

Computer
Sciences
Department

Towards the Analysis of Transactional Software

Nicholas Kidd
Kevin Moore
Thomas Reps
David Wood

Technical Report #1624

October 2007

Towards the Analysis of Transactional Software ?

Nicholas Kidd1, Kevin Moore1, Thomas Reps1,2, and David Wood1

1 University of Wisconsin; Madison, WI; USA.
{kidd,kmoore,reps,david}@cs.wisc.edu
2 GrammaTech, Inc.; Ithaca, NY; USA.

Abstract. The computer-architecture community’s recent focus on multi-
core architectures has spurred renewed interest in concurrent-programming
techniques and abstractions. For programmers to take advantage of the
processing power of today’s multi-core chips, they need to write multi-
threaded applications. Specifically, the programming-language commu-
nity has focused on software transactions. A software transaction declara-
tively specifies what program statements should execute atomically. Our
research focuses on the analysis of programs that make use of software
transactions. We present a novel interprocedural analysis, XRef analy-
sis, that annotates the fields of each record type in the program with the
static transactions in which it is referenced. We show how the results of
XRef analysis can be used to perform additional analyses. In particular,
we present two such analyses, XOrder and XProtect. XOrder is aimed
at software running on a transactional-memory platform and attempts
to find an optimized layout for a record in memory. XProtect is a safety
analysis that warns the programmer if a shared record is inconsistently
protected by a software transaction.

1 Introduction

Software developers have traditionally benefited from advances in computer ar-
chitecture, which, over multiple decades, has provided a steady increase in the
computing resources available to applications. However, the immense heat dis-
sipation and power usage that results from ramping up the clock frequency has
(temporarily) stalled this process.

To continue to provide software developers with increased computing re-
sources, computer architecture has focused on thread-level parallelism. This is
evident by the myriad of chip multiprocessors (CMP) in today’s commodity PCs.
A CMP consists of multiple processing cores on one die. Many of today’s laptops
now include dual-core processors. There are predictions that the next generation
of processors will be 4 or 8-way CMPs.

? This work is supported in part by NSF grants EIA/CNS-0205286, CCR-0324878,
CNS-0551401, CCF-0540955, CCF-0524051, by ONR under grant N00014-01-1-0796,
as well as donations from Intel and Sun Microsystems. Wood has a significant finan-
cial interest in Sun Microsystems. The views expressed herein are not necessarily
those of the NSF, ONR, Intel, or Sun Microsystems.

The CMP trend in computer architecture implies that software developers
will need to write concurrent programs to take advantage of the increased pro-
cessing power. In the past, the synchronization primitives used to write con-
current programs have traditionally been locks, semaphores, and condition vari-
ables. These primitives are both error-prone and do not scale to many threads of
execution. Furthermore, it has been shown that this is neither composable nor
effective for large data structures, such as hashtables [1].

The difficulties of lock-based programming led to research in programming
with transactions. In abstract terms, a transaction is a sequence of events that ap-
pear to happen atomically. The idea of using transactions was borrowed from the
database community. Traditional database transactions support ACID (Atom-
icity, Consistency, Isolation, and Durability) semantics. To avoid confusion, we
will refer to transactions used in programs as software transactions.

A software transaction consists of a sequence of instructions executed by one
thread, whose side effects appear to happen at once. Software transactions give
programmers a declarative way of expressing synchronization—the programmer
will specify what program statements are to be executed atomically and not
how the atomic execution is implemented. Due to the volatile nature of memory,
software transactions only concern themselves with the first three principles of
database transactions, namely ACI.

Software transactions strive to facilitate the writing of correct highly-concurrent
programs. By the abstract specification of atomic sections, performance of mul-
tithreaded programs can be improved by executing software transactions that
operate on disjoint data in parallel. Lock-based critical sections, on the other
hand, are serialized if they are protected by the same lock regardless of the data
actually accessed. Additionally, programmers can leave the implementation of
atomic critical sections to the underlying system.

There have been many research proposals, from both the architecture and
programming languages communities, investigating transactional memory (TM)
systems to support software transactions. These include TM systems that are
implemented completely in software (STM) [2–5], in hardware (HTM) [6–10],
and implementations that have various aspects implemented in hardware and
software (HyTM) [11, 12]. TM systems attempt to execute software transactions
concurrently. They typically enforce atomicity and isolation by stalling or abort-
ing software transactions that conflict. A conflict occurs when two transactions
access the same data concurrently, and one of them is a write.

While software transactions present a step forward in the evolution of con-
current programming, programmers using software transactions must still reason
about program correctness and performance. Bugs may result from accesses to
shared data structures that are inconsistently protected by software transactions.
A program’s performance can suffer if concurrency is limited by conflicting trans-
actions. The problem of transaction conflicts can be exacerbated by transactional
memory systems that detect conflicts at a coarse granularity. For example, many
HTM’s detect conflicts between concurrent transactions using the cache coher-
ence mechanism. To conserve hardware resources, these systems typically detect

2

conflicts at the granularity of a cache line. In such systems, concurrent accesses
to different words in the same cache line by two different transactions can cause
a false conflict (i.e., an unnecessary serialization of transactions that is due
solely to the heuristic nature of a platform’s conflict-detection mechanism—see
Defn. 6). False conflicts can cause significant performance loss on HTMs [10].

To address these problems, we introduce three interprocedural dataflow anal-
yses. The first analysis, XRef, is a static analysis that annotates the fields of
each record type3 in the program with the static transactions (Defn. 5) in which
they are referenced. These (automatically inferred) annotations are important
for analysis tools whose focus includes transactional software. That is, the re-
sults of XRef analysis form a basic building block on which other analyses can
be built. We demonstrate this capability by implementing with our other two
interprocedural analyses, XOrder and XProtect, on top of XRef.

We address false conflicts through XOrder analysis. Specifically, the goal of
XOrder analysis is to reduce false conflicts among concurrent software trans-
actions. XOrder analysis targets TM systems systems that detect conflicts at
a coarse granularity. Using a detailed simulator of an HTM system, XOrder
analysis more than doubled the performance for one benchmark.

XProtect is a consistency analysis. It detects when the fields of a shared
record are not consistently protected by a software transaction. Inconsistencies
can result in unintended program behaviors and data races.

We are (essentially) inferring annotations for the fields of record types. This
allows us to ignore thread interleavings, and hence we need only perform a
sequential analysis of the code from (one copy of) each separate kind of thread
in the program. One way to accomplish this is to model the program with a
“supermain” function that nondeterministically branches to the entry point of
each kind of thread, including the main function.

The contributions of this paper are:

• XRef, a new software analysis that annotates the fields of a record with the
static transactions in which they are accessed.

• XOrder, a software optimization that determines an optimized memory lay-
out for the fields of a record. We measured speedups of up to 2.8.

• XProtect, a safety analysis that detects when a shared data structure is not
consistently protected by a software transaction.

• Our analyses are able to analyze existing lock-based programs in a transac-
tional setting.

The remainder of the paper is organized as follows: §2 specifies the program-
ming model. §3 and §4 introduce the notion of a dynamic transaction and static
transaction, respectively. §5 presents XRef. §6 and §7 present our additional
program analyses XOrder and XProtect, respectively. §8 discusses related work.

3 We use the term “record” to emphasize that the analysis is language independent. A
record type corresponds to a C struct or to a class in an object-oriented language.

