
  
  

 

Computer  
Sciences  
Department  
 

  

A New Model for Managing Configuration Data 
 
Adwait N. Tumbde 
Michael M. Swift 
 
Technical Report #1619 
 
October 2007 

 
 

 

 



A New Model for Managing Configuration Data

Adwait N. Tumbde and Michael M. Swift
University of Wisconsin-Madison
{adwait,swift}@cs.wisc.edu

Abstract
Configuration management is one of the largest causes of sys-
tem and application failure. In one study, twenty four percent
of Windows NT downtime was attributed to system configura-
tion and maintenance [24]. Furthermore, system configuration
is a large expense: 60-80% of the total cost of computer own-
ership is system management [6]. The problem is increasing as
systems and applications get larger.

We seek to address a key aspect of this problem, configu-
ration storage: how configuration data is stored and managed
by the OS. Existing mechanisms, such as files in Linux, prop-
erty lists in MacOS X, and the registry in Windows do not ade-
quately support application and administrator needs. For exam-
ple, common features such profiles must be implemented sepa-
rately by each application. Settings for a single application are
often stored in multiple locations, making it difficult to identify
all the configuration state related to a single application.

To address these problems, we propose a new data model
and storage service for configuration data. The Configuration
Data Management System (CDMS) stores settings as name–
value pairs, similar to other systems. However, CDMS can clus-
ter related settings into objects that allow the settings for an ap-
plication to be centralized, even if the settings names are widely
distributed. CDMS assembles configuration spaces from a list
of objects to support profiles generically and to support simul-
taneous use of multiple versions of an application. We present
an implementation of CDMS and present case studies of using
CDMS to manage configuration data for Mozilla Firefox and
Apache.

1 Introduction
Modern operating systems are incredibly flexible, but this
flexibility comes at a large cost: configuration manage-
ment. Configuration management adversely impacts both
system availability and the cost of ownership. The Com-
puting Research Association reports that 60-80% of the
cost of ownership is due to system management [6]. A
study of Windows NT systems indicated that configu-
ration management was responsible for 24% of down-
time [24]. Common configuration problems arise when
an install or uninstall process fails, when an application
or administrator corrupts data, or when an upgrade over-
writes common configuration settings incorrectly [12].

A major contributor to the difficulty of system man-
agement is the organization of configuration data. For
example, Windows XP stores settings in a configuration

registry, a hierarchical database of key-value pairs. A
typical machine has approximately 200,000 settings [14].
However, additional information of use to administrators,
such as default values, schema, and comments are not
available in this model. Furthermore, the rigid hierar-
chical structure prevents applications that interact from
associating their joint configuration with both applica-
tions. Conversely, Unix systems traditionally store data
in application-defined text file formats. This provides
flexibility to applications but complicates management,
as each application requires a separate parser.

Furthermore, application developers and administra-
tors construct higher-level services on top of configura-
tion storage, but must do so in an ad-hoc, application-
specific fashion. For example, applications commonly
implement an inheritance model, where users may have
per-user settings that override system-wide defaults. As
another example, many applications implement profiles,
a grouping of settings that may be selected en masse. Fi-
nally, applications interested in robustness must imple-
ment transactions and rollback when modifying config-
uration settings, to ensure that they can recover after a
failure. Unfortunately, such improvised services raise the
complexity of configuration management. These services
remove the semantics of configuration from the data, be-
cause applications now use their private logic to construct
internal settings from the stored data.

We seek to simplify the job of programmers and ad-
ministrators by offering a better configuration storage
mechanism. This mechanism simplifies many of the ser-
vices currently provided by applications, supports com-
mon administration tasks, and ensures that the configu-
ration state of an application is visible to administrators
and not hidden behind a layer of application semantics.

Our Approach. In this paper we present a new
data model for configuration settings that simplifies many
management tasks. The model support wide variety of
configuration uses, such as OS settings, application set-
tings, and user preferences. Our data model centers
around three abstractions. Properties are name–value
pairs in a global namespace. The names have a hier-
archical structure. The data model also groups related
settings into configuration objects. This allows group-
ing of settings related by use (for example, relevant to a
single application) even if those settings would normally



stored in different parts of a configuration hierarchy. Fur-
ther, objects may be assembled into configuration spaces,
which are collections of settings visible to an application
instance. Spaces provide inheritance, in which objects are
ordered into a list and attributes specified at the front of
the list override attributes further down the list. This pro-
vides generic support for profiles, by constructing a dif-
ferent space for each profile, as well as simultaneous sup-
port for multiple versions of an application (again, with a
space for each version).

We implemented the data model in the Configuration
Data Management System (CDMS), which relies on a re-
lational database to store and query configuration data.
While a relational database is not vital to the data model,
its existing support for transactions and queries greatly
simplified development. This service supports operations
that applications must currently implement, such as trans-
actions, inheritance, and profiles. Additionally, CDMS
provides a rich query interface and a log of all persistent
changes.

To gain experience with CDMS, we use it to store
the configuration settings for two application, the Mozilla
Firefox web browser and the Apache web server. We find
that CDMS easily stores Firefox data and provides pro-
file support without special application logic. It also sup-
ports a rich management model, in which administrators
may decide exactly which settings may be overridden by
users. We also show how Apache’s less-structured data
also fits well within CDMS.

The next section describes the shortcomings of ex-
isting configuration storage systems. We present related
work in Section 3. Section 4 details the our data model,
and Section 5 describes the architecture and implementa-
tion of CDMS. We present case studies in Section 6. We
finish with a comparison to using files for configuration
data in Section 7 and concluding remarks in Section 8.

