
  
  

 

Computer  
Sciences  
Department  
 

  

Signature Matching in Network Processing using 
SIMD/GPU Architectures 
 
Neelam Goyal 
Justin Ormont 
Randy Smith 
Karthikeyan Sankaralingam 
Cristian Estan 
 
Technical Report #1628 
 
January 2008 

 
 

 

 



Signature Matching in Network Processing using SIMD/GPU
Architectures

Neelam Goyal Justin Ormont Randy Smith Karthikeyan Sankaralingam
Cristian Estan

Department of Computer Sciences, University of Wisconsin–Madison
{neelam,ormont,rsmith,karu,estan}@cs.wisc.edu

Abstract

Deep packet inspection is becoming prevalent for mod-
ern network processing systems. They inspect packet pay-
loads for a variety of reasons, including intrusion detection,
traffic policing, and load balancing. The focus of this paper
is deep packet inspection in intrusion detection/prevention
systems (IPSes). The performance critical operation in these
systems issignature matching: matching payloads against
signatures of vulnerabilities. Increasing network speedsof
today’s networks and the transition from simple string-based
signatures to complex regular expressions has rapidly in-
creased the performance requirement of signature matching.
To meet these requirements, solutions range from hardware-
centric ASIC/FPGA implementations to software implemen-
tations using high-performance microprocessors.

In this paper, we propose a programmable SIMD archi-
tecture design for IPSes and develop a prototype implemen-
tation on an Nvidia G80 GPU. We first present a detailed
architectural and microarchitectural analysis of signature
matching. Our analysis shows that signature matching is
well suited for SIMD processing because of regular control
flow and parallelism available at the packet level. We exam-
ine the conventional approach of using deterministic finite
automata (DFAs) and a new approach called extended finite
automata (XFAs) which require far less memory than DFAs,
but require scratch memory and small amounts of computa-
tion in each state. We then describe a SIMD design to imple-
ment DFAs and XFAs. Using a SIMD architecture provides
flexibility, programmability, and design productivity which
ASICs lack, while being area and power efficient which su-
perscalar processors lack. Finally, we develop a prototype
implementation using the G80 GPU as an example SIMD
implementation. This system out-performs a Pentium4 by up
to 9X and shows SIMD systems are a promising candidate
for signature matching.

1. Introduction
In the last two decades, the devices handling Internet traf-
fic have been extended with a variety of features that give

them stronger control over the network traffic. As a result
of this trend, many forms of deep packet inspection are sup-
ported by today’s routers and switches. Unlike earlier forms
of processing based on packet header fields, deep packet in-
spection requires the reading of the much larger packet pay-
load. Coupled with increases in network speeds this leads to
tremendous increases in the amount of processing required.
Fortunately parallelism is plentiful as many network packets
can be processed independently. Several solutions exist for
handling the processing needs of modern network devices
ranging from ASIC hardware to high performance micropro-
cessors. Table 1 outlines these tradeoffs which we discuss in
detail in Section 2.3. While ASICs provide high area/energy
efficiency and performance, they have poor flexibility and
high system design cost since hardware and software must
be carefully co-designed. At the other end of the spectrum,
general purpose microprocessor based systems are very flex-
ible and have low design costs, but cannot match the per-
formance of specialized hardware. An ideal platform should
provide high performance, programmability and flexibility,
while leveraging off of available hardware or architectures,
without requiring specialized design.

Network processors like the Intel IXP, IBM PowerNP,
and platforms like Raza’s Thread Processors, specialize a su-
perscalar architecture with networking-specific functionality
to increase efficiency without sacrificing programmabilityor
design cost. They all utilize extensive multi-threading toex-
ploit the data-level parallelism found at the granularity of
packets to hide memory latencies. This threading abstrac-
tion meansindependentcontrol-flow and temporary data
management for each thread. This independent control flow
means repeated execution of the same set of instructions (on
separate processors, or multiple times on the same proces-
sor for each thread) even if the same computation must be
performed on many packets.

Examining various forms of deep packet inspection we
see that often the same processing is applied to each packet,
making the Single Instruction Multiple Data (SIMD) paradigm
ideal for this type of processing. A single instruction can si-
multaneously perform operations for many packets provid-
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ing large savings in power and area overheads. As shown in
Table 1 SIMD processing can achieve area/performance effi-
ciencies much higher than superscalar processors. Their rate
of performance improvement is high owing to design sim-
plicity. They are abundantly available as GPUs and hence
have low design costs. With new processors such as Intel’s
Larrabee and AMD’s Fusion integrating the CPU and the
SIMD engine on the same chip, we expect it to become even
cheaper to add SIMD processing to a system. With high
performance microprocessors moving towards SIMD-like
organizations, mapping signature matching to a SIMD-like
organization will be essential to get high performance from
future general purpose processors. Today’s choices for IPSes
are ASICs (or network processors) for high performance at
a high cost, or general purpose processors for low perfor-
mance at low cost. Using SIMD architectures and specifi-
cally GPUs introduces a new design point - IPSes with po-
tentially high performance at low cost. However, the design
simplicity of SIMD platforms is offset by programmability
challenges.The key questions in applying SIMD processing
in deep packet inspections are: (1) Can they be easily pro-
grammed? and (2) Can we obtain high performance from
these systems and realize the performance potential?

To help us understand the viability of SIMD GPUs as a
platform for the high-throughput processing needs of mod-
ern network devices, in this paper we focus on a specific
form of deep packet inspection:signature matching, the
most processing-intensive operation of intrusion preven-
tion/detection systems (IPSes). These systems have a large
number of signatures describing various types of attacks
(e.g. buffer overflows). Their goal is to protect the comput-
ers within their network by filtering out packets that attempt
to perpetrate one of the attacks described by the signatures.
The core operation in signature matching is determining
whether any of the regular expressions from the signature
database match the payload of a given packet. Other appli-
cations like virus scanning and XML processing are similar
in the computation they perform. In this paper, we show
that SIMD processing is well suited to signature matching
and show a prototype implementation on a GPU. The main
contributions of this paper are:
• A fundamental analysis and characterization of the signa-

ture matching problem for IPSes in terms of the control-
flow, memory accesses, and available concurrency.

