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Abstract. There is growing interest in analyzing executables to look for bugs
and security vulnerabilities. This paper describes the design and implementation
of a language for describing the semantics of an instructionset, along with a run-
time system to support the static analysis of executables written in that instruction
set. The work advances the state of the art by creating multiple analysis phases
from a specification of the concrete operational semantics of the language to be
analyzed. By exploiting this powerful infrastructure for creating analysis compo-
nents, it will be possibly for recently developed analysis techniques for analyzing
executables to be applied more broadly, to executables written in a variety of
instructions sets.

1 Introduction
The problem of analyzing executables to recover information about their execution
properties has been receiving increased attention. However, much of this work has fo-
cused onspecializedanalyses to identify aliasing relationships [19], data dependences
[7, 13], targets of indirect calls [18], values of strings [12], bounds on stack height [34],
and values of parameters and return values [40]. In contrast, Balakrishnan and Reps [8,
10] developed ways to address all of these problems by means of an analysis that dis-
covers an overapproximation of the set of states that can be reached at each point in the
executable—where astatemeansall of the state: values of registers, flags, and the con-
tents of memory. Moreover, their approach is able to be applied to stripped executables
(i.e., neither source code nor symbol-table/debugging information is available).

Although their techniques, in principle, are language-independent, they were instan-
tiated only for the IntelIA32 instruction set. Our motivation is to provide a systematic
way of extending those analyses—and others—to instructionsets other thanIA32.

The situation that we face is actually typical of much work onprogram analysis: al-
though the techniques described in the literature are, in principle, language-independent,
implementations are often tied to a specific language or intermediate representation
(IR). This state of affairs reduces the impact that good ideas developed in one context
(e.g., Java program analysis) have in other contexts (e.g.,C++ analysis).

For high-level languages, the situation has been addressedby developing common
intermediate languages, e.g.,GCC’s RTL, Microsoft’sMSIL, etc. (although the academic
research community has not rallied around a similar common platform). The situation is
more serious for low-level instruction sets, because of (i)instruction-set evolution over
time (and the desire to have backward compatibility as word size increased from 8 bits
to 64 bits), which has led to instruction sets with several hundred instructions, and (ii) a
variety of architecture-specific features that are incompatible with other architectures.
⋆ Supported by ONR under grant N00014-01-1-0796 and by NSF under grants CCF-0540955

and CCF-0524051.
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To address these issues, we developed a language for describing the semantics of
an instruction set, along with a run-time system to support the static analysis of exe-
cutables written in that instruction set. The work reportedin this paper advances the
state of the art by creating a system for automatically generating analysis components
from a specification of the language to be analyzed. The system that we have created,
calledTSL (for “TransformerSpecificationLanguage”), has two classes of users: (1)
instruction-set-specification (ISS) developers and (2) analysis developers. The former
are involved in specifying the semantics of different instruction sets; the latter are in-
volved in extending the analysis framework.

In the design of theTSL system, we were guided by the following principles:

– There should be a formal language for specifying the semantics of the language to
be analyzed. Moreover,ISS developers should specify only the abstract syntax and
a concrete operational semantics of the language to be analyzed—each analyzer
should be automatically generated from this specification.

– Concrete syntactic issues—including (i) decoding (machine code to abstract syn-
tax), (ii) encoding (abstract syntax to machine code), (iii) parsing assembly (assem-
bly code to abstract syntax), and (iv) assembly pretty-printing (abstract syntax to
assembly code)—should be handled separately from the abstract syntax and con-
crete semantics.3

– There should be a clean interface for analysis developers tospecify the abstract
semantics for each analysis. An abstract semantics consists of aninterpretation: an
abstract domain and a set of abstract operators (i.e., for the operations ofTSL).

– The abstract semantics for each analysis should be separated from the languages to
be analyzed so that one does not need to specify multiple versions of an abstract
semantics for multiple languages—this is the key concept that makes the analyzer-
generator system language-independent.

Each of these objectives has been achieved in theTSL system. The contributions
made by our work can be summarized as follows:

Transformer Specification Language.We created theTSL language for specifying the
abstract syntax and concrete semantics of instruction sets, and developed mechanisms
by which a multiplicity of instruction-set analyzers can begenerated automatically.
The TSL system translates theTSL specification of each instruction set to a common
intermediate representation (CIR) that can be used to create multiple analyzers (§2).

Support for Multiple Analysis Types.The system supports several analysis types.

– Classical worklist-based value-propagation analyses in which generated transform-
ers are applied, and changes are propagated to successors/predecessors (depend-
ing on propagation direction). Context-sensitivity in such analyses is supported by
means of the call-string approach [37].

3 The translation of the concrete syntaxes to and from abstract syntax is handled by a genera-
tor tool that is separate fromTSL, and will not be discussed in this paper. The relationship
between the two systems is similar to that between Flex and Bison. With Flex and Bison, a
Flex-generated lexer passes tokens to a Bison-generated parser. In our case, theTSL-defined
abstract syntax serves as the formalism for communicating values—namely, instructions’ ab-
stract syntax trees—between the two tools.
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– Transformer-compositionanalyses [16, 37], which are particularly useful for context-
sensitive interprocedural analysis.

– Unification-based analyses for flow-insensitive interprocedural analysis.

In addition, an emulator (for the concrete semantics) is also supported.

Implemented Analyses.These mechanisms have been instantiated for a number of spe-
cific analyses that are useful for analyzing low-level code,including: value-set analysis
[8, 10] (§4.1), affine-relation analysis [8,§7.2] (§4.2), aggregate structure identification
[11] (§4.3), def-use analysis (for memory, registers, and flags) (§4.4), and generation of
symbolic expressions for an instruction’s semantics (§4.5).

Established Applicability.The capabilities of our approach have been demonstrated by
writing specifications forIA32 andPowerPC. These are nearly complete specifications
of the languages—not idealized subsets, as are often used inacademic studies—and
include such features as (1) aliasing among 8-bit, 16-bit, and 32-bit registers, e.g.,al,
ah, ax, andeax (for IA32), (2) endianness, (3) issues arising due to bounded-word-
size arithmetic (overflow/underflow, carry and borrow, shifting, rotation, etc.), and (4)
setting of condition codes (and their subsequent interpretation at jump instructions).

The abstract transformers for these analyses that are created from theIA32 andPow-
erPC32TSL specifications have been put together to create a system thatessentially du-
plicates CodeSurfer/x86 [9]. A similar analysis system forPowerPC is under construc-
tion. (TheTSL-generated components are in place; only a few mundane infrastructure
components are lacking.)

We have also experimented with sufficiently complex features of other low-level
languages (e.g., register windows for SunSPARC and conditional execution of instruc-
tions forARM) to know that they fit our specification and implementation models.

There are many specification languages for instruction setsand many purposes to
which they have been applied. In our work, we needed a mechanism to create abstract
interpreters of instruction-set specifications. There are(at least) four issues that arise:
during the abstract interpretation of each transformer, the abstract interpreter must be
able to (i) execute over abstract states, (ii) execute both branches of a conditional ex-
pression, (iii) compare abstract states and terminate abstract execution when a fixed
point is reached, and (iv) apply widening operators, if necessary, to ensure termination.
Such a mechanism did not appear to be available in the languages that we looked at. As
far as we know,TSL is the first instruction-set-specification language to support such
mechanisms.

Although this paper only discusses the application ofTSL to low-level instruction
sets, we believe that only small extensions would be needed to be able to applyTSL to
source-code languages (i.e., to create language-independent analyzers for source-level
IRs). The main obstacle is that the concrete semantics of a source-code language gener-
ally uses an execution state based on nested variable-to-value (or variable-to-location,
location-to-value) maps. For a low-level language, the state incorporates an address-
based memory model, for which theTSL language provides appropriate primitives.