2 The Problem
We find ample evidence in modern operating systems that
existing methods of storing configuration data are inade-
quate. While we primarily discuss Windows and Linux,
we find problems in MacOS X as well.
Ad-hoc representation. In Linux, there is no single
configuration service, leading to hundreds of application-
specific data formats. This variety leads to formatting
errors when changing settings. While Windows supports
a common storage system, the registry, it does not pro-
vide high level features such as naming. Applications that
link settings to other applications use their own naming
convention, such as globally unique identifiers (GUIDs)
to indirectly reference other applications. However, the
context for looking up these strings is known only to the
application, which conceals the semantics of these links

from administrators. This usage creates implicit depen-
dencies from one part of the registry to another, thereby
increasing the possibility of a management error.
Encapsulation. Hierarchical configuration storage, ei-
ther in the file system or in the registry, paradoxically
prevents applications from encapsulating their data in a
single location. Settings that relate one application to an-
other must belong to either application, or to a third party.
For example, Figure 1 shows the distribution of Microsoft
Office 2003 configuration data compared to the overall
structure of the registry. As the figure shows, Office stores
settings throughout the entire registry. As a result, admin-
istrators have difficulty in identifying the settings related
to a single application.
Reliability. Configuration data corruption due to aborted
or misguided management operations often impacts ap-
plication and system reliability. For this reason, Win-
dows XP includes a rollback mechanism in its install fa-
cility, Windows Vista includes transactional registry ac-
cess, and Windows System Restore allows the whole reg-
istry to be checkpointed. However, these features do not
go far enough. Rather, the ability to undo any change
at any time is needed to fully support reliable manage-
ment [4]. Rollback during installation is of little use when
failures occur during other management tasks, and exter-
nal configuration changes may prevent rollback from suc-
ceeding. For example, we manually injected errors into
the configuration data for Adobe Reader 7.0.8 by deleting
settings and found that neither the uninstaller nor the in-
staller would function. In addition, system-wide rollback
undoes all changes and not just those at fault, forcing the
administrator to re-apply updates unnecessarily.
Scoping. Configuration data commonly applies to a fixed
scope, such as a single user, an application, or the entire
machine. MacOS X [3] and GConf [18], for example,
provide a fixed set of scopes with inheritance for propa-
gating settings from a global scope to a per-user scope.
However, a fixed set of scopes cannot support common
usage scenarios, such as sharing printer or network set-
tings between selected applications. Furthermore, these
systems store only a single copy of each scope, so that the
users cannot choose at runtime which settings to use. Ap-
plications that support switching between groups of set-
tings, such as Firefox’s user profiles, must implement the
feature themselves. As a result, the semantics of which
settings are hidden inside application logic and are not
visible to generic management tools.

In summary, we have identified several features where
existing configuration storage systems fall short resulting
in increased management cost and decreased reliability.

3 Related Work
Much work on configuration management has focused
on two aspects of the problem: automating management

2



Figure 1: The graph on the left represents the Windows registry as a whole. Nodes represent registry keys and edges denote
a parent-child relationship. The graph on the right includes only registry keys added during Office 2003 installation.

of large clusters and debugging problems. Automated
management systems propagate an operator’s configura-
tion changes from a central location to a cluster of ma-
chines [5, 2, 1, 15, 16, 13]. This approach works par-
ticularly well if the cluster is homogeneous; otherwise
the changes must be tailored for each individual machine.
Automated management works well until it fails, for ex-
ample when one machine in a cluster experiences a prob-
lem that others do not.

At this point, configuration debugging tools help find
the root cause of the problem [22, 23]. These systems
examine a set of configuration data, either across mul-
tiple machines or on a single machine across time, to
determine which changed setting triggered the failure.
Here, additional information such as textual descriptions
of configuration settings, default values, and data types
are useful to aid in understanding how configuration data
impacts system behavior.

Finally, there has been recent work proposing whole-
sale changes to how configuration is performed [7]. This
proposal, however, only applies to a subset of configura-
tion data, for example it does not address user preferences
or kernel configuration parameters.

Several prior projects have sought to change how con-
figuration data is stored. GConf [18] and Nix [8] both
provide new services, although in restricted domains:
GConf only applies to user preferences and Nix to pack-
age management. In contrast, our work addresses all uses
configuration storage.

New models have been proposed recently for config-
uration management. A purely functional model is pro-
posed in [9]. This model is primarily useful for package
management and for generating configuration files. But
due to its reliance on text files for storing configuration
data, it also suffers from the problems described in previ-

ous section. PRESTO [10] constructs configuration set-
tings for devices by composing configlets, generated us-
ing templates and scripts. However, the use of templates
and active template language is more useful for generat-
ing a large number of domain-specific configuration set-
tings: configuration files for a large number of machines
on a network, for example.

The notion of separating configuration into objects
that can be optionally applied is a core feature of Win-
dows group policy objects [17], but these are only used
for system settings and not application or user settings.
In addition, there is no hierarchy, so only a single object
covers a particular setting.

Several aspects of CDMS have been proposed, but not
as a single package. Logging configuration changes is
one aspect of Flight Data Recorder (FDR) [21]. How-
ever, FDR is a full-system tracer, whose overhead may
not be appropriate for many cases. Databases have been
used for storing configuration data [11], however this ap-
proach exported text files and hence could not support
applications that modify their own configuration, such as
common desktop applications.

4 Configuration Data Model
We propose a new data model for storing configuration
data. Existing configuration management services such
as the Windows Registry, GConf, and MacOS X property
lists store data as a hierarchy of containers storing key-
value pairs. Our data model instead provides three key
abstractions:

1. Properties store individual setting within a hierar-
chical name space.

2. Objects group related properties together, indepen-
dent of their place in the name space

3



3. Spaces assemble a set of objects into an address
space of property names and values visible at run-
time.

Figure 2 shows the three key abstractions of our data
model and their relationship. We now discuss each in
turn.

4.1 Properties

The smallest unit of configuration data is a property,
which is a binding of a name to a value. Properties
form a global namespace, unlike other configuration stor-
age services, which place properties into containers. To
achieve a similar hierarchy, we adopt the naming con-
vention of Mozilla Firefox and give each configuration
setting a dotted name, leading with a vendor, application,
or service name and ending with the name of the indi-
vidual setting. For example, an Apache setting might be
named apache.v2.timeout, indicating that the appli-
cation name is “apache” version 2, and the setting name
is “timeout.” The left column of Figure 2 shows sample
properties.

