or “standard”) semantics, the semantic core is
defined by

v ∈ Valstd = Int32
Statestd = Id→ Val

xorstd = λv1.λv2.v1 ⊕ v2
lookupstd = λσ.λI.σI

storestd = λσ.λI.λv.σ[I 7→ v]

Different abstract interpretations can be defined by using the same
client semantics, but giving a different interpretation ofthe base
types, function types, and operators of the core. For example, for
sign analysis, the semantic core is reinterpreted as follows:

v ∈ Valabs = {neg, zero, pos}> Stateabs = Id→ Valabs

xorabs = λv1.λv2.

v2
neg zero pos >

neg > neg neg >
v1 zero neg zero pos >

pos neg pos > >
> > > > >

lookupabs = λσ.λI.σI
storeabs = λσ.λI.λv.σ[I 7→ v]

For instance, for the code fragment shown in Fig. 1, which
swaps twoints, sign-analysis reinterpretation creates abstract

transformers that, given the initial abstract stateσ0 = {x 7→
neg, y 7→ pos}, produce the following abstract states:5

σ0 := {x 7→ neg, y 7→ pos}
σ1 := IJs1 : x = x⊕ y;Kσ0 = storeabsσ0 x (neg xorabs pos)

= {x 7→ neg, y 7→ pos}
σ2 := IJs2 : y = x⊕ y;Kσ1 = storeabsσ1 y (neg xorabs pos)

= {x 7→ neg, y 7→ neg}
σ3 := IJs3 : x = x⊕ y;Kσ2 = storeabsσ2 x (neg xorabs neg)

= {x 7→ >, y 7→ neg}

2

3. Overview
This section presents intuition about some of the elements that are
used in our work, and provides an overview of how it is possible
to automatically generate the three symbolic-analysis primitives.
§3.1 defines a stripped-down version of a logicL that is sufficient
for the discussion in this section. (The full logic is definedin
§4.1.) §3.2 presents examples of semantic reinterpretation applied
to forward symbolic evaluation;§3.3 discusses issues relevant to
weakest precondition and symbolic composition. We use the two
swap-code fragments shown in Fig. 1 as a running example.

Because tools that check path feasibility (à laSLAM [1]) or per-
form path exploration (à laDART [10], CUTE [28], SAGE [11],
and DASH [2]) only analyze traces, we can concentrate on non-
branching statement sequences. For this reason, our programming-
language definitions contain only assignment statements and state-
ment sequences, and do not have either if-then-else statements or
loop constructs.

3.1 A Simple Logic

The syntax ofL is defined as follows:

I ∈ Id, T ∈ Term, ϕ ∈ Formula
F ∈ FuncId, FE ∈ FuncExpr, U ∈ FOUpdate

T ::= I | T1 ⊕ T2 | FE(T )

ϕ ::= T1 = T2 | ϕ1 && ϕ2 | . . .
FE ::= F | FE1[T1 7→ T2]
U ::= ({Ii ←↩ Ti}, {Fj ←↩ FEj})

Names of the formF ∈ FuncId, possibly with subscripts and/or
primes, are function symbols. We distinguish thexor constructor of
L from the programming-languagexor (§2) by putting the former
in a box. A FuncExpr of the form FE1[T1 7→ T2] denotes a
function-update expression.

An expression of the form({Ii ←↩ Ti}, {Fj ←↩ FEj}) is called
a structure-update expression. The subscriptsi and j implicitly
range over certain index sets, which will be omitted to reduce clut-
ter. To emphasize thatIi andFj refer to next-state quantities, we
sometimes write structure-update expressions with primes: ({I ′i ←↩
Ti}, {F

′

j ←↩ FEj}). (Also, if a component has only a singleton set,
we omit the set brackets.){I ′i ←↩ Ti} specifies the updates to the
constants and{F ′

j ←↩ FEj} specifies the updates to the functions.
Thus, a structure-update expression({I ′i ←↩ Ti}, {F

′

j ←↩ FEj})
can be thought of as a kind of restricted2-vocabulary (i.e.,2-state)

5 For numbers represented in two’s complement notation,

pos xorabs neg= neg xorabs pos= neg

because, for all combinations of values represented bypos and neg, the
sign bit of the result is set, which means that the result is guaranteed to be
negative. However,

pos xorabs pos= neg xorabs neg= >

because the concrete result could be either0 or positive, andzerotpos= >.
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formula
∧

i

(I ′i = Ti) ∧
∧

j

(F ′

j = FEj).

We defineUid to be

({I ←↩ I | I ∈ Id}, {F ←↩ F | F ∈ FuncId}).

Example 3.1. In §5, we work with a simple high-level language,
PL1, that only hasint-valued variables. (PL1 is the language
from §2, extended with some additional kinds of expressions.) In
§6, we introduce PL2, which extends PL1 with pointers. Here we
confine ourselves to sketching how the semantics of various kinds
of assignment statements can be expressed inL[PL1] andL[PL2].

• In PL1, a stateσ ∈ Stateis a mapId→ Int32. This is modeled
in L[PL1] by using a constantcx ∈ Id for each PL1 identifier
x. (However, to reduce clutter, we will merely usex for such
constants instead ofcx.)
• In PL2, a stateσ is a pair(η, ρ), where,environmentη ∈ Env=

Id → Loc maps identifiers to their associated locations and
store ρ ∈ Store = Loc → Int32 maps each location to the
value that it holds. (Loc stands forlocations—e.g., memory
addresses—and we identifyLoc with the setInt32 of values.)
This is modeled inL[PL2] by using a function symbolFρ for
storeρ, and a constant symbolcx ∈ Id for each PL2 identifier
x. (Again, to reduce clutter, we will usex for such constants
instead ofcx.) The constants and their values correspond to the
environmentη.

The following table illustrates how the semantics of a few assign-
ment statements are expressed asL[PL1] and L[PL2] structure-
update expressions:

PL1 L[PL1]
x = 17; (x′ ←↩ 17, ∅)
x = y; (x′ ←↩ y, ∅)

PL2 L[PL2]
x = 17; (∅, F ′

ρ ←↩ Fρ[x 7→ 17])
x = y; (∅, F ′

ρ ←↩ Fρ[x 7→ Fρ(y)])
x = ∗q; (∅, F ′

ρ ←↩ Fρ[x 7→ Fρ(Fρ(q))])

2

The semantics ofL is defined in terms of alogical structure,
which gives meaning to theId andFuncId symbols of the logic’s
vocabulary.

ι ∈ LogicalStruct= (Id→ Int32)× (FuncId→ (Int32→ Int32))

We use(ι↑1) and(ι↑2) to denote the first and second components
of ι, respectively.(ι↑1) assigns meanings to constant symbols;
(ι↑2) assigns meanings to function symbols.

T : Term→ LogicalStruct→ Int32
T JIKι = (ι↑1) I

T JT1 ⊕ T2Kι = T JT1Kι⊕ T JT2Kι
T JFE(T )Kι = (FEJFEKι)(T JT1Kι)

F : Formula→ LogicalStruct→ Bool
FJT1 = T2Kι = T JT1Kι = T JT2Kι
FJϕ1 && ϕ2Kι = FJϕ1Kι ∧ FJϕ1Kι

FE : FuncExpr→ LogicalStruct→ (Int32→ Int32)
FEJF Kι = (ι↑2) F

FEJFE1[T1 7→ T2]Kι = (FEJFE1Kι)[(T JT1Kι) 7→ (T JT2Kι)]

U : FOUpdate→ LogicalStruct→ LogicalStruct
UJ({Ii ←↩ Ti}, {Fj ←↩ FEj})Kι

= ((ι↑1)[Ii 7→ T JTiKι], (ι↑2)[Fj 7→ FEJFEjKι])

Uid := ({x←↩ x, y ←↩ y}, ∅)

IJx = x ⊕ y;KUid = ({x←↩ (EJxKUid ⊕ EJyKUid), y ←↩ y}, ∅)

= ({x←↩ (x ⊕ y), y ←↩ y}, ∅)

= U1

IJy = x ⊕ y;KU1 = ({x←↩ (x ⊕ y), y ←↩ (EJxKU1 ⊕ EJyKU1)}, ∅)

= ({x←↩ (x ⊕ y), y ←↩ ((x ⊕ y) ⊕ y)}, ∅)

= ({x←↩ (x ⊕ y), y ←↩ x}, ∅)

= U2

IJx = x ⊕ y;KU2 = ({x←↩ (EJxKU2 ⊕ EJyKU2), y ←↩ x}, ∅)

= ({x←↩ ((x ⊕ y) ⊕ x), y ←↩ x}, ∅)

= ({x←↩ y, y ←↩ x}, ∅)
= U3

Figure 2. Symbolic execution of Fig. 1(a) via semantic reinterpre-
tation, starting with theFOUpdateUid = ({x←↩ x, y ←↩ y}, ∅).