3

2 Programming Model

Program → RecordList FunList
RecordList → ε | RecordList Record
Record → record rid {t:id1, . . ., t:idk}
FunList → ε | FunList Fun
Fun → t fun fid (t:p1, . . ., t:pk) { Stmt }
Stmt → t x | x = Exp | Stmt;Stmt

| if Exp then Exp else Exp
| while Exp { Stmt }
| return Exp
| begin transaction
| end transaction
| thread { Stmt }

Exp → n | x | x.idj | Exp op Exp
| fid(Exp1,. . .,Expk)

op → + | − | * | / | lt | gt | eq | or | and
t → int | boolean | rid | void

Fig. 1. The source language.

Our programming model consists of a multithreaded program running on
a platform that supports transactional memory. Transactional memory may be
implemented in hardware, software, or a combination of the two. For XOrder
analysis, we focus on TM systems that detect conflicts at a granularity larger
than a memory address—for instance, at the level of a cache line. Detecting
conflicts at cache-line granularity is common in HTM systems that perform
conflict detection through the cache-coherence protocol [6, 8–10], in Hybrid TM
systems [11, 12], and in at least one STM implementation [13]. The transactional
memory system’s atomicity model, either strong or weak [14], has no effect on
our analyses.

For expository purposes, we use the simplified programming language spec-
ified by the grammar in Fig. 1. In the specification, n is an integer, x is an
identifier, and t is a type. Fig. 1 defines a C-like language that includes support
for Booleans, integers, records, variables, named functions, threads, and software
transactions. All records are passed by reference. Fig. 2 shows an example pro-
gram. Although it does not perform any meaningful task, it is intended to help
clarify the capabilities of XRef, XOrder, and XProtect.

A software transaction is started by the begin transaction statement and
completed by the end transaction statement. Our model differs from past re-
search, which uses an atomic-block construct, by permitting the beginning and
ending of a software transaction to be specified separately. This choice is a di-
rect result of the authors’ desire to implement and experiment with the analyses
that will be discussed later. That is, the number of benchmarks available today

4

record ColoredShape { int:r, int:g, int:b,

int:x1, int:y1, int:x2, int:y2,

int:x3, int:y3, int:x4, int:y4

}

void fun muly(ColoredShape:s, int:amt) {

s.y1 = s.y1 * amt; s.y2 = s.y2 * amt;

s.y3 = s.y3 * amt; s.y4 = s.y4 * amt;

}

void fun mulx(ColoredShape:s, int:amt) {

n1: begin_transaction;

s.x1 = s.x1 * amt; s.x2 = s.x2 * amt;

s.x3 = s.x3 * amt; s.x4 = s.x4 * amt;

}

int sumx(ColoredShape:s) {

int tot = s.x1 + s.x2 + s.x3 + s.x4;

return tot;

}

int fun main() {

ColoredShape s = ...; // initialization

n2: thread { begin_transaction; muly(s,3);

n3: end_transaction; }

n4: thread { mulx(s,0); end_transaction; }

n5: thread { int xtot = sumx(s); ... }

}

Fig. 2. Example program. Labels n1-n5 will be used to explain various aspects of the
analyses.

that make use of the atomic-block construct is currently very small. Therefore,
our experiments analyze lock-based programs by treating a lock acquire as a
begin transaction and a lock release as an end transaction.4 In one of the
benchmarks discussed in §6.2, the two ends of a matched begin transaction

and end transaction pair occur in separate files. Hence, we needed a program-
ming model that could handle the case where a program begins a transaction in
one function and ends it in another.

We do expect future programming languages to use the atomic-block con-
struct. Because of this, we present two versions for each of our analyses. The
first version is for the analysis of programs that use the atomic-block construct,
while the second is for programs that adhere to the less-structured programming
model. Our goal is to allow researchers to perform static analysis of software in
a transactional setting. By presenting both versions, we provide algorithms for
analyzing software that makes use of an atomic-block construct, as well as for

4 Blundell et al. showed that it is possible to introduce deadlocks when lock-based
programs are run/analyzed transactionally by converting lock acquire and lock re-
lease into begin transaction and end transaction, respectively [14]. An analysis
that detects such situations out of the scope of this paper.

5

analyzing lock-based programs in a transactional setting. With respect to analyz-
ing lock-based programs, the algorithms we present are useful for both analyzing
current lock-based programs for execution on research TM implementations, as
well as for analyzing legacy code when TM has become standard.

3 Dynamic Transaction

Here we define the notion of a dynamic transaction. The purpose of this defini-
tion is to make clear the distinction between dynamic and static transactions.
Dynamic transactions are a runtime notion describing an actual execution of a
program, whereas static transactions are intrinsic to the program’s text. We
present two definitions of a dynamic transaction: (1) for programs that use
atomic blocks, and (2) for programs that explicity specify the beginning and
ending of a software transaction. We refer to the former as structured software
transactions and the latter as unstructured software transactions.

Definition 1. A dynamic transaction is a sequence of dynamic instructions ex-
ecuted in the scope of an atomic block.

Definition 2. A dynamic transaction is a sequence of dynamic instructions ex-
ecuted between a matched pair of begin transaction and end transaction

instructions.

4 Static Transaction

A program-analysis tool for understanding transactional software must be able to
distinguish between program statements that occur within a dynamic transaction
and those that do not. Because a dynamic transaction is a runtime notion,
a static-analysis tool cannot work with dynamic transactions directly. For the
static analysis of transactional software, we introduce the notion of a static
transaction. A static transaction is defined in terms of valid paths in the program.

Definition 3. A path in a program’s interprocedural control-flow graph (ICFG)
is valid if it respects the fact that when a procedure finishes, it returns to the site
of the most recent call [15].

Note that a given valid path may not actually be executable, e.g., due to corre-
lations in the path’s branch-conditions.

As we did for dynamic transactions, we present the definition of a static trans-
action both for (1) programs that make use of structured software transactions,
and for (2) programs that make use of unstructured software transactions.

Definition 4. A static transaction consists of all program statements that lie
on a valid path within an atomic block. A static transaction is represented by
the program locations that demarcate the block.

6

Definition 5. A static transaction consists of all program statements that
lie on a valid path between a matched pair of begin transaction and
end transaction statements. A static transaction is represented by the pair
of program locations for the begin transaction and end transaction state-
ments.

A static transaction represents a set of dynamic transactions, namely, those
that start at the begin transaction point and end at the end transaction

point. Our analyses use sets of static transactions to over-approximate sets of dy-
namic transactions. We next show, for both structured and unstructured trans-
actions, how the sets of static transactions are determined.

4.1 Structured Software Transactions

It is trivial to determine a program’s static transactions when the program-
ming language supports atomic blocks. In standard compiler infrastructures,
the parser will check for correct syntax of the program and return an abstract
syntax tree (AST). The parser can be augmented to record the location of each
atomic block in the program. With this information, the node set of a static
transaction consists of all program nodes that are within the scope of its atomic
block and the program nodes of all functions (transitively) called from within
that scope.

