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ABSTRACT

Technology scaling has provided system designers with an explod-
ing transistor budget, far more than what was available when the
core principles behind many existing commodity microprocessors
were envisioned. With this tremendous growth, however, comes a
whole new set of engineering challenges involving power density,
thermal efficiency, programmability and so on. In this paper, we
study another important trend in high performance microproces-
sors: the reduction in the Simultaneously Active Fraction (SAF) —
the fraction of the entire chip resources that can be active simul-
taneously, given a target power envelope. As the improvement in
the energy efficiency of individual transistor devices is lagging be-
hind the growth in their integration capacity, we find that the SAF
is monotonically decreasing for each successive technology gener-
ation.

Given this increasing constraint on the SAF, we examine the util-
ity of temporarily suspending computation on a core as a means for
reducing the SAF, and hence, remain within the confines of cost-
effective cooling and power delivery. We investigate a SAF aware
over-provisioned multicore system (OPMS), where only a subset
of the available cores are employed to perform active computation
at any given time, by allowing the individual cores to transition be-
tween active and inactive state. Though several possible directions
for utilizing such an over-provisioned system are possible, this pa-
per focuses on energy efficient dynamic task redistribution. In par-
ticular, this paper examines the use of Computation Spreading—a
recently proposed technique for runtime specialization of homoge-
neous multicores—in an OPMS. We show several benefits for such
an OPMS design, including reductions in energy, runtime, and su-
perior thermal characteristics. Overall, our technique improves the
energy-delay product of the commercial workloads we examine by
5–20%.

1. INTRODUCTION
Several contrasting technology trends are likely to shape the de-

sign of future microprocessors and the low level software, such as
operating systems and Virtual Machine Monitor (VMM), executing
on them. On one hand, we are experiencing a resource explosion
due to the exponential increase in transistor density: ITRS pre-
dicts that high performance microprocessors are likely to contain
more than 4 billion transistors within a couple of technology gen-
erations from today (by 32nm) [18]. On the other hand, several en-
gineering challenges are imposing substantial constraints on viable
microprocessor designs. For example, growing geo-political and
economic concerns about energy usage are driving the demand for
more power efficiency [18, 33], but the power density of hardware
components continues to increase with every new process gener-
ation due to the inability to achieve sufficient reduction in supply

voltage [20]. Since the relative increase in energy efficiency of
individual transistors is lagging behind the growth of their aggre-
gate volume, the power dissipation of a chip is already reaching
the practical limits for cost-effective cooling. Going forward, we
expect that the portion of on-chip hardware that can be active si-
multaneously — the Simultaneously Active Fraction (SAF) — will
continue to decrease so as to remain within a reasonable power
envelope. This gradual fall of SAF will have significant impact
on several key design principles of future multicore systems. Low
level system software, which often requires an intricate knowledge
of the underlying architecture, and are increasingly responsible for
power management [38,43], will also have to cope with this down-
ward trend.

Various circuit techniques are already in place to achieve en-
ergy efficiency by effectively decreasing the SAF. Dynamic voltage
and frequency throttling, fine-grain clock gating within a processor
core, and disabling portions of the cache storage are some such
examples. But, given the downward trend in the SAF, as well as
diminishing returns from previously effective schemes like voltage
scaling going forward [9,13], future systems are likely to strive for
further SAF reduction at multiple levels in their design. An orthog-
onal approach to these current circuit techniques is to temporar-
ily suspend the computation on an entire processing core. Con-
sider, for example, a multicore system where only a subset of the
available processor cores are performing computation simultane-
ously, while the rest are kept in a low-leakage sleep state. This
design paradigm contrasts against the conventional systems where
processing cores are typically in continuous use. The key ques-
tion, then, is whether this novel paradigm of reduced utilization of
individual processor cores—components traditionally designed for
high utilization—can collectively comprise an efficient system and
execute unmodified complex multithreaded applications.

In the light of these technology and design trends, this paper ex-
amines the energy efficiency of a multicore design, managed by a
lightweight VMM, where only a subset of the available processing
cores are utilized at any given time. In this design, which we refer
as an Over-provisioned Multicore System (OPMS), the number of
available processor cores exceeds the maximum number of simul-
taneously active cores (at the nominal voltage-frequency) allowed
by the target power envelope. We believe that such an OPMS will
enable a variety of coarse grain architectural techniques to mitigate
several design challenges and expose many interesting opportuni-
ties to the rapidly evolving virtualization technology. In this paper,
we employ computation phase-driven dynamic task re-distribution
in multithreaded commercial workloads using a lightweight VMM.
We use a recently proposed technique by Chakraborty, et al., to
identify appropriate phases in our commercial workloads [8].