Note how the meaning of a structure-update expression is a func-
tion that maps a pre-state logical structureι to a post-state logical
structure:{Ii ←↩ Ti} specifies the updates to the constants and
{Fj ←↩ FEj} specifies the updates to the functions.

3.2 Symbolic Evaluation via Reinterpretation

A primitive for forward symbolic-evaluation must solve thefollow-
ing problem:

Given the semantic definition of a programming language,
together with a specific programming-language statement
(or instruction)s, create a logical formula that captures the
semantics ofs.

To apply semantic reinterpretation to this problem, we use formu-
las of logicL as a reinterpretation domain for the semantic core of
PL1. The base types and the state type of the semantic core are rein-
terpreted as follows (our convention is to mark each reinterpreted
base type, function type, and operator with an overbar):

Val = Term BVal = Formula State= FOUpdate

The operators used in the factored versions of PL1’s meaning func-
tionsE ,B, andI are reinterpreted over these domains; in particular,
operations that are used in the PL1 semantics—e.g.,xor—are inter-
preted as syntactic constructors ofL[PL1] expressions—e.g.,⊕ .

By extension, this produces reinterpreted meaning functionsE , B,
andI with the types listed below:
Standard Reinterpreted

E : Expr→ State→ Val E : Expr→ State→ Val
: Expr→ FOUpdate→ Term

B: BoolExpr→ State→ BValB: BoolExpr→ State→ BVal
: BoolExpr→ FOUpdate→ Formula

I: Stmt→ State→ State I: Stmt→ State→ State
: Stmt→ FOUpdate→ FOUpdate

The reinterpreted functionI translates a statements of PL1 to a
phrase in logicL[PL1].

Example 3.2. The steps of symbolic execution of Fig. 1(a) via se-
mantic reinterpretation, starting with theFOUpdateUid = ({x ←↩
x, y ←↩ y}, ∅) are shown in Fig. 2. The finalFOUpdateU3 can be
considered to be the 2-vocabulary formula

(x′ = y) ∧ (y′ = x).

This expresses a state change in which the values of program
variablesx andy are swapped.2

Algebraic simplification of the resulting terms and formulas
also plays an important role. The simplification techniquesthat we

4 2008/7/22



use are similar to ones used by others, such as the preprocessing
steps used in decision procedures (e.g., the ite-lifting and read-over-
write transformations for operations on functions [29, 9, 17]).

We assume that the reinterpreted⊕ performs bit-vector sim-
plification according to the algebraic laws forxor. For example,
wheny is updated inU1 by y ←↩ ((x ⊕ y) ⊕ y) (see Fig. 2),
this is simplified toy ←↩ x. We assume that the other bit-vector,
relational, and Boolean constructors of the logic behave similarly.

Relationship to partial evaluation. In general, the semantic def-
inition of an imperative programming language is a meaning func-
tion I with typeI : Stmt×State→ State. Given our goal, namely,

Given the semantic definition of a programming language,
I : Stmt× State → State, together with a specific
programming-language statement (or instruction)s ∈ Stmt,
create a logical formula that captures the semantics ofs.

it is not surprising that partial-evaluation techniques come into play.
In essence, we wish to partially evaluateI with respect toStmt

s, while at the same time translating toL. Semantic reinterpretation
permits us to do this: LetUs be theFOUpdateIJsKUid. ThenUs is
the partial evaluation ofI with respect tos, translated to logic.

We show in §5.1 that Us has the desired semantics. Note
that to model PL1 programs inL[PL1], we do not require any
function symbols. Thus, a PL1 stateσ can be identified with
the LogicalStruct (σ, ∅).6 In §5.1, we show that for allι ∈
LogicalStruct, evaluatingUs is equivalent to runningI on s—i.e.,
((UJUsKι)↑1) = IJsK(ι↑1) (see Cor. 5.3).

In our implementation, discussed in§8, theTSL system is sup-
plied with a TSL program for the meaning functionI, and the
way that it performs semantic reinterpretation is to createa kind
of generating extension [16]I-gen for I.7 The full explanation is
complicated by the number of language levels involved when the
partial-evaluation machinery is included in the discussion. For this
reason, we have chosen to delay the discussion of generatingexten-
sions and partial-evaluation machinery until§8, and instead to base
the discussion on the simpler principle of semantic reinterpretation.
This has benefits and drawbacks:

• The benefit is that the explanation is simpler, and could alsobe
useful for direct hand implementation when a meta-system such
asTSL is not available.

• The drawback is that in some of the sections before§8 it may
appear that many steps perform rather trivial transliteration of
expressions from programming language PLi into expressions
of the corresponding logicL[PLi]. In part, this is an artifact
of trying to present the method in an easy-to-digest manner;in
part, it mimics the behavior of a generating extension: copying
(or transliterating) the appropriate residual expressionis one
of the principles of “writing a generating extension by hand”
[3, 18].

3.3 Other Symbolic-Analysis Operations

For weakest precondition and symbolic composition, we again use
L[·] as a reinterpretation domain; however, there is a trick: in con-

6 Similarly, for PL2 a State σ = (η, ρ) can be identified with the
LogicalStruct(η, [Fρ 7→ ρ]).
7 If p is a two-input program, thenp-gen is any program with the property
that for every input paira andb,

Jp-genK(a) = pa, whereJpaK(b) = JpK(a, b).

Thus,I-gen is a program such that for every statements andStateσ,

JI-genK(s) = Is, whereJIsK(σ) = JIK(s, σ).

trast with what is done to generate symbolic-evaluation primitives,
we use theFOUpdatetype ofL[·] to reinterpret the meaning func-
tionsU ,FE ,F , andT ofL[·] itself! The general scheme is outlined
in the following table:

Meaning Type Replacement Function created
function(s) reinterpreted type
I, E ,B State FOUpdate Symbolic evaluation
F , T LogicalStruct FOUpdate Weakest precondition
U ,FE ,F , T LogicalStruct FOUpdate Symbolic composition

To keep things simple in§3.2, we did not present the semantics
of L[·] in factored form (see§4.1). Thus, the discussion in the rest
of this section merely surveys a few of the results that are obtained
by the techniques presented in later sections.

Weakest precondition. The weakest (liberal) precondition
WLP(s,ϕ) characterizes the set of statesσ such that the execu-
tion of s starting inσ either fails to terminate or results in a state
σ′ such thatϕ(σ′) holds. For a language like PL1, which only has
int-valued variables, theWLP of a postcondition (specified by
formula ϕ) with respect to an assignment statementvar = rhs;
can be expressed as the formula obtained by substitutingrhs for all
(free) occurrences ofvar in ϕ: ϕ[var← rhs].

For the swap-code fragment shown in Fig. 1(a), repeated sub-
stitution and simplification shows that the weakest precondition of
the programswapwith respect to postconditionx = 2 is y = 2.
(This will be derived using semantic reinterpretation in§5.2.)

Complications from pointers. When Hoare logic is extended for
a language with pointer variables, such as PL2, syntactic substi-
tution is no longer adequate for finding weakest-precondition for-
mulas. For instance, suppose that we are interested in finding a
formula for theWLP of postconditionx = 5 with respect to
∗p = e;. This cannot be accomplished merely by performing the
substitution(x = 5)[∗p ← e]: the substitution yields the formula
x = 5, whereas theWLP depends on the execution context in
which∗p = e; is evaluated:

• If p points tox, then theWLP formula should bee = 5.

• If p does not point tox, then theWLP formula should be
x = 5.

In this case, theWLP formula can be expressed informally as

(p = &x) ? (e = 5) : (x = 5).

Example 3.3. In §5.2, such formulas are expressed as shown below
on the right.

Informal Formal

QueryWLP(∗p = e, x = 5) WLP(∗p = e, Fρ(x) = 5)

Result(p = &x) ? (e = 5) : (x = 5)
ite(Fρ(p) = x,

Fρ(e) = 5,
Fρ(x) = 5)

2

For a program fragment that involves multiple pointer variables,
theWLP formula may have to take into account all possible
aliasing combinations. One of the most important features of our
approach is its ability to create correct implementations of Morris’s
rule of substitution [22] automatically—and basically forfree.

Symbolic analysis of machine code.

Example 3.4. Fig. 4(a) shows a source-code fragment; Fig. 4(b)
shows the corresponding assembly code. To simplify the discus-
sion, the source-level variables are used in the assembly code in-
stead of having operations to access variable locations based on
their frame-pointer-relative offsets in the activation record.
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Figure 3. Before and after configurations for the (buggy) code
fragment shown in Fig. 1(b), which attempts to swap twoints
using pointers. Note that the swap is not successful in the second
and third examples.

[1] void foo(int e,
[2] int x, int* p) {
[3] ...
[4] *p = e;
[5] if(x == 5)
[6] goto ERROR;
[7] }

[1] mov eax, p;
[2] mov ecx, e;
[3] mov [eax], ecx;
[4] cmp x, 5;
[5] jz ERROR;
[6] ...
[7] ERROR: ...