4.2 Unstructured Software Transactions

To analyze traditional lock-based code in a transactional setting, we treat
each lock-acquire and lock-release operation as a begin transaction and
end transaction, respectively [16, 17]. This adds considerable difficulty to de-
termining the static transactions of the program—we cannot rely on the parser
to verify each software transaction has a matching begin and end. Additionally,
we cannot use the reachability relation on the programs’s ICFG to determine
a programs’s static transactions. In this section, we present an interprocedu-
ral dataflow analysis to address these problems. Namely, the analysis (1) verifies
correct usage of the transactional primitives, and (2) determines the static trans-
actions of a program.

Because converted lock-based programs are allowed to specify the beginning
and ending of a software transaction separately, we must take care not to make
the detection of static transactions undecidable. The problem is that we are
close to having to contend with two interleaved sets of matched parentheses,
one (valid paths) for modeling the control flow of the program, and one for
modeling the matched begin transaction and end transaction statements.
Reps [18] proved that a program-analysis problem that must meet the matching
constraints of two interleaved (i.e., shuffled) sets of matched parentheses is unde-
cidable in the general case. To sidestep this undecidability result, we restrict our
programming model to allow transactions to be nested to only a finite depth. For
the purposes of presenting our analyses, we set the nesting depth to be zero. That

7

is, we will not consider nested transactions in this paper. With a finite nesting
depth, we can verify correct usage of the software-transaction primitives using a
property automaton [19, 20]. The property automaton for checking correct usage
of the begin transaction and end transaction primitives with nesting depth
of zero is shown in Fig. 3. It is trivial to expand this automaton to allow for any
finite number of nested transactions.

init xact err
bt

bt

et

et

Σ

Σ − {bt, et}

Σ − {bt, et}

Fig. 3. Property automaton for validating correct transaction usage with a nest-
ing depth of 0. In the diagram, bt represents begin transaction, et represents
end transaction, and Σ represents all symbols.

Property automata are useful for answering reachability questions, like in-
correct usage of the transactional primitives. This is often done by creating a
dataflow-analysis problem in which the automaton’s transition relation (often
denoted by δ) is used as a state transformer. (More precisely, each transformer
is δ restricted to one or more alphabet symbols.) Tab. 1 shows the transformers
that model the property automaton from Fig. 3 (for now ignore the bracketed
symbols in the subscripts). In Tab. 1, the transformer states model the states of
the property automaton. To reduce clutter, transitions to the err state are not
modeled explicitly; instead, they are modeled by a state q on the left-hand side
being disconnected from every state on the right-hand side. This represents an
implicit transition from q to the err state. In Tab. 1, the top row displays the
transformers that correspond to the program statements. Transformer δB[b] cor-
responds to a begin transaction statement, transformer δE[e] corresponds to an
end transaction statement, and transformer δid corresponds to all other pro-
gram statements. The second row shows the transformers that can arise through
transformer composition.

To verify correct usage of the begin transaction and end transaction

primitives, we solve an interprocedural dataflow-analysis problem. We associate
dataflow transformers with each edge in the ICFG. To make clear the distinc-
tion between dataflow transformers and transformers that model the transition
relation of an automaton, we will refer to the latter as δ-transformers, and use
the symbol τ for dataflow transformers.

To determine correct usage of the transactional primitives, our dataflow-
analysis transformers (τ -transformers) are sets of δ-transformers that model the
property automaton. Associated with each edge in the ICFG is a singleton set
containing the δ-transformer that encodes the effect of abstractly executing that
edge (with respect to the property automaton). Composition of two transformers

8

τ1 and τ2 involves taking the cross product of the two sets of δ-transformers, and
performing relational composition on the resulting pairs of δ-transformers. We
denote relational composition by “;” (e.g., δid; δB[b] = δB[b] and δB[b]; δE[e] = δBE).

To solve the dataflow-analysis problem, we use standard techniques [15] to
compute a fixpoint. The result of this computation is a set of δ-transformers
for each node in the ICFG, where a node’s set contains the meet-over-all-paths
(MOP) value along valid paths from program entry to that node. To check for
correct usage of the transactional primitives, one need only verify that τexit ⊆
{δid, δBE}, where τexit is the dataflow transformer associated with the exit node
of the main function.

init

xact

(a) δid (b) δB[b] (c) δE[e]

init

xact

(d) δBE (e) δEB[(e,b)] (f) δErr

Table 1. δ-transformers that encode the transition relation of the property automaton
shown in Fig. 3. The left column is a legend labeling the states of the δ-transformers.

δ1; δ2 δid δB[b2] δE[e2] δBE δEB[(e2,b2)] δErr

δid δid δB[b2] δE[e2] δBE δEB[(e2,b2)] δErr

δB[b1] δB[b1] δErr δBE, (b1, e2) δErr δB[b2], (b1, e2) δErr

δE[e1] δE[e1] δEB[(e1,b2)] δErr δE[e1] δErr δErr

δBE δBE δB[b2] δErr δBE δErr δErr

δEB[(e1,b1)] δEB[(e1,b1)] δErr δE[e1], (b1, e2) δErr δEB[(e1,b2)], (b1, e2) δErr

δErr δErr δErr δErr δErr δErr δErr

Table 2. Definition of composition of δ-transformers. The labels in square brackets
represent the annotation on a δ-transformer. Light grey table entries contain a δ-
transformer and a pair, which denotes that the composition also produces a static
transaction.

We extend the τ -transformers to collect additional information about the
program. Sagiv et al. showed how relations can be annotated with “values” that
satisfy certain algebraic properties [21]. Since our dataflow transformers are sets
of relations on the states of the property automaton, we use this framework
to provide a more general framework for analyzing programs that make use of

9

software transactions (in a manner similar to our programming model). Our
first usage of this framework is to determine all of the static transactions of a
program.

Let B and E be the set of all begin transaction and end transaction pro-
gram locations, respectively. We annotate certain δ-transformers with either an
element in B or E or a tuple from E ×B. Revisiting Tab. 1, the δ-transformers
that contain annotations are marked by the bracketed symbols in their sub-
script. Intuitively, the annotation on a δ-transformer is an “explanation” why
that δ-transformer does not contain the edge init → init. For example, the δ-
transformer δEB[(e,b)] in table entry (e) arises from δE[e]; δB[b]. It is annotated with
(e, b), which records the unmatched end transaction and begin transaction

program statements that caused this δ-transformer to arise.

With these annotated δ-transformers, Tab. 2 defines δ1; δ2. Some of the en-
tries in Tab. 2 are highlighted. This is because for those entries, the composition
of two annotated δ-transformers also produces an auxiliary tuple (b, e), where
b ∈ B and e ∈ E, which is placed in a global database. These tuples allow us to
determine the static transactions of a program.

To use our dataflow transformers in the framework defined in [21], we must
show that they adhere to certain algebraic properties. This requires proving that
our dataflow transformers form a finite-height meet semi-lattice. Semi-lattice el-
ements are sets of δ-transformers. Let ∆ be the set of all δ-transformers. The
semi-lattice is finite-height because there is only a finite number of δ-transformer
sets, i.e., P(∆). We define the meet operation, u, as set union. Semi-lattice el-
ements are ordered by superset. Because composition of τ -transformers is per-
formed pointwise (i.e., on a per-δ-transformer basis), composition distributes
over u; hence, the problem is distributive.