This paper makes several contributions:



• First, we present a quantitative analysis of the constraints
imposed by cost-effective cooling techniques on future mi-
croprocessor designs. Based on the expected performance
characteristics of transistor devices, we estimate the Simul-

taneously Active Fraction for several future technology gen-
erations. We find that this SAF is monotonically decreas-
ing, despite several key technology innovations to improve
power efficiency. This gradual fall of SAF is likely to signif-
icantly alter the design considerations for high performance
multicore systems and low-level system software.

• Second, we extend the concept of activity suspension, typi-
cally employed at a fine grain, beyond the confines of a sin-
gle core to temporarily suspend computation on an entire
core. We propose a novel paradigm of SAF aware multi-
core design, referred as Over-provisioned Multicore System,
where processing cores transition between active and low-
leakage sleep state. In this design, while the pool of core
resources exceeds the maximum number of software con-
texts that can be active simultaneously, a lightweight VMM
is employed to ensure that the overall chip remains within
the target power envelope.

• Third, one particular application of such an over-
provisioned multicore — energy-efficient processing of
multithreaded workloads — is evaluated in detail. This
technique selectively utilizes the available on-chip cores
using Computation Spreading, a recently proposed tech-
nique to specialize homogeneous multicore by dynamically
reassigning computation from multi-threaded server work-
loads [8]. Apart from the baseline system which fully uti-
lizes the core resources, we also compare our proposal with
a slightly modified version of Heat and Run designed for
an OPMS [14]. We find that an OPMS employing CSP_O
improves the energy-delay product for our workloads by 5–
20%, while providing similar thermal benefits as Heat and
Run.

The rest of the paper is organized as follows. In Section 2, we
present our analysis of the SAF in future microprocessor designs.
We introduce the concept of over-provisioned multicore system and
argue how it can be used in a variety of ways to improve overall sys-
tem efficiency in Section 3. Section 4 provides the implemention
details. Section 5 describes our experimental methodology and we
discuss our key results in Section 6. In Section 7, we discuss related
work, and then conclude in Section 8.

2. TECHNOLOGY IMPACT ON SIMULTA-

NEOUSLY ACTIVE FRACTION (SAF)

2.1 Simultaneously Active Fraction (SAF)
The limitations of cost effective cooling techniques, along with

the growing energy dissipation due to aggressive technology scal-
ing, have already imposed severe challenges to microprocessor de-
signers. Several studies have shown how the increasing power den-
sity of future generation processors will easily cross over the ca-
pabilities of reasonable cooling solutions [6, 29]. Economic and
engineering challenges to cool enterprise data centers are also driv-
ing the need for energy efficiency in a single-chip — to an even
greater extent than what is required by the practical cooling limits
for an individual multicore in isolation [33]. Given this technol-
ogy trend and real-world challenges, we study the impact on the
Simultaneously Active Fraction (SAF) — the fraction of the entire
transistor budget that can be simultaneously active in a micropro-
cessor designed for a particular power envelope.
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Figure 1: Dynamic power consumption trend per device and

SAF due to dynamic power exclusively
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Figure 2: Static power consumption trend per device and SAF

due to static power exclusively

2.2 SAF Trends: A Quantitative Analysis
Several technology assumptions are necessary for a quantitative

analysis of the SAF trend. For the sake of simplicity, let us con-
sider the performance characteristics of two typical N-MOSFET
devices, one designed for high-performance (HP), and the other
for low power (LP). HP devices use a low threshold voltage and a
nominal supply voltage, while the LP devices use a higher thresh-
old voltage and a scaled supply voltage. Together they encompass
the range of devices, with diverse operating conditions, typically
seen in high-performance microprocessors [19]. For an estimate of
the SAF, we further assume that the entire chip is built with these
devices, and that the chip size remains constant, which results in
the doubling of aggregate devices every generation [18]. Based on
the power consumption of a single device, determined using the
MASTAR tool [21], we compute the SAF at each technology node
as the fraction of the aggregate devices that account for a given
target power envelope. The power envelope is assumed to remain
constant across technology generations. The results are shown in
Figures 1 and 2, and are normalized to the 90nm technology node
in order to better understand the trend.

The trend in dynamic power, and the resulting SAF when con-
sidering dynamic power alone, is shown in Figure 1. We assume
a 17% improvement in switching frequency in successive gener-
ations based on the ITRS guidelines for logic components [19].
HP_POWER and LP_POWER show the power consumption of
a single HP and a LP device, respectively, while HP_SAF and
LP_SAF show the SAF for HP and LP devices, respectively. We



notice that the improvement in dynamic power efficiency is less
than the improvement in device integration capacity, both for the
high performance and low power devices. Consequently, we no-
tice a fall in SAF in each successive generation, where the relative
drop in SAF is inversely proportional to the improvement in the
power efficiency of individual devices. The fall of SAF is more
pronounced in the HP devices than LP due to comparatively smaller
scaling in the supply voltage. In summary, we expect that dynamic
power will continue to limit ways to use aggregate resources, even
when considered in isolation, due to the gradual reduction of SAF.