• Demonstration of the SIMD paradigm for signature
matching.

• A proof-of-concept SIMD implementation. We develop a
fully functional prototype of a signature matching mod-
ule on a Nvidia G80 GPU. This prototype out-performs a
Pentium4 based software system by up 6X to 9X.
The remainder of this paper is organized as follows. Sec-

tion 2 describes the signature matching problem, solutions,
and a detailed analysis. Section 3 shows a SIMD design for
signature matching and describes our prototype GPU im-

plementation. Section 4 discusses performance results, Sec-
tion 5 discusses related work, and Section 6 concludes.

2. Signature Matching
Stand-alone IPSes operate at speeds ranging from tens of
megabits per second to gigabits per second. Intrusion pre-
vention functionality is also present in routers and switches
ranging from low-cost low-speed models to expensive multi-
gigabit products. Signature matching may be performed by
a central processor akin to the CPUs of workstations, by a
processor on an interface card or on a special purpose blade,
or by an ASIC. Besides signature matching, intrusion pre-
vention requires other operations such as flow reassembly
and various forms of preprocessing. There are great differ-
ences among these network devices in terms of the opera-
tions they perform and the size and complexity of the sig-
nature databases they can support. But it is widely accepted
that, for the entire range of solutions, signature matchingis
the most processing-intensive among the operations required
for intrusion prevention. As the number and complexity of
signatures are steadily and rapidly increasing, we expect sig-
nature matching to become even more of a performance bot-
tleneck in the future. For example Cabrera et. al. [6] reported
in 2004 that signature matching accounts for approximately
60% of the processing time of the open source IPS Snort.
Since then, the number of signatures increased from 1,458
to 5,464.

While performance and cost are the primary concerns for
the builders of devices implementing intrusion prevention,
flexibility is also an important consideration. All devices
support updates to the signature database, but often more
flexibility is required: the ability to change the various op-
erations performed. This can help fix bugs uncovered after
the device was deployed and more importantly counteract
radically new attacks or evasion techniques. In such cases
updating the signature database may not be enough and up-
dates to preprocessing operations or other parts of the system
may be required.

2.1 Implementation Tradeoffs

The architects of network devices performing signature
matching have to balance a large number of often contradic-
tory goals when designing the signature matching module:
meeting performance targets, minimizing the unit cost, stay-
ing within the power budget and form factor imposed by the
overall architecture of the device, minimizing time to market
and maximizing the flexibility to update functionality after
the device is deployed. The platforms typically considered
are: ASICs, FPGAs, network processors, and general pur-
pose processors. Table 1 shows a comparison of different
metrics for these platforms.

ASICs are typically used in the highest speed devices
because they are the only platform able to meet the stringent
performance requirements. At slightly lower speeds FPGAs
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Parameters ASIC FPGA SIMD
Network General purpose

processors microprocessors
Physical constraints

Cost Highest Medium Low Medium-Low Low
Power Efficiency Highest Low-Medium High Medium Lowest
Area Efficiency Highest Worst High Medium Low

System design
Flexibility Worst Medium ? Medium Best
Design time Highest Medium ? Low Lowest

Performance
Peak performance Highest Medium Medium Medium Lowest
Application Performance Highest Medium ? Medium Lowest

Table 1. Implementation alternatives for signature matching. Question marks indicate investigation in this paper.

become a viable alternative if flexibility is valued much,
but they consume significantly more power than ASICs.
Network processors and multicore processors targeted to
network applications offer lower throughput, but they have
cost and power advantages. General purpose processors are
the platform with the lowest performance, but best in terms
of cost, flexibility and time to market. Note that the price
of a general purpose processor may be higher than that of
a network processor or an ASIC, but all networking devices
that have intrusion prevention functionality already contain
a general purpose processor, so if the existing processor can
be used for signature matching, the added cost is zero.

SIMD architectures may prove to be a platform well-
suited for signature matching. Their simple structure allows
them to be more efficient than network processors and gen-
eral purpose processors, and they have 30 to 40-times higher
peak performance. Their programability makes them more
flexible than ASICs. The fact that SIMD processors are al-
ready mass-produced for GPUs makes them cheaper and al-
lows them to be built with the most recent fabrication pro-
cesses. Further investigation is needed for some of the met-
rics as shown by the question marks in the Table. It is not
clear whether this architecture is flexible enough to support
the types of operations required in signature matching, noris
it clear that it will maintain its good performance if the way
to map these operations to the architecture is too cumber-
some. This paper gives quantitative answers to these ques-
tions. We show that GPUs can provide significantly higher
performance at a cost similar to general purpose processors.

2.2 Application description

Due to their ability to make finer distinctions than simple
string matching, regular expressions are today the primary
method for defining IPS signatures. Since each signature de-
scribes a family of attacks against a specific application, in-
dividual signatures are associated with the port number the
application runs on. The core operation in signature match-
ing is determining whether a given packet matches any of
the regular expressions associated with the destination port
of the packet. Matching the expressions individually is too
slow, so current implementations, such as Cisco IPS [1],

use a combined representation for the entire set of signa-
tures in the form of deterministic finite automata (DFAs).
Besides the DFA-based method which maps very naturally
to a SIMD architecture we also evaluate a recently proposed
method based on extended finite automata (XFAs) which has
been shown to have significantly better performance than
DFAs on general purpose processors. The per byte process-
ing is more complex and less uniform than for DFAs, thus
this is a more challenging workload for a SIMD architec-
ture.

2.2.1 Using DFAs to match a set of regular expressions

DFAs consist of a number of states each of which has a tran-
sition table with 256 pointers to other states. During match-
ing a “current state” variable is repeatedly updated and it
moves between the states of the DFA. Some of these states
are marked as “accepting states” and indicate that the sig-
nature matches. DFAs are are not a compact way of repre-
senting regular expressions, but they have two major advan-
tages: there is a fast matching procedure, and it is possibleto
compose the DFAs corresponding to multiple signatures into
a combined DFA that recognizes all signatures in a single
pass. The basic processing steps of a DFA are very simple.
The DFA reads a byte from the input, uses it to index into a
transition table pointed to by the current state variable, and
the value it reads out is the next state. If this is an accepting
state the DFA raises an alert which is handled by other parts
of the system. These steps are repeated until the end of the
input is reached.