For determining the static transactions of a program, each dataflow trans-
former is a set of annotated δ-transformers. We associate with each edge in the
ICFG the singleton set containing the annotated δ-transformer that corresponds
to abstractly executing that edge. Then, using standard techniques [15], the
meet-over-all-paths value for each node is found by computing a fixpoint. When
the composition of two δ-transformers produces a tuple, we record it in a global
database. After the fixpoint has been reached, the database contains all of the
program’s static transactions. Because we build on the framework that verifies
correct usage of the transactional primitives, this analysis also verifies correct
usage of the primitives.

Our implementation uses weighted pushdown systems (WPDSs) [22, 23] as
the dataflow analysis solver. Reps et al. showed the connection between WPDSs
and dataflow analysis [23]. The WPDS algorithms for solving a dataflow-analysis
query have the capability to return a witness trace [23] for the answer found for
each program node. A witness trace can be thought of as a proof for the computed
answer. We exploit this capability for alerting the programmer of possible incor-
rect usage of the begin transaction and end transaction primitives. That is,
if after solving the dataflow analysis, τexit ∩{δB[b], δE[e], δEB[(e,b)], δErr} 6= ∅, then
there is possible incorrect usage of the primitives. We present to the program-

10

mer a path through the program that produces this erroneous result. Due to the
abstraction being used, the path may not actually be executable (e.g., due to
correlated branches). The programmer can analyze the path and determine if
there exists an actual misuse of the primitives in the program.

5 XRef

It is useful for a programmer to know what record fields are accessed in the
dynamic transactions during program execution. This is important both for pro-
gram understanding and debugging. For example, when adding fields to a record
type or splitting a large record type into two, the programmer must be aware
of the fact that the fields of an instance of that record are guarded by a soft-
ware transaction. We are able to present to the programmer an approximation
of this information through XRef analysis. XRef analysis approximates the set
of fields accessed in dynamic transactions by annotating the fields of each record
type with the static transactions in which they are referenced. XRef analysis
can be viewed as inferring annotated types, where the annotations are the static
transactions in which each field of a record type is referenced.

5.1 Structured Software Transactions

When the program being analyzed makes use of the atomic-block construct,
XRef analysis can be performed by a flow-insensitive interprocedural analysis
(similar to GMOD/GUSE analysis [24]). Because of the similiarities between
XRef analysis (for the atomic-block construct) and GMOD/GUSE analysis, we
only sketch the algorithm.

Let R be the set of all record-type names, and F be the set of all field names.
For each static transaction, the algorithm computes a set of (fully-qualified)
field accesses s, where each field accesses is of the form r.f with r ∈ R and
f ∈ F . For each function of the program, perform an intraprocedural analysis
that determines all field accesses performed by that function. The accesses are
represented by a set s. This can be accomplished with a single pass over each
program node in a function’s control-flow graph (similar to IUSE analysis). Once
this information has been computed, next perform a fixpoint calculation over
the callgraph to determine the field accesses made transitively by each function
(similar to GUSE analysis). Finally, for each function that contains an atomic

block, traverse the program statements that are in the scope of the atomic block,
unioning the accesses for each program statement. If a program statement is a
function call, the set of accesses is retrieved from the sets that were calculated
from the fixpoint computation on the callgraph. Once this information has been
computed for each static transaction, the fields of each record type are annotated
with the static transaction(s) in which it is accessed.

11

5.2 Unstructured Software Transactions

We make use of the framework presented in §4.2 to analyze lock-based pro-
grams converted to use begin transaction and end transaction. To do this,
we add to each δ-transformer’s annotation a set of field accesses, as defined in
§5.1. Specifically, for each δ-transformer in the top row of Tab. 1, we add to
the annotation a set s, which is shown in Tab. 3. We make a few changes to
the composition of δ-transformers. For brevity, we enumerate the changes here
instead of replicating Tab. 2. We use the notation (s, δ) to represent an anno-
tated δ-transformer extended with the set of field accesses s. Likewise, we use
the notation (s1, δEB[(e,b)], s2) to represent that δEB[(e,b)] has two sets, s1 and
s2, where s1 is the set of fields accessed in a static transaction ending at e and
s2 is the set of fields accessed in a static transaction beginning at b. We define
“;” as follows (see below for an explanation):

1. (s1, δB[b]); (s2, δE[e]) = (∅, δBE), (b, e, s1 ∪ s2)
2. (s1, δid); (s2, δB[b]) = (s2, δB[b])

3. (s1, δBE); (s2, δB[b]) = (s2, δB[b])
4. (s1, δE[e]); (s2, δB[b]) = (s1, δEB[(e,b)], s2)

5. (s1, δE[e]); (s2, δid) = (s1, δE[e])
6. (s1, δE[e]); (s2, δBE) = (s1, δE[e])

7. (s1, δid); (s2, δEB[(e1,b1)], s3) = (s1 ∪ s2, δEB[(e1,b1], s3)
8. (s1, δEB[(e1,b1)], s2); (s3, δid) = (s1, δEB[(e1,b1], s2 ∪ s3)

9. (s1, δB[b1]); (s2, δEB[(e2,b2)], s3) = (s3, δB[b2]), (b1, e2, s1 ∪ s2)
10. (s1, δEB[(e1,b1)], s2); (s3, δE[e2]) = (s1, δE[e1]), (b1, e2, s2 ∪ s3)

11. (s1, δEB[(e1,b1)], s2); (s3, δEB[(e2,b2)], s4) = (s1, δEB[(e1,b2], s4), (b1, e2, s2 ∪ s3)
12. otherwise (s1, δ1); (s2, δ2) = (s1 ∪ s2, (δ1; δ2))

Let us now explain this definition by means of a few examples. Intuitively,
we want to only record field accesses that occur within a static transaction.
This is exemplified by rule 2. The composition (s1, δid); (s2, δB[b]) results in
(s2, δB[b]). This has the effect that the composition ignores all field accesses
that occur before the begin transaction statement. Similiarly, rules 3–6 ig-
nore all field accesses that occur after an end transaction statement. Notice
that the cases specified in rules 1 and 9–11 each produce an auxiliary triple.
This is because those rules result from the matching of a begin transaction

and end transaction statement. Specifically, for rule 10, the composition of
(s1, δEB[(e1,b1)], s2); (s3, δE[e2]) results in the annotated δ-transformer (s1, δE[e1])
along with the auxiliary triple (b1, e2, s2 ∪ s3). The triple denotes that static
transaction (b1, e2) accessed the fields contained in the set s2 ∪ s3. When an
auxiliary triple is produced, we record this information in a global database.

Each node of the ICFG is annotated with its corresponding dataflow trans-
former as in §4.2. As before, we use standard techniques to compute the MOP
dataflow transformer for each program node in the ICFG. Once the dataflow
analysis has completed, the global database contains triples of the form (b, e, s),
such that b ∈ B, e ∈ E, and s is a set of field accesses. We use this information

12

Program Statement δ-transformer Pair Set

n1: begin transaction δB[n1] ∅
n1: end transaction δE[n1] ∅
n1: x = r1.f1 δid {(r1.f1)}
n1: r1.f1 = x δid {(r1.f1)}
Table 3. Example program statements; their corresponding δ-transformers; and the
set of field accesses that annotates them.

to annotate the fields of each record type with the static transactions in which
it is accessed.

When interpreting the results our experiments, we found XRef analysis to be
extremely helpful. Analyzing the information obtained from XRef analysis led
us to realize that dynamic transactions were aborting because of false conflicts.
We address this issue with our next analysis, XOrder.