Static power due to leakage is an additive power component in
microprocessors. We show the trend in static power per device in
Figure 2, along with the SAF when considering only static power.
We notice a dramatic reduction in SAF when considering static
power, as unlike dynamic power, the static power of individual de-
vices is increasing in successive technology generations. Although
we do expect that leakage-induced static power will be mitigated by
employing various circuit techniques such as high κ-dielectric [19],
FINFET devices [3], etc., it is still likely to also pose substantial
constraints on aggregate resource usage.

While the analysis above provides a relative SAF trend, the ac-
tual SAF of a real implementation depends on various other factors
not considered in this analysis. The static and dynamic power con-
sumption depends on a variety of device level parameters, which
vary widely across the entire chip. On a chip-wide scale, the energy
consumption is further complicated by several other implementa-
tion specific details such as circuit design style, whether hardware
resource is provisioned for cache or cores, the percentage of tran-
sistors in the latency critical path, and the temperature and activity
distribution. Despite these issues, and in the absence of dramatic
alteration of device properties, we expect that this downward trend
of the SAF will persist.

2.3 Techniques for Reducing SAF
From the discussions above, it is apparent that for any given chip

design, the SAF has a reasonably tight upper bound as determined
by the device characteristics and the packaging constraints. With
the expanding transistor budget, reducing the SAF, without caus-
ing a significant reduction in performance, is a key design goal for
an energy efficient implementation. Currently, different techniques
are applied to caches and processor cores — two major components
in a modern multicore system.

Caches.
By design, the second or third level (L2 or L3) caches have low

activity as only a small fraction of the aggregate cache lines are ac-
cessed in any given cycle. In addition, large sections of the caches
can be put into a sleep state, to reduce both leakage and dynamic
power [34]. However, increasing cache resources instead of pro-
viding more cores—an effective ploy for reducing the SAF—is
unlikely to provide a commensurate performance boost. Recent
studies demonstrate the diminishing returns for large L2 caches for
commercial workloads [5, 36], as well as parallel bio-informatics
data mining workloads [22].

Cores.
Since the processor cores often consume the bulk of the power

budget (for example, in [34]), several past proposals advocate cir-
cuit techniques for reducing the activity through fine-grain clock-
gating. Clock gating temporarily suspends the switching activity in
the transistors which are not part of any computation in a given cy-
cle. Similar techniques can be applied to reduce leakage power as
well (e.g., dynamic sleep transistors [40]). Consequently, while a

large pool of transistors comprise the heavily active hardware com-
ponents, over a smaller timescale, only a subset of them contribute
to the SAF of the chip.

Fundamentally, this temporary suspension of activity is the key
for exploiting a growing pool of resources, while honoring the con-
straints imposed by the shrinking SAF. In this paper, we take an
orthogonal approach to these circuit-level techniques, and investi-
gate the implications of temporarily suspending computation on an
entire processor core. We propose to extend the concept of activity
suspension beyond the confines of a single core using a design that
we call an Over-provisioned Multicore System (OPMS). However,
as we extend the concept of activity suspension to an entire core,
which is typically the lowest granularity of compute resources man-
aged by system software or a VMM, this paradigm of multicore
design can have substantial impact on the future system software
or VMM. In this paper, we demonstrate how a lightweight VMM
can exploit an OPMS design, without requiring any modification to
server class multithreaded workloads and the operating system we
study.

3. AN OVER-PROVISIONED MULTICORE

SYSTEM
An Over-provisioned Multicore System (OPMS) is simply a

SAF-aware design alternative, where the number of available pro-
cessing cores exceeds the number of simultaneously active cores
allowed by the power or thermal limits of the chip. At any given
time, certain cores are actively executing code, while other cores
are held in a low-power sleep state. Consequently, the aggre-
gate number of physical cores on the chip can exceed the allow-
able number of simultaneously active cores operating at the nom-
inal voltage-frequency. Execution of a multithreaded workload is
spread throughout the cores, such that at various times, different
cores are active. Unlike a single-core design, where turning off
parts of the core was the main option, especially components that
are over-provisioned to efficiently support a diverse application do-
main (like the issue width, the physical register file, or instruction
window entries), this coarse grain architectural technique now be-
comes possible in a multicore system. Such a design contrasts
current implementations, where core resources are provisioned for
continuous and simultaneous use.

In an OPMS, an individual core transitions between active and
inactive states. In an active state, a core performs computation as
normal. In an inactive state, a core does not perform computa-
tion, but continues to be useful, for example, by retaining predic-
tive states, allowing its critical hotspots to cool off, or simply ex-
isting as a spare. Consequently, an OPMS has a time-varying pool
of physical computation resources, which may be homogeneous or
heterogeneous. The first challenge is to determine how to use an
OPMS without placing onerous demands on the software. We pro-
pose to do this via dynamic task reassignment, where a lightweight
VMM is employed to map computation fragments (i.e., portions
of a software thread) to the physical processing cores (see Section
4.1).