Unfortunately, with the types of regular expressions used
by IPS signatures, when DFAs representing individual signa-
tures are combined the composite DFA is much larger than
the sum of the sizes of the DFAs for individual signatures
and often exceeds available memory. One approach [23]
to reducing the memory footprint combines signatures into
multiple DFAs rather than one. This induces a space-time
trade-off between memory and inspection time: the larger
the memory budget, the fewer DFAs are required (and thus
the faster the matching). In this paper we use multiple DFAs
and we set a memory budget of 64 MB per signature set
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which leads to the use of between one and seven DFAs to
represent the full signature set.

2.2.2 Using XFAs to match a set of regular expressions

The core reason for the state space explosion of DFAs is
that the only way for them to differentiate between two in-
put strings is to have them lead to distinct states. XFAs [22]
are similar to DFAs, but they also use a small scratch mem-
ory in which they store bits and counters that indicate the
progress of the matching operation. Individual states have
small programs associated with them that update the scratch
memory. When the XFA reaches an accepting state it checks
the scratch memory and it raises an alert only if certain con-
ditions are met. The use of the scratch memory allows XFAs
to eliminate all major causes of state space explosion. For
each of the three signature sets we considered, a single XFA
using no more than 3MB of memory can match the entire
signature set. The per byte processing of an XFA is more
complex than that of a DFA, but when compared against
multiple DFAs representing the entire signature set, XFAs
are typically still faster.

The basic scratch memory operations performed by XFAs
are setting or resetting a bit in a bitmap and setting, in-
crementing or testing a counter. When processing a byte
the XFA may perform multiple such operations on sepa-
rate bits and counters. To improve performance, XFAs also
use a special type of counter: the offset counter. For some
types of signatures the counter would need to be incremented
for each input byte (for example the signature may need to
see whether the number of non-newline characters after an
SMTP keyword is above a threshold required to trigger a
buffer overflow). Instead of using a traditional counter that
would need to be explicitly incremented on each byte, XFAs
use offset counters that work as follows: after the keyword is
recognized, the packet offset at which the alert should trig-
ger is stored in a sorted list; if a newline is seen before that
offset, the program associated with that state disarms the off-
set counter, otherwise the alert is triggered when that offset
is reached.

2.3 Application analysis

Figure 1 outlines the basic code executed to perform string
matching. Each packet is extracted and passed on to a string
matching routine which implements a DFA or XFA to detect
intrusions. We show a single routine that can be used for both
DFAs and XFAs. For a DFA, lines marked “no effect
for DFA” are not executed. In this section, we analyze the
basic properties of this code and its effect on the microar-
chitecture by running it on an Intel Core2 processor and ex-
amining performance counters. For the quantitative results
presented in this section, we used representative traces and
signatures whose details we describe in Section 4.

The four main components of the signature matching
problem are: (1) a state machine that describes the set of
patterns to be detected, (2) auxiliary data that must be main-

tained for each packet as it is processed, (3) a packet buffer
that contain the packet data, and (4) an interpreter that reads
packet input, walks through the state machine, and updates
the auxiliary data. The interpreter code is compiled to gener-
ate a sequential instruction stream or a wide-SIMD instruc-
tion stream where a packet is processed on each processing
element of the SIMD architecture.

2.3.1 Memory

Analysis: The four main data structures are the packet
buffer, the state machine data structure, instructions andtem-
porary data associated with each packet as it is processed,
and the offset list (last two not present for DFAs). The packet
buffer is typically several megabytes and depending on the
implementation, some form of DMA or IO access is used
to copy contents in a batched fashion from the network link
into the processor’s memory space. Accesses to the packet
buffer are regular and in multi-threaded implementations the
packet buffer may be logically partitioned, with different
threads simultaneously operating on different packets. The
state machine data structure can be several gigabytes in size
for DFAs depending on the number of signatures that are to
be matched. To avoid the state space explosion of combin-
ing signatures, XFAs augment each state with local variables
and a few simpleinstructions. For XFAs the state machine
data structure is typically a few megabytes and in our mea-
surements always less than a 3MB. Accesses to this state
machine data structure are irregular and uncorrelated as they
are driven by packet data input. The instructions are local to
a state, and the temporaries and the offset list are by local to
a packet and less than a kilobyte in size. Accesses to these
structures is also typically irregular. Since the state machine
is the largest data structure, it contributes most to memory
access latencies.

Quantitative results: To study the memory access behav-
ior to this structure we instrumented our implementation to
measure how many times every state is visited while pro-
cessing a network stream for a given set of signatures. Every
state contains a transition table (indexed by a character and
containing a pointer to the next state) and other auxiliary
data, amounting to a total of slightly more than 1024 bytes
of memory per state. Since the DFAs have a large number of
states and hence excessive memory requirements, we used
multiple DFAs in these experiments and set their data size to
64 MB.

Figure 2 shows the frequency at which each state is vis-
ited sorted from high to low. The right hand side figure
shows DFAs and the left hand side figure shows XFAs. We
can clearly see a 90/10 rule here: for most of the signa-
ture sets, less than 10% of the states contribute to more than
90% of the visits. This is why IPSes built with high perfor-
mance microprocessors perform well even for large XFAs
and DFAs — although their overall memory requirement
is large, the working set size consists of only hundreds of
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APPLY(state_machine_t *M, unsigned char* buf, int len) {
state* curState = M.start
execInstrs ( curState->instrs)
// Level-2 control flow
for i = 0 to len do

curState = curState->nextState(buf [i])
// Level-3 control flow
execInstrs ( curState->instrs); // checks accepting state for DFA

// executes instructions for XFA
// Check the offset list
while (offsetList->head.offset==i ) do // no effect for DFA

execInstr (offsetList->head->instr) // no effect for DFA
offsetList->head = offsetList->head.next // no effect for DFA

}

state_machine_t *M = read_signatures();
trace = read_input_trace(trace);
// Level-1 control flow
for each packet in trace;

char *buf = packet.bytes;
APPLY(M, unsigned char* buf, packet.length)

Figure 1. DFA and XFA processing
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Figure 2. Frequency distribution of states visited

states. The FTP protocol alone exhibits anomalous behavior
with a large fraction of states being visited with high proba-
bility.