While simple, this name format supports data al-
ready stored in the Registry: key and value names
may converted into a dotted name. MacOS X property
lists can be stored similarly. To support common op-
erations such as enumeration, the data model provides
queries over property names. For example, a list of
printers may be specified as printer.color-floor1,
printer.bw-floor3, and may be enumerated by query-
ing for printer.*.

Like other configuration systems, this naming mech-
anism allows applications to group related settings. In
addition, it provides a global namespace, which allows
a setting to refer to other settings directly. For example,
the model supports symbolic links that allow a property
to take its value from another property. This enables a
new version of an application, with a different property
names, to refer to values from previous versions. In con-
trast, the Windows Registry does not make use of a global
name space and instead uses application-specific identi-
fiers, such as GUIDs, to reference other settings. As a re-
sult, the relationships between configuration settings are
hidden inside application logic and are not visible to ad-
ministrative tools.

4.2 Configuration Objects

The data model supports two mechanisms for grouping
related properties. The first, just described, is to use the
name space. Related settings can share a prefix. The
second mechanism is configuration objects, which are
named groups of properties. Each property belongs to
a single configuration object. Objects allows settings that

are widely dispersed in the namespace to be grouped to-
gether and address the problem demonstrated in Figure 1.
Despite being dispersed in the namespace, the properties
used by Microsoft office can be clustered into a small
number of configuration objects. This simplifies uninstal-
lation, as all application-related settings may be removed
by removing the associated object. The center column of
Figure 2 shows sample configuration objects for different
applications and system components.

In addition to grouping related settings, objects also
provide a generic mechanism for implementing profiles.
Each set of application settings is stored in a separate con-
figuration object and selected when the application starts.
An add-on application can store all of its configuration
data in a single object, which can then be shared by mul-
tiple applications. Any change to the add-on object will
then be reflected across all the applications using the add-
on.

Objects also provide a mechanism for copying, snap-
shotting and rolling back settings. Similar to a file, a con-
figuration object may be copied to a new object. This
supports periodic snapshots, for undoing changes later
found incorrect. It also enables the creation of test con-
figurations to try new settings temporarily. Thus, a prop-
erty name may exist in multiple configuration objects at
the same time, and have a different value in each object.
A property is therefore an instance of a property name
within a configuration object.

4.3 Configuration Spaces
While configuration objects provide a convenient mech-
anism for grouping properties, they require a mechanism
for applications to select which objects to use. The data
model provides this services with configuration spaces,
which are named address spaces that map names onto
values. This mapping is created by assembling an or-
dered list of configuration objects. The right column of
Figure 2 shows a sample configuration space for the Fire-
fox web browser, composed of Firefox settings and Linux
networking and user settings. Settings at the front of the
list override settings further away, allowing users or ap-
plications to override system settings on a case-by-case
basis. Configuration spaces may themselves be nested to
simplify management, as a change to one space propa-
gates to all spaces that include it.

These spaces provide better encapsulation of settings
than files. All the settings belonging to an application go
into a single configuration space, even those that impact
system-wide features. Consequently, administrators can
quickly find all the settings of an application.

The flat namespace simplifies inheritance, which is
performed on a per-name basis: if a property name ap-
pears closer to the front of the list, it overrides all in-
stances of the name in more distant objects. By de-

4



firefox.v2.browser.cache.disk.capacity

firefox.v2.browser.download.dir

linux.2-6.net.proxy.location

Properties

apache.v2.Listen

linux.2-6.net.eth1.bootproto

Firefox

Apache

Linux-net

linux.users.201.homedir
Linux-
users

Objects

Firefox 

Firefox

Linux-net

Linux-users

Spaces

Figure 2: Data model abstractions.

fault, all properties may be overridden, allowing per-
application versions of system-wide settings. When
necessary, inheritance can be disabled for by setting
a mandatory flag on the property. To enforce non-
overridable settings on a finer granularity, an administra-
tor may create a “mandatory settings” object with these
settings and place it at the head of the configuration space.
An example configuration space for a browser applica-
tion is shown in Figure 3. The mandatory settings, user
preferences and application defaults form an ordered list
with the mandatory settings object at the head. To pre-
vent users from changing mandatory settings, the model
allows an object to be marked read-only in a space.

An aware application may select a configuration space
on its own. Or, a launching tool can provide the applica-
tion with the space to use. This allows a single applica-
tion to be executed in different spaces, providing the func-
tionality of profiles. Spaces also support executing multi-
ple versions of an application, as settings from these mul-
tiple versions exist in different spaces. Furthermore, con-
figuration spaces provide a generic mechanism for shar-
ing settings between selected applications. For example,
the printer may default to color for graphics applications
and black-and-white for text applications. This provides
a finer granularity of control than is available to users to-
day, who typically must choose a single default printer.

In each of these cases, support for different configura-
tion spaces at the system level removes the management
and interpretation of configuration from the application.
Instead, the service storing configuration data determines
which settings are in effect and can communicate that to
administrators.

4.4 Extensions

Our configuration data model supports two extensions to
simplify management: constraints and metadata.
Constraints. In many cases, applications use internal
logic to determine whether an application settings ap-
plies. For example, a mail program may store additional
settings about external editors if one is enabled. Or, an
application may have settings that apply to particular ver-
sion of the operating system. The application logic apply-
ing these constraints makes it difficult for administrators
to determine which settings are in effect.

Constraints provide a generic mechanism for condi-
tional configuration data. An application may attach a
condition to either a single property or to a configu-
ration object within a space specifying when it should
apply. Constraints support case-statement functionality:
they test whether a property takes on a certain value. If it
does, then the property or object is included in the space
when an application accesses its settings; otherwise it is
not. In the case of spaces, the constraint also specifies
where in the space to include the object:

if environ.os.name = ’Windows’

include my_security_object at rank 3

The constraint is evaluated at runtime: when access-
ing data, the property name in a constraint is queried from
the current space. This allows the properties used in con-
straints to themselves be overridden.