6 XOrder

XOrder is an analysis that determines an improved layout for the fields of a
record type. It identifies these reorderings by analyzing the results of XRef anal-
ysis. The experiments reported in §6.2, show that, without programmer inter-
vention, XOrder can reduce the rate of false conflicts for programs running on a
transactional memory system.

Definition 6. A false conflict occurs when two distinct dynamic transactions
access separate bytes of memory, but, due to the conflict-detection scheme of the
transactional memory system, one of them is forced to stall or abort.

Although false conflicts can occur in both STMs and HTMs, they are especially
prevelent in HTMs that detect conflicts using the coherence mechanism. For
clarity, in this section, we assume an HTM.

Fig. 4. Possible layout in memory of the shared record s from Fig. 2. Each row repre-
sents one cache line of memory.

In our target HTM implementation, the granularity of precision is one cache
line. Therefore, during a dynamic transaction, the HTM’s conflict-detection

13

mechanism does not distinguish between memory reads and writes to the same
cache line. Fig. 4 depicts a possible layout in memory of the shared ColoredShape

record s from the program in Fig. 2. Assuming that integers occupy four bytes of
memory and that the cache-line size is sixteen bytes, accesses to any of the fields
{r, g, b, x1} are not differentiated by the HTM’s conflict-detection mecha-
nism. That is, an access to any of the fields will mark the entire cache line as
accessed due to the HTM’s conflict-detection granularity. Similarly, accesses to
any of {y1, x2, y2, x3} will not be distinguished and accesses to any of {y3,
x4, y4} will not be distinguished. This memory alignment, combined with the
HTM’s conflict-detection mechanism, will cause a false conflict between the con-
current execution of transactions (n2,n3) and (n1,n4) from the program in Fig. 2.
It is a false conflict because the two transactions do not access any common fields
of the shared ColoredShape record s. To tackle this problem, we developed an
analysis algorithm, XOrder, that determines an optimized layout ordering for
record types.

Record-layout reordering is a technique that analyzes which fields of a partic-
ular record type might be accessed in a dynanic transaction. The result of XRef
is the set of fields of record types accessed in a static transaction. Thus, XRef
computes a superset of the fields actually accessed in a dynamic transaction.
The idea behind record-layout reordering is that if two fields, f1 and f2, are
accessed only in separate dynamic transactions, then the layout of the record
type in memory should be chosen to ensure that these fields reside in separate
cache lines. Because we are performing static analysis, we do not know where in
memory a record instance will be dynamically created, and furthermore we do
not know its alignment with respect to cache lines. Therefore, our goals are: (1)
to separate f1 and f2 with fields that are not accessed in a static transaction,
and (2) to ensure that the sum of the sizes of these “padding” fields is greater
than or equal to the size of a cache line. A beneficial byproduct of this ordering is
that the number of cache lines accessed by a dynamic transaction is potentially
decreased. This is akin to the cache-block working set optimization described by
Chilimbi et al. [25].

XOrder uses the field annotations inferred by XRef to determine an optimized
ordering of a record type’s fields. With respect to [25], we do not use dynamic
profiling information to determine a field ordering. Instead, we rely on the field
accesses that occur in a static transaction.

Intuitively, the ordering determined by XOrder should be such that each
static transaction accesses a contiguous region of memory. When the fields ac-
cessed by a static transaction do not overlap with the fields accessed by any
other static transaction, determining this ordering is trivial. We create an undi-
rected graph, where the nodes of the graph correspond to the fields of the record
type. There is an edge between two nodes (fields) if they are accessed in the
same static transaction. In Fig. 5, the x fields are all connected because they
are accessed in the static transaction (n1,n4) and the y fields are all connected
because they are accessed in the static transaction (n2,n3). When ordering these
fields, each connected component represents nodes that should be laid out near

14

each other. A (linearization of a) spanning tree for the connected component
gives a linear order for those fields.

In some cases, the accesses of two static transactions will share some subset
of a record type’s fields. We refer to these static transactions as a transactional
group.

Definition 7. A transactional group consists of 2 or more static transactions
such that there is a common field shared between at least two of the static trans-
actions in the group.

In these situations, the fields of a transactional group are ordered such that
each static transaction of the group accesses contiguous regions of memory. One
solution to find such an ordering (if it exists) is to solve an instance of the
traveling-salesman problem (TSP). Create a graph where the nodes of the graph
represent the fields of the transactional group. For each pair of nodes, add a
weighted edge to the graph. The weight of the edge is determined by the static
transactions of the group. That is, if the two fields represented by the nodes are
accessed in the same static transaction, then the weight is 1. Otherwise, we set
the weight to be greater than 1. By setting the weight to be greater than 1, a
solution to the TSP will not traverse that edge unless it is absolutely necessary.
In our experiments, we used the weight 10. For such graphs, an optimal solution
to the TSP will produce the desired ordering. The path can be used to create
the record layout. If it is possible for every static transaction of the group to
access contiguous memory, then this ordering will provide it. In cases where no
such ordering exists, the ordering produced by solving the generated instance of
the TSP will provide a good approximation.

Because we are targeting our analysis for a compiler infrastructure, solving
an NP-complete problem like the TSP every time the program is modified might
be too costly. Therefore, we use the well-known heuristic of using a minimum-
spanning-tree (MST) algorithm to approximate the TSP [26]. Approximating
the TSP solution using an MST is nice because it still takes the graph’s edge
weights into account. For example, one could imagine using dynamic-profiling
information to adjust the weights on the graph, effectively biasing the solution to
the TSP to prefer certain paths (orderings) over others. This would allow XOrder
to perform an optimization akin to the field-layout-affinity method proposed by
Chilimbi et al. [25]. Because we use an MST to approximate a solution to the
TSP, we no longer need to distinguish between transactional groups and static
transactions (that are not members of a group). This is because we can use a
linearization of the MST to compute an ordering for both cases.

Once the layout of each static transaction and transactional group is deter-
mined, we next use the record type’s fields not accessed in a static transaction
as padding between these orderings. If there are n ordered sets, then XOrder
attempts to find n − 1 sets of padding fields such that the size of each set is
at least the size of the cache line for the target architecture. To do this, we
sort the padding fields in decreasing order by their size and then (attempt to)
greedily fill the n− 1 sets. Fig. 6 displays the layout of ColoredShape after an-
alyzing the program in Fig. 2 with XOrder. Notice that the analysis suggested

15

0.6

x1 x2

x3 x4

y1y2

y3y4

r

g

b

Fig. 5. The graph generated during XOrder analysis for the program in Fig. 2.

the insertion of an integer field named pad1. This is because for the example
program (and target architecture with a cache-line size of 16 bytes), there are
not enough fields to place between the two static transactions. Our analysis only
suggests the padding in a comment instead of directly emitting it because the
addition of extra fields can impact the performance of a program. For example, if
the program allocated a million ColoredShape objects, then the addition of the
padding field would cause 4 MB of memory to be wasted. Additionally, adding
pad fields will affect the runtime behavior of the program because it places extra
pressure on the cache. Because of the padding suggestions, we do not directly
modify the analyzed program. Instead, we emit the reorderings for each record
type to the programmer. The programmer can then decide whether to apply the
reordering.

record ColoredShape {

int:x1, int:x2, int:x3, int:x4,

int:r, int:g, int:b,/*int:pad1,*/

int:y1, int:y2,int:y3, int:y4

}

Fig. 6. A reordering of the fields of ColoredShape suggested by XOrder.