2.3.2 Control-flow

Analysis: The string matching application has control-
flow at three granularities. First, at the coarse-grain the
apply function is repeatedly called for each packet in the
trace. Second, this function loops over every character in a
given packet. For a DFA, the loop body is a single large ba-
sic block. For XFAs, a third level of control-flow exists: for
every state the interpreter must loop over every instruction
for that state, and then loop over the entries in the offset

list. While processing the instructions (theexec instr
function) many conditional branches arise.

This type of regular control is well suited for a SIMD ar-
chitecture, with each processing element handling a packet.
Minimizing divergence in control flow is crucial to exploit-
ing the benefits of the SIMD design. Since control is pre-
dictable and regular at the first level, it can be exploited
by distributing packet data to each processing element. A
single interpreter instruction, then processes data for each
packet exploiting predictability at the second level. When
packet sizes vary, control-flow at this level will diverge, as
some packets will complete processing before others. As de-
scribed in detail in Section 3 we sort packets to minimize
divergence of control flow at this level. Thus, on a SIMD de-
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for (i=0; i < state->num_instrs_; i++)
switch(state->instrs_[i]->type) {

case OFFSET_SET: ...
case OFFSET_RESET: ..
....
case BIT_CLEAR:
case BIT_SET:
case BIT_TEST:

}

Figure 3. Control flow in executing an XFA’s instructions

Measured on Core2 Simulated SIMD
Protocol Prediction accuracy ILP % Divergence Average divergence

DFA XFA DFA XFA
ftp 97.5 97.6 1.52 1.52 2.3% 2
http 99.2 99.3 1.83 1.80 0.3% 2
smtp 98.3 98.2 1.45 1.46 61% 2.21

Table 2. Control flow behavior and available concurrency

sign, DFAs have almost no divergence in control flow, since
they have only these two levels of control flow.

The third level of control flow which exists only for
XFAs, will inevitably diverge. Figure 3 outlines the code for
executing instructions in XFAs focusing on the points where
control flow could diverge for different packets. Depending
on the state that a packet is in, its instruction could be
different and hence it could take different branches in the
control flow graph. The key question is for real signatures
and real network traffic what is common case behavior and
how often does divergence occur.

Quantitative results: To understand the effects of control
flow we measured branch prediction rates on a Core2 system
and instrumented our interpreter to measure the divergence.
Table 2 shows the branch prediction accuracy in the second
and third columns for different protocols for both DFAs and
XFAs, when processing real traces. Prediction accuracies are
measured using performance counters in the processor. We
see that the prediction accuracies are really high demonstrat-
ing that control flow patterns are repeated.

Columns six and seven show divergences in control flow
for the protocols. We calculate divergence percentage for
groups of 32 packets, because 32 is the SIMD width of our
prototype implementation. We define divergence as follows:
If the ith character of packet in any PE takes a conditional
branch different from any other PEs then that SIMD instruc-
tion is said to have diverged and a divergence value of 1. Di-
vergence percentage is the percentage of such instructions
compared to the total number of SIMD instructions exe-
cuted. The last column has the average divergence among
the instructions that diverge. If 2 packets take different di-
rections then the divergence is 2. First we see that the per-
centage of SIMD instructions that diverge is small for ftp and

http, but more than 50% for SMTP. However, when there is
a divergence, the average divergence is only 2 implying that
on average 30 PEs still execute the same instructions. As a
result, SIMD with low overhead branching support can per-
form well even for behavior like SMTP.

While traditional SIMD designs did not have support for
such types of control flow within a SIMD instruction, such
support can be added at a performance penalty for such
branches. The Nvidia G80 SIMD architecture supports such
type of control flow with a penalty of 31 cycles in addition
to the extra cycles to execute the divergent control path,
according to our measurements.

2.3.3 Concurrency

Signature matching is heavily data-parallel and contains
abundant parallelism since each packet can be processed in-
dependently. Within a packet’s processing, the level of con-
currency is limited, since the per-byte transitions are serially
dependent on each other. For XFAs, the interpreter that exe-
cutes the XFA’s instructions also has only limited amount of
instruction-level parallelism. Columns four and five in Ta-
ble 2 show the measured ILP using performance counters
on a Core2 processor. We also examined the branch predic-
tion accuracies and the cache hit rates and found them to be
greater than 95%. Hence, for this application ILP is simply
limited by inherent dependencies and not by control-flow
or memory latencies. Investing in extracting further ILP is
likely to provide diminishing returns, and only reduce area
and power inefficiencies for this application.

2.3.4 Summary and IPS Requirements

To summarize, signature matching requires memories that
can support efficient regular accesses, some fast accesses
to a small memory, and capabilities to hide the latency of
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irregular accesses. The control-flow is largely predictable
and a classical SIMD architecture can efficiently support
DFA processing. However XFAs can exhibit data-dependent
branching — the management of the local variables like the
counters and bits is dependent on the packet data. Such data-
dependent branching cannot be efficiently supported with
a classical SIMD organization using predication. However,
such branching is infrequent and hence some form of escape
mechanism that temporarily deviates from SIMD processing
will suffice. And finally, at the packet level there is abundant
data-level parallelism. Based on these characteristics, we
now describe a SIMD design for signature matching.

3. Architecture and Implementation
In this section we first describe a SIMD architecture for sig-
nature matching that can support both DFA and XFA pro-
cessing by deviating from classical SIMD execution in the
uncommon case. Modern GPUs implement several primi-
tives of this architecture and we build a prototype software
implementation on an Nvidia GPU as proof-of-concept.

3.1 SIMD architecture

Figure 4a shows a high level processor organization with the
mapping of the different components to the architecture for
a 32-wide SIMD machine. A sorting engine reads packets
off the network interface and creates groups of 32 packets
which are largely similar in size. Finding 32 packets of
exactly same size can introduce large latencies, whereas
having unequal sized packed, introduces wasted work, as
every packet will take as many cycles to process as the
largest packet in the group. In our analysis, we found that
examining 2048 packets was sufficient to create groups with
reasonably equal sized packets.