Given the framework of an OPMS with dynamic task reassign-
ment, we can then consider how an OPMS can be used to improve
computation and energy efficiency, thermal management, and life-
time reliability. In this paper, we focus on using an OPMS to im-
prove energy efficiency, though we also explore the thermal man-
agement qualities of such task reassignment. We leave exploration
of lifetime reliability for future work.



3.1 Using an OPMS for Energy Efficiency
Performing task redistribution in an OPMS can improve effi-

ciency by utilizing the most appropriate core for any given com-

putation fragment (a portion of a software thread). In an OPMS
with heterogeneous processing resources, processors with differ-
ent capabilities could be used to execute different program phases,
generalizing the technique proposed by Kumar, et al. [23], where
they detect the varying ILP characteristics of a single-threaded pro-
gram and move the computation among several cores with various
ILP extracting capabilities (and, of course, various power require-
ments). In a system with homogeneous processing cores, task re-
distribution can boost both compute and energy efficiency, by spe-
cializing the predictive components of each core (i.e., caches and
branch predictors), such that a particular computation fragment ex-
ecutes on a core that retains most of its predictive state. While a
conventional architecture attempts to efficiently use the predictive
structures by coarse grain task assignment, the conflicting nature
of computation fragments within a task (e.g. user and OS code)
disrupts its intended goal [8]. In both cases, the utilization of an in-
dividual core is reduced, but the efficiency of the system as a whole
increases as a fewer number of aggregate transistor resources par-
ticipate in carrying out the overall computation.

In this paper, we consider a homogeneous OPMS running multi-
threaded, server class workloads. The first step then is to develop a
framework for distributing computation fragments from the given
workload across the processing cores.

3.1.1 Computation Spreading

The idea of dynamic task redistribution using a lightweight
VMM, for a traditional, fully-provisioned system, was recently pro-
posed by Chakraborty, et al., as Computation Spreading (CSP) [8].
In their model, the OS schedules a collection of software threads
on a group of Virtual CPUs (VCPUs). CSP distributes computation

fragments from a single thread, assigned to a single VCPU, onto
multiple cores or Physical CPUs (PCPUs), collocating fragments
from multiple VCPUs onto the same core, based on the similar-
ity and dissimilarity of the fragments. In particular, Chakraborty,
et al., propose to separate the execution of unprivileged user code
from the privileged OS calls it makes. Thus, user code from all
VCPUs is executed on a subset of the cores (PCPUs), and OS code
from all VCPUs is executed on other cores.

While conceptually appealing, CSP suffers from a fundamental
load balance limitation that was mentioned, but not fully addressed,
by Chakraborty, et al. When CSP reassigns a computation fragment
to execute on a different core (or hardware context), it can lead
to contention when another fragment is already assigned to that
core. When processing cores are fully utilized by the application,
such contention occurs frequently, forcing the hardware/firmware
to stall, or pause, the execution of the VCPU it is reassigning.

Pausing a VCPU can lead to two different problems: (a) the
available hardware resources are under-utilized, as PCPUs recently
vacated by paused VCPUs will be left idle, and (b) synchronization
overhead in the system software due to locks held by, and cross-
calls directed to, paused VCPUs [42]. Both of these problems lead
to a performance degradation in a realistic implementation of CSP
(20-45% increase in runtime for our workloads). In their initial
study, the authors avoid these negative consequences by optimisti-
cally assuming a large number of available hardware contexts.

3.1.2 Employing CSP in an OPMS

In an OPMS, the load balance limitation of CSP is dramatically
reduced. For example, when the pool of physical cores exceed the
number of processors exposed to the OS, the reassignment policy

has a larger pool of available cores on which to schedule the collec-
tive computation. Thus the probability of resource contention, and
the subsequent need to pause a VCPU, is mostly eliminated. Of
course, the additional resources (cores) will not be fully utilized,
however, only a subset are actually available for simultaneous use
anyway due to the SAF constraint. Since fewer VCPUs are paused,
the overhead of OS synchronization is also nearly eliminated. For
the rest of this paper, we refer an OPMS design employing CSP as
CSP_O.

For the purpose of comparison, we also evaluate a modified ver-
sion of Heat and Run on an OPMS (HRTM). We now discuss the
implementation of the OPMS we model, as well as specific details
of CSP_O and HRTM.