Constraints that refer to other properties are called in-
ternal constraints and can be implemented without appli-
cation help. The data model also supports external con-
straints, which allow constraints on arbitrary variables.
For external constraints, the application must provide the

5



Browser Configuration Space

accept_cookies = trueMandatory
Settings

foreground = black
User 

preferences

accept_cookies =false
foreground = white
max_connections = 25

Application
 defaults

Run-time Configuration

accept_cookies = true
foreground = black
max_connections = 25

Figure 3: Configuration objects, Space and Inheritance

configuration service with a list of variables and their val-
ues. When properties are queried, the model evaluates ex-
ternal constraints against the supplied variables. This fea-
ture enables control over configuration settings through
environment variables and other dynamic application set-
tings, such as the current working directory.
Metadata. One downside of structured configuration
storage systems, such as the Windows Registry, is that
they do not provide much support for metadata. Com-
ments, default values, and ranges of valid settings are
common in text configuration files. Our data model pro-
vides explicit space to store such metadata with every
property name. This avoids duplicate storage of metadata
when a property is overridden. Examples of metadata
include comments describing the configuration property,
site-specific configuration guidelines, version number, or
the user responsible for managing data. This provides
many of the benefits of configuration text files while still
supporting a richer data model.

5 Configuration Data Management System
In order to get experience with our configuration data
model, we implemented the Configuration Data Manage-
ment System (CDMS), which uses the model. CDMS is
a system-wide service intended for storing all configura-
tion data, including system settings, applications settings,
and user preferences. This service provides a global view
of the configuration data in a system, which facilitates
development of shared management tools and interfaces.
The centralized system also provides services such as
transactions and logging to all applications, avoiding the
need for reimplementing these on a per-application basis.
In this section we describe the architecture and imple-
mentation of CDMS.

5.1 CDMS Architecture

CDMS consists of the three main components shown in
Figure 4: the Storage Engine (SE), the Configuration
Management Engine (CME) and the user interface layer.
The Storage Engine provides the back-end for storing and
retrieving configuration data. The Configuration Man-
agement Engine implements our data model on top of

Dat

Properties, Objects and Spaces 

Tables

Metadata

Tables
Time-travel Log

Configuration Management 

Engine(CME)

CDMS API 

(C)
File Import/ 

Export

Command 

Line 

Storage Engine(SE)

User Interface

Figure 4: CDMS Architecture

storage engine as a new query language. Finally, the user
interface layer presents a variety of methods for accessing
the data, including file import/export, a command line,
and an API.

The function of the storage engine is to persistently
and reliably store all configuration settings. Rather
than re-implement much of the functionality already
present within databases, we chose to use the PostgreSQL
database [19] as our storage engine. It executes as a ser-
vice to which clients may submit queries. In addition
to accessing configuration data, the Storage Engine also
provides transactions, to allow request to execute reliably
and atomically. Section 5.2 describes the schema for stor-
ing configuration data.

The Configuration Management Engine implements
our data model on top of storage engine. The main func-
tion of CME is to implement a query language for config-
uration data. We describe the Configuration Management
Language, CML, in Section 5.3. The CME translates this
language, which refers to properties, objects, and spaces,
into queries to the underlying tables provided by the Stor-
age Engine. In addition, the CME logs all changes to con-
figuration data by logging the old value of modified data.
The CME provides a time-travel capability for configura-
tion data by searching the log.

The user interface layer provides multiple front ends
to CDMS. For applications, there is a C-language API
for storing, retrieving, and enumerating properties. For
administrators, there is a command-line tool that accepts
CML queries (as well as SQL queries for low-level ac-
cess). Finally, there is a file import/export tool that moves
settings between CDMS and files. With knowledge of a
file format, a script can be written than generates existing
configuration file formats from CDMS data, similar to the
PRESTO [10].

6



Properties
PropID
Name
Value

Objects
ObjID
PropID

Spaces
SpaceID
ObjID
Rank

Metadata
Name
Type

Comment
Range

Constrain
ConstrainMand.

Figure 5: Tables used to store CDMS data. Fields used for
JOINs are colored similarly.

5.2 Data Storage

CDMS stores all configuration data in relational tables
and provides a view of the data as defined by our data
model. The three abstractions in our data model - prop-
erties, objects and spaces - also manifest in relational
schema, as shown in Figure 5. CDMS stores configu-
ration data in properties, ob jects and spaces tables, cre-
ated on per-user basis. Each CDMS item has an associ-
ated unique identifier (a SpaceID, ObjectID, or PropID)
The spaces table stores the identifiers of objects com-
posing the space along with the ordering information (a
rank). Each of these objects is a collection of properties;
the ob ject tables stores this mapping from object identi-
fier to properties. The values of the configuration proper-
ties are stored in properties table. Thus the properties
table stores name-value pairs, the ob jects table stores
(object name,property name) pairs and the spaces ta-
ble stores (space name,object name, rank) triplets, where
rank represents the order of object in space. In addition,
CDMS uses additional fields and tables described below.
Mandatory. The mandatory field of ob jects is similar to
Java’s final keyword and is used to prevent overriding of
the setting by other objects in the inheritance hierarchy.
This is especially useful for administrators who want to
enforce certain settings for an application yet providing
them with flexibility to configure others. For example,
administrator can defines settings printer.name = laser
and security.allow cookies = f alse. Further, he may
want to prohibit users from overriding the security set-
ting but allow them the freedom to choose printer name.
This is achieved by setting mandatory attribute of secu-
rity property to true.
Constraints. The previous section provided example of
a constraint: inclusion of an object in composing space is
dependent on the operating system version. CDMS uses a
constraint field in ob jects and spaces tables. An object
is included in the space only if the corresponding con-
straint evaluates to true. Similarly, constraints are used to
control inclusion of a property in an object.
Configuration Metadata. CDMS stores configuration
metadata, such as the data type of a property and com-
ments on the property in a separate global metadata ta-
ble. As this data would commonly be repeated in all ob-

jects defining a property, separating the metadata ensures
that properties have a consistent type and saves space by
avoiding repeated storage.