The remainder of the paper is organized as follows:§2 introducesTSL and the ca-
pabilities of the system.§4 explains howCIR is instantiated to create an analyzer for a
specific analysis component.§3 presents how theTSL system handles some important
issues, such as recursion and conditional branches inCIR. §5 describes quirky features
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of several instruction sets, and discusses how those features are handled inTSL. §6
discusses related work.

2 Overview of theTSL System

This section provides an overview of theTSL system. We discuss how three analysis
components are created automatically from aTSL specification, using a fragment of the
IA32 instruction set to illustrate the process.

2.1 TSL from an ISS Developer’s Standpoint

Fig. 1 shows part of a specification of theIA32 instruction set taken from the manual
[1]. The specification contains information about the registers as well as the addressing
modes that are supported. It also provides the specificationof the ADD instruction’s
action, i.e., how it manipulates its operands and how it changes the state.

Fig. 1. A part of the Intel manual’s specification ofIA32’s ADD instruction.
General Purpose registers: EAX,EBX,ECX,EDX,ESP,EBP,ESI,EDI,EIPADD r/m32,r32; Add r32 to r/m32

Each of these registers also have 16-bit or 8-bit subset names. ADD r/m16,r16; Add r16 to r/m16 . . .
Addressing Modes: [sreg:][offset][([base][,index][,scale])] Operation: DEST← DEST + SRC;
EFLAGS register: ZF,SF,OF,CF,AF,PF, . . . Flags Affected: The OF,SF,ZF,AF,CF, and PF
. . . flags are set according to the result.

[1] // User-defined abstract syntax
[2] reg32: EAX() | EBX() | . . . ;
[3] flag: ZF() | SF() | . . . ;
[4] operand32: Indirect32(reg32 reg32 INT8 INT32)
[5] | DirectReg32(reg32)| Immediate32(INT32)| ...;
[6] operand16: . . . ;
[7] . . .
[8] instruction
[9] : ADD32 32(operand32 operand32)
[10] | ADD16 16(operand16 operand16) | . . . ;
[11] var32: Reg32(reg32);
[12] var bool: Flag(flag);
[13] state: State(MEMMAP32 8 LE // memory-map
[14] VAR32MAP // register-map
[15] VARBOOLMAP); // flag-map
[16] // User-defined functions
[17] state interpOp32(state S, operand32 I) { . . . }
[18] state updateFlag32(state S, . . . ) { . . . }
[19] state updateState32(state S, . . . ) {
[20] with(S) (
[21] State(mem,regs,flags): . . .
[22] }
[23] state interpInstr(instruction I, state S) {
[24] with(I) (
[25] ADD32 32(dstOp, srcOp):
[26] let dstVal = interpOp32(S, dstOp);
[27] srcVal = interpOp32(S, srcOp);
[28] res = dstVal + srcVal;
[29] S2 = updateFlag(S, dstVal, srcVal, res);
[30] in ( updateState32( S2, dstOp, res ) ),
[31] . . .
[32] )
[33] }

Fig. 2.A part of theTSL specification ofIA32
concrete semantics, which corresponds to the
specification ofADD from the IA32 manual.
Reserved types and function names are under-
lined.

[1] template <typename INTERP>

[2] class CIR {
[3] class reg32 { . . . };
[4] class EAX: public reg32 { . . . };
[5] . . .
[6] class operand32 { . . . };
[7] class Indirect32: public operand32 { . . . };
[8] . . .
[9] class instruction { . . . };
[10] class ADD32 32: public instruction { . . .
[11] enum TSL ID id;
[12] operand32 op1;
[13] operand32 op2;
[14] };
[15] . . .
[16] class state { . . . };
[17] class State: public state { . . .
[18] INTERP::MEMMAP32 8 LE mapMap;
[19] INTERP::VAR32MAP var32Map;
[20] INTERP::VARBOOLMAP varBoolMap;
[21] };
[22] . . .
[23] static state interpInstr(instruction I, state S) {
[24] state ans;
[25] switch(I.id) {
[26] case ID ADD32 32: {
[27] operand32 dstOp = I.op1;
[28] operand32 srcOp = I.op2;
[29] INTERP::INT32 dstVal = interpOp32(S, dstOp);
[30] INTERP::INT32 srcVal = interpOp32(S, srcOp);
[31] INTERP::INT32 res = INTERP::Add(dstVal,srcVal);
[32] state S2 = updateFlag(S, dstVal, srcVal, res);
[33] ans = updateState32(S2, dstOp, res);
[34] } break;
[35] . . .
[36] }
[37] }
[38]};

Fig. 3.A part of theCIR generated from Fig. 2.
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However, the specification from Fig. 1 is only semi-formal: it uses a mixture of En-
glish and pseudo-code. Our work is based on completely formal specifications, which
are written in a language that we designed (TSL). TSL is a first-order functional lan-
guage with a datatype-definition mechanism for defining recursive datatypes, plus de-
construction by means of pattern matching. Fig. 2 shows the part of theTSL specifica-
tion that corresponds to Fig. 1.

Much of what anISS developer writes is similar to writing an interpreter for anin-
struction set in first-orderML [20]. An ISS developer specifies the abstract syntax gram-
mar by defining the constructors for a language of instructions (lines 2–10), a concrete-
state type (lines 13–15), and the concrete semantics of eachinstruction (lines 23–33).

TSL provides 5 basetypes:INT8, INT16, INT32, INT64, andBOOL. TSL supports
arithmetic/logical operators (+, −, ∗, /, !, &&, ||, xor), bit-manipulation operators (∼,
&, |, ˆ, ≪, ≫, right-rotate, left-rotate), relational operators (<, <=, >, >=, ==, !=),
and a conditional-expression operator (? :).

TSL also provides several map-basetypes:MEMMAP32 8 LE, MEMMAP32 16 LE,
VAR32MAP, VAR16MAP, VAR8MAP, VARBOOLMAP, etc.MEMMAP32 8 LE maps from
32-bit values (addresses) to 8-bit values,VAR32MAP from var32 to 32-bit values,VAR-
BOOLMAP from var bool to Boolean values, and so forth. Tab. 1 shows the list of
some of theTSL access/updatefunctions. Eachaccessfunction takes a map (e.g.,
MEMMAP32 8 LE, VAR32MAP, VARBOOLMAP, etc.) and an appropriate key (e.g.,INT32,
var32, var bool, etc.), and returns the value that corresponds to the key. Each update
function takes a map, a key, and a value, and returns the updated map. Theaccess/update
functions forMEMMAP32 8 LE implement the little-endian storage convention.

Table 1.Access/Updatefunctions.

MEMMAP32 8 LE MemUpdate 32 8 LE 32( MEMMAP32 8 LE memmap, INT32 key, INT32 v );
INT32 MemAccess 32 8 LE 32( VAR32MAP mapmap, INT32 key);

VAR32MAP Var32Update(VAR32MAP var32Map, var32 key, INT32 v );
INT32 Var32Access( VAR32MAP var32Map, var32 key);

VARBOOLMAP VarBoolUpdate( VARBOOLMAP varBoolMap, var bool key, BOOL v );
BOOL VarBoolAccess( VARBOOLMAP varBoolMap, var bool key);

Each specification must define several reserved (but user-defined) types:var64,
var32, var16, var8, andvar bool, which represent storage components of 64-bit, 32-bit,
16-bit, 8-bit, and Boolean types, respectively;instruction; state; as well as the reserved
function interpInstr. (These are underlined in Fig. 2.) These form part of the API avail-
able toanalysis enginesthat use theTSL-generated transformers (see§4). The reserved
types are used as an interface between theCIR and analysis domain implementations.