4. IMPLEMENTATION

4.1 Virtualization Support
We assume that the core resources in an OPMS are managed

by a lightweight virtualization layer (VMM) implemented in the
hardware/firmware. This firmware/hardware, implemented using
programmable components, is responsible for the task reassign-
ment and the transfer of computation between different cores. Un-
like conventional VMMs designed to support multiple guest OSs,
this lightweight VMM does not require the virtualization of mem-
ory, I/O devices, privileged instruction, or additional security mea-
sures. As the specific functions required for our schemes are fairly
simple, without any loss of generality, we have assumed a hard-
ware/firmware implementation. An alternate implementation may
even incorporate these functionality in conventional VMMs, which
are common place in various platforms.

We use a simple hardware mechanism for Computation Trans-

fer, which is the transfer of the register state of a running software
thread (VCPU) between on-chip PCPUs. The lightweight VMM
uses a section of the physical memory for saving and restoring the
register state, and employs the on-chip coherence protocol to com-
municate this state between on-chip cores. In the UltraSPARC II-
Icu architecture we model, this register state, including the entire
register window, is about 2.2K data [8]. The state is saved and
restored in a sequential fashion using a series of store and load in-
structions, respectively. The mechanism is similar in spirit to sev-
eral current microprocessor implementations [1, 12, 41], as well as
that proposed in [8]. In our evaluation, we faithfully model the
overhead of the computation transfer (latency, bandwidth, cache
space and the energy overhead).

4.2 Leakage Control in an OPMS
A key implementation challenge for an OPMS design is leak-

age, which is already a serious concern in current microproces-
sors, accounting for 30-40% of the total chip power [12, 34]. A
large fraction of the leakage is often contributed from the proces-
sor cores [34]. Since a typical OPMS design is likely to increase
the number of cores in a chip, in a naive design, the total power
consumption may actually increase due to leakage from the cores.
Fortunately, several circuit techniques have been studied for active
leakage control, which are effective at reducing leakage in circuit
components with predictable idle periods [40].

For the purpose of this paper, we assume that the processor
cores in an OPMS incorporate aggressive leakage control tech-
niques (such as sleep transistors, reverse body bias and so forth)
in all the major functional blocks (e.g., register files, instruction
window, functional units). Since the OS and user computation are
interleaved [8] at relatively coarse granularities (one to two orders
of magnitude higher than the typical breakeven points reported in



the sleep transistor designs [31, 40] and analytic models [10, 15]),
we expect that the transition energy is amortized over the dura-
tion of the idle period [10]. However, for a conservative energy
estimation, we assume that 2% of the active leakage energy is ex-
pended in the processor cores (except the L1 caches and branch
predictors which retain their state) not involved in any active com-
putation [10]. When the computation on a core is temporarily sus-
pended, the core’s L1 caches are put in a drowsy mode where they
expend 20% of the active leakage energy [11].

4.3 CSP_O: Core Provisioning and Schedul-
ing

The CSP_O models an OPMS that employs CSP for assigning
computation from the eight VCPUs across 12 cores (see Section
5.1 for our baseline multicore and workload configurations). For
the OS-intensive commercial workloads we study in this paper,
we statically provision a certain number of cores for executing OS
code, and certain number of cores for user code, based on the frac-
tion of time each workload spends in OS or user mode. In a re-
alistic implementation, we envision this provisioning could easily
be performed at runtime by simply measuring the amount of OS
and user execution. We do not consider short-lived register win-
dow traps for computation transfer. Other OS computation (e.g.,
system calls, page faults, interrupt handling) trigger a computation
transfer, and are carried out in the cores provisioned for OS com-
putation. For Apache and Zeus, eight of the 12 cores are used for
OS computation, while the rest are provisioned for user computa-
tion. The rest of the workloads employ the opposite provisioning of
eight user and four OS cores. We maintain a static mapping of OS
and user computation from a VCPU to their corresponding cores,
similar to the Thread Assignment Policy in [8]. However, unlike
the optimistic methodology adopted in [8], when a VCPU attempts
to use a core that is already being used by another VCPU, we do

pause the execution of the former VCPU until the core becomes
available. This implementation allows us to evaluate CSP_O in a
more realistic system design.

The scheduling employed in CSP_O is implemented using a sim-
ple map, and a small wait queue of VCPUs at each PCPU. For
each VCPU, the map maintains two PCPU mappings: one for user
computation and the other for OS computation. This map is kept
with each core, and setup once by the firmware based on the work-
load profile as described above. The control overhead, though not
modeled explicitly, can be overlapped by the CT as the saving and
restoring of register state is sequential. Therefore, during a CT, the
reassigned PCPU for a VCPU is not required till its state is saved
in the caches—allowing sufficient time to: (1) determine the next
VCPU to execute on the current PCPU (from the wait queue); and
(2) determine which PCPU to resume (from the map) the compu-
tation of the vacating VCPU and communicate to the new on-chip
PCPU. Both the map and the wait queue can be easily implemented
in the hardware allowing faster operation, or in a conventional full
feature VMM implementation to offer more flexibility. We also ex-
pect this particular flavor of dynamic task reassignment to be fairly
scalable to higher number of cores, though a detailed scalability
study is beyond the scope of this paper. In a hardware implementa-
tion, both these structures will have negligible energy overhead due
to infrequent access (once in every 5–20 thousand instructions).