5.3 CML and Query Translation

The Configuration Management Language (CML) is a
variant of SQL tailored to configuration data. Rather than
allowing access to arbitrary tables, CML provides access
to properties, objects, and spaces. The basic CML state-
ments are similar to SQL: SELECT, UPDATE, DELETE
and CREATE. Each CML query begins with a statement
type followed by a configuration abstraction – property,
object or space. A simple CML statement is shown be-
low:

CML> SELECT OBJECT <object name>

CML> WHERE PROPERTY = <property name>;

The PROPERTY, OBJECT and SPACES terms are
treated as keywords. To translate a CML query to SQL,
the CME first constructs a parse tree from CML state-
ments. Most CML statement types, for example SE-
LECT, have one-to-one correspondence with SQL and
these are translated as such. The SELECT statement is
translated to SELECT *. The configuration abstraction
following the statement type, provides the relational ta-
ble name on which the query operates. For SELECT
statements, the configuration abstraction name is used to
construct FROM clause of SQL. If a configuration ab-
straction is used in the WHERE clause, it joins the ta-
bles. CME uses remaining conditions in WHERE clause
as such. The above CML query is translated to following
SQL statement:

SQL>SELECT * FROM objects o, property p

SQL> WHERE o.propid = p.propid

SQL> AND o.name = <object name>

SQL> AND p.name = <property name>;

For the CREATE OBJECT statement, shown below,
CDMS first inserts properties in property table, SE-
LECT’s the identifiers of the inserted properties and
creates mapping from object to these identifiers in the
ob jects table. CREATE SPACE proceeds similarly.
Database transactions allow this to execute atomically.

CML> CREATE OBJECT <name> (

CML> property1 = value1

CML> property2 = value2

CML> );

The UPDATE and DELETE statements of CML al-
lows addition and deletion of objects and properties,
modification to property values, and re-ordering of ob-
jects in a space. Executing UPDATE statement proceeds

7



in three steps: selection of data to be updated, logging the
current data values and updating the values. On translat-
ing UPDATE statement to SQL, the WHERE clause of
generated SQL statements is used to generate SELECT
statements. The selected data values, along with times-
tamp, are INSERTed in the log table. Finally, the UP-
DATE statements are executed. Examples of UPDATE
statements are:

CML> UPDATE SPACE <space name>

CML> DELETE OBJECT <object name>;

CML> UPDATE OBJECT <object name>

CML> SET PROPERTY <prop. name> = <value>;

Thus, CML exposes much of the power of SQL
queries to applications and administrators but conceals
the underlying implementation of the data model.

5.4 CDMS API

The CDMS API provides functions for applications to
read and manipulate configuration data without having
to write CML queries. For simple read operations, it ab-
stracts away configuration objects and spaces, and instead
provides a simple interface to query property values. The
CDMS read functions allows applications to read val-
ues of configuration properties, object or a space from
their name. Two basic functions read data. The cdms -
read property API return a single property value, and
is useful for applications that load configuration data on
demand. The cdms enum properties API returns all
properties with the provided prefix. This is useful for ap-
plications that load all their settings on startup, to enu-
merate all settings, and to access variable-sized lists. For
example, an application may use this API to retrieve a list
of the available printers or fonts.

On a read query, the API constructs a CML query and
submits it to the CME for execution. Thus, these APIs re-
turns only the property values that “win” the application
of inheritance. The CDMS API does not allows applica-
tions to read values that are not active.

The CDMS API for writing properties, cdms -
write property, takes an optional ob ject parameter to
specify which objects hold receive the new value. If not
present, the object defaults to the object containing the
current value of the property, if writable, and if not, the
first writable object in the space (there may be read-only
objects at the front to enforce mandatory settings).

Beyond property access, the CDMS API include addi-
tional functions to create and delete objects, and spaces.
These are largely intended for sophisticated applications
To create an object, CDMS provides the cdms create -
object function that takes object name and a list of key-
value pairs as parameters. To create a space, the cdms -

create space takes a space name and a list of object
names in rank order.

Finally, the CDMS API has functions to read con-
straints on an object or property. We are currently im-
plementing support for evaluating internal and external
constraints. Once developed, the API will include a func-
tion call that takes variable values as inputs and evaluates
constraints on behalf of applications.

5.5 Assembling Configuration Space
Assembling configuration space of an application is one
of the most common tasks for CDMS, and the most im-
portant one too. CDMS assembles a space in response to
query SELECT SPACE <name> or in response to func-
tion call cdms read *. The data to map a space name
to the properties it contains is stored across two layers of
indirection: the spaces table stores mapping from space
name to objects and the ob jects table maps these objects
to properties. The spaces table also stores ordering of
objects in space using rank field.

To query values in a space, CME issues a SQL query
that first joins the three tables, spaces, ob jects and
properties to map space name to properties. These tu-
ples are then ordered by property name and object rank
in the space and returned to CME. The tuples returned
by this query may contain duplicate properties if multi-
ple objects defining the property. CME applies two in-
heritance rules to select the correct value: (1) the lowest
ranked mandatory setting is selected and if no setting is
marked as mandatory, then (2) the setting with highest
rank is selected. While we implement this functional-
ity in CME, databases that support the WINDOW clause
could implement this as part of query processing [20].

CDMS supports two mechanisms for associating an
application request with a space. First, the application
may explicitly specify the space name. This is appropri-
ate for sophisticated applications that manage their own
spaces. Alternatively, we have written a launcher that
specifies the space name for an application in an en-
vironment variable. The CDMS API library retrieves
this environment variable when making queries. The
launcher stores it association of application names and
spaces within CDMS, and normally runs in the default
space of the user. However, because its data is in CDMS,
the association of spaces and application can be overrid-
den using inheritance.