(a) (b)

Figure 4. (a) A simple source-code example written in PL2. (b) A
snippet of the assembly code for (a).

The answer to the queryWLP(∗p = e, x = 5) discussed
in Ex. 3.3 describes the largest set of states just before line 4 in
Fig. 4(a) that will cause the branch to ERROR to be taken at line 5.
For the machine-code program shown in Fig. 4(b), the equivalent
query isWLP(mov eax, p; mov ecx, e; mov [eax], ecx, x = 5),
which describes the largest set of states just before line 1 in
Fig. 4(b) that will cause the branch to ERROR to be taken.

Even when starting from the machine-code semantics, seman-
tic reinterpretation will obtain the formula discussed in Ex. 3.3:
ite(Fmem(p) = x, Fmem(e) = 5, Fmem(x) = 5), or, using infor-
mal notation in source-level terms,(p = &x) ? (e = 5) : (x = 5).
2

4. Definitions and Terminology
This section defines quantifier-free first-order bit-vectorlogic and
a simple high-level language, PL1, which only hasint-valued
variables.

4.1 L: A Quantifier-Free Bit-Vector Logic with Finite
Functions

The logic L is quantifier-free first-order bit-vector logic over a
vocabulary of constant symbols (I ∈ Id) and function symbols
(F ∈ FuncId). Strictly speaking, we work with various instantia-
tions ofL, denoted byL[PL1], L[PL2], andL[MC], in which the
vocabularies of function symbols are chosen to describe aspects of
the values used by, and computations performed by, the program-
ming languages PL1, PL2, and MC, respectively.

c ∈ CInt32 = {0, 1, . . .}

op2L ∈ BinOpL = { + , - , ⊕ , . . .}

ropL ∈ RelOpL = { = , 6= , < , > , . . .}

bopL ∈ BoolOpL = { && , || , . . .}

The syntax ofL[·] is defined as follows:

I ∈ Id, T ∈ Term, ϕ ∈ Formula
F ∈ FuncId,FE ∈ FuncExpr, U ∈ FOUpdate

T ::= c | I | T1 op2L T2 | ite(ϕ, T1, T2) | FE(T )

ϕ ::= T | F | T1 ropL T2 | ¬ ϕ1 | ϕ1 bopL ϕ2

FE ::= F | FE1[T1 7→ T2]
U ::= ({Ii ←↩ Ti}, {Fj ←↩ FEj})

The semantics ofL[·] is defined in terms of alogical structure,
which gives meaning to theId andFuncId symbols of the logic’s
vocabulary. (Motivated by the needs of later sections, we retain the
convention from§2 of working with the domainVal rather than
Int32. Similarly, we also useBVal rather thanBool.)

ι ∈ LogicalStruct= (Id→ Val)× (FuncId→ (Val→ Val))

The types of the functions that operate onTerms,Formulas, and
FuncExprs are as follows:

const : CInt32→ Val
condL : BVal→ Val→ Val→ Val

lookupId : LogicalStruct→ Id→ Val
binopL : BinOpL → (Val× Val→ Val)
relopL : RelOpL → (Val× Val→ BVal)

boolopL : BoolOpL → (BVal× BVal→ BVal)
lookupFuncId: LogicalStruct→ FuncId→ (Val→ Val)

access: (Val→ Val)× Val)→ Val
update : ((Val→ Val)× Val× Val)→ (Val→ Val)

The meaning functions are defined as follows:

T : Term→ LogicalStruct→ Val
T JcKι = const(c)
T JIKι = lookupIdι I

T JT1 op2L T2Kι = T JT1Kι binopL(op2L) T JT2Kι
T Jite(ϕ, T1, T2)Kι = condL(FJϕKι, T JT1Kι, T JT2Kι)

T JFE(T1)Kι = access(FEJFEKι, T JT1Kι)

F : Formula→ LogicalStruct→ BVal

FJ T Kι = T

FJ F Kι = F

FJT1 ropL T2Kι = T JT1Kι relopL(ropL) T JT2Kι
FJ ¬ ϕ1Kι = ¬FJϕ1Kι

FJϕ1 bopL ϕ2Kι = FJϕ1Kι boolopL(bopL) FJϕ2Kι
FE : FuncExpr→ LogicalStruct→ (Val→ Val)

FEJF Kι = lookupFuncIdι F
FEJFE1[T1 7→ T2]Kι = update(FEJFE1Kι, T JT1Kι, T JT2Kι)

U : FOUpdate→ LogicalStruct→ LogicalStruct
UJ({Ii ←↩ Ti}, {Fj ←↩ FEj})Kι

= ((ι↑1)[Ii 7→ T JTiKι], (ι↑2)[Fj 7→ FEJFEjKι])
Let U = ({Ii ←↩ Ti}, {Fj ←↩ FEj}). BecauseUJUKι retains
from ι the value of each constantI and functionF for which an
update is not defined explicitly inU (i.e., I ∈ (Id − {Ii}) and
F ∈ (FuncId−{Fj})), as a notational convenience we sometimes
treatU as if it contains an identity update for each such symbol; that
is, we say that(U↑1)I = I for I ∈ (Id−{Ii}), and(U↑2)F = F
for F ∈ (FuncId− {Fj}).

4.2 PL1 : A Simple High-Level Language

PL1 is the language from§2, extended with some additional kinds
of expressions. It is a simple high-level language that onlyhasint-
valued variables. (§6 discusses PL2, which is PL1 extended with
pointers.)

S ∈ Stmt, E ∈ Expr,BE∈ BoolExpr, I ∈ Id, c ∈ CInt32
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c ∈ CInt32 = {0, 1, . . .}
op2∈ BinOp = {+,−,⊕, . . .}
rop ∈ RelOp = {=, 6=, <,>, . . .}

bop∈ BoolOp = {&&, ||, . . .}

E ::= c | I | E1 op2E2 | BE? E1 : E2

BE ::= T | F | E1 ropE2 | ¬BE1 | BE1 bop BE2
S ::= I = E; | S1 S2

The (factored) semantics of PL1 is defined in terms of the
following operators:

const : CInt32→ Val
binop : BinOp→ (Val× Val→ Val)
relop : RelOp→ (Val× Val→ BVal)

boolop : BoolOp→ (BVal× BVal→ BVal)
cond : BVal→ Val→ Val→ Val

lookup : State→ Id→ Val
store : State→ Id→ Val→ State

These appear in the meaning functionsE , B, andI:

E : Expr → State→ Val
EJcKσ = const(c)
EJIKσ = lookupσ I

EJE1 op2E2Kσ = EJE1Kσ binop(op2) EJE2Kσ
EJBE? E1 : E2Kσ = BJBEKσ ? EJE1Kσ : EJE2Kσ

B : BoolExpr→ State→ BVal
BJTKσ = T

BJFKσ = F

BJE1 ropE2Kσ = EJE1Kσ relop(rop) EJE2Kσ
BJ¬BE1Kσ = ¬BJBE1Kσ

BJBE1 bop BE2Kσ = BJBE1Kσ boolop(bop) BJBE2Kσ

I : Stmt→ State→ State
IJI = E;Kσ = storeσ I (EJEKσ)
IJS1 S2Kσ = IJS2K(IJS1Kσ)

5. Symbolic-Analysis Primitives via
Reinterpretation

This section gives technical details of how to use semantic rein-
terpretation to obtain primitives for forward symbolic evaluation
(§5.1), weakest precondition (§5.2), and symbolic composition
(§5.3).

5.1 Symbolic Evaluation via Reinterpretation

The discussion in§3.2 of how semantic reinterpretation can be used
to generate a symbolic-evaluation primitive was already fairly com-
prehensive. No new issues arise in extending the material presented
in §3.2 to handle the full definitions ofL[·] and PL1 from §4, and
thus the extensions will not be discussed here.

Correctness considerations. We now show thatI andI have the
right relationship.

Lemma 5.1(Relationship ofE to E andB toB).

(1) T JEJEKUKι = EJEK((UJUKι)↑1)
(2) FJBJBEKUKι = BJBEK((UJUKι)↑1)

Proof. See App. A.

Theorem 5.2. For all ι ∈ LogicalStruct, evaluatingUJIJsKUKι
is equivalent to runningI on s with an input state obtained from
UJUKι; that is,((UJIJsKUKι)↑1) = IJsK((UJUKι)↑1).

Proof.

(i) ((UJIJI = E;KUKι)↑1)
= ((UJ((U↑1)[I 7→ EJEKU ], (U↑2))Kι)↑1)
= ((((UJUKι)↑1)[I 7→ T JEJEKUKι], ((UJUKι)↑2))↑1)
= ((UJUKι)↑1)[I 7→ EJEK((UJUKι)↑1)] // by Lem. 5.1
= IJI = E;K((UJUKι)↑1)

(ii) ((UJIJS1S2KUKι)↑1)
= ((UJIJS2K(IJS1KU)Kι)↑1)
= IJS2K((UJIJS1KUKι)↑1) // by induction
= IJS2K(IJS1K((UJUKι)↑1)) // by induction
= IJS1S2K((UJUKι)↑1)

Corollary 5.3. For all ι ∈ LogicalStruct,

((UJIJsKUidKι)↑1) = IJsK(ι↑1).