3.1.1 Memory system

The memory hierarchy includes three types of memories: (1)
Local memory: a software managed small fast memory that
supports irregular accesses, (2) Regular storage: a software
managed large fast memory for regular accesses, and (3)
Irregular storage: a hardware managed large memory with
long latencies for irregular accesses. The local memory is
local to each processing element and is used to store the
packet-specific auxiliary data. The regular storage is used
to store the packet buffer accesses to which are regular.
The irregular storage is used to store the state machine data
structure.

The state machine data structure can be several megabytes
in size and accesses to this irregular storage structure can
take several cycles. Caching or multi-threading can hide this
latency. As shown in our application analysis a small per-
centage of the states contribute to a large fraction of the
memory accesses in the state machine. Hardware managed
caching will effectively capture this working set size and
our analysis on the Intel Core2 processor shows that a 32KB
level-1 cache can sustain a 98% hit rate.

Alternatively, multi-threading can hide memory access
latency as well, by switching to a new thread when wait-
ing on memory. The thread management unit switches to
a new SIMD thread whenever a memory request is gener-
ated. When the memory request of all of the processing el-
ements of a SIMD thread return, it can be re-scheduled for
execution. A large number of physical registers is required
to support such multi-threading. Since the working set size
of this application is quite small, hardware managed caching
instead of such multi-threading can also hide memory laten-
cies.

3.1.2 Control flow

Control-flow is largely predictable and a classical SIMD ar-
chitecture can efficiently support DFA processing. But, to
support XFAs data-dependent branching is required. First,
the number of XFA instructions and the type of instruction
that executes for each byte in a packet are dependent on the
state. As a result, the processing elements can require dif-
ferent instruction streams. We use a hybrid predication and
branching strategy to accomplish this control flow. Predica-
tion is used to construct a frequent subset of instructions
which every processing element executes. Branch instruc-
tions are used to implement control-flow to infrequently ac-
cessed regions of the program. The branch instructions ex-
ecute at every PE, and the target address of the branches
across all PEs is compared. If they differ, the PEs enter a seri-
alized mode. They are grouped based on their branch target,
and PEs with the same branch target execute together. In a
group of 32 for example, if one PE deviates from the others,
the first 31 execute together, and then the one PE. This seri-
alized execution continues until a control-flow merge point
— an unconditional branch to the merge point that is in-
serted by the compiler. If there is no difference across all
the PEs, SIMD execution resumes. Compared to predication,
such branch instructions take longer to execute because, the
addresses must be compared across all PEs, even when there
is no divergence, whereas predication based control is local
to each PE.

3.2 Execution flow

The overall execution flow proceeds as follows. Packets
from the network interface are sorted and written to a packet
buffer and a separate packet length array records the length
of each packet. The interpreter running on the SIMD array
processes these packets in lock-step fashion across the PEs.
Each PE requests a memory access to lookup the transition
tables of its state to proceed to the next state. When wait-
ing for memory, the threading unit activates a new SIMD
thread that processes a new set of 32 packets. For DFAs, ex-
ecution proceeds in this fashion until all bytes in that group
of packets is processed. Any intrusions detected are passed
back to the IPS system using a bit-vector. We assume the
SIMD array is controlled by a master processor that takes
actions when intrusions are detected. For XFAs, data depen-
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(a) (b)

Figure 4. Architecture overview and code example for GPU execution.

dent branching can occasionally deviate from this regular
flow of control.

3.3 Prototype GPU implementation

GPU architectures have traditionally included several of the
components in our high level architecture — they are SIMD,
multi-threaded to hide memory latency, and support fast reg-
ular memory access in the form of texture memories. How-
ever, the key to supporting XFAs is data-dependent branch-
ing when necessary. DirectX 10 compliant GPUs include
support for predication and data dependent branching [10].
The Nvidia G80 GPU is implemented as a SIMD array with
extensions for data dependent branching [13]. To evaluate
how well the SIMD paradigm is suited for IPSes we build a
prototype IPS using this GPU. We briefly describe the orga-
nization of the G80 processor and our software implementa-
tion.

3.3.1 G80 Organization

For the scope of this paper we focus only on the pro-
grammable components of the G80 chip. It is organized
as a 16-core SIMD machine, with each SIMD core being
logically 32-wide. The Compute Unified Device Architec-
ture (CUDA) defines the processor architecture and a set
of software drivers interface to the GPU [9]. The processor
has three types of memories: a small local memory of 8KB
per core that can be accessed in 1 cycle, cacheable texture
memory of 128MB with a 8KB cache, and uncached mem-
ory (or global memory) of 768 MB that can take 400 to 600
cycles to access. The clock frequency of the SIMD core is
1.35GHz. It includes a threading unit that schedules threads
to hide memory latencies.

The processor uses a streaming programming model and
a kernel of instructions is the level of abstraction visible
to the processor. The kernel consists of a set of 32-wide
SIMD instructions and the threading unit (based on pro-
grammer specifications) creates a number of “threads” using
the kernel’s code. They are not like processor threads, but
are instead simply logical copies of the kernel. The different
threads execute asynchronously and need not be in lock-step
or have same types of control flow, and get a partition of
the local memory each. The threads are completely invisi-

ble to each other and the processor does not guarantee any
synchronization through the memories1.

3.3.2 Software implementation

We implemented a fully functional signature matching sys-
tem on the G80 GPU. The programming model for the
CUDA architecture is shown in Figure 4b. Any code that
must execute on the GPU is defined as a C or C++ func-
tion with a special directive and this function is referred to
as a kernel2. The main code executes on the CPU and the
GPU acts as a co-processor. Special function calls copy data
to/from the GPU memory and CPU memory. Thefoo <<<
# threads >>> (arg0, arg1, arg2), which gets
translated into a set of system calls to the GPU device driver,
triggers the execution of the kernelfoo on the GPU. In the
version of the system drivers we use, this is a blocking call.