5.6 CDMS Services
The core features of the CDMS storage and data model
can serve as the foundation for additional functionality.
Profiles. Some applications support multiple groups of
preferences and allow a user to choose a group to use, for
example based on his current project. Profiles are eas-
ily provided by CDMS with configuration objects. Each

8



profile stores the settings unique to the profile in a single
object, while settings common to all profiles are stored
in a separate object. To use a profile, the user constructs
a configuration space with the per-profile object as the
head followed by the common object. The same feature
can be used for system settings, such as adapting network
settings to different environments.
Time Travel. CDMS can provide time travel either
through its persistent log or by snapshotting configura-
tion objects. With the log, a user or administrator can roll
back the changes to all objects, any single object, or just
a specific change. With snapshots, time-travel is imple-
mented by starting an application in a configuration space
using the snapshot.
Multiple Versions. Multiple versions of an application
or service can coexist because their settings are stored in
distinct configuration objects. Installation of a new ver-
sion will not overwrite the configuration settings of older
version. A user or administrator can then select the de-
sired version by constructing a space referring to that ver-
sion.

5.7 Summary
CDMS improves simplifies management by grouping set-
tings into configuration objects that may be organized
into a configuration space. CDMS moves the semantics
of which settings are in effect out of application logic and
into the inheritance mechanism, which exposes the con-
figuration of applications to administrators. In addition,
CDMS stores data in a database, which supports transac-
tions and logging, which improve reliability by prevent-
ing partial updates and enabling partial rollback.

6 Case Studies
We illustrate how CDMS stores and manages configura-
tion data with the examples of Firefox web browser and
Apache web server. We have little operational experi-
ence with CDMS at this point, so we focus instead on
how CDMS can store configuration data and support flex-
ible management. Firefox is a naturally customer for ad-
ministrative controls and inheritance, and we demonstrate
how to apply these features. Apache has a wide variety
of irregular configuration data, including both system-
wide settings and per-directory settings. We illustrate
how CDMS supports this complex data.

6.1 Configuring Firefox
We take as an example the problem of configuring Fire-
fox web browser in an academic network. Firefox already
stores it configuration using a dotted-name convention in
a file named “prefs.js”. This data can be directly stored
and accessed in CDMS without any need for reformatting
the data.

Firefox.V2 Configuration 
Space

System-Wide space
Firefox.global

Firefox.global.v2

Firefox Default

Inheritance
Plug-in space

Adobe.flash.v9

User-Defined space

Firefox.Profile_
selector

Firefox.v2.objFirefox.v2.obj

Figure 6: Firefox configuration data in CDMS. White rect-
angles represent configuration objects, and shaded shapes
are configuration spaces.

We consider a version of Firefox modified to use
CDMS (although we have not constructed one). An ad-
ministrator is responsible for installing applications and
configuring site-specific policies, such as whether pass-
words should be stored. The network has two primary
categories of users: faculty and students. An example
Firefox configuration space is show in figure 6. We next
discuss the how the components of this space support the
application, administrator, and user.
Application Installation. During installation, the ap-
plication uploads its defaults settings into the Firefox
Default configuration object. At the time of installation,
administrators specifies a unique name for the configura-
tion space, Firefox.V2. The space includes default set-
tings, administrator-specified system-wide settings, and
user-defined settings. The installation process updates
the table used by the launcher to associate Firefox with
the Firefox.V2 space.
Administrator’s Role. An administrator customizes
Firefox application by creating an object in the system-
wide Firefox configuration space. The administrator may
define some of the settings as mandatory, as described
in previous section, which prevents users from overrid-
ing these settings. The inheritance mechanism of our
model facilitates more flexible customization. For exam-
ple, consider a system with an old version of Firefox that
stores settings in the Firefox.global object. Settings from
older version that are also applicable to the new version
are simply inherited by adding the Firefox.global object
to the configuration space as shown in Figure 6. This also
simplifies management: administrators are able to cus-

9



tomize multiple versions by just modifying the settings
in Firefox.global object. Customizing only one ver-
sion is also simple: modify Firefox.global.v2, which
is specific to version 2.

Configuration data of add-ons and plug-ins resides in
its own space (plug-in) that is included in Firefox con-
figuration space. Similar to sharing the of configuration
object by multiple versions, CDMS also facilitates shar-
ing of configuration objects of add-ons and plug-ins by
multiple applications(or by multiple versions of an appli-
cation).
User’s Role. The configuration space of every appli-
cation always contains a default object and system-wide
settings, as shown in Figure 6. To override default set-
tings, user creates a configuration object and adds it to the
user-defined Firefox.v2 configuration space. CDMS
also allows the user to create profiles, which are multiple
versions of the user-defined configuration space. CDMS
selects appropriate profile at run-time based on the an set-
tings in a special profile selector, which is set by the
launcher.
Application View. Firefox can use the CDMS API to
enumerate all the properties when starting or read se-
lected properties when needed. When the user changes
a setting through the user interface, CDMS writes to the
first writable object, which will be the Firefox.v2.obj
object. The other objects (environment and selector) are
not writable by the application. As a result, much of the
logic related to configuration data is moved out of the
Firefox and into CDMS.
Uninstallation. CDMS facilitates clean unin-
stallation of the application. The properties associ-
ated with Firefox are all stored in distinct configura-
tion objects (Firefox.global, Firefox.global.v2,
Firefox.v2.obj). Removing these objects removes
all the Firefox-related settings. Other objects, like add-
on configuration objects, are retained if they are used
in other configuration spaces; otherwise they could be
garbage collected.