5.2 Weakest Liberal Precondition

In this section, we discuss how to use semantic reinterpretation to
obtain a symbolic-analysis primitive for weakest liberal precondi-
tion. As mentioned in§3.3, one trick is to useL[·] to reinterpret the
meaning functionsU , FE , F , andT of L[·] itself. By this means,
the “alternative meaning” of aTerm/Formula/FuncExpr/FOUpdate
is a (usually different)Term/Formula/FuncExpr/FOUpdate in
which some substitution and/or simplification has taken place.

In §4.1, we wrote the semantics ofL[·] in factored form so that it
would be possible to perform semantic reinterpretation. However,
one small point needs adjustment: in§4.1, the type signatures of
LogicalStruct, lookupFuncId, access, update, andFE include oc-
currences ofVal → Val. This was done to make the types more
intuitive; however, for a reinterpretation scheme to work,an addi-
tional level of factoring is necessary. In particular, the occurrences
of Val→ Val need to be replaced byFVal. The standard semantics
of FVal is Val→ Val (i.e., Int32→ Int32); for creating symbolic-
analysis primitives,FVal is reinterpreted asFuncExpr.

After this change, we use the logicL as a reinterpretation
domain for the semantic core ofL, defined in§4.1. The base types
and the state type of the semantic core are reinterpreted as follows:

Val = Term FVal = FuncExpr
BVal = Formula LogicalStruct= FOUpdate

The operators used in the factored versions ofU , FE , F , and
T , are reinterpreted over these domains. (In particular,binopL,
relopL, and boolopL are interpreted basically as syntacticTerm
andFormula constructors ofL—although, as discussed in§3, the
reinterpreted base-type operations perform simplification, when-
ever possible, when constructingTerms andFormulas.) By exten-
sion, this produces reinterpreted meaning functionsU ,FE ,F , and
T with the types listed in Fig. 5.

WLP via semantic reinterpretation. To compute a formula for
WLP via semantic reinterpretation, we make use of bothF , the
reinterpreted logic semantics, andI, the reinterpreted programming-
language semantics. As we show in Thm. 5.6, we can compute a
weakest-precondition formula forϕ with respect to statements by
performing the following computation:

FJϕK(IJsKUid) (1)

Example 5.1. In Ex. 3.2 and Fig. 2, we derived the following
FOUpdate, which expresses in logicL the semantics of the swap-
code fragmentswapfrom Fig. 1(a):

Uswap := IJswapKUid = ({x′ ←↩ y, y′ ←↩ x}, ∅)
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Standard U : FOUpdate→ LogicalStruct→ LogicalStruct
Reinterpreted U : FOUpdate→ LogicalStruct→ LogicalStruct

: FOUpdate→ FOUpdate→ FOUpdate
Standard FE : FuncExpr→ LogicalStruct→ FVal
ReinterpretedFE : FuncExpr→ LogicalStruct→ FVal

: FuncExpr→ FOUpdate→ FuncExpr
Standard F : Formula→ LogicalStruct→ BVal
Reinterpreted F : Formula→ LogicalStruct→ BVal

: Formula→ FOUpdate→ Formula
Standard T : Term→ LogicalStruct→ Val
Reinterpreted T : Term→ LogicalStruct→ Val

: Term→ FOUpdate→ Term

Figure 5. Types of the reinterpreted meaning functionsU ,FE ,F ,
andT .

Using the method given in Eqn. (1), we obtain the following
Formulaof L forWLP(swap, x = 2):

WLP(swap, x = 2) = FJx = 2KUswap

= T JxKUswap = T J2KUswap

= (lookupIdUswapx) = const(2)
= y = 2

2

Correctness considerations. Although weakest liberal precondi-
tion is sometimes confused with the formula-manipulation opera-
tions used to obtain a formula that expresses it, or with the for-
mula ψ that results, weakest liberal precondition is really a se-
mantic notion—the set of statesdescribedby ψ. For example, for
any statements: var = rhs; in a language like PL1 that only has
int-valued variables, and postcondition formulaϕ, the formula
ϕ[var← rhs] obtained by substitution is not the only formula that
expressesWLP(s, ϕ). In fact, there are an infinity of acceptable
formulas. Thus, to address the correctness of the answers obtained
via Eqn. (1), we characterize what constitutes an acceptable for-
mula as follows:

Definition 5.4 (AcceptableWLP Formula.). ψ is an acceptable
formula forWLP(s, ϕ) iff, for all ι ∈ LogicalStruct,

FJψKι = FJϕK(IJsK(ι↑1), (ι↑2)). (2)

That is,ψ holds in the pre-state structureι exactly whenϕ holds in
the post-state structure(IJsK(ι↑1), (ι↑2)). (Recall that a PL1 state
σ is identified with theLogicalStruct(σ, ∅), and thus(ι↑2) = ∅ in
Eqn. (2).)

It is pleasing to observe that the method for computing a
weakest-precondition formula, Eqn. (1), is nearly identical syn-
tactically to the right-hand side of Eqn. (2), which defines when a
formula is an acceptable formula forWLP(s, ϕ).

Lemma 5.5(Relationship ofF toF , T to T ,FE toFE ).

(1) FJFJϕKUKι = FJϕK(UJUKι)
(2) T JT JT KUKι = T JT K(UJUKι)

(3) FEJFEJFEKUKι = FEJFEK(UJUKι)

Proof. See App. A.

Theorem 5.6. For any Stmts and Formulaϕ,ψ := FJϕK(IJsKUid)
is an acceptable weakest-precondition formula forϕ with respect
to s.

Proof. For all ι ∈ LogicalStruct,

FJψKι = FJFJϕK(IJsKUid)Kι
= FJϕK(UJIJsKUidKι) // by Lem. 5.5
= FJϕK(IJsK(ι↑1), (ι↑2)) // by Cor. 5.3

and therefore, by Defn. 5.4,FJϕK(IJsKUid) is an acceptable
weakest-precondition formula forϕ with respect tos.

5.3 Symbolic Composition

The goal of symbolic composition is to have a method that, given
two symbolic representations of state changes, computes a sym-
bolic representation of their composed state change. In this section,
we describe how to use semantic reinterpretation to create such a
method automatically: each state change is represented in logicL[·]
by anFOUpdate, and the method computes a newFOUpdatethat
represents their composition.

To accomplish this,L[·] is used as a reinterpretation domain,
exactly as in§5.2; the reinterpreted meaning functionsU , FE , F ,
andT have the types listed in Fig. 5. Moreover,U turns out to be
exactly the symbolic-composition function that we seek.
U , the reinterpretation ofU , works as follows:

U : FOUpdate→ FOUpdate→ FOUpdate
UJ({Ii ←↩ Ti}, {Fj ←↩ FEj})KU

= ((U↑1)[Ii 7→ T JTiKU ], (U↑2)[Fj 7→ FEJFEjKU ])

In the remainder of this section, we show thatU performs symbolic
composition ofFOUpdates.

Example 5.2. For the swap-code fragment from Fig. 1(a), we can
demonstrate the ability ofU to perform symbolic composition by
showing that

IJs1; s2; s3KUid = UJIJs3KUidK(IJs1; s2KUid), (3)

where in this caseUid = ({x←↩ x, y ←↩ y}, ∅).
Consider the left-hand side of Eqn. (3). As shown in Ex. 3.2 and

Fig. 2,Uswap := IJswapKUid = ({x←↩ y, y ←↩ x}, ∅).
Now consider the right-hand side of Eqn. (3). LetU1,2 andU3

be defined as follows:

U1,2 = IJs1; s2KUid = ({x←↩ x ⊕ y, y ←↩ x}, ∅)

U3 = IJs3KUid = ({x←↩ x ⊕ y, y ←↩ y}, ∅).

We want to compute

UJU3KU1,2 = UJ({x←↩ x ⊕ y, y ←↩ y}, ∅)KU1,2

= ((U1,2↑1)[x 7→ T Jx ⊕ yKU1,2, y 7→ T JyKU1,2], ∅)

= ((U1,2↑1)[x 7→ ((x ⊕ y) ⊕ x), y 7→ x], ∅)
= ((U1,2↑1)[x 7→ y, y 7→ x], ∅)
= ({x←↩ y, y ←↩ x}, ∅)
= Uswap

Therefore,IJs1; s2; s3KUid = UJU3KU1,2. 2

At the semantic level, the ability ofU to perform symbolic
composition is captured by the following theorem:

Theorem 5.7. For all U1, U2 ∈ FOUpdate andι ∈ LogicalStruct,
UJUJU2KU1Kι = UJU2K(UJU1Kι).
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Proof. Let U2 = ({Ii ←↩ Ti}, {Fj ←↩ FEj}). Let Ik andFm

range overId andFuncId, respectively.