The definition of types and constructors on lines 2–10 of Fig.2 is an abstract-syntax
grammar forIA32. The definitions forvar32 andvar bool wrap the user-typesreg32 and
flag, respectively. Typereg32 consists of nullary constructors forIA32 registers, such
asEAX() andEBX(); flag consists of nullary constructors for theIA32 condition codes,
such asZF() andSF(). Lines 4–7 define types and constructors to represent the various
kinds of operands thatIA32 supports, i.e., various sizes of direct register, immediate,
and indirect memory operands. The reserved (but user-defined) typeinstruction consists
of user-defined constructors for each instruction, such asADD32 32 andADD16 16,
which represent instructions with different operand sizes.
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The typestate specifies the structure of the execution state. Thestate for IA32 is
defined on lines 13–15 of Fig. 2 to consist of a memory-map, a register-map, and a
flag-map. Theconcrete semanticsis specified by writing a function namedinterpInstr
(see line 23 of Fig. 2), which maps aninstruction and astate to astate.

2.2 Common Intermediate Representation (CIR)

Fig. 3 shows part of theTSL CIR automatically generated from Fig. 2. Each gener-
atedCIR is specificto a given instruction-set specification, butcommon(whence the
nameCIR) across generated analyses. Each generatedCIR is a template class that takes
as inputINTERP, an abstract domain for an analysis (lines 1–2). The user-defined ab-
stract syntax (lines 2–10 of Fig. 2) is translated to a set ofC++ abstract-domain classes
(lines 3–15 of Fig. 3) that contain appropriate abstract operators. The user-defined types,
such asreg32, operand32, andinstruction, are translated to abstractC++ classes, and the
constructors, such asEAX, Indirect32, andADD32 32, are subclasses of the parent ab-
stractC++ class. Each user-defined function is translated to aCIR member function.

EachTSL basetype and basetype-operator is prepended with the template parameter
nameINTERP; INTERP is supplied for each analysis by an analysis designer. Thewith
expression and the pattern matching on lines 24–25 of Fig. 2 are translated toswitch
statements inC++4 (lines 25–36 in Fig. 3). The function calls for obtaining thevalues
of the two operands (lines 26–27 in Fig. 2) correspond to theC++ code on lines 29–30
in Fig. 3. TheTSL basetype-operator+ on line 28 in Fig. 2 is translated to theCIR
member functionAdd, as shown on line 31 in Fig. 3. The function calls for updatingthe
state (lines 29–30 in Fig. 2) are translated intoC++ code (lines 32–33 in Fig. 3).

2.3 TSL from an Analysis Developer’s Standpoint

The generatedCIR is instantiated for an analysis by defining (inC++) an interpreta-
tion: a representation class for eachTSL basetype, and implementations of eachTSL
basetype-operator and built-in function. Tab. 2 shows the implementations of primitives
for three selected analyses: value-set analysis (VSA, see§4.1), quantifier-free bit-vector
semantics (QFBV, see§4.5), and def-use analysis (DUA, see§4.4).

Each interpretation defines an abstract domain. For example, line 3 of each column
defines the abstract-domain class forINT32: ValueSet32, QFBVTerm32, andUseSet.
Each abstract domain is also required to contain a set of reserved functions, such as
join, meet, andwiden, which forms an additional part of the API available to analysis
engines that useTSL-generated transformers (see§4).

Note that the work that an analysis developer performs isTSL-specific butindepen-
dentof each language to be analyzed; from the interpretation that defines an analysis,
the abstract transformers for that analysis can be generated automatically foreveryin-
struction set for which one has aTSL specification.

2.4 Generated Transformers

Consider the instruction “add ebx,eax”, which causes the sum of the values of the 32-
bit registersebx andeax to be assigned intoebx. When Fig. 3 is instantiated with the

4 TheTSL front end performswith-normalization, which transforms all (multi-level)with ex-
pressions to use only one-level patterns, using the pattern-compilation algorithm from [31,
38].
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Table 2. Parts of the declarations of the basetypes, basetype-operators, and map-access/update
functions for three analyses.

VSA QFBV DUA
[1] class VSA INTERP {
[2] // basetype
[3] typedef ValueSet32 INT32;
[4] . . .
[5] // basetype-operators
[6] INT32 Add(INT32 a, INT32 b) {
[7] return a.addValueSet(b);
[8] }
[9] . . .
[10] // map-basetypes
[11] typedef Dict<var32,INT32>

[12] VAR32MAP;
[13] . . .
[14] // map-access/update functions
[15] INT32 Var32Access(
[16] VAR32MAP m, var32 k) {
[17] return m.Lookup(k);
[18] }
[19] VAR32MAP
[20] Var32Update( VAR32MAP m,
[21] var32 k, INT32 v) {
[22] return m.Insert(k, v);
[23] }
[24] . . .
[25]};

[1] class QFBV INTERP {
[2] // basetype
[3] typedef QFBVTerm32 INT32;
[4] . . .
[5] // basetype-operators
[6] INT32 Add(INT32 a, INT32 b) {
[7] return QFBVPlus32(a, b);
[8] }
[9] . . .
[10] // map-basetypes
[11] typedef Dict<var32,INT32>

[12] VAR32MAP;
[13] . . .
[14] // map-access/update functions
[15] INT32 Var32Access(
[16] VAR32MAP m, var32 k) {
[17] return m.Lookup(k);
[18] }
[19] VAR32MAP
[20] Var32Update( VAR32MAP m,
[21] var32 k, INT32 v) {
[22] return m.Insert(k, v);
[23] }
[24] . . .
[25]};

[1] class DUA INTERP {
[2] // basetype
[3] typedef UseSet INT32;
[4] . . .
[5] // basetype-operators
[6] INT32 Add(INT32 a, INT32 b) {
[7] return a.Union(b);
[8] }
[9] . . .
[10] // map-basetypes
[11] typedef KillUseSet VAR32MAP;
[12] . . .
[13] // map-access/update functions
[14] INT32 Var32Access(
[15] VAR32MAP m, var32 k) {
[16] return UseSet(k);
[17] }
[18] VAR32MAP
[19] Var32Update( VAR32MAP m,
[20] var32 k, INT32 v) {
[21] VAR32MAP a2 =
[22] m.Insert2Kill(k);
[23] return a2.Insert2Use(v);
[24] }
[25]};

three interpretations from Tab. 2, lines 23–33 of Fig. 2 implement the three transformers
presented (using mathematical notation) in Tab. 3.

Table 3.Transformers generated by theTSL system.

AnalysisGenerated Transformers for “add ebx,eax”

1.VSA λS.S[ebx7→S(ebx)+vsaS(eax)] [ZF 7→(S(ebx)+vsaS(eax) = 0)] [more flag updates]
2.QFBV (ebx′ = ebx+32eax) ∧ (ZF′⇔(ebx+32eax = 0))∧ (SF′⇔(ebx+32eax< 0)) ∧ . . .
3.DUA defs= {ebx, ZF, SF, OF, CF, AF, PF}, uses= {eax, ebx}

2.5 Measures of Success

Client Analyzer

M Instruction-Set Specifications

TSL System

N Analysis Components

• • •

interpInstr1 interpInstr2 interpInstrN

• • •

Fig. 4.The interaction between the
TSL system and a client analyzer.
The grey boxes representTSL-
generated analysis components.

The TSL system provides two dimensions of pa-
rameterizability: different instruction sets and dif-
ferent analyses. EachISS developer specifies an
instruction-set semantics, and each analysis devel-
oper defines an abstract domain for a desired anal-
ysis by giving an interpretation (i.e., the imple-
mentations ofTSL basetypes, basetype-operators,
and access/updatefunctions). Given the inputs
from these two classes of users, theTSL sys-
tem automatically generates an analysis compo-
nent. Thus, to createM×N analysis components,
theTSL system only requiresM specifications of
the concrete semantics of instruction sets, andN
analysis implementations (Fig. 4), i.e.,M +N in-

puts to obtainM × N analysis-component implementations.
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TheTSL system provides considerable leverage for implementing analysis tools and
experimenting with new ones. New analyses are easily implemented because a clean
interface is provided for defining an interpretation. It took approximately 1 man-day to
create each of theDUA andQFBV interpretations.