6.2 Configuring Apache Web Server

Unlike Firefox, which already stores configuration set-
tings as a list of properties with dotted names, Apache
configuration files exhibit more complex structure. Many
settings are simple name–value pairs, such as the root di-
rectory. However, Apache also stores per-directory set-
tings and conditional settings. A snippet of Apache’s con-
figuration file is shown below:

ServerRoot "/etc/httpd"

<IfDefine SSL>

Listen 80

Listen 443

</IfDefine>

<Directory "/scratch/apache/htdocs">

Options Indexes FollowSymLinks

Order allow,deny

Allow from all

</Directory>

In the above example, multiple configuration directives
are placed under the <Directory> directive. The data is
not in “flat” or key-value format. The data has hierarchi-
cal structure coupled with a constraint on the applicability
of enclosed attributes. This hierarchical structure must be
maintained when storing the data in CDMS, which stores
a flat list of name–value pairs.

Table 1 shows line by line a possible mapping of
Apache settings to CDMS properties. The configura-
tion settings are all prefixed with a unique identifier,
apache.v2, to distinguish the application name and ver-
sion. Apache loads all settings when starting, using
cdms enum properties API to retrieve all properties
prefixed with apache.v2. Simple settings, such as the
root directory, can be stored directly, for example as
apache.v2.ServerRoot.

Conditional settings rely on the constraint feature. For
example, the constraint for Listen is:

apache.v2.SSL = ’TRUE’

To store multiple values of Listen, a unique num-
ber must be appended: apache.v2.listen.1 and
apache.v2.listen.2.

Settings enclosed within the <Directory> directive
are flattened by adding name Directory.x, where x is a
number unique to each directory. This maintains the the
existing naming hierarchy.

As previously described, much of the contents of
Apache’s configuration file are comments. These com-
ments contain both advice to administrators and disabled
settings. CDMS stores the advice as metadata comments
on a property. The disabled settings are stored as prop-
erties with “null” values, which do not show up when
queried but exist as placeholders.

7 What About Files?
Any new configuration service must compete against the
simplicity, flexibility, and entrenchment of text files. In
this section, we describe how CDMS can achieve many
of the same benefits of text files in addition to providing
valuable new services.
Copying. Copying and renaming of files enables alter-
nate configurations, selective backup, and passing con-
figurations to other users or systems. CDMS can provide
alternate configurations and selective backup by duplicat-
ing configuration objects. These new objects can serve as
a backup or as configuration for other users and appli-
cations. An additional benefit is that application can be

10



httpd.conf Properties Table
id property name property value

ServerRoot “/etc/httpd” 1 apache.v2.ServerRoot /etc/httpd
<IfDefine SSL>
Listen 80 2 apache.v2.Listen.1 80 constraint

apache.v2.SSL = ’TRUE’
Listen 443 3 apache.v2.Listen.2 443 constraint

apache.v2.SSL = ’TRUE’
</IfDefine>
<Directory ”/scratch/apache/htdocs”> 4 apache.v2.Directory.1.constraint = /scratch/apache/htdocs
Options Indexes FollowSymLinks 5 apache.v2.Directory.1.Options Indexes FollowSymLinks
Order allow,deny 6 apache.v2.Directory.1.Order allow,deny
</Directory>

Table 1: Importing Apache Configuration Data in CDMS. We show internal constraints in the properties column for clarity,
although their are stored in the objects table.

configured to use any version of its settings through con-
figuration spaces. In contrast, with files the single config-
uration file must be changed to select a group of settings.
CDMS can transmit data between systems by exporting a
configuration object to a file, which can then be imported
on other systems.
Search. Administrators often use grep to search for set-
tings. Within CDMS, administrators may issue CML
queries against property names and values and meta-
data. Because CDMS centralizes settings, an administra-
tor need only search a single location as compared to all
the directories that may contain configuration files. Fur-
thermore, the additional semantics attached to data, can
reduce false positives by distinguishing metadata from
property values and names.
Encapsulation. Configuration files encapsulate the ma-
jority of the configuration state of an application and act
as a location for managing its settings. This same en-
capsulation can be provided in CDMS through two com-
plementary mechanisms: naming and configuration ob-
jects. The naming convention causes the private con-
figuration state of an application to be contained under
a single name prefix, allowing it all to be easily exam-
ined. Configuration objects contain both the private and
shared state of an object, providing better encapsulation
than files, where shared state resides in separate files.
Metadata. Text files, by their flexibility, simplify the
addition of comments and other metadata, including de-
fault values, to configuration files. For example, 683
of the 940 lines in the default httpd.conf file for the
Apache web server are comments. Many of these com-
ments are optional values, sample settings, and descrip-
tions. CDMS can support this information as metadata,
attached to properties. Optional settings, indicated with
commented out values in a configuration file, are instead
stored as properties with “null” values.

Tool support. Administrators often write scripts that
read or manipulate configuration text files. This provides
a simple mechanism to automate management tasks. A
similar level of programmability is offered through the
CML query language, which offers the ability to manipu-
late configuration data directly. For example, a script can
invoke a CML command to propagate new settings, check
for changes, or return current applications versions.

Compared to file-based configuration storage, CDMS
can reduce system administration costs, provide exten-
sive functionality, simplify application development, and
improve system reliability.

8 Conclusion
We believe that the current systems for storing configu-
ration data are hampering system management by pro-
viding abstractions that are far below what applications
desire. As a result, applications layer their own seman-
tics upon the service, concealing the true state of the sys-
tem behind a thick layer of application logic. This is ev-
idenced by the numerous file formats in Linux and the
complex graph of data used by Microsoft Office on Win-
dows.

To address this problem, we propose a new model
for storing configuration data based on three abstractions:
properties, objects, and spaces. These abstractions al-
low flexible management of configuration data and move
much of the logic for accessing data out of applications
and into a common service, where it can be accessed by
system managers. This simplifies management, because
the model exposes the exact set of properties enabled by
an instance of an application. In contrast, current config-
uration services provide little assistance to administrators
to determine which settings are in use by an application.

We implemented this data model in CDMS, the Con-

11



figuration Data Management Service. The service of-
fers additional benefits to applications and administra-
tors: transactions for reliability, logging for rollback and
inspection of changes over time, and a query language to
support rich management tools. In addition, it provides
many of the benefits offered by simple text files, such as
copying data, searching, and rich metadata. We plan to
convert several applications to use CDMS, both natively
and through file import/export, to gain more operational
experience using it as a management tool.