UJUJU2KU1Kι
= UJ((U1↑1)[Ii 7→ T JTiKU1], (U1↑2)[Fj 7→ FEJFEjKU1])Kι
= U

s(

{Ik 7→ ((U1↑1)[Ii 7→ T JTiKU1])Ik},
{Fm 7→ ((U1↑2)[Fj 7→ FEJFEjKU1])Fm}

){
ι

= ((ι↑1)[Ik 7→ T J((U1↑1)[Ii 7→ T JTiKU1])IkKι],
(ι↑2)[Fm 7→ FEJ((U2↑1)[Fj 7→ FEJFEjKU1])FmKι])

= ((ι↑1)[Ik 7→ T J(U1↑1)IkKι][Ii 7→ T JT JTiKU1Kι],
(ι↑2)[Fm 7→ FEJ(U1↑2)FmKι][Fj 7→ FEJFEJFEjKU1]Kι)

= // by Lem. 5.5
((ι↑1)[Ik 7→ T J(U1↑1)IkKι][Ii 7→ T JTiK(UJU1Kι)],
(ι↑2)[Fm 7→ FEJ(U1↑2)FmKι][Fj 7→ FEJFEjK(UJU1Kι)])

= (((UJU1Kι)↑1)[Ii 7→ T JTiK(UJU1Kι)],
((UJU1Kι)↑2)[Fj 7→ FEJFEjK(UJU1Kι)])

= UJU2K(UJU1Kι)

6. Reinterpretation for a Language with Pointers
In this section, we extend our subject language to have pointer vari-
ables, and show how reinterpretation of the factored semantics pro-
vides an easy way to deal with aliasing issues that arise withsuch
a language. In particular,§6.4.1 and§6.4.2 discuss two different
reinterpretations, one that automatically carries out theactions of
Morris’s rule of substitution [22] (see Ex. 6.2), and one that au-
tomatically carries out those of Cartwright and Oppen’s rule (see
Ex. 6.3).

6.1 PL2 : PL1 Extended with Pointers

PL2 is PL1 extended with an address-generation expression, a
dereferencing expression, and an indirect-assignment statement.
The syntax of PL2 is defined below, with changes from PL1 high-
lighted in bold:

S ∈ Stmt, E ∈ Expr,BE∈ BoolExpr, I ∈ Id, c ∈ CInt32

c ::= 0 | 1 | ...
E ::= c | I | &I | ∗E | E1 op2E2 | BE? E1 : E2

BE ::= T | F | E1 ropE2 | ¬BE1 | BE1 bop BE2
S ::= I = E; | ∗I = E; | S1 S2

6.2 Semantics of PL2

The semantics for PL2 is given in Fig. 6. The semantic domain
Loc stands forlocations(or memory addresses). We identifyLoc
with the setVal of values. (Note that we do not worry about
type-checking issues in this paper, and locations can be freely
manipulated as values.) In contrast with PL1, where a stateσ ∈
Stateis a mapId → Val, σ is now a pair(η, ρ), where, in the
concrete semantics,environmentη ∈ Env = Id → Loc maps
identifiers to their associated locations andstore ρ ∈ Store =
Loc→ Val maps each location to the value that it holds.

The standard interpretation of the operators used in the PL2

semantics is as follows:

BValstd = BVal
Valstd = Int32
Locstd = Int32

η ∈ Envstd = Id→ Locstd

ρ ∈ Storestd = Locstd→ Valstd

lookupStatestd = λ(η, ρ).λI.ρ(η(I))
lookupEnvstd = λ(η, ρ).λI.η(I)

lookupStorestd = λ(η, ρ).λl.ρ(l)
updateStorestd = λ(η, ρ).λl.λv.(η, ρ[l 7→ v])

v ∈ Val, l ∈ Loc = Val, σ ∈ State= Store× Env

const : CInt32→ Val
lookupState : State→ Id→ Val
lookupEnv : State→ Id→ Loc

lookupStore : State→ Loc→ Val
updateStore : State→ Loc→ Val→ State

E : Expr → State→ Val
EJcKσ = const(c)
EJIKσ = lookupStateσ I
EJ&IKσ = lookupEnvσ I
EJ∗EKσ = lookupStoreσ (EJEKσ)

EJE1 op2E2Kσ = EJE1Kσ binop(op2) EJE2Kσ
EJBE? E1 : E2Kσ = BJBEKσ ? EJE1Kσ : EJE2Kσ

B : BoolExpr→ State→ BVal
BJTKσ = T

BJFKσ = F

BJE1 rop E2Kσ = EJE1Kσ relop(rop) EJE2Kσ
BJ¬BE1Kσ = ¬BJBE1Kσ

BJBE1 bop BE2Kσ = BJBE1Kσ boolop(bop) BJBE2Kσ

I : Stmt→ State→ State
IJI = E;Kσ = updateStoreσ (lookupEnvσ I) (EJEKσ)
IJ∗I = E;Kσ = updateStoreσ (EJIKσ) (EJEKσ)
IJS1 S2Kσ = IJS2K(IJS1Kσ)

Figure 6. The factored semantics of PL2.

6.3 Reinterpretation and Symbolic Execution for PL2

The reinterpretation used for symbolic execution is similar to the
one given in§3.2. Some of the reinterpreted operations from the
core semantics of PL2 are as follows:

lookupState : FOUpdate→ Id→ Term
lookupState= λU.λI.((U↑2)Fρ)(I)
updateStore : FOUpdate→ Term→ Term→ FOUpdate
updateStore

= λU.λT1.λT2.

(

(U↑1),
(U↑2)[Fρ 7→ update((U↑2)Fρ, T1, T2)]

)

Example 6.1. The steps of symbolic execution of Fig. 1(b) via
semantic reinterpretation, starting with anFOUpdatethat corre-
sponds to the third configuration of Fig. 3 are shown in Fig. 7.The
FOUpdateshown in the last line of Fig. 7 can be considered to be
the 2-vocabulary formulaF ′

ρ = Fρ[0 7→ v][px 7→ py][py 7→ v].
This expresses a state change that does not usually perform asuc-
cessful swap.2

Thm. 5.7 holds for PL2, although it is now stated as follows:

Theorem 6.1. For all U1, U2 ∈ FOUpdate andι ∈ LogicalStruct,
UJIJsKUKι = IJsK(UJUKι).

6.4 Reinterpretation and WLP for PL 2

The semantic-reinterpretation approach provides insighton recon-
ciling two different approaches that have been developed for ex-
pressing the weakest precondition of a formula with respectto a
state transformation. On the one hand, one has Morris’s ruleof
substitution [22], which generalizes Hoare’s axiom of assignment
[15] to a language with pointer variables by explicitly consider-
ing possible aliasing combinations. On the other hand, one has the
approach of Cartwright and Oppen [6], the essence of which isto
use a referentially transparent meta-language; this permits pre-state
properties to be expressed usingonly formula substitution, even in
the presence of aliasing.

Although these approaches do not seem to be connected, the
semantic-reinterpretation approach provides an explanation of
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IJ∗px = ∗px ⊕ ∗py;K(∅, Fρ ←↩ Fρ[0 7→ v][px 7→ py][py 7→ py]) = (∅, Fρ ←↩ Fρ[0 7→ v][px 7→ py][py 7→ (Fρ(px) ⊕ Fρ(py))])

= (∅, Fρ ←↩ Fρ[0 7→ v][px 7→ py][py 7→ (py ⊕ py)])
= (∅, Fρ ←↩ Fρ[0 7→ v][px 7→ py][py 7→ 0])

IJ∗py = ∗px ⊕ ∗py;K(∅, Fρ ←↩ Fρ[0 7→ v][px 7→ py][py 7→ 0]) = (∅, Fρ ←↩ Fρ[0 7→ (Fρ(py) ⊕ Fρ(0))][px 7→ py][py 7→ 0])

= (∅, Fρ ←↩ Fρ[0 7→ (0 ⊕ v)][px 7→ py][py 7→ 0])

= (∅, Fρ ←↩ Fρ[0 7→ v][px 7→ py][py 7→ 0])

IJ∗px = ∗px ⊕ ∗py;K(∅, Fρ ←↩ Fρ[0 7→ v][px 7→ py][py 7→ 0]) = (∅, Fρ ←↩ Fρ[0 7→ v][px 7→ py][py 7→ (Fρ(py) ⊕ Fρ(0))])

= (∅, Fρ ←↩ Fρ[0 7→ v][px 7→ py][py 7→ (0 ⊕ v)])

= (∅, Fρ ←↩ Fρ[0 7→ v][px 7→ py][py 7→ v])

Figure 7. Symbolic execution of Fig. 1(b) via semantic reinterpretation, starting with anFOUpdatethat corresponds to the third configura-
tion in Fig. 3.

how they are related. In particular, the semantic-reinterpretation
approach can actually achieveboth methods—the difference is
merely the degree of algebraic simplification that is performed.