4.4 HRTM
HRTM is a modified version of the Heat-and-Run thread migra-

tion proposed by Gomaa, et al. [14]. In HRTM, we use computation
transfer, instead of OS scheduling, to periodically transfer a virtual
CPU among multiple cores. Each VCPU spends at least 8 ms on a

Technology Node 45nm at 3.00 GHZ and 1.0V
Fetch/issue/commit 4 instructions / cycle

Integer pipeline 12 stages
I-Window & ROB 128 entries, OOO issue

Load & store queues 32 entries each, w/ bypassing
Store buffer 32 entries, processor consistency

YAGS branch pred. 4k choice, 1k except, 6 tag bits
Priv. L1 instr. cache 64kB, 8-way, 2-cycle, coherent
Priv. L1 data cache 64kB, 8-way, 2-cycle, write-back

On-chip shared L2
cache

16MB, 16 banks, 32-way, 60-cycle
load to use, pipelined, inclusive

Coherence Protocol Directory based MESI
On-chip network Point-to-point, 25-cycle

Main Memory 255 cycle load-to-use, 40GB/sec

Baseline OPMS Configurations

8 cores 12 cores
16MB, 16 bank L2 12MB, 12 bank L2

Table 1: Baseline processor parameters

processing core before it is transferred, so as to amortize the nega-
tive caching effects. The idle period in each core lasts for at least 4
ms to allow sufficient time for cooling critical hotspots. As the RC
time constants for individual hotspots are much smaller than that
of the entire processor, we find that this idle time is sufficient to
significantly reduce the temperature of the issue queue, the register
file, and so forth, before another computation is resumed.

5. EXPERIMENTAL METHODOLOGY

5.1 Multicore Systems
We use full system, cycle-accurate simulation based on SIMICS

micro-architecture interface (MAI), which can boot an unmodified
Solaris operating system and execute commercial workloads. Our
simulation infrastructure models the functional aspects of Ultra-
SPARC IIICu CPUs, which implement the SPARC V9 ISA. How-
ever, we use our timing model to enforce the timing characteristics
of a multicore system built with out-of-order processor cores. Vari-
ous parameters of this system are given in Table 1, while our work-
loads are described in Table 2. In addition, we model a hardware
filled TLB, with negligible penalty, so as to avoid a high overhead
from the software filled TLB in the SPARC V9 ISA.

All the benchmarks, setup on Solaris 9, are initially run for a
long duration (up to several simulated minutes) to warm up the ap-
plications and OS disk caches, and we then collect memory traces
for several simulated seconds to warm up the large L2 cache before
starting timing runs. For timing runs, we use 1300 transactions in
Apache and Zeus, and the rest are run for 100 million committed
user instructions. Due to the inherent variability [2], we add a small
random variation to the main memory latency, and run several trials
of each benchmark per experiment. We present the average results,
and the 95% confidence interval wherever applicable.

We model a point-to-point logical interconnect where each node
of the network is either a processor core or an L2 cache bank of
1MB. In all, there are 24 nodes in the network (fixed across the
multicore configurations modeled). In the baseline system, these
nodes are occupied by eight processor cores and 16 banks of the L2
cache. In each of the OPMS configurations, consisting of 12 cores,
we remove four banks of the L2 cache and replace them with cores.
Therefore, the aggregate L2 cache size in the OPMS is reduced to



Apache

We use the Surge client to drive the open-source
Apache web server, version 2.0.48. We do not
use any think time in the Surge client to reduce
OS idle time. Both client and server are running
on the same, 8-processor machine.

OLTP

OLTP uses the IBM DB2 database to run queries
from TPC-C. The database is scaled down from
TPC-C specification to about 800MB and runs
192 concurrent user threads with no think time.

pgoltp

pgoltp also runs queries from TPC-C, but uses
the PostgreSQL 8.1.3 database [32] driven by
OSDL’s DBT-2 [30]. Unlike IBM’s DB2, Post-
greSQL performs I/O through the OS’s standard
interfaces and utilizes the OS’s disk cache.

Zeus
We use the Surge client again to drive the Zeus
web server, configured similarly to Apache.

pmake

Parallel compile of PostgreSQL using GNU
make with the -j 64 flag using the Sun Forte
Developer 7 C compiler. Unlike the server work-
loads, pmake consists of multiple processes run-
ning in separate virtual address spaces.