6.1 Discussion

XOrder analysis is a whole-program analysis. Field reordering can break pro-
grams that make use of shared libraries that are compiled assuming a certain
field layout. In addition to this, some programs write data to a persistent store.
Reordering of fields can cause an incompatibility with the data in the persistent
store. However, if the benefits from field reordering are large enough, we imagine
that the programming effort required to make use of these fields is justifiable.

6.2 XOrder Experiments

We evaluated XOrder on three programs from the SPLASH-2 benchmark suite
[27], modified to use transactions in place of locks [10]. The SPLASH-2 programs

16

Benchmark # Procs ∆-Aborts Relative Speedup

raytrace

2 -32.7 1.00
4 -26.0 1.02
8 -11.5 1.08
16 41.0 1.25
32 -65.5 2.78

mp3d

2 0 1.00
4 390 0.98
8 -682 0.96
16 12600 0.85
32 2640 1.00

radiosity

2 -6.50 0.99
4 -8.75 1.00
8 -450 1.01
16 -6500 1.37
32 2810 0.82

Table 4. Experimental results for running the raytrace, mp3d, and radiosity bench-
marks from the Splash2 benchmark suite. ∆-Aborts reports the difference in the num-
ber of aborts between reordered benchmarks and the original. The smaller the value
the better. The right column measures (relative) speedup of the reordered benchmark
over the original. The larger the value the better.

10 20 30

Threads

0

5

10

Sp
ee

du
p

Base
XOrder

Fig. 7. Overall speedup comparison for the raytrace benchmark. Base and XOrder
show the speedup before and after optimizing the program with the results of XOrder
analysis.

are written in C.5 We modeled a 32-processor SPARC multiprocessor running

5 The C programming language is neither typesafe nor memory safe. Because of this,
both XRef and XOrder are unsound. The application of XRef and XOrder analyses
to a type and memory safe language would be sound.

17

Solaris 9 with support for HTM using the Simics full-system simulator [28] ex-
tended with a detailed memory system timing model from the GEMS [29, 30]
toolkit. Our simulated system includes 32, 1-GHz SPARC processors, each with
4 MB of private cache. The system includes HTM support based on LogTM [10],
which performs conflict detection at the cache-line granularity. For our experi-
ments, we used a cache line size of 64 bytes.

We compare the performance of the programs in their original form and the
programs modified to use the orderings suggested by XOrder. For each of our
benchmarks, we ran both versions of the program on our simulated machine
with a range of thread counts. Tab. 4 displays the effect of the reordering on the
overall runtime of the benchmarks and on the frequency of transaction aborts,
a major contributor to the execution time.

Not surprisingly, our results vary for each benchmark. For Raytrace, despite
having little effect on the number of aborts, the reordering provided by XOrder
results in a dramatic improvement in relative performance (a factor of 2.8 for 32
threads, yielding an overall speedup of 12). This result matches Moore et al.’s
[10] observation that Raytrace suffers from false conflicts. The performance
improvement is primarily due to the improved scalability of the benchmark. As
shown in Fig. 7, eliminating the false conflicts between transactions allows the
reordered Raytrace to continue to scale to 32 threads, while the original program
performance degrades after 16.

On Radiosity, XOrder at first appeared to provide an improvement. The
number of aborts steadily decreased up to 16 processors. However, the number
of aborts increased and performance worsened for 32 processors. We are currently
modifying the simulator to track additional processor state, e.g, we are not able
to separately measure true and false conflicts at this time. This will help shed
light on the cause of the performance loss.

For MP3D, on 16 processors, the layout XOrder suggested caused an increase
in the number of aborts, which degraded performance for 16 threads. For 32
threads, despite a small increase in aborts, performance is unaffected.

Although our measured results show improvement in only one of our test
cases, we believe XOrder can still be a help to programmers. XOrder revealed
the performance bug in Raytrace immediately. For MP3D, it was already tuned
to avoid false sharing. Our future work includes analyzing more benchmarks and
further investigating the behavior of Radiosity. Hopefully, the investigations can
help us improve XOrder’s field-layout algorithm.

7 XProtect

Software transactions are arguably superior to traditional locks; however, they
do not eliminate all programming errors due to concurrency. For example, when
used incorrectly, programs that inconsistenly use software transactions can pro-
duce erroneous results. In the program shown in Fig. 2, the value returned from
the call to sumx can have five possibilities instead of two. This is due to the non-
determinism of the thread scheduler. Specifically, it depends on how the thread

18

that is started at location n4, tn4, is interleaved with the thread started at lo-
cation n5, tn5. If tn4 commits before tn5 begins, then the result will be 0. If tn4

commits after tn5 has read s.x1, the result will be s.x1. This pattern continues
up to the case where tn4 commits after tn5 has read all of the x fields. Had the
programmer protected the call to sumx with a transaction, there would be only
two possible results, namely, (i) 0 in the case that tn4 commits before tn5, and
(ii) the sum of the values of all the x fields otherwise.

The underlying problem is that the call to sumx is not protected by a software
transaction. In the terms of Flanagan and Qadeer, the function sumx does not
have the atomicity property [31]: “if a method is atomic, then any interaction
between that method and steps of other threads is guaranteed to be benign”.

We use XProtect analysis to address this problem. XProtect analysis is a
heuristic to check for atomicity violations. Similiar to the work in [32], XPro-
tect checks that accesses to a shared-record instance are consistently protected
by a software transaction. Consistency checking does not guarantee the atomic-
ity property (e.g., guarding each individual program statement with a software
transaction produces a consistent program); however, an inconsistent program
is likely to violate the atomicity property.

The idea behind consistency checking is to infer a correctness specification
from the program’s code. That is, the safety property that XProtect attempts
to verify is that all accesses to a shared-record instance are proteted by a soft-
ware transaction. The correctness specification inferred by XProtect is the set
of record-instances that are shared. It does this by determining which record-
instances are protected by a software transaction at some point during program
execution.

XProtect is an extension of XRef analysis. It can be viewed as further refining
the type annotations inferred by XRef analysis for the fields of each record type.
The refinement consists of adding the results from a sound pointer analysis to
the annotations. We chose Steensgaard’s analysis [33] because it is sound for
concurrent programs: a flow-insensitive analysis considers all interleavings of the
various threads that make up the concurrent program. Other more expensive
pointer analyses that are still sound for concurrent programs would work just as
well.

As before, we describe XProtect analysis for programs that make use of the
atomic-block construct and those that specify the beginning and ending of a
software transaction separately. In both cases, we compute the results from two
dataflow-analaysis problems, and the answer we are interested in is computed
from the differences in the values computed by the two analysis phases.

7.1 Structured Software Transactions

For programs that make use of the atomic-block construct, XProtect is a
straightforward extension of XRef. The key is to extend the sets of field ac-
cesses to include both the abstract record-allocation site6 that is accessed, as

6 We use the term “abstract record-allocation site” to mean the set of record-allocation
sites obtained after pointer analysis has finished.

19

well as an indication of what type of memory-access is made, i.e., either a read
or a write. XProtect differentiates between reads and writes so that it does not
produce a warning when shared memory is only read and never written.