It may not be obvious why this is so, particularly because we
have never introduced an explicit operation of substitution for our
logic. However,a symbolic substitution operation is produced as
a by-product of reinterpretation. In particular, in the standard se-
mantics forL, the return types of meaning functionT and helper
function lookupId of the semantic core are bothVal. However,
in the reinterpreted semantics, aVal is a Term—i.e., something
symbolic—which is used in subsequent computations. Thus, when
ι ∈ LogicalStructis reinterpreted asU ∈ FOUpdate, the reinter-
pretation of formulaϕ via FJϕKU substitutesTerms found inU
into ϕ: FJϕKU calls T JT KU , which may calllookupIdU I ; the
latter would return aTermfetched fromU , which would be a sub-
term of the answer returned byT JT KU , which in turn would be a
subterm of the answer returned byFJϕKU .

To understand how pointers, aliasing, and dereferencing are
handled during theWLP operation, the key reinterpretations to
concentrate on are the ones for the operations of the semantic core
of L[PL2] that manipulateFVals (i.e., arguments of typeVal →
Val)—in particular,accessandupdate.

We wantaccessand update to enjoy the following semantic
properties:

T Jaccess(FE0, T0)Kι = (FEJFE0Kι)(T JT0Kι)
T Jupdate(FE0, T0, T1)Kι = (FEJFE0Kι)[T JT0Kι 7→ T JT1Kι]

Note that these properties require evaluating anaccessor update
expression with respect to an arbitraryι ∈ LogicalStruct. As dis-
cussed in§3, it can be desirable for reinterpreted base-type opera-
tions to perform simplifications whenever possible, when they con-
structTerms,Formulas,FuncExprs, andFOUpdates. However, be-
cause the value ofι is unknown,accessandupdateoperate in an
uncertain environment. As shown below, the essential difference
between Morris’s rule and Cartwright and Oppen’s rule is thede-
gree of algebraic simplification attempted in the absence ofinfor-
mation aboutι.
§6.4.1 shows how reinterpretation automatically generatesa

weakest-precondition primitive that implements Morris’srule;
§6.4.2 shows how the semantic-reinterpretation approach can
also generate a weakest-precondition primitive that implements
Cartwright and Oppen’s rule. Thm. 5.6 holds for PL2 with both
WLP primitives, although the proofs are more involved than the
one given for PL1 in §5.2.

6.4.1 Reinterpretation and WLPà la Morris

To use semantic reinterpretation to create a weakest-precondition
primitive that implements Morris’s rule, simplifications are per-
formed duringaccessand updateusing the rewriting rules given
below, where≡, 6=, and

.
= denoteequality-as-terms, definite-

disequality, andpossible-equality, respectively.

access(a1, k1) :
(a1 ≡ F ) =⇒ F (k1)
(a1 ≡ a2[k2 7→ d2]) ∧ (k1 ≡ k2) =⇒ d2

(a1 ≡ a2[k2 7→ d2]) ∧ (k1 6= k2) =⇒ access(a2, k1)
(a1 ≡ a2[k2 7→ d2]) ∧ (k1

.
= k2)
=⇒ ite(k1 = k2, d2, access(a2, k1))

update(a1, k1, d1) :
(a1 ≡ F ) =⇒ F [k1 7→ d1]
(a1 ≡ a2[k2 7→ d2]) ∧ (k1 ≡ k2) =⇒ a2[k1 7→ d1]
(a1 ≡ a2[k2 7→ d2]) ∧ (k1 6= k2) =⇒ update(a2, k1, d1)[k2 7→ d2]
(a1 ≡ a2[k2 7→ d2]) ∧ (k1

.
= k2) =⇒ a1[k1 7→ d1]

In particular, the rules foraccessthat involve possible-equality
comparisons causeite terms to arise. As illustrated in Ex. 6.2, it
is theseite terms that cause the reinterpreted operations to account
for possible aliasing combinations, and thus are the reasonthat
the semantic-reinterpretation method automatically carries out the
actions of Morris’s rule of substitution [22].

Example 6.2. We now demonstrate how semantic reinterpreta-
tion arrives at the weakest-precondition formula forWLP(∗p =
e, x = 5) that was claimed in Ex. 3.3. (The definition oflookupState
andupdateStorewere given in§6.3.)

U := IJ∗p = eKUId

= updateStore(UId, EJpKUId, EJeKUId)
= updateStore(UId, lookupState(UId, p), lookupState(UId, e)
= updateStore(UId, Fρ(p), Fρ(e))
= ((UId↑1), Fρ ←↩ Fρ[Fρ(p) 7→ Fρ(e)])

WLP(∗p = e, Fρ(x) = 5)

= FJFρ(x) = 5KU
= T JFρ(x)KU = T J5KU
= access(FEJFρKU, T JxKU) = 5

= access(lookupFuncId(U,Fρ), lookupId(U, x)) = 5
= access(Fρ[Fρ(p) 7→ Fρ(e)], x) = 5
= ite(Fρ(p) = x, Fρ(e), access(Fρ, x)) = 5
= ite(Fρ(p) = x, Fρ(e), Fρ(x)) = 5

Note how the formula-simplification rules ofaccessthat involve
possible-equalitycomparisons causes anite term to arise that tests
the condition “Fρ(p) = x”. The test determines whether the value
of p is an alias for the address ofx, which, as discussed in§3.3, is
the only aliasing combination that matters for this example. 2

6.4.2 Reinterpretation and WLPà la Cartwright and Oppen

§6.4.1 gave one version ofaccessandupdate, whereaccessper-
forms simplification using a set of rules that can introduceite terms.
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A less ambitiousaccessjust creates a residualTerm:

access(a, k) : a(k) // constructs aTerm (4)

Similarly updatejust creates a residualFuncExpr:

update(a, k, d) : a[k 7→ d] // constructs aFuncExpr (5)

When these definitions are used in the context of the method given
in §5.2 for computing a weakest-precondition formula via semantic
reinterpretation, i.e.,WLP(s, ϕ) = FJϕK(IJsKUid), theWLP
operation performs substitution (and no simplification), and the
result is the same as the one obtained using Cartwright and Oppen’s
method.

Example 6.3. Whenaccessis defined as in Eqn. (5), the second
half of Ex. 6.2 changes as follows:

WLP(∗p = e, Fρ(x) = 5)

= FJFρ(x) = 5KU
= . . . // same as Ex. 6.2
= access(Fρ[Fρ(p) 7→ Fρ(e)], x) = 5
= Fρ[Fρ(p) 7→ Fρ(e)](x) = 5

2

7. Reinterpretation of Machine-Code Semantics
In this section, we discuss how to apply the reinterpretation tech-
nique at the machine-code level.

7.1 MC : A Simple Machine-Code Language

We first define a simple machine-code languageMC; it is based
on the x86 instruction set, but greatly simplified.

r ∈ reg := EAX | EBP | EIP
f ∈ flag := ZF

do ∈ dst operand := Indirect(reg Val) | DirectReg(reg)
so ∈ src operand := dst operand∪ Immediate(Val)

o ∈ operand := src operand
Instr ∈ instruction := MOV(dst operand srcoperand)

| CMP(dst operand srcoperand)
| XOR(dst operand srcoperand)
| JZ(dst operand)

MC has 3 registers and one flag. There are 3 kinds of operands and
4 instructions.

7.2 Semantics of MC

The informal semantics of MC is as follows:MOVmoves the value
of the source operand to the destination operand.CMP setsZF ac-
cording to the difference of the values from the two operands. XOR
computes the exclusive-or of the values from the two operands and
stores the result to the destination operand. Each instruction incre-
ments the program-counter registerEIP. JZupdatesEIP depending
on the value of flagZF.

A formal semantics for MC is given in Fig. 8. In contrast with
PL1 and PL2, in MC a stateσ is a triple(mem, reg, flag).R,K,O,
andI are the evaluation functions forreg, flag, operand, and MC,
respectively.