Another measure of success is demonstrated by our effort to useTSL to recreate the
analysis components used in CodeSurfer/x86 [9]. We estimate that the task of writing
transformers (for eight analysis phases used in CodeSurfer/x86) consumed about 20
man-months; in contrast, we have invested a total of about 1 man-month to write the
C++ code for the set ofTSL interpretations that are used to generate the replacement
components. To this, one should add 10–20 man-days to write the TSL specification
for IA32: the current specifications forIA32 andPowerPC are, respectively, 2,834 and
1,370 (non-comment, non-blank) lines ofTSL; the IA32 specification has gone through
multiple revisions as theTSL system took shape; however, thePowerPC specification
was written after the language stabilized, and took approximately 4 man-days.

Because each analysis is defined by providing an interpretation for the collection of
TSL primitives, implementations of the abstract transformersfor each analysis can be
generated automatically foreveryinstruction set for which one has aTSL specification.
For instance, from thePowerPC specification, we were immediately able to generate all
of the analyses that had been developed while working with the IA32 specification.

Ever since the days of the first compilers, systems that take over programming
tasks previously performed manually have faced the question of how well their out-
put performs compared to that created by human programmers.Due to the nature of the
transformers used in one of the analyses that we implemented(affine-relation analy-
sis (ARA) [28]), it was possible to write an algorithm to compare theTSL-generated
ARA transformers and the hand-codedARA transformers that were incorporated in
CodeSurfer/x86. On a corpus of 542 instruction instances that covered various opcodes,
addressing modes, and operand sizes, we found that theTSL-generated transformers
were equivalent in 324 cases andmore precisethan the hand-coded transformers in the
remaining 218 cases.5

In addition to leverage and thoroughness, for a system like CodeSurfer/x86—which
uses multiple analysis phases—automating the process of creating abstract transformers
ensures semantic consistency; that is, because analysis implementations are generated
from asinglespecification of the concrete semantics, this guarantees that aconsistent
view of the concrete semantics is adopted by all of the analyses used in the system.

It takes approximately 8 seconds (on an Intel Pentium 4 with a3.00GHz CPU and
2GB of memory, running Centos 4) for theTSL compiler to compile theIA32 spec-
ification to C++, followed by approximately 20 minutes wall-clock time (on an Intel
Pentium 4 with a 1.73GHz CPU and 1.5GB of memory, running Windows XP) to com-
pile the generated C++.

5 Approximately 130 of the cases of improvement can be ascribed to “fatigue factor” on the part
of the human programmer: the hand-coded versions adopted a pessimistic view and just treated
certain instructions as always assigning an unknown value to the registers that they affected, re-
gardless of the values of the arguments. Because theTSL-generated transformers are based on
theARA interpretation’s definitions of theTSL basetype-operators, theTSL-generated trans-
formers were more thorough: a basetype-operator’s definition in an interpretation is used inall
places that the operator arises in the specification of the instruction set’s concrete semantics.
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3 Generation of the Common Intermediate Representation

Given aTSL specification of an instruction set, theTSL system generatesCIR that con-
sists of two parts: one is a list ofC++ classes for the user-defined abstract-syntax gram-
mar; the other is a list ofC++ template functions for the user-defined functions, includ-
ing the interface functioninterpInstr. TheC++ functions are generated by linearizing
theTSL specification, in evaluation order, into a series ofC++ statements.

However, there are some important issues that need to be properly handled for the
resulting code to be able to used to create abstract interpreters for an instruction-set
specification. In particular, the code generated for each transformer must be able to: (i)
execute over abstract states (§3.1), (ii) possibly propagate abstract states to more than
one successor in a conditional expression (§3.2), (iii) compare abstract states and ter-
minate abstract execution when a fixed point is reached (§3.3), and (iv) apply widening
operators, if necessary, to ensure termination (§3.3). In§3.4, we discuss an additional
issue that arises inCIR generation, which is important for avoiding loss of precision for
some generated analyzers.

3.1 Execution Over Abstract States

As discussed in§2.2, theTSL system generates theCIR as a template class that takes
as input an interpretationINTERP. For each analysis, theCIR is instantiated by an ap-
propriate interpretation forINTERP that the analysis developer defines, as described in
§2.3. (§3.4 discusses more about how theTSL system generates theCIR.)

3.2 Conditional Branch

[1] INTERP::BOOL t0 = . . . ; // translation of a
[2] INTERP::INT32 t1;
[3] INTERP::INT32 t2;
[4] INTERP::INT32 answer;
[5] if(Bool3::possibly false(t0.getBool3Value())) {
[6] . . .
[7] t1 = . . . ; // translation of b
[8] answer = t1;
[9] }
[10] if(Bool3::possibly true(t0.getBool3Value())) {
[11] . . .
[12] t2 = . . . ; // translation of c
[13] answer = t2;
[14] }
[15] if(t0.getBool3Value() == Bool3::MAYBE) {
[16] answer = t1.join(t2);
[17] }

Fig. 5. The translation of the conditional
branch “let answer = a ? b : c;”.

Fig. 5 shows part of theCIR that corre-
sponds to theTSL expression “let answer
= a ? b : c;”. Bool3 is an abstract domain
of Booleans (which consists of three val-
ues{FALSE, MAYBE, TRUE}, whereMAYBE
means “may beFALSE or may beTRUE”).
The TSL conditional expression is translated
into threeif-statements (lines 5–9, lines 10–
14, and lines 15–17 in Fig. 5). The body of the
first if-statement is executed when theBool3
value fora is possibly false (i.e., eitherFALSE
or MAYBE). Likewise, the body of the sec-
ond if-statement is executed when theBool3
value fora is possibly true (i.e., eitherTRUE
or MAYBE). The body of the thirdif-statement

is executed when theBool3 value fora is MAYBE. Note that in the body of the third
if-statement,answer is overwritten with thejoin of t1 andt2 (line 16).

TheBool3 value for the translation of aTSL BOOL-valued value is fetched byget-
Bool3Value, which is one of theTSL interface functions that each interpretation is re-
quired to define for the typeBOOL. Each analysis developer decides how to handle
conditional branches by defininggetBool3Value. It is always sound forgetBool3Value
to be defined as the constant function that always returnsMAYBE. For instance, this con-
stant function is useful when Boolean values cannot be expressed in an abstract domain,
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such asDUA for which the abstract domain forBOOL is a set ofuses. For an analysis
whereBool3 is itself the abstract domain for typeBOOL, such asVSA, getBool3Value
returns theBool3 value in the abstract state so that either an appropriate branch or both
branches can be abstractly executed.