Specifically, we modify the XRef algorithm to compute, for each static trans-
action, a set of tuples of the form (R.F, A, T), where R and F are as in XRef,
A is the set of abstract record-allocation sites, and T ∈ {read, write}. We label
each node of the program with a set of tuples s that corresponds to that node’s
accesses, and the manner in which they are made. For example, a program node
that represents the program statement x = r1.f1 is labeled with the tuple set
{(r1.f1, a, read) | a ∈ Ar1

}, where Ar1
is the set of abstract record-allocation

sites that are accessed. Using the extended sets of tuples, the algorithm for solv-
ing XRef (defined in §5.1) computes, for each abstract record-allocation site, the
set of fields either read or written by each static transaction. We denote this set
by sxact.

To verify that the field accesses to all shared record instances are consis-
tently protected by a software transaction, we solve a second dataflow-analysis
problem, which determines all field accesses that occur outside every static trans-
action. A second dataflow-analysis problem is required because a function may
be called both from within a transaction and outside of one. Therefore, it is
possible for that function to make accesses to the same shared record instance
in a transactional and nontransactional context.

We collect all nontransactional accesses via a simple trick. We treat each
atomic block as a “noop” instruction. That is, the analysis ignores the state-
ments in the body of each atomic block. For each function, we compute the set
of field accesses to the abstract record-allocation sites by visiting each node in
the function’s control flow graph (CFG) and taking the union of their accesses.
Next, we solve a set of equations on the program’s call-graph to compute the
set of abstract record-allocation site field accesses made (transitively) by each
function. All nontransactional field accesses to abstract record-allocation sites
are precisely the label on the main function in the call-graph. We denote this set
by saccess.

Once saccess has been computed, we check to see whether a field is accessed
both transactionally and nontransactionally, with one of the accesses being a
write. For each read access in sxact, we check to see whether saccess contains
a write access to the same field. For example, if (r1.f1, a, read) ∈ sxact, which
denotes a read of the f1 field of record type r1 for abstract record-allocation
site a ∈ A, we check whether (r1.f1, a, write) ∈ saccess. Similarly, for each write
access in sxact, we check whether there is a corresponding read or write access
to the same field in saccess. If either of these checks succeed, then we warn the
programmer that there is a potential data race. The warning includes the field
and abstract record-allocation site that is inconsistently guarded by a software
transaction.

20

7.2 Unstructured Software Transactions

To perform XProtect analysis on programs that specify the beginning and ending
of software transactions separately, we extend the XRef analysis presented in
§5.2. The sets of field accesses used in XRef analysis are extended to be sets of
tuples. Each tuple is of the form (R.F, A, T), where R is the set of all record
type names, F is the set of all record-type fields, A is the set of abstract record-
allocation sites, and T ∈ {read, write}. With respect to XRef analysis, the
extensions have no additional effect when δ-transformers are composed. We
note that we have only increased the size of the annotations by a finite amount,
compared to XRef analysis. Moreover, all algebraic properties that were shown
to hold earlier are still valid.

As in XRef analysis, we label each edge of the ICFG with its corresponding
set of annotated δ-transformers. We then solve the dataflow-analysis problem as
before, which populates the global database with the set of fields accessed in a
static transaction for each abstract record-allocation site. We denote the set of
abstract record-allocation site fields accessed in some static transaction by sxact.

To determine the field accesses made to abstract record-allocation sites while
not in a static transaction, we to run XProtect again; however, for this second
run we modify the definition of “;”. The key is to realize that the information
sought is the opposite of the information computed by XProtect. We compute
these unprotected accesses by “inverting” the operations on the annotations of
the δ-transformers when composing δ-transformers. Intuitively, we modify the
definition of “;” to be such that it only records accesses that occur outside of a
static transaction. This can be accomplished by making the following changes
to “;” (we use the same notation as in §5.2). For instance, in rule (1) below, the
tuples in s2 are dropped because they represent accesses that occur inside of a
static transaction.

1. (s1, δB[b]); (s2, δid) = (s1, δB[b])

2. (s1, δid); (s2, δE[e]) = (s2, δE[e])

3. (s1, δid); (s2, δEB[(e1,b1)], s3) = (s2, δEB[(e1,b1)], s3)
4. (s1, δEB[(e1,b1)], s2); (s3, δid) = (s1, δEB[(e1,b1)], s2)

5. (s1, δE[e]); (s2, δB[b]) = (s1 ∪ s2, δEB[(e,b)], ∅)
6. (s1, δB[b1]); (s2, δEB[(e2,b2)], s3) = (s1 ∪ s2 ∪ s3, δB[b2])
7. (s1, δEB[(e1,b1)], s2); (s3, δE[e2]) = (s1 ∪ s2 ∪ s3, δE[e1])

8. (s1, δEB[(e1,b1)], s2); (s3, δEB[(e2,b2)], s4) =
(s1 ∪ s2 ∪ s3 ∪ s4, δEB[(e1,b2], ∅)

9. otherwise (s1, δ1); (s2, δ2) = (s1 ∪ s2, δ1; δ2)

Using this modified composition of δ-transformers, we perform a second fixpoint
calculation. All non-transactional field accesses (i.e., saccess) are the annotations
associated with δid and δBE in the dataflow transformer on the main function’s
exit node.

Finally, we perform the check with respect to sxact and saccess described in
§7.1 to see if there are potential inconsistencies with respect to the use of static

21

transactions when accessing the fields of a shared record. If an inconsistency
exists, we report it to the programmer.

Again, because we use WPDSs as our dataflow-analysis solver, we take ad-
vantage of their witness-tracing capabilities. (A witness trace is a “proof” for a
computed dataflow value and encodes the set of program paths that gave rise to
it, along with their intermediate dataflow values.) We extract from the witness
trace a path that accesses a field of the shared record while not in a static trans-
action. We present to the programmer this path as well as a static transaction
that accesses the same field in a conflicting manner, e.g., a read and a write.

7.3 XProtect Discussion

For the example program in Fig. 2, XProtect emits twelve warnings. Eight of
these are benign consistency violations. This is due to the fact that the program
initializes the x and y fields of the shared ColoredShape record s before starting
any threads. Adopting the policy of tools such as Eraser [34], which make a
special case for the initialization of global variables, could eliminate these cases.

The other four warnings have more severe consequences. The problem is
because the reads of the x fields from tn5’s call to sumx execute concurrently with
the writes to the x fields from tn4’s call to mulx. As explained earlier, this causes
the program to have more behaviors than the programmer intended. XProtect
alerts the programmer of these inconsistency violations. In doing so, XProtect
implicitly notifies the programmer that the call to sumx was not guarded with a
software transaction.

We note that due to the imprecision of pointer analysis and the abstract
model of the program that we analyze (i.e., we do not interpret conditions),
a warning does not guarantee that there exists an inconsistency. Additionally,
XProtect emits warnings for benign inconsistencies. However, we believe that
XProtect is a useful analysis to aid programmers in reasoning about their soft-
ware. Proving that a program consistently protects shared data with a software
transaction takes a step toward verifying correctness. That is, XProtect can be
used as an inexpensive analysis that alerts the programmer of inconsistencies. If
inconsistencies exist, the programmer can then apply other more heavy-weight
analyses.