7.3 Reinterpretation of MC

Semantic reinterpretation works similarly to what was donefor
PL1, PL2, andL. The base types are redefined as follows:

BVal = Formula Val = Term
State= FOUpdate= ({ZF,EAX,EBP,EIP}, {Fmem})

Example 7.1. Fig. 9 shows the assembly code that corresponds
to the swap code in Fig. 1(a). lines 1–3, lines 4–6, and lines 7–9
correspond to line 1, line 2, and line 3 in Fig. 1(a), respectively.

const : CInt32→ Val
storereg : State→ reg→ Val→ State

lookupreg : State→ reg→ Val
storeflag : State→ flag→ BVal→ State

lookupflag : State→ flag→ BVal
storemem : State→ Val→ Val→ State

lookupmem : State→ Val→ Val
storeeip : State→ State
storeeip = λσ.storereg(σ, EIP,RJEIPKσ + 4)

R : reg→ State→ Val, RJrKσ = lookupreg(σ, r)
K : flag→ State→ BVal, KJfKσ = lookupflag(σ, f)

O : operand→ State→ Val
OJIndirect(r c)Kσ = lookupmem(σ,RJrKσ + const(c))
OJDirectReg(r)Kσ = RJrKσ
OJImmediate(c)Kσ = const(c)

I : instruction→ State→ State
IJMOV(Indirect(r c) so)Kσ

= storeeip(storemem(σ,RJrKσ + const(c),OJsoKσ))
IJMOV(DirectReg(r) so)Kσ = storeeip(storereg(σ, r,OJsoKσ))
IJCMP(do so)Kσ = storeeip(storeflag(σ, ZF,OJdoKσ −OJsoKσ = 0))
IJXOR(Indirect(r c) so)Kσ = IJXOR(do so)Kσ

= storeeip(storemem(σ,RJrKσ + const(c),OJdoKσ ⊕OJsoKσ))
IJXOR(DirectReg(r) so)Kσ = IJXOR(do so)Kσ

= storeeip(storereg(σ, r,OJdoKσ ⊕OJsoKσ))
IJJZ(do)Kσ = storereg(σ, EIP,KJZFKσ ?RJEIPKσ + 4 : OJdoKσ)

Figure 8. The factored semantics of MC.

[1] mov eax, [ebp−10]
[2] xor eax, [ebp−14]
[3] mov [ebp−10], eax
[4] mov eax, [ebp−10]
[5] xor eax, [ebp−14]
[6] mov [ebp−14], eax
[7] mov eax, [ebp−10]
[8] xor eax, [ebp−14]
[9] mov [ebp−10], eax

Figure 9. The assembly code corresponding to Fig. 1(a).

For the swap assembly code in Fig. 9,I(swap, Uid) produces
the followingFOUpdate.

U = (EAX′←↩ Fmem(EBP - 14),
F ′

mem ←↩ Fmem[EBP - 10 7→ Fmem(EBP - 14)]
[EBP - 14 7→ Fmem(EBP - 10)])

2

8. Implementation
We have implemented the approach to creating symbolic-analysis
primitives described in the paper using theTSL system [20]. The
implementation has been used to generate primitives for forward
symbolic evaluation, weakest precondition, and symbolic compo-
sition for multiple machine-code instruction sets.

TheTSL language is a strongly typed, first-order functional lan-
guage with a datatype-definition mechanism for defining recursive
datatypes, plus deconstruction by means of pattern matching. Much
of what aTSL user writes when developing an instruction-set spec-
ification is similar to writing an interpreter for an instruction set in
first-order ML. That is, the meaning functionI of §7.2 is written
as aTSL function

state interpInstr(instruction I, state S) {...};

whereinstruction and state are user-defined data types that
represent the syntactic objects (i.e., instructions, statements, ex-
pressions, or formulas) and the semantic states, respectively.
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To implement the work described in this paper, we usedTSL to
create semantic reinterpretations that are based on logical formulas.
We specified both the syntax and semantics of logicL[·] in TSL—
the latter involved writing functions inTSL that correspond to
T , F , etc.—and then reinterpreted the semantic core ofL[·], as
described in§3.3 and§5.2.

These reinterpretations were applied to twoTSL instruction-
set specifications that we had on hand from our work on gener-
ating abstract interpretations [20]. The specification of the Intel
x86 instruction set is about 2700 lines ofTSL; the specification
of the PowerPC instruction set is about 1200 lines. UsingTSL,
we obtained automatically-generated implementations of all three
symbolic-analysis functions from each of the specifications.

Moreover, each of the reinterpretations can be reused. InTSL,
reinterpretation is performed at the meta-level: the set ofTSL prim-
itive operations on base types forms the semantic core of alllan-
guages specified usingTSL. An analysis designer adds a new anal-
ysis component to theTSL system by (i) redefining theTSL base
types (e.g.,INT32, INT8, BOOL, etc.), and (ii) providing a set of al-
ternative interpretations for the primitive operations onbase types
(e.g.,+INT32, +INT8, etc.). This implicitly defines an alternative in-
terpretation of each expression and function in an instruction-set’s
standard semantics (includinginterpInstr). Consequently, im-
plementations of allthreesymbolic-analysis functions can be gen-
erated for the next instruction set of interest, sayIS, merely by writ-
ing aTSL specification of the standard semantics ofIS.

8.1 Binding-Time Analysis and 2-Level Semantics

As mentioned earlier, in§3.2, one of the key techniques that we
use is related to partial evaluation. In essence, we partially evaluate
I with respect toStmts so that the residual object captures the
semantics ofs, while at the same time the result is translated toL.

TSL is not a partial-evaluation systemper se; however, for rea-
sons discussed in [19,§3.4], theTSL compiler performs binding-
time analysis [16], and annotates the code forinterpInstr to cre-
ate an intermediate representation in a two-level language[25]. In
our case, level 1 corresponds to parameterI of interpInstr, and
level 2 corresponds to parameterstate. To generate implementa-
tions of symbolic-analysis primitives via semantic reinterpretation,
we use two different reinterpretations for the two levels:

• concrete semantics (C) for level 1

• something close to the Herbrand interpretation (H) for level 2
(operators ofL are used as syntactic constructors, but algebraic
simplifications are performed whenever possible)

LetinterpInstr-CH denoteinterpInstr-2level reinterpreted
in this fashion. WheninterpInstr-CH is executed, it creates a
residual expression as output. Because concrete semanticsis used
for level 1, all parts ofinterpInstr that are not relevant to the
form of I are eliminated.

Overall, theTSL compiler and the two interpretations cre-
ate something that is very similar to a generating extension[16]
interpInstr-gen for interpInstr (see footnote 7). Generat-
ing extensioninterpInstr-gen would be a program with the
following property:

JinterpInstr-genK(I) = interpInstrI,where
JinterpInstrIK(S) = JinterpInstrK(I, S).

interpInstr-CH has similar properties:

JinterpInstr-CHK(I, Uid) = UI,where
UJUIK(S) = JinterpInstrK(I, S)

The difference betweeninterpInstr-gen andinterpInstr-CH
is very small:interpInstr-CH still requires two inputs to be
supplied (but we can use the trivial valueUid for the second input).

9. Related Work
Forward symbolic evaluation. Symbolic execution has been em-
ployed in many recently developed systems for program testing
and verification. In particular, hybrid concrete/symbolicexecution
tools, which are able to generate inputs that increase test coverage,
start with the path formula for an executable pathπ, change the for-
mula to be one for a nearby pathπ′ that follows the same sequence
of edges asπ, except that at the final branch nodeπ′ branches in
the direction opposite to the one taken byπ, and call an SMT solver
to determine if there is an input that drives the program downπ′.
Recently these techniques have been employed on x86 executables
in theSAGE [11] andBITSCOPE [5] tools.

Our work provides a way to create the core primitives of such
systems automatically. It would allow one to easily build versions
of such tools that can be applied to other instruction sets. How-
ever, there is a significant difference between the approachthat we
use and the way symbolic-analysis primitives are implemented in
existing tools.

• In existing tools, the semantics of the subject language is encap-
sulated in atranslation procedurethat translates the subject-
language instructions into a form more suitable for symbolic
manipulation.

• We use adeclarative approach: the tool writer provides a spec-
ification of the subject language’s standard semantics, in the
form of an interpreter expressed in a functional language. Our
system then applies semantic reinterpretation to the semantic
core, using the methods explained in the paper.

Our approach does not need any of the preprocessing steps
that are sometimes performed on the subject program, such
as converting the program into a single assignment form and
translating it into an intermediate form on which symbolic
operations are carried out [4].

Weakest liberal precondition. An intriguing aspect of the semantic-
reinterpretation approach is that it provides insight on reconciling
two different approaches that have been developed for express-
ing the weakest precondition of a formula with respect to a state
transformation, for languages with pointer variables and aliasing:
(i) Morris’s rule of substitution [22], which explicitly considers
possible aliasing combinations, and (ii) the pure substitution-based
approach of Cartwright and Oppen [6].§6.4.1 shows how reinter-
pretation can automatically generate a weakest-precondition primi-
tive that implements Morris’s rule;§6.4.2 shows how the semantic-
reinterpretation approach can also generate a weakest-precondition
primitive that implements Cartwright and Oppen’s rule. This pro-
vides an account of how Morris’s rule and Cartwright and Oppen’s
rule are related: both are based on substitution; the difference is
merely the degree of algebraic simplification that is performed on
Terms that express function accesses.