3.3 Comparison, Termination, and Widening

[1] state repMovsd(state S, INT32 count) {
[2] count == 0 ? S
[3] : with(S) (
[4] State(memory, regs, flags):
[5] let direction = VarBoolAccess(flags, DF());
[6] edi = RegValue32(regs,EDI());
[7] esi = RegValue32(regs,ESI());
[8] src = MemAccess 32 8 LE 32(memory, esi);
[9] newRegs = direction
[10] ? RegUpdate32(RegUpdate32(
[11] regs,EDI(),edi-4), ESI(),esi-4)
[12] : RegUpdate32(RegUpdate32(
[13] regs,EDI(),edi+4), ESI(),esi+4);
[14] newS = State(MemUpdate 32 8 LE 32(
[15] memory, edi, src), newRegs, flags);
[16] in ( repMovsd(newS, count - 1) )
[17] )
[18]}

Fig. 6.A recursiveTSL function.
[1] INTERP::state global S;
[2] INTERP::INT global count;
[3] INTERP::state global retval;
[4] INTERP::state repMovsd(
[5] INTERP::state S, INTERP::INT32 count) {
[6] global S = ⊥;
[7] global count = ⊥;
[8] global retval = ⊥;
[9] return repMovsdAux(S, count);
[10]}
[11]INTERP::state repMovsdAux(
[12] INTERP::state S, INTERP::INT32 count) {
[13] // Widen and test for convergence
[14] INTERP::state tmp S = global S▽ (global S ⊔ S);
[15] INTERP::INT32 tmp count =
[16] global count▽ (global count ⊔ count);
[17] if(tmp S ⊑ global S && tmp count ⊑ global count) {
[18] return global retval;
[19] }
[20] S = tmp S; global S = tmp S;
[21] count = tmp count; global count = tmp count;
[22]
[23] // translation of the body of repMovsd
[24] . . .
[25] INTERP::state newS = . . . ;
[26] INTERP::state t = repMovsdAux(newS, count - 1);
[27] global retval = global retval ⊔ t;
[28] return global retval;
[29]}

Fig. 7. The translation of the recursive function
from Fig. 6. For simplicity, some mathematical no-
tation is used, including⊔ (join),▽ (widening),⊑
(approximation), and⊥ (bottom).

Recursion is not often used inTSL
specifications, but is needed for han-
dling some instructions that involve
iteration, such as theIA32 string-
manipulation instructions (STOS, LODS,
MOVS, etc., with variousREP pre-
fixes), and thePowerPC multiple-word
load/store instructions (LMT, STMT,
etc). For these instructions, the amount
of work performed is controlled either
by the value of a register, the value of
one or more strings, etc. These instruc-
tions can be specified inTSL using re-
cursion.6 For each recursive function
specified by anISS developer, theTSL
system generates a function that appro-
priately compares abstract values and
terminates the recursion if abstract val-
ues are found to be equal (i.e., the re-
cursion has reached a fixed point). The
function is also prepared to apply the
widening operator that the analysis de-
veloper has specified for the abstract
domain in use.

For example, Fig. 6 shows the user-
definedTSL function that handles“rep
movsd”, which copies the contents of
one area of memory to a second area.7

The amount of memory to be copied
is passed into the function as the ar-
gumentcount. Fig. 7 shows its trans-
lation into theCIR. A recursive func-
tion like repMovsd (Fig. 6) is split
into two functions,repMovsd (line 4 of
Fig. 7) andrepMovsdAux (line 11 of
Fig. 7). TheTSL system initializes ap-
propriate global variablesglobal S and

6 Currently,TSL supports only tail-recursion.
7 repMovsd is called byinterpInstr, which passes in the value of registerECX, and setsECX

to 0 afterrepMovsd returns.
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global count (lines 6–8) inrepMovsd, and then callsrepMovsdAux (line 9). At the be-
ginning ofrepMovsdAux, it generates statements that widen each of the global variables
with respect to the arguments, and test whether all of the global variables have reached
a fixpoint (lines 13–17). If so,repMovsdAux returnsglobal retval (line 18). If not, the
body of repMovsdAux is analyzed again (lines 23–26). Note that at the translation of
each normal return fromrepMovsdAux (e.g., line 27), the return value is joined into
global retval. TheTSL system requires each analysis developer to define the functions
join andwidenfor the basetypes of the interpretation used in the analysis.

3.4 Two-LevelCIR

The examples given in Figs. 3, 5, and 7, show slightly simplified versions ofCIR
code. TheTSL system actually generatesCIR code in which all the basetypes, basetype-
operators, andaccess/updatefunctions are appended with one of two predefined
namespaces that define atwo-levelinterpretation [29, 22]:CONC INTERP for concrete
interpretation (i.e., interpretation in the concrete semantics), andABS INTERP for ab-
stract interpretation. EitherCONC INTERP or ABS INTERP would replace the occur-
rences ofINTERP in the exampleCIR shown in Figs. 3, 5, and 7.

[1] // User-defined abstract-syntax grammar
[2] instruction: . . .
[3] | BCx(BOOL BOOL INT32 BOOL BOOL)
[4] | . . . ;
[5] // User-defined functions
[6] state interpInstr(instruction I, state S) {
[7] . . .
[8] BCx(BO, BI, target, AA, LK):
[9] let. . .
[10] a = . . . ; // INT32 value computed from BO and BI
[11] cia = RegValue32(S, CIA()); // current address
[12] new ia = (AA ? a // direct: BCA/BCLA
[13] : cia + a); // relative: BC/BCL
[14] lr = RegValue32(S, LR()); // current address
[15] new lr =
[16] (LK ? cia + 4 // change the link register: BCL/BCLA
[17] : lr); // do not change the link register: BC/BCA
[18] . . .
[19]}

Fig. 8. A fragment of thePowerPC specification
for interpretingBCx instructions (BC, BCA, BCL,
BCLA).

[1] AddSubInstr(op, dstOp, srcOp): // ADD or SUB
[2] let dstVal = interpOp(S, dstOp);
[3] srcVal = interpOp(S, srcOp);
[4] ans = (op == ADD() ? dstVal + srcVal
[5] : dstVal - srcVal); // SUB()
[6] in ( . . . ),
[7] . . .

Fig. 9. An example of factoring inTSL.

The reason for using a two-level
CIR is that the specification of an
instruction set often contains some
manipulations of values that should
always be treated as concrete val-
ues. For example, anISS developer
could follow the approach taken in
thePowerPC manual [2] and specify
variants of the conditional branch in-
struction (BC, BCA, BCL, BCLA) of
PowerPC by interpreting some of the
fields in the instruction (AA andLK)
to determine which of the four vari-
ants is being executed (Fig. 8).

Another reason that this issue
arises is that most well-designed in-
struction sets have many regulari-
ties, and it is convenient to factor the
TSL specification to take advantage
of these regularities when specifying
the semantics. Such factoring leads
to shorter specifications, but leads to
the introduction of auxiliary func-

tions in which one of the parameters holds a constant value for agiveninstruction. Fig. 9
shows an example of factoring. TheIA32 instructionsADD and SUB both have two
operands and can. share the code for fetching the values of the two operands. Lines 4–5
are the instruction-specific operations; the equality expression “op == ADD()” on line 4
can be (and should be) interpreted in concrete semantics.
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In both cases, the precision of an abstract transformer can sometimes be improved—
and is never made worse—by interpreting subexpressions associated with the manipu-
lation of concrete values in concrete semantics. For instance, consider aTSL expression
let v = (b ? 1 : 2) that occurs in a context in whichb is definitely a concrete value;
v will get a precise value—either 1 or 2—whenb is concretely interpreted. However,
if b is not expressible precisely in a given abstract domain, theconditional expression
“(b ? 1 : 2)” will be evaluated by joining the two branches, andv will not hold a precise
value (It will hold the abstraction of{1, 2}.).

To address this issue, we perform binding-time analysis [21] on theTSL code, the
outcome of which is that expressions associated with the manipulation of concrete val-
ues in an instruction are annotated withC, and others withA. We then generate the two-
level CIR by appendingCONC INTERP for C values, andABS INTERP for A values.
The generatedCIR is instantiated for an analysis transformer by definingABS INTERP.
TheTSL translator supplies a predefined concrete interpretation for CONC INTERP.

4 Generation of Static Analyzers

In this section, we explain how various analyses are createdusing our system, and
illustrate this process with some specific analysis examples.