The interpreter was written using this streaming model
and the applications partitioned into two main functions: (1)
xfa build which builds the state machine data structure.
This kernel is completely sequential and executes as a single
thread utilizing one processing element in the entire chip.
Because DFAs and XFAs are recursive data structure, they
cannot simply be copied from CPU memory to GPU mem-
ory (pointers will be different in each address space). Each
state is copied and the transitions are rebuilt on the GPU. To
construct multiple DFAs or XFAs simultaneously this kernel
could be parallelized. (2) Thexfa trace apply which
processes the packets.

In our implementation, we pass a large trace of 65536
packets to the GPU and initiate processing. Once the pro-
cessing of all packets is complete, a bit-vector is passed back
to the CPU indicating which packets were detected as at-
tacks. This batch processing is an artifact of our prototype
implementation and the PCI-Express based interfaces that
modern PC-based system use. We envision real systems to
utilize one of the two following techniques. (1) Upcoming
processors like Intel’s Larrabee chip and AMD Fusion are

1 The processor includes 16KB of “shared memory” for localized synchro-
nization of all threads within a core. We do not use any of the share memory
in our implementation and require no synchronization.
2 It may contain calls to other functions, but they must and will be inlined.
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likely to have more closely integrated interfaces connecting
a CPU and GPU or GPU-like processor. Hence CPU and
GPU are likely to have a shared memory space. (2) Provide
a shared memory in standalone IPS systems that uses such a
SIMD architecture.

3.3.3 Optimizations

We started with a strawman implementation that maintained
the state machine and the packet buffer in global memory
and accessed the packet buffer one byte at a time. Our per-
formance analysis showed that using texture memory and
accessing larger words can provide significant performance
improvements. We modified our implementation to fetch 8
bytes at a time from the packet buffer, which resulted in
approximately 2X improvement compared to byte accesses.
The auxiliary data is maintained in local memory at each
processing element.

During performance analysis of this prototype implemen-
tation, we realized the number of registers in a kernel is a
critical resource. It dictates how many of the processing el-
ements in a SIMD core can be used. Each SIMD core has
a total of 256 physical registers per PE, which can be split
among the different threads. For a kernel with 32 registers,
at most 8 threads can execute concurrently in a single core.
This level of concurrency may not be sufficient to hide mem-
ory latencies. Reducing the number of registers used a the
expense of spills to local memory was found to be benefi-
cial for this application. We forced the compiler to never use
more than 8 registers per kernel.

We found the data-dependent branching support in the
G80 to be sufficiently powerful for this application. We
developed a micro-benchmark that controlled the level of
branching in a SIMD group. As more and more PEs a SIMD
group diverge, the additional cycles required was approxi-
mately linear - indicating the overheads in addition to seri-
alization were small. While such serialization overheads can
be untenable for some applications, since the average diver-
gence we see is quite small (between 1 and 2), this overhead
can be tolerated.

To summarize, we have outlined a SIMD like organiza-
tion that can support DFAs and XFAs efficiently. As proof of
concept, we implemented a prototype IPS signature match-
ing system on the Nvidia G80 GPU. In the next section we
evaluate the performance of our implementation.

4. Results
We now evaluate the performance of signature matching us-
ing SIMD processing. We use our GPU implementation for
performance evaluation and compare the performance to a
software implementation running on a Pentium4 system. We
first describe the machine configurations and datasets. We
analyze both DFAs and XFAs using standard network traces
and signature sets. We show the performance potential of the
technique, performance on representative network traces and

signature sets, and analysis of the implementation - focusing
on the benefits of threading and memory management opti-
mizations.

4.1 Datasets and system configuration

We examine three protocols FTP, SMTP, and HTTP, and use
a set of signatures from Cisco Systems [1]. We also exam-
ined the Snort signature sets and found the results to be qual-
itatively similar and hence present only the Cisco results in
this paper. We converted the signatures to DFAs and XFAs.
Since the DFAs required large amounts of memory we parti-
tioned the DFAs into multiple DFAs to meet a memory bud-
get of 64 MB for the state machine. Table 3 describes the
details of the three signature sets. We implemented the XFA
and DFA interpreters in C++ for our baseline microproces-
sor system. We compare performance to a Pentium4 system
and measure speedup in terms of total execution time. We
use a Nvidia G8800 GTX card plugged into a Pentium4 sys-
tem running at 3GHz, which is our baseline. We first process
the trace using the CPU and measure execution cycles. The
packet buffer is then passed on to the GPU to measure exe-
cution cycles.

4.2 Performance potential

Figure 5 compares the ideal performance of the G80 to our
baseline. We measure this ideal performance by construct-
ing a simple DFA with just one state that remains in this
state irrespective of input. On the x-axis we show the num-
ber of threads and the y-axis shows ns/byte. With only one
thread, we are comparing the performance of one processing
element to the Pentium4 processor and it is about 4 orders of
magnitude worse. Each byte in the packet requires two mem-
ory accesses amounting to 800 cycles of memory delay, re-
sulting in this performance difference. As we increase the
number of threads, the multi-threading capability of the G80
is effective at hiding memory latency and with 8192 threads
performance levels off. The G80 out-performs the Pentium4
running the same DFA, by about 12X. The speedup on this
simple DFA places an upper-bound for what the G80 im-
plementation can achieve on real traces. Comparing the raw
peak performances the G80 is capable of approximately 36
times better performance. This lost performance potentialis
primarily due to memory throughput and latency.

The dotted line shows performance when the memory
system is idealized for the G80. We create this idealized
memory configuration modifying the interpreter to remove
the accesses to global memory. First, we repeatedly process
the same byte instead of fetching every byte of the packet
from memory. Second we replace the transition lookup us-
ing global memory with a dummy load from local memory.
The DFA transitions for this experiment are independent on
input, hence this modified code quite accurately estimates
the effect of perfect memory. While multi-threading is effec-
tive, the performance of this idealized memory configuration
shows a large amount of memory latency is still not hidden.
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Figure 5. Performance of G80 implementation on best-case DFA.