In particular, in§6.4.1 the rules foraccessthat involvepossible-
equality comparisons causeite terms to arise. As illustrated in
Ex. 6.2, it is theseite terms that cause the reinterpreted operations to
account for possible aliasing combinations, and are the reason that
the semantic reinterpretation from§6.4.1 carries out the actions of
Morris’s rule. In contrast, the simpler rules used in§6.4.2 cause
semantic reinterpretation to implement the pure substitution-based
approach of Cartwright and Oppen.

Symbolic composition. Symbolic composition arises in many
computational contexts. It provides one way to addresses the prob-
lem of “dissolving” module boundaries in software systems for
the sake of run-time efficiency. In the context of imperativepro-
grams, in-line expansion (followed by simplification/optimization)
can be thought of as a kind of symbolic composition. However,the
techniques used to perform symbolic composition are often agood

12 2008/7/22



deal more sophisticated than what is obtained by simple in-line
expansion. For example,deforestationis a particular kind of sym-
bolic composition relevant when the producer functionf creates a
tree-structured output that is consumed byg [30]. The idea behind
deforestation is to transform the program so that the intermedi-
ate tree structure is never constructed. Similarly,filter fusion [26]
looks for situations in whichread operations cancel withwrite
operations.

Our work addresses symbolic composition of logic formulas.
As explained in§1, this operation is useful when a tool has access
to a formula that summarizes a called procedure’s behavior.Re-
exploration of the procedure can be avoided by symbolicallycom-
posing a path formula with the procedure-summary formula. The
potential gain in efficiency comes from cancellations ofupdates
and accesss, as well as simplification ofupdates and subsuming
updates.
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A. Appendix
Lemma 5.1.

(1) T JEJEKUKι = EJEK((UJUKι)↑1)
(2) FJBJBEKUKι = BJBEK((UJUKι)↑1)

2

Proof. The two lemmas are simultaneously proved using structural
induction onE and BE, as shown below. LetU be ({Ii ←↩
Ti}, {Fj ←↩ FEj}).

Note that the standard interpretations ofbinop, relop, and
boolopcoincide with those ofbinopL, relopL, andboolopL. Thus,
reasoning steps of the formbinopL(op2L) ; binop(op2) are
shorthands for reasoning about each case, such asbinopL( + ) ;

binop(+), etc.

(1) (i) T JEJcKUKι = T Jconst(c)Kι = T JcKι
= const(c) = EJcK((UJUKι)↑1)

(ii)
lhs : T JEJIKUKι = T JlookupU IKι = T J(U↑1)IKι
rhs : EJIK((UJUKι)↑1)

= EJIK((ι↑1)[Ii 7→ T J(U↑1)IiKι], (ι↑2)[Fj 7→ FEJFEjKι)
= lookup((ι↑1)[Ii 7→ T J(U↑1)IiKι], (ι↑2)[Fj 7→ FEJFEjKι)I
= T J(U↑1)IKι

(iii) T JEJE1op2E2KUKι
= T JEJE1KU op2L EJE2KUKι
= T JEJE1KUKι binopL(op2L) T JEJE2KUKι
= // by ind. via(1)
EJE1K((UJUKι)↑1) binop(op2) EJE2K((UJUKι)↑1)

= EJE1 op2E2K((UJUKι)↑1)

(iv) T JEJBE? E1 : E2KUKι
= T Jite(BJBEKU, EJE1KU, EJE2KU)Kι
= condL(FJBJBEKUKι, T JEJE1KUKι, T JEJE2KUKι)
= FJBJBEKUKι ? T JEJE1KUKι : T JEJE2KUKι
= // by ind. via(1) and(2)
BJBEK((UJUKι)↑1)

? EJE1K((UJUKι)↑1) : EJE2K((UJUKι)↑1)
= EJBE? E1 : E2K((UJUKι)↑1)

(2) (i) FJBJTKUKι = FJTKι = T = BJTK((UJUKι)↑1)

(ii) FJBJFKUKι = FJFKι = F = BJFK((UJUKι)↑1)

(iii) FJBJE1 ropE2KUKι
= FJEJE1KU ropL EJE2KUKι
= T JEJE1KUKι relopL(ropL) T JEJE2KUKι
= // by ind. via(1)
EJE1K((UJUKι)↑1) relop(rop) EJE2K((UJUKι)↑1)

= BJE1 ropE2K((UJUKι)↑1)

(iv) FJBJ¬BE1KUKι = FJ ¬ BJBE1KUKι = ¬FJBJBE1KUKι
= ¬BJBE1K((UJUKι)↑1) // by ind. via(2)
= BJ¬BE1K((UJUKι)↑1)

(v) FJBJBE1 bop BE2KUKι
= FJBJBE1KU bopL BJBE2KUKι
= FJBJBE1KUKι boolopL(bopL) FJBJBE2KUKι
= // by ind. via(2)
BJBE1K((UJUKι)↑1) boolop(bop) BJBE2K((UJUKι)↑1)

= BJBE1 bop BE2K((UJUKι)↑1)

Lemma 5.5.

(1) T JT JT KUKι = T JT K(UJUKι)
(2) FJFJϕKUKι = FJϕK(UJUKι)

(3) FEJFEJFEKUKι = FEJFEK(UJUKι)
2

Proof. The three lemmas are simultaneously proved using struc-
tural induction onT , ϕ, andF , as shown below. LetU be({Ii ←↩
Ti}, {Fj ←↩ FEj}), andf be(ι↑2)[Fj 7→ FEJFEjKι].

(1) (i) T JT JcKUKι = T JcKι = const(c) = T JcK(UJUKι)

(ii)
lhs = T JT JIKUKι = T JlookupIdU IKι = T J(U↑1)IKι
rhs = T JIK(UJUKι) = T JIK((ι↑1)[Ii 7→ T JTiKι], f)

= lookupId((ι↑1)[Ii 7→ T JTiKι], f) I
= T J(U↑1)IKι

(iii) T JT JT1 op2L T2KUKι
= T JT JT1KU op2L T JT2KUKι
= T JT JT1KUKι binopL(op2L) T JT JT2KUKι
= // by ind. via(1)
T JT1K(UJUKι) binopL(op2L) T JT2K(UJUKι)

= T JT1 op2L T2K(UJUKι)

(iv) T JT Jite(ϕ, T1, T2)KUKι
= T Jite(FJϕKU,T JT1KU, T JT2KU)Kι
= condL(FJFJϕKUKι, T JT JT1KUKι, T JT JT2KUKι)
= FJFJϕKUKι ? T JT JT1KUKι : T JT JT2KUKι
= // by ind. via(1) and(2)
FJϕK(UJUKι) ? T JT1K(UJUKι) : T JT2K(UJUKι)

= FJϕ ? T1 : T2K(UJUKι)

(v) T JT JFE(T )KUKι
= T JFEJFEKU(T JT KU)Kι
= (FEJFEJFEKUKι)(T JT JT KUKι)
= (FEJFEK(UJUKι))(T JT K(UJUKι)) // by ind. via(3)
= T JFE(T )K(UJUKι)

(2) (i) FJFJ T KUKι = FJ T Kι = T = FJ T K(UJUKι)

(ii) FJFJ F KUKι = FJ F Kι = F = FJ F K(UJUKι)

(iii) FJFJT1 ropL T2KUKι
= FJT JT1KU relopL(ropL) T JT2KUKι
= T JT JT1KUKι relopL(ropL) T JT JT2KUKι
= // by ind. via(1)
T JT1K(UJUKι) relopL(ropL) T JT2K(UJUKι)

= FJT1 ropL T2K(UJUKι)

(iv) FJFJ ¬ ϕ1KUKι
= FJ ¬ FJϕ1KUKι
= ¬FJFJϕ1KUKι
= ¬FJϕ1K(UJUKι) // by ind. via(2)
= FJ ¬ ϕ1K(UJUKι)

(v) FJFJϕ1 bopL ϕ2KUKι
= FJFJϕ1KU boolopL(bopL) FJϕ2KUKι
= FJFJϕ1KUKι boolopL(bopL) FJFJϕ2KUKι
= // by ind. via(2)
FJϕ1K(UJUKι) boolopL(bopL) FJϕ2K(UJUKι)

= FJϕ1 bopL ϕ2K(UJUKι)
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(3) (i)
lhs = FEJFEJF KUKι = FEJlookupIdU F Kι = FEJ(U↑2)F Kι
rhs = FEJF K(UJUKι)

= FEJF K((ι↑1)[Ii 7→ T JTiKι], f)
= lookupFuncId((ι↑1)[Ii 7→ T JTiKι], f) F
= FEJ(U↑2)F Kι

(ii) FEJFEJFE0[T1 7→ T2]KUKι
= FEJ(FEJFE0KU)[T JT1KU 7→ T JT2KU ]Kι
= FEJ(FEJFE0KU)Kι[T JT JT1KUKι 7→ T JT JT2KUKι]
= // by ind. via(1)
FEJFE0K(UJUKι)[T JT1K(UJUKι) 7→ T JT2K(UJUKι)]

= FEJFE0[T1 7→ T2]K(UJUKι)
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