As illustrated in Fig. 4, a version of the interface functioninterpInstr is created for
each analysis. Each analysis engine callsinterpInstr at appropriate moments to obtain a
transformer for an instruction being processed. Analysis engines can be categorized as
follows:

– Worklist-Based Value Propagation (or Transformer Application) [TA] . These per-
form classical worklist-based value propagation in which generated transformers
are applied, and changes are propagated to successors/predecessors (depending on
propagation direction). Context-sensitivity in such analyses is supported by means
of the call-string approach [37].VSA uses this kind of analysis engine (§4.1).

– Transformer Composition [TC] . These generally perform flow-sensitive, context-
sensitive interprocedural analysis.DUA (§4.4) uses this kind of analysis engine.

– Unification-Based Analyses [UB] . These perform flow-insensitive interprocedural
analysis.

For each analysis, theCIR is instantiated with an interpretation by an analysis devel-
oper. This mechanism provides wide flexibility in how one cancouple the system to an
external package. One approach, used withVSA, is that the analysis engine (written in
C++) calls interpInstr directly. In this case, the instantiatedCIR serves as atransformer
evaluator: interpInstr is prepared to receive an instruction and an abstract state,and re-
turn an abstract state. Another approach, used inDUA, is used when interfacing to an
analysis component that has its own input language for specifying abstract transform-
ers. In this case, the instantiatedCIR serves as atransformer generator: interpInstr is
prepared to receive an instruction and a default abstract state8 and return a transformer
specification in the analysis component’s input language.

The following subsections discuss how theCIR is instantiated for various analyses.

8 In the case of transformer generation for aTC analyzer, the default state is the identity function.
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4.1 Creation of aTA Transformer Evaluator for VSA

VSA is a combined numeric-analysis and pointer-analysis algorithm that determines a
safe approximation of the set of numeric values and addresses that each register and
memory location holds at each program point [10]. Amemory regionis an abstract
quantity that represents all runtime activation records ofa procedure. To represent a set
of numeric values and addresses,VSA usesvalue-sets, where a value-set is a map from
memory regions to strided intervals. A strided interval represents a set of numbers with
a lower bound, an upper bound, and a stride [35].

The Interpretation of Basetypes and Basetype-Operators.The abstract domain for the
integer basetypes is avalue-set. The abstract domain forBOOL is Bool3 ({FALSE,
MAYBE, TRUE}), whereMAYBE means “may beFALSE or may beTRUE”. The op-
erators on these domains are described in detail in [35].

The Interpretation of Map-Basetypes and Access/Update Functions. The abstract do-
main for memory maps (MEMMAP32 8 LE, MEMMAP32 16 LE, etc.) is a dictionary
that maps each memory-location (INT32) to avalue-set. The abstract domain for regis-
ter maps (VAR32MAP, VAR16MAP, etc.) is a dictionary that maps each variable (var32,
var16, etc.) to avalue-set. The abstract domain for flag maps (VARBOOLMAP) is a dic-
tionary that maps avar bool to a Bool3. Theaccess/updatefunctions access or update
these dictionaries.

VSA uses this transformer evaluator to create an output abstract state, given an in-
struction and an input abstract state. For example, row 1 of Tab. 3 shows the generated
VSA transformer for the instruction “add ebx,eax”. The VSA evaluator returns a new
abstract state in whichebx is updated with the sum of the values ofebx andeax from
the input abstract state and the flags are updated appropriately.

4.2 Creation of aTC Transformer Generator for ARA

An affine relation is a linear-equality constraint between integer-valued variables.ARA
finds all affine relationships that hold in the program, for a given set of variables. This
analysis is used to find induction-variable relationships between registers and memory
locations; these help in increasing the precision ofVSA when interpreting conditional
branches [8,§7.2].

The principle that is used to create aTC transformer generator is as follows: by inter-
preting theTSL expression that defines the semantics of an individual instruction using
an abstract domain in which values represent transformers,each call tointerpInstr will
residuate a transformer for the instruction. In the case ofARA, theCIR is instantiated
so that for each instruction, the generated transformer operates on an abstract domain
whose values are sets of matrices that represent affine transformations on registers and
memory locations of the state [28].

Interpretation of Basetypes and Basetype-Operators.The abstract domain for the inte-
ger basetypes is a set of linear expressions in which variables are either a register or an
abstract memory location—the actual representation of thedomain is a set ofcolumns
that consist of an integer constant and an integer coefficient for each program variable.
This column represents an affine expression over the values that the variables’ hold at
the beginning of the instruction. The basetype operations are defined so that only a set
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of linear expressions can be generated; any operation that leads to a non-linear expres-
sion, such asTimes(eax, ebx), returnsTOP, which means that no affine relationship is
known to hold.

Interpretation of Map-Basetypes and Access/Update Functions.The abstract domain of
the maps forARA is a set of matrices of size(N +1)× (N +1), whereN is the number
of program variables. This abstraction, which is able to findall affine relationships in
an affine program, was defined by Müller-Olm and Seidl [28]. Eachaccessfunction
extracts a set of columns associated with the variable it takes as an argument, from
the set of matrices for its map argument—e.g.,memmapor var32Mapin Tab. 1. Each
updatefunction creates a new set of matrices that reflects the affinetransformation
associated with the update to the variable in question.

For each instruction, theARA transformer relates linear-equality relationships that
hold before the instruction to those that hold after execution of the instruction.

4.3 Creation of aUB Transformer Generator for ASI

ASI is a unification-based, flow-insensitive algorithm to identify the structure of aggre-
gates in a program [11]. For each instruction, the transformer generator generates a set
of ASI commands, each of which is either a command tosplit a memory region or a
command tounify some portions of memory (and/or some registers) At analysistime,
a client analyzer typically applies the transformer generator to each of the instructions
in the program, and then feeds the resulting set ofASI commands to anASI solver to
refine the memory regions.

Abstract Domain for Basetypes and Basetype-Operators.The abstract domain for the
basetypes is adataref, which is either a memory access or a register access. The arith-
metic, logical, and bit-vector operations ondatarefs convertdatarefs to unassignable
datarefs, which means that they will only be used to generatesplits.

Abstract Domain for Map-Basetypes and Access/Update Functions. The abstract do-
main of the maps forASI is a set ofsplits andunifications. Theaccessfunctions generate
adatarefassociated with memory location or register. Theupdatefunctions create a set
of unifications orsplits according to thedataref of the data argument.

For example, for the instruction “mov [ebx],eax”, when ebx holds the abstract ad-
dressAR foo−12, whereAR foo is the memory-region for some procedurefoo’s ac-
tivation records, theASI transformer generator emits theASI unification command
“AR foo[-12:-9] :=: eax[0:3]”.

4.4 Def-Use Analysis (DUA)
Def-Useanalysis collects all thedefinitionsandusesof state components (memory-
locations, registers, and flags) for each instruction.
The Interpretation of Basetypes and Basetype-Operators.The abstract domain for the
basetypes is a set ofuses, and the operators on this domain perform a set-union of their
arguments’ sets.
The Interpretation of Map-Basetypes and Access/Update Functions. The abstract do-
main of the maps forDUA is a tuple of sets—defsanduses. Theaccess/updatefunctions
all perform set union of the sets associated with the arguments of MEMMAP32 8 LE,
VAR32MAP, VARBOOLMAP, etc. (memmap, var32Map, or varBoolMapin Tab. 1).
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TheDUA results (e.g., row 3 of Tab. 3) are used to create transformers for several
additional analyses, such asGMOD analysis [15], which is an analysis to find modified
variables for each functionf (including variables modified by functions transitively
called fromf ) and live-flag analysis, which is used in our version of VSA toperform
trace-splitting/collapsing (§4.5).