Table 2: Workloads

accommodate additional processor cores. The area overhead from
the additional cores and interconnect is compensated by the cache
banks they replace [16]. We also assume that the target power en-
velope allows up to eight simultaneously active processing cores
as described in the Table 1, and simultaneous execution on all the
processor cores in the OPMS is inadmissible. Consequently, in all
of our workloads, we expose eight virtual processors (VCPUs) on
which the OS schedules software threads to run. The OS and ap-
plication configuration is identical across all the multicore systems
we evaluate.

5.2 Energy Estimation
To estimate power and energy consumption, we have integrated

a combination of tools in our simulation infrastructure. Processor
core activity and power is largely derived using the circuit models
from Wattch [7]. The memory hierarchy uses CACTI 4.2 to model
dynamic energy dissipation and leakage in the caches [39]. Since
the L2 cache is considerably large, and may account for an unac-
ceptable amount of static energy consumption [28], we assume it
is implemented with stacked devices. This implementation can ef-
fectively reduce the leakage by 3X, providing a much more energy
efficient design point [35].

Calibrating Wattch.
Analytic power modeling tools such as Wattch rely on track-

ing cycle-by-cycle access history of various functional blocks in
a processor core, and on certain assumptions about circuit design
styles. While such tools are considered reasonable at estimating
the power/energy consumption trends, several previous studies in-
dicate their inaccuracy in estimating the absolute power [23, 25].
To overcome this drawback, we use a combination of other tools to
calibrate the energy consumption reported by the power model.

First, we derive the total power consumption (both static and dy-
namic) of major functional blocks of a core when they are operating
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Figure 3: Relative cycles of activity. The labels on bars for

CSP_O indicate the cycles overhead (percentage) for CT.

close to their TDP (thermal design points) using HotSpot [37]. We
use the hotfloorplan tool (included in the HotSpot tool set) to ob-
tain the floorplan of a processor core in the 45nm technology node.
For the purposes of this calibration, we focus on a single core be-
cause: (a) accurate floor planning of a chip with eight or more cores
is beyond the scope of this paper and (b) the effect of lateral heat
diffusion is mostly localized [37], and therefore the temperature of
each functional block is primarily dependent on the nearby func-
tional blocks of the same processing core. After obtaining the total
power, we estimate the static power as a temperature-dependent
fraction of dynamic power [37], and determine the dynamic power
component. Finally, we use this dynamic power to calibrate the
dynamic energy consumption reported by the Wattch-based power
module, when running a high IPC workload at the nominal voltage-
frequency. Note that a similar methodology was adopted by Li and
Martinez [25]. For our timing runs, we initialize the temperature of
the heat sink, and various functional blocks of the core, by several
iterative runs of 500 ms, until there is little variance between two
successive runs. During the timing runs, we update the temperature
of various functional blocks every 32K cycles, and also adjust the
static power component of each block based on its temperature.

6. EXPERIMENTAL RESULTS
We now present the results of a quantitative analysis of the en-

ergy benefits of CSP_O, our proposed scheme for using an OPMS.
From our experiments, we wish to answer several questions: How
much energy efficiency in each core is obtained through CSP_O?
What are the thermal advantages of CSP_O? What is the effect
on cache energy? What is the overall energy-delay product? An-
swers to these questions are presented in the following sections.
We present the average results, and the 95% confidence interval,
wherever applicable.

For purposes of comparison, we also present quantitative re-
sults from the HRTM scheme we described in Section 4.4. The
HRTM scheme we model, spreads the computation from eight VC-
PUs among 12 cores without any attempt to specialize the cores in
the process. Since inactive cores, after enabling the sleep signals,
consume little static or dynamic power, to the first order, we would
expect HRTM to perform similar to the baseline in various aspects,
except improving upon the thermal characteristics of the cores.

6.1 Compute Efficiency
When performing CSP_O, the dynamic specialization of each

core’s predictive structures improve its compute efficiency: the ef-
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ficiency of performing an assigned computation. The boost in the
compute efficiency causes an increase in IPC, and a commensu-
rate reduction in the amount of time cores are actively engaged in
computation for the same amount of work (workload transactions).
We show a comparison of aggregate active core cycles in Figure
3. Across all workloads, the active core cycles are reduced by 5–
17%, showing a substantial improvement of the compute efficiency
in CSP_O cores. The active core cycles shown in the figure also

include the overhead of computation transfer (CT), which varies
from 0.9% in pmake to 2.2% in Apache for CSP_O. The overheads
are much smaller in HRTM due to infrequent CT.

Due to the resource contention described in Section 3.1.1, which
is not modeled by Chakraborty, et al. [8], the decrease in active cy-
cles per core does not directly translate to an improved runtime, as
shown in 4. Instead, CSP_O does not keep eight cores active all
the time. For example, eight cores are employed simultaneously
only 48% and 78% of the simulated cycles in Apache and OLTP,
respectively (data not shown for brevity). Despite this lower core
utilization, we still observe a modest reduction in the runtime rang-
ing from 2–10%.