Protocol # Sigs # States Speedup
(for XFAs) Implementation 80% Cache hits Perfect caching

DFA XFA DFA XFA DFA XFA
ftp 31 323 8.6 7.2 10.5 8.5 11.1 8.9
http 52 1759 9.2 5.6 11.1 6.0 11.7 6.3
smtp 96 2673 8.1 7.8 9.9 9.3 10.4 9.7

Table 3. Description of signatures and performance comparison to Pentium4 on representative traces. Columns 6-8 are based
on estimates from our memory access latency model.

Initially, we see the idealized memory system reflecting dif-
ference in latencies. After 2048 threads, bandwidth becomes
a constraint for the real system and hence performance lev-
els off, whereas the ideal system scales further as it also has
infinite bandwidth. Comparing these two systems we esti-
mate that effective memory access latency is 16 cycles - we
substract the difference in execution cycles and divide by the
total number of memory loads.

4.3 Overall Performance

We now present performance results for full traces and full
signature sets. Table 3 shows the speedup compared to our
Pentium4 baseline for the three protocols. For DFAs the
three protocols show similar speedups averaging 8.6X. This
is to be expected because DFAs have regular control flow
and all these DFAs have a large number of states. The XFAs
on the other hand show more divergent behavior. Overall
XFAs perform about 6.7X better on the G80 compared to
our baseline system. HTTP shows the least performance
improvement because it executes more XFA instructions on
average than the other protocols.

The three main components of execution time are: 1)
transferring data to the GPU, 2) computation, and 3) trans-
ferring data back. The second component dominates the ex-
ecution time, and we expect double-buffering can hide the
transfer delays. The version of the drivers we use does not
provide support for such double buffering - but such sup-
port is soon expected. For the HTTP protocol, for exam-
ple, the break down of the times for processing 16K packets
is: 34ms(transfer), 212ms(compute), and 0.18ms (transfer-

back). Since transfer time is much smaller than computation
time, double-buffering will be effective. The state machine
data structure must be created during initialization. By far,
this takes the largest amount of time as it executes on a sin-
gle processing element and must recursively build the state
machine data structure and take 15 minutes for the HTTP
XFAs. Database update time will be dictated by this.

Overall the G80 implementation performs significantly
better than the Pentium4 implementation. However the
speedup is still far below 36X difference in peak perfor-
mance between the two systems. We perform a study of
optimizations that can improve performance.

4.4 Enhancements

Hardware caching - Texture memory: As shown in our
analysis of performance potential, while multi-threadingis
able to hide the memory latency to some extent, a significant
portion of performance loss is due to memory latencies to the
uncached memory space. Accesses to this uncached memory
belong to one of two large data structures — the packet
buffer and state machine data structure. The G80 includes
a large hardware managed texture cache that can exploit
locality. To simplify hardware, this cache can only be read
from the GPU, and its contents is effectively pre-loaded by
the CPU3.

The packet buffer and the state machine data structure are
effectively read-only data structures from thexfa apply

3 In reality the CPU marks a region of memory as texture cacheable and at
run-time the cache is populated by the GPU. Explicit writes to this region
of memory from the GPU are forbidden.
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kernel that processes the packets. The packet buffer accesses
show no re-use but high spatial locality and essentially ben-
efits from pre-fetching. We developed a microbenchmark
to isolate the benefits of texture caching and noticed that
on the G80, regular accesses to texture memory were typ-
ically twice as fast as regular accesses to global memory.
The delays to access the state machine dominate (64-bits
of packet data generates 8 such accesses) and mapping the
packet buffer to texture memory did not provide substantial
improvements.

The transition table is an ideal candidate for texture mem-
ory and hardware caching should effectively capture the
working set of the “hot” states as best as possible. However,
the state machine is a recursive data structure that includes
pointers in the transition table. Hence it cannot be createdon
the CPU side and simply copied over to the GPU since the
CPU address space and GPU address spaces are different. In
fact, the lack of support for writing to texture memory cur-
tails its use for any recursive data structure.Thus, we propose
exposing the GPU address structure to the CPU.With our
implementation we can estimate the benefits of such caching
but cannot accurately measure it. We use a simple model of
memory accesses to estimate the benefits. From our initial
performance potential experiment we estimate that the aver-
age memory access latency is 16 cycles. If the entire work-
ing set size fits in the cache, memory access latencies will
be the latency to the texture cache. Columns 4-7 in Table 3
show the benefits of such caching with a hit rate of 80% and
100%, for a latency of 4 cycles.

Software managed memory: Software managed caching
can also help hide memory access latencies. The signature
sets and traces can be profiled to determine the set of hot
states and these states can be saved in fast software managed
memory with only misses being sent to the global uncached
memory. Several processors include such software managed
memories – Imagine [17] has a stream register file, and
the IBM Cell processor has 256 KB of software managed
storage at each core [16]. The G80 includes such software
managed memory called “shared memory” which is 16KB
of storage space shared between all the processing elements
of a core and can be accessed in 4 cycles. This is further
organized into 16 banks of 1KB each and is specialized for
regular accesses that each go to a different bank.

We considered the use of this memory for caching the
hot states, but our estimates show the space is too small to
be useful. First with 16KB, only 16 states can be cached.
Furthermore, unless each PE accesses a different state, bank
conflicts dominate and reduce the benefits of this memory.
The caching results in Table 3, column 4-7 can be achieved
with a software managed cache as well. No one has demon-
strated the use of such software managed memories for sig-
nature matching.Our analysis shows, software managed
memories can indeed perform well.

4.5 Limitations

The limitations of our prototype implementation are the fol-
lowing. First we process packets in batches, because of the
interface limations between GPU and CPU. Second, we are
performing only signature matching, which is one compo-
nent (compute intensive) of an IPS. In future work we will
examine other functions. Finally, this system is as prone to
worst case attacks as other IPS software systems. A head-
to-head performance comparison against network processors
should provide interesting efficiency and cost/performance
comparisons.

4.6 Discussion

From our analysis of the application we identify two perfor-
mance problems that can be alleviated with small changes
to the SIMD engine. The first problem is that our key data
structure – the state machine – requires a high volume reads
from off-chip memory that pushes the limits of the avail-
able memory bandwidth. While our measurements show that
there is much locality in how it is accessed, it is not possible
to store it in the large texture memory for which hardware
caching is implemented. The reason is that the G80 imple-
mentation disables writes to textures to simplify the cache
design and avoid synchronization issues, while the CPU can-
not build the data structure because it does not have access
to the address structure used by the GPU. A second problem
is that the processing elements of a core need to start work-
ing on packets at the same time especially for XFAs because
of the initialization required. To achieve the best through-
put the system must batch together packets of similar sizes
increasing the latency for processing individual packets.