4.5 Quantifier-Free Bit-Vector (QFBV) Semantics

QFBV semantics provides a way to obtain a symbolic representation—as a formula in
first-order quantifier-free bit-vector logic—of an instruction’s semantics.

The Interpretation of Basetypes and Basetype-Operators.The abstract domain for the
integer basetypes is a term, and each operator on it constructs a term that reflects the op-
eration. The abstract domain forBOOL is a formula, and each operator on it constructs
a formula that reflects the operation.

The Interpretation of Map-Basetypes and Access/Update Functions. The abstract do-
main for the state components is a dictionary that maps a storage component to a term
(or a formula in the case ofVARBOOLMAP). Theaccess/updatefunctions retrieve from
and update the dictionaries, respectively.

QFBV semantics is useful for a variety of purposes. One use is as auxiliary informa-
tion in an abstract interpreter, such as theVSA analysis engine, to provide more precise
abstract interpretation of branches in low-level code. Theissue is that many instruction
sets provide separate instructions for (i) setting flags (based on some condition that is
tested) and (ii) branching according to the values held by flags.

•
•
•

(A) cmp  eax, 10

(B) js  …

(C)succ 1 (D)succ 2

T F

(E) jz  …
•
•
•

To address this problem, we use atrace-splitting/collapsing
scheme [26]. TheVSA analysis engine partitions the state at each
flag-setting instruction based on live-flag information (which is ob-
tained from an analysis that uses theDUA transformers); a semantic
reduction [16] is performed on the splitVSA states with respect to
a formula obtained from the transformer generated by theQFBV
semantics. The set ofVSA states that result are propagated to ap-

propriate successors at the branch instruction that uses the flags.
Thecmp instruction (A), which is a flag-setting instruction, hasSF andZF as live

flags since those flags are used at the branch instructionsjs (B) and jz (E): js and jz
jump according toSF andZF, respectively. After interpretation of (A), the stateS is
split into four states,S1, S2, S3, andS4, which are reduced with respect to the formulas
ϕ1: (eax − 10< 0) associated withSF, andϕ2: (eax − 10 == 0) associated withZF.

S1 := S[SF 7→T] [ZF 7→ T] [eax 7→ reduce(S(eax), ϕ1 ∧ ϕ2)]
S2 := S[SF 7→T] [ZF 7→ F] [eax 7→ reduce(S(eax), ϕ1 ∧ ¬ϕ2)]
S3 := S[SF 7→F] [ZF 7→ T] [eax 7→ reduce(S(eax), ¬ϕ1 ∧ ϕ2)]
S4 := S[SF 7→F] [ZF 7→ F] [eax 7→ reduce(S(eax), ¬ϕ1 ∧ ¬ϕ2)]

Becauseϕ1 ∧ϕ2 is not satisfiable,S1 becomes⊥. StateS2 is propagated to the true
branch ofjs (i.e., just before (C)), andS3 andS4 to the false branch (i.e., just before
(D)). Because no flags are live just before (C), the splittingmechanism maintains just a
single state, and thus all states propagated to (C)—here there is just one—are collapsed
to a single abstract state. BecauseZF is still live until (E), the statesS3 and S4 are
maintained as separate abstract states at (D).
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4.6 Paired Semantics

Our system allows easy instantiations ofreduced products [16] by means ofpaired se-
mantics. TheTSL system provides a template for paired semantics as shown in Fig. 10.
[1] template <typename INTERP1, typename INTERP2>

[2] class PairedSemantics {
[3] typedef PairedBaseType<INTERP1::INT32, INTERP2::INT32> INT32;
[4] . . .
[5] INT32 MemAccess 32 8 LE 32(MEMMAP32 8 LE mem, INT32 addr) {
[6] return INT32(INTERP1::MemAccess 32 8 LE 32(mem.GetFirst(), addr.GetFirst()),
[7] INTERP2::MemAccess 32 8 LE 32(mem.GetSecond(), addr.GetSecond()));
[8] }
[9] };

Fig. 10.A part of the template class for paired semantics.

[1] typedef PairedSemantics<VSA INTERP, DUA INTERP> DUA;
[2] template<> DUA::INT32 DUA::MemAccess 32 8 LE 32( DUA::MEMMAP32 8 LE mem, DUA::INT32 addr) {
[3] DUA::INTERP1::MEMMAP32 8 LE memory1 = mem.GetFirst();
[4] DUA::INTERP2::MEMMAP32 8 LE memory2 = mem.GetSecond();
[5] DUA::INTERP1::INT32 addr1 = addr.GetFirst();
[6] DUA::INTERP2::INT32 addr2 = addr.GetSecond();
[7] DUA::INT32 answer = interact(mem1, mem2, addr1, addr2);
[8] return answer;
[9] }

Fig. 11.An example ofC++ explicit template specialization to create a reduced product.

The CIR is instantiated with apaired semantic domain defined with two interpre-
tations,INTERP1 and INTERP2 (each of which may itself be a paired semantic do-
main), as shown on line 1 of Fig. 11. The communication between interpretations may
take place in basetype-operators oraccess/updatefunctions; Fig. 11 is an example of
the latter. The two components of the paired-semantics values are deconstructed on
lines 3–6 of Fig. 11, and the individualINTERP1 andINTERP2 components fromboth
inputs can be used (as illustrated by the call tointeracton line 7 of Fig. 11) to create
the paired-semantics return value,answer. Such overridings of basetype-operators and
access/updatefunctions are done byC++ explicit specialization of members of class
templates (this is specified inC++ by “template<>”; see line 2 of Fig. 11).

We also found this method ofCIR instantiation to be useful to perform a form
of reduced product when analyses are split into multiple phases, as in a tool like
CodeSurfer/x86. CodeSurfer/x86 carries out many analysisphases, and the application
of its sequence of basic analysis phases is itself iterated.On each round, CodeSurfer/x86
applies a sequence of analyses:VSA, DUA, and several others.VSA is the primary
workhorse, and it is often desirable for the information acquired byVSA to influence
the outcomes of other analysis phases.

[1] with(op) ( . . .
[2] Indirect32(base, index, scale, disp):
[3] let addr = base + index * SignExtend8To32(scale) + disp;
[4] m = MemUpdate 32 8 LE 32(mem,addr,v);
[5] . . .)

Fig. 12.A fragment ofupdateState32.

We can use the paired-semantics
mechanism to obtain desiredmulti-
phase interactionsamong our gen-
erated analyzers—typically, by pair-
ing theVSA interpretation with an-
other interpretation. For instance,

with DUA INTERP alone, the information required to get abstract memory location(s)
for addr is lost because theDUA basetype-operators (+ and∗ on line 3 of Fig. 12)
just return the union of the arguments’usesets. With the pairing ofVSA INTERP
with DUA INTERP (line 1 of Fig. 11),DUA can use the abstract address computed
for addr2 (line 6 of Fig. 11) byVSA INTERP, which usesVSA INTERP::Add and
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VSA INTERP::Mult; the latter operators operate on a numeric abstract domain (rather
than a set-based one).

Note that during the application of the paired semantics,VSA interpretation will be
carried out on theVSA component of paired intermediate values. In some sense, this is
duplicated work; however, a paired semantics is typically used only in a phase of trans-
former generation (for aTC-style orUB-style evaluator), where the transformers are
generated during a single pass over the interprocedural CFGto generate a transformer
for each instruction. Thus, only a limited amount ofVSA evaluation is performed (equal
to what would be performed to check that theVSA solution is a fixed point).

5 Instruction Sets
In this section, we discuss the quirky characteristics of some instruction sets, and vari-
ous ways these can be handled inTSL.