Acknowledgement We would like to thank Matthew
Renzelmann for providing understanding Windows Reg-
istry and for generating Figure 1.

References
[1] P. Anderson. Towards a high-level machine configuration

system. In 8th USENIX LISA, 1993.
[2] P. Anderson and A. Scobie. LCFG - the Next Generation.

In UKUUG Winter Conference. UKUUG, 2002.
[3] Apple Inc. Runtime configuration guidelines. http:
//developer.apple.com/documentation/MacOSX/

Conceptual/BPRuntimeConfig/BPRuntimeConfig.

pdf, 2006.
[4] A. Brown. Toward system-wide undo for distributed ser-

vices. Technical Report UCB/CSD-03-1298, EECS De-
partment, University of California, Berkeley, 2003.

[5] M. Burgess. Cfengine: A site configuration engine.
USENIX Computing systems, 8(3), 1995.

[6] Computing Research Association. Final report of the
cra conference on grand research challenges in infor-
mation systems. http://www.cra.org/reports/gc.
systems.pdf, 2003.

[7] J. DeTreville. Making system configuration more declar-
ative. In 10th USENIX HotOS. June 2005.

[8] E. Dolstra, M. de Jonge, and E. Visser. Nix: A safe
and policy-free system for software deployment. In 18th
USENIX LISA, 2004.

[9] E. Dolstra and A. Hemel. Purely functional system config-
uration management. In 11th USENIX HotOS, May 2007.

[10] W. Enck, P. McDaniel, S. Sen, P. Sebos, S. Spoerel,
A. Greenberg, S. Rao, and W. Aiello. Configuration man-
agement at massive scale: System design and experience.
In 2007 USENIX ATC, June 2007.

[11] J. Finke. An improved approach for generating configura-
tion files from a database. In 14th USENIX LISA, 2000.

[12] A. Ganapathi, Y.-M. Wang, N. Lao, and J.-R. Wen. Why
pcs are fragile and what we can do about it: A study of
windows registry problems. In 2004 IEEE DSN, 2004.

[13] Hewlett-Packard Corp. HP OpenView. http://h20229.
www2.hp.com/.

[14] E. Kiciman and Y.-M. Wang. Discovering correctness
constraints for self-management of system configuration.
In 1st Intl. Conf. on Autonomic Computing (ICAC), 2004.

[15] W. LeFebvre and D. Snyder. Auto-configuration by file
construction: Configuration management with newfig. In
18th USENIX LISA, 2004.

[16] Microsoft Corp. Microsoft systems management server.
http://www.microsoft.com/smserver/default.

mspx.
[17] Microsoft Corp. Windows server 2003 group

policy. http://technet2.microsoft.com/

windowsserver/en/technologies/featured/

gp/default.mspx.
[18] H. Pennington. Gconf: Manageable user preferences. In

2002 Ottawa Linux Symp., June 2002.
[19] PostgreSQL Global Development Group. PostgreSQL

home page. ttp://www.postgresql.org.
[20] SQL Anywhere Server. SQL reference – WINDOW

clause. http://www.ianywhere.com/developer/

product manuals/sqlanywhere/1000/en/html/

dbrfen10/rf-window-clause-statement.html.
[21] C. Verbowski, E. Kiciman, A. Kumar, B. Daniels, S. Lu,

J. Lee, Y.-M. Wang, and R. Roussev. Flight data recorder:
Monitoring persistent-state interactions to improve sys-
tems management. In 7th USENIX OSDI, Nov. 2006.

[22] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J.
Wang, C. Yuan, and Z. Zhang. Strider: A black-box, state-
based approach to change and configuration management
and support. In 17th USENIX LISA, 2003.

[23] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration
debugging as search: Finding the needle in the haystack.
In 6th USENIX OSDI, Dec. 2004.

[24] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Networked windows
nt system field failure data analysis. In 1999 Pacific Rim
Intl. Symp. on Dependable Computing, Dec. 1999.

12

http://www.lcfg.org/doc/ukuug2002.pdf
http://developer.apple.com/documentation/MacOSX/Conceptual/BPRuntimeConfig/BPRuntimeConfig.pdf
http://developer.apple.com/documentation/MacOSX/Conceptual/BPRuntimeConfig/BPRuntimeConfig.pdf
http://developer.apple.com/documentation/MacOSX/Conceptual/BPRuntimeConfig/BPRuntimeConfig.pdf
http://developer.apple.com/documentation/MacOSX/Conceptual/BPRuntimeConfig/BPRuntimeConfig.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2003/5299.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2003/5299.html
http://www.cra.org/reports/gc.systems.pdf
http://www.cra.org/reports/gc.systems.pdf
http://h20229.www2.hp.com/
http://h20229.www2.hp.com/
http://www.microsoft.com/smserver/default.mspx
http://www.microsoft.com/smserver/default.mspx
http://technet2.microsoft.com/windowsserver/en/technologies/featured/gp/default.mspx
http://technet2.microsoft.com/windowsserver/en/technologies/featured/gp/default.mspx
http://technet2.microsoft.com/windowsserver/en/technologies/featured/gp/default.mspx
ttp://www.postgresql.org
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1000/en/html/dbrfen10/rf-window-clause-statement.html
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1000/en/html/dbrfen10/rf-window-clause-statement.html
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1000/en/html/dbrfen10/rf-window-clause-statement.html
http://www.usenix.org/events/osdi04/tech/whitaker.html
http://www.usenix.org/events/osdi04/tech/whitaker.html

	Introduction
	The Problem
	Related Work
	Configuration Data Model
	Properties
	Configuration Objects
	Configuration Spaces
	Extensions

	Configuration Data Management System
	CDMS Architecture
	Data Storage
	CML and Query Translation
	CDMS API
	Assembling Configuration Space
	CDMS Services
	Summary

	Case Studies
	Configuring Firefox
	Configuring Apache Web Server

	What About Files?
	Conclusion