• Hardware caching for recursive data structures:Hard-
ware caching recursive data structures like our state ma-
chine data structure can provide significant performance
improvement. This can be achieved by simply allowing
a special mode where a single thread executes and writes
to the texture cache to build this data structure. Alterna-
tively, the GPU address space can be exposed to the CPU
in some fashion to build such data structures on the CPU
and copy them over.

• Larger software managed memories:Software-managed
on-chip memories larger than the current 16KB per core
could also be used to explicitly manage locality in the
state machine data structure.

• Resettable local memories:The local memory state
must be cleared before a packet is processed. A hardware
extension that clears it automatically could reduce the
instruction count for XFAs. More importantly, it could
eliminate the requirement that all processing elements
start working on their packets at the same time since
single-instruction resets would lead to little divergence.

The goal of this paper was to investigate the suitability
of SIMD processing for signature matching. The two key

11



questions are whether high performance can be sustained
and the programmability effort involved.

Performance: Overall the performance improvements of
our implementation compared to a Pentium4 system are sub-
stantial, about 8X. However, the improvements are far be-
low the difference in peak performance - about 36 fold. The
Pentium4 sustains 50% of its peak with an IPC of approx-
imately 1.5. Simply based on a comparison of peak perfor-
mance and achieved performance, we estimate the G80 sus-
tains about 10% of its peak performance. While substantial,
applying our suggested improvements could improve perfor-
mance further.

Design and Programmability: In our experience the effort
in programming this SIMD design were definitely higher
than programming a general purpose microprocessor. How-
ever, we did not have to perform explicit parallelization of
this problem because of its nature and there is no synchro-
nization required between the threads. We found the com-
piler and the optimizations it applied to be quite sophisti-
cated. The challenge was mainly debugging, given the eso-
teric development environment that does not provide access
to the machine registers directly.

5. Related Work
The work most closely related to ours can be grouped in
terms of application analysis and implementation of signa-
ture matching, analysis and extensions of SIMD architec-
tures, and applications on GPUs.

This paper is the first to present a detailed analysis of sig-
nature matching for network processing. FPGA and ASIC
implementations for high speed intrusion detection have
been recently explored [4, 7, 14, 8, 20]. Tuck et al. describe
design techniques for IPS/IDSes for ASIC and software im-
plementations targeted at general purpose programmable
processors. Brodie et al. describe a pipelined implementa-
tion of regular-expression pattern matching that can map
to an ASIC or FPGA [5]. Alicherry et al. examine a novel
Ternary CAM based approach [2]. Tan and Sherwood de-
scribe a specialized hardware implementation that performs
several pattern matches in parallel where each pattern is a
simple state machine [21]. Software based techniques to im-
prove IPSes and algorithmic improvements are unrelated to
our work.

A review of SIMD implementations is provided in [12].
Nichols et al. describe compiler and programming language
aspects of coarse grained SPMD processing which is simi-
lar in spirit to the multi-threaded SIMD implementation of
GPUs. Erez et al. describe irregular computation on SIMD
architecture focusing on irregular memory access paterns
and software transformations [11]. They examine scientific
workloads and focus on locality and parallelization opti-
mizations. For scientific applications they conclude control-
flow flexibility provides at best 30% performance improve-

ments. In our workloads, the parallelization is straight-
forward and the locality can be easily determined through
profiling. Our results show that, the benefits of control-flow
flexibilit can be quite dramatic for signature matching. Bader
et al. [3] examine irregular applications and a mathematical
model for the Cell processor which is a multi-core 4-wide
SIMD architecture. Pajuelo et al. propose microarchitecture
techniques to exploit SIMD parallelism using speculation
for vector-like regions in scalar code [18].

Jacob and Brodley [15] demonstrate a version of the
open source intrusion detection/prevention system Snort that
uses the NVidia 6800 GT graphics card performing simple
string matching. Our evaluation on a more flexible newer-
generation GPU with more recent, larger databases of more
complex signatures and using more efficient matching algo-
rithms gives us much more promising results with respect
to the potential of GPUs to support higher throughput. Also,
since we focus more on mapping the signature matching op-
eration to the GPU as opposed to building a fully functional
system that can be deployed, we are able to better understand
how various decisions by the architects of the GPU affect
its ability to support high-speed signature matching. Several
high performance applications have been mapped to GPUs
and Pharr and Fernando provide a good overview [19].

6. Conclusion
In this paper, we examined the feasibility of using a SIMD
architecture for performing signature matching, the most
processing-intensive operation for network intrusion preven-
tion systems. This paper is the first to perform a detailed ap-
plication analysis examining the basic memory, control flow,
and concurrency properties of signature matching. We ex-
amine two techniques for signature matching: using multi-
ple deterministic finite automata (DFAs) and using extended
finite automata (XFAs) to represent the set of regular expres-
sions to be matched against the packet payload. The first re-
quires simple processing for each input byte while the sec-
ond has been showed to achieve better performance on gen-
eral purpose processors, but requires more complex and less
uniform per byte processing.

This paper is the first to identify that SIMD process-
ing maps well to this application. We outlined a SIMD de-
sign that includes extensions for irregular control flow that
can support the non-uniform behavior exhibited by XFAs.
To evaluate this design we implemented signature match-
ing on an Nvidia G80 GPU which shows 6X to 9X bet-
ter performance than a Pentium4 system. We also propose
simple extensions to the memory system that can improve
performance for pattern matching without slowing down
other applications or increasing the complexity of the chip.
Our proof-of-concept implementation shows that network
devices can offload signature matching to a SIMD engine
to achieve cost-effective performance improvements. Since
regular expression matching is central to a number of other
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applications such as network traffic policing, XML process-
ing, and virus scanning we believe that solutions similar to
ours can help such applications benefit from the performance
potential of SIMD engines.
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