5.1 IA32

To provide compatibility with 16-bit and 8-bit versions of the instruction set,IA32 pro-
vides overlapping register names, such asAX (the lower 16-bits ofEAX), AL (the lower
8-bits of AX), andAH (the upper 8-bits ofAX). There are two possible ways to spec-
ify this feature inTSL. One is to keep three separate maps for 32-bit registers, 16-bit
registers, and 8-bit registers, and specify that updates toany one of the maps affect the
other two maps. Another is to keep one 32-bit map for registers, and obtain the value of
a 16-bit or 8-bit register by masking the value of the 32-bit register.

Another characteristic to note is thatIA32 keeps condition codes in a special register,
calledEFLAGS.9 One way to specify this feature is to declare “reg32:Eflags();”, and
make every flag manipulation fetch the bit value from an appropriate bit position of the
value associated withEflags in the register-map. Another way is to have symbolic flags,
as in our examples, and have every manipulation ofEFLAGS affect the individual flags.

5.2 ARM

Almost all ARM instructions contain a condition field that allows an instruction to be
executed conditionally, dependent on condition-code flags. This feature reduces branch
overhead and compensates for the lack of a branch predictor.However, it may worsen
the precision of an abstract analysis because in most instructions’ specifications, the
abstract values from two arms of aTSL conditional expression would be joined.

[1] MOVEQ(destReg, srcOprnd):
[2] let cond = VarBoolAccess(flagMap, EQ());
[3] src = interpOperand(curState, srcOprnd);
[4] a = Var32Update(regMap, destReg, src);
[5] b = regMap;
[6] answer = cond ? a : b;
[7] in ( answer )

Fig. 13. An example of the specification
of anARM conditional-move instruction in
TSL.

For example,MOVEQ is one of ARM’s
conditional instructions; if the flagEQ is true
when the instruction starts executing, it ex-
ecutes normally; otherwise, the instruction
does nothing. Fig. 13 shows the specifica-
tion of the instruction inTSL. In many ab-
stract semantics, the conditional expression
“cond ? a : b” will be interpreted as a join
of the original register mapb and the updated

mapa, i.e.,join(a,b). Consequently,destReg would receive the join of its original value

9 Many other instruction sets, such asSPARC, PowerPC, andARM, also use a special register
to store condition codes.
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andsrc, even whencond is known to have a definite value (TRUE or FALSE) in VSA
semantics. The paired-semantics mechanism presented in§4.6 can help with improving
the precision of analyzers by avoiding joins. When theCIR is instantiated with a paired
semantics ofVSA INTERP andDUA INTERP, and theVSA value ofcond is FALSE, the
DUA INTERP value foranswer gets emptydef- anduse-sets because the true branch
a is known to be unreachable according to theVSA INTERP value ofcond (instead of
non-empty sets fordefs anduses that contain all the definitions and uses indestReg
andsrcOprnd).

5.3 SPARC

[1] var32 : Reg(INT8) | CWP() | . . .;
[2] reg32 : OutReg(INT8) | InReg(INT8) | . . .;
[3] state: State( . . . , VAR32MAP, . . . );
[4] INT32 RegAccess(VAR32MAP regmap, reg32 r) {
[5] let cwp = Var32Access(regmap, CWP());
[6] key = with(r) (
[7] OutReg(i):
[8] Reg(8+i+(16+cwp*16)%(NWINDOWS*16),
[9] InReg(i): Reg(8+i+cwp*16),
[10] . . . );
[11] in ( Var32Access(regmap, key) )
[12]}

Fig. 14. A method to handle the
SPARC register window inTSL.

SPARC uses register windows to reduce
the overhead associated with saving reg-
isters to the stack during a conventional
function call. Each window has 8in, 8 out,
8 local, and 8global registers.Outs become
ins on a context switch, and the new con-
text gets a new set ofout and local reg-
isters. A specific platform will have some
total number of registers, which are orga-
nized as a circular buffer; when the buffer
becames full, registers are spilled to the

stack to free up a sufficient number for the called procedure.Fig. 14 shows a way
to accomodate this feature. The syntactic register (OutReg(n) or InReg(n), defined on
line 2) in an instruction is used to obtain a semantic register (Reg(m), defined on line 1,
wherem represents the register’s global index), which is the key used for accesses on
and updates to the register map. The desired index of the semantic register is computed
with the index of the syntactic register, the value ofCWP (the current window pointer)
from the current state, and the platform-specific valueNWINDOWS.

6 Related Work

There are many specification languages for instruction setsand many purposes to which
they have been applied. Some were designed for hardware simulation, such as cycle
simulation and pipeline simulation [30, 27]. Others have been used to generate an emu-
lator for compiler-optimization testing [17, 23].TDL [23] is a hardware-description lan-
guage that supports the retargeting of analyses and optimizations relevant to instruction
scheduling, register assignment, and functional-unit binding. The New Jersey machine-
code toolkit [33] addresses concrete syntactic issues (instruction decoding, instruction
encoding, etc.). Harcourt et al. usedML to specify the semantics of instruction sets [20].
LISAS [14] is an instruction-set-description language that was developed based on their
experience usingML. The latter two approaches particularly influenced the design of
theTSL language.

TSL shares some of the same goals asλ-RTL [32] (i.e., the ability to specify the
semantics of an instruction set and to support multiple clients that make use of a single
specification). The two languages were both influenced byML, but different choices
were made about what aspects ofML to retain:λ-RTL is higher-order, but without
datatype constructors and recursion;TSL is first-order, but supports both datatype con-
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structors and recursion.10 The choices made in the design and implementation ofTSL
were driven by the goal of being able to define multiple abstract interpretations of an
instruction-set’s semantics.

Some systems for representing and analyzing programs are (mainly) targeted for a
single language. For instance,SOOT [4] is a powerful and flexible analysis/optimization
framework that supports analysis and transformation of Java bytecode.

One method to support the retargeting of analyses to different languages is to create
a package that supports a family of program analyses that different front ends can use
to create analysis components. Examples includeBDDBDDB [39], Banshee [25], the
PPL [3], and WPDS++ [24]. The writer of each client front end needs to encode the
semantics of his language by creating appropriate transformers for each statement and
condition in the language’sIR, using the package’s API (or input language).

WALA [6] supports a common intermediate form (Common Abstract Syntax Tree),
from which multiple additionalIRs (e.g., CFGs and SSA-form) can be generated, and
multiple analyses can be performed that use theseIRs. Thus, this is similar to the pack-
age approach, but supports a multiplicity of analyses.

In contrast to the package approach,TSL provides a domain-specific language for
instruction-set specification. With this approach, theISS developer concentrates on
specifying the concrete operational semantics of his language, usingTSL, and a multi-
plicity of analyzers are then created automatically. Analysis developers can incorporate
different analysis packages into theTSL framework by implementing appropriate ab-
stract operations that overapproximate the semantics of a fixed set ofTSL operations
(that have a well-defined semantics). (Any of the aforementioned packages could be
used for creatingTSL-based analyses; currently,WPDS++ is used for all of theTC-
style analyzers that have been developed for use withTSL so far.)

There are two analysis systems,TVLA [5] and the optimizer flow-function inference
system developed by Rice et al. [36], in which sound analysistransformers are gener-
ated automatically from the concrete operational semantics, plus a specification of the
abstraction (either via the abstraction function (TVLA) or the concretization function
(Rice et al.)). In our system, we rely on the analysis developer to supply sound abstract
operations. While this places an additional burden on developers, once an analysis is
developed it can be used with each instruction set specified in TSL. Moreover,

– The analyses that we support are much more efficient than those that can be created
with TVLA and apply to our intended domain of application (low-level code).

– Some of the analyses that we use, such asARA [28], appear to be beyond the power
of the heuristics-based transformer-generation methods developed by Rice et al.

The development of methods for creating abstract transformers from a specification of
the abstraction or concretization function (à la [5] and [36]) is left for future research.
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