8 Related Work

The use of transformers for performing interprocedural-dataflow analysis was
introduced by Cousot and Cousot [35] and Sharir and Pnueli [15]. Sagiv et al.
showed how this framework, where the transformers are relations annotated
with “values” that exhibit certain algebraic properties, can be used to precisely
solve instances of copy propagation, namely copy-constant propataion and linear-
constant propagation [21]. We used this framework for analyzing programs that
adhere to our programming model.

22

Abstract interpretation was defined in the seminal work by Cousot and
Cousot [36]. The analyses that we present can be viewed as an abstract inter-
pretation of the program, where the abstract semantics of a program statement
is its effect on the property automaton that checks a policy for correct usage of
the transactional primitives.

XOrder analysis is a program optimization whose goal is to reduce false con-
flicts of a transactional program executing on a hardware ISA that supports
transactional memory. The HTM implementation we target performs conflict
detection through the cache-coherence protocol [10]. Chilimbi, Davidson, and
Larus also used record-layout reordering as an optimization to improve a pro-
gram’s effective use of hardware caches [25]. Their analyses incorporated profile
information obtained from runs of the program. Our optimization, XOrder, is
a purely static analysis. In contrast to the work by Chilimbi et al., we reorder
a record type’s layout according to its accesses in static transactions. It is left
to future work to determine if incorporating dynamic profiling information into
XOrder’s record layout algorithm could improve our optimization.

Recent work by Harris et al. [37] and Adl-Tabatabai et al. [38] was concerned
with optimizing a program’s use of software transactional memory (STM). Their
work is based on the observation that, by breaking down the inserted calls to
the STM’s runtime system, standard compiler optimizations, such as dead-code
elimination and common subexpression elimination, can be used to optimize a
program with respect to the number of calls it makes to the STM’s runtime
system. XOrder analysis is also concerned with optimizing a program that runs
on a system that supports transactional memory. In our case, we optimize the
program itself (i.e., the layout of the record types), and not the inserted pro-
gram statements. It would be interesting to see if our techniques would result in
additional performance gains in these other systems.

Flanagan and Qadeer proposed that program methods should exhibit the
atomicity property [31]. Their work made use of a type system to ensure this
property. XProtect detects inconsistency violations in a program. We view this
as a heuristic that searches for the manifestation of a function not exhibiting
the atomicity property. The Locksmith tool [32] detects data races by finding
occurrences where shared data is not consistently protected by the same lock.
XProtect is similiar to this work because they both involve consistency checking;
however, XProtect detects consistencies with respect to software transactions.

References

1. Harris, T., Marlow, S., Jones, S.L.P., Herlihy, M.: Composable memory transac-
tions. In: PPoPP. (2005)

2. Shavit, N., Touitou, D.: Software transactional memory. In: PODC. (1995)

3. Harris, T., Fraser, K.: Language support for lightweight transactions. In: OOPSLA.
(2003)

4. Ringenburg, M.F., Grossman, D.: Atomcaml: first-class atomicity via rollback. In:
ICFP. (2005)

23

5. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.: Software transactional
memory for dynamic-sized data structures. In: PODC. (2003)

6. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. In: ISCA. (1993) 289–300

7. Hammond, L., Wong, V., Chen, M., Carlstrom, B.D., Davis, J.D.: Transactional
memory coherence and consistency. In: ISCA. (2004)

8. Ananian, C.S., Asanovic, K., Kuszmaul, B.C., Leiserson, C.E., Lie, S.: Unbounded
transactional memory. In: HPCA. (2005)

9. Rajwar, R., Herlihy, M., Lai, K.: Virtualizing transactional memory. In: ISCA.
(2005)

10. Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D., Wood, D.A.: LogTM: Log-
based transactional memory. In: HPCA. (2006)

11. Damron, P., Fedorova, A., Lev, Y., Luchango, V., Moir, M., Nussbaum, D.: Hybrid
transactional memory. In: ASPLOS. (2006)

12. Kumar, S., Chu, M., Hughes, C.J., Kundu, P., Nguyen, A.: Hybrid transactional
memory. In: PPoPP. (2006)

13. Saha, B., Adl-Tabatabai, A.R., Hudson, R.L., Minh, C.C., Hertzberg, B.: Mcrt-
stm: a high performance software transactional memory system for a multi-core
runtime. In: PPoPP. (2006)

14. Blundell, C., Lewis, E.C., Martin, M.M.: Deconstructing transactional semantics:
The subtleties of atomicity. In: WDDD. (2005)

15. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Program Flow Analysis: Theory and Applications. Prentice-Hall, Englewood Cliffs,
NJ (1981)

16. Rajwar, R., Goodman, J.R.: Transactional lock-free execution of lock-based pro-
grams. In: ASPLOS. (2002)

17. Chung, J., Chafi, H., Cao Minh, C., McDonald, A., Carlstrom, B.D., Kozyrakis,
C., , Olukotun, K.: The common case transactional behavior of multithreaded
programs. In: HPCA. (2006)

18. Reps, T.W.: Undecidability of context-sensitive data-independence analysis. ACM
Trans. Program. Lang. Syst. 22(1) (2000)

19. Engler, D.R., Chelf, B., Chou, A., Hallem, S.: Checking system rules using system-
specific, programmer-written compiler extensions. In: OSDI. (2000)

20. Chen, H., Wagner, D.: Mops: an infrastructure for examining security properties
of software. In: CCS. (2002)

21. Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with
applications to constant propagation. Theor. Comp. Sci. 167 (1996)

22. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. In: POPL. (2003)

23. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their
application to interprocedural dataflow analysis. SCP 58 (2005)

24. Cooper, K.D., Kennedy, K.: Interprocedural side-effect analysis in linear time. In:
PLDI. (1988)

25. Chilimbi, T.M., Davidson, B., Larus, J.R.: Cache-conscious structure definition.
In: PLDI. (1999)

26. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
Second edn. MIT Press (2001)

27. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The splash-2 programs:
Characterization and methodological considerations. In: ISCA. (1995)

28. Magnusson, P.S., et al.: Simics: A full system simulation platform. IEEE Computer
35(2) (2002)

24

29. Martin, M.M., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu, M., Alameldeen,
A.R., Moore, K.E., Hill, M.D., Wood, D.A.: Multifacet’s General Execution-driven
Multiprocessor Simulator (GEMS) Toolset. Computer Architecture News (2005)

30. Wisconsin Multifacet GEMS Simulator. http://www.cs.wisc.edu/gems/
31. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: PLDI. (2003)
32. Pratikakis, P., Foster, J.S., Hicks, M.: LOCKSMITH: Context-sensitive correlation

analysis for race detection. In: PLDI. (2006)
33. Steensgaard, B.: Points-to analysis in almost linear time. In: POPL. (1996)
34. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.E.: Eraser: A

dynamic data race detector for multithreaded programs. Theor. Comp. Sci. 15(4)
(1997)

35. Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive
procedures. In: IFIP. (1978)

36. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixed points. In: POPL.
(1977)

37. Harris, T., Plesko, M., Shinnar, A., Tarditi, D.: Optimizing memory transactions.
In: PLDI. (2006)

38. Adl-Tabatabai, A.R., Lewis, B.T., Menon, V., Murphy, B.R., Saha, B., Shpeisman,
T.: Compiler and runtime support for efficient software transactional memory. In:
PLDI. (2006)

25