The CT overhead in our experiments is fairly low, allowing
schemes like CSP_O to be effective. This low overhead is primar-
ily due to two factors. First, though CTs are much more frequent
than OS timer interrupts, computation fragments between two CT
events are substantial in size. On average, these events are trig-
gered every 5K instructions in Apache (most frequent), and every
20K instructions in pmake (most infrequent), similar to those re-
ported in [8]. Second, current multicore systems allow fast and
high bandwidth communication between on-chip cores. Using the
existing on-chip caches and coherence protocol, we find that the
data transfer latency of a single CT event is on the order of a few
hundred cycles. For HRTM, the CT overhead is negligible due to
their low frequency.

6.2 Core Energy
In Figure 5, we show the average energy expenditure of each

processor core in the baseline and the two OPMS schemes. This
figure only shows the energy from the core-logic: energy from pri-
vate caches is shown later in Figure 7. Because the OPMS con-
figurations are over-provisioned, we expect the average energy of
each core to be 8/12 (or 0.67) of the baseline, since they are in-
active roughly one-third of the time. Indeed, this is the case for
HRTM since it does not perform any specialization of the cores.
For CSP_O, however, the energy per core is significantly lower
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than the degree of over-provisioning for some benchmarks due to
reduction in active cycles shown in Figure 3.

The actual savings also reflect how effective CSP_O is in spe-
cializing the cores for various workloads: pmake, for example,
shows limited energy benefit beyond that of the over-provisioning,
as separating the user and OS computation is not as effective for
this workload as compared to the rest. This is due to much longer
phases for OS and user computation [8], and inherently better lo-
cality of references, offering smaller room for improvement.

6.3 Thermal Characteristics
In Figure 6, we show the steady state temperature of two typ-

ical hotspots in a processor core: the issue queue and the register
file. For each benchmark, three sets of bars, from left to right, show
the temperature of the baseline, CSP_O, and HRTM, respectively.
These steady state temperatures are obtained from the power trace
of much longer runs (see Section 5). CSP_O is able to signifi-
cantly reduce the temperature in Apache, OLTP, and Zeus (data for
Zeus is omitted, but it is similar to Apache). In OLTP, for example,
temperatures of the issue queue and register file are reduced by 11
and 10 degrees, respectively. CSP_O is less effective in reducing
the temperature in pmake as the utilization of various cores varies
significantly. In particular, we find that two cores, provisioned for
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OS computation, see much less use due to a significantly lower OS
computation from their corresponding VCPUs. We observe that
HRTM is more effective at reducing the temperature, particularly
in pmake, as it more evenly spreads computation among the cores.
The temperatures observed by pmake and pgoltp are significantly
higher than that of Apache and OLTP due to the higher IPCs in
these two applications.

In addition to the steady-state temperatures, we have also ex-
amined the temporal variance in the transient temperature of each
core, and the spatial variance in the temperature among different
cores. In the baseline system, both the temporal and spatial vari-
ance is low due to the homogeneous nature of these workloads, as
well as relatively small IPC variations and short phases. CSP_O
similarly exhibits a low temporal variance (marginally higher than
the baseline), as task are migrated among cores frequently (every
5–20 thousand instructions). The spatial variance is also small,
since all cores are fairly evenly utilized (except for the two OS
cores in pmake). Again, this spatial variation is slightly higher
than the baseline due to the nature of OS and user computation
in each workload. In contrast to the baseline and CSP_O, HRTM
shows much larger temporal variance, as the periods of active com-
putation are interleaved at a much longer time-scale. This results
in long periods of high heat and temperature (often similar to the
baseline) and long periods of cool down (much lower than average
temperature). However, spatial variation is minimal, as by design,
HRTM spreads the entire computation evenly among the available
cores.

6.4 Cache Energy
In Figure 7, we show the comparison of energy expended in the

memory hierarchy. For each workload, the three bars (from left to
right) show the results for the baseline, CSP_O, and HRTM, respec-
tively. Each bar is further broken down into four parts showing the
energy consumption in three caches: L1 data cache (bottom), L1
Instruction cache (middle), L2 cache (top) and energy overhead due
to CT (CT). The energy from the L1 caches is increased in several
OPMS configurations, especially for HRTM due to the increase in
leakage from a larger aggregate L1 capacity. However, Apache and
Zeus in CSP_O show a slight improvement in L1 energy largely
due to the significant improvement in their runtime (10% and 9%,
respectively), which balances the increase in leakage energy from
more L1 caches. The L1 energy is also reduced by lowering branch
mis-speculations in CSP_O, which reduces accesses into the L1.

In contrast, we see a reduction in L2 energy in all OPMS config-
urations. In HRTM, this is solely due to the reduction of leakage
energy from a smaller L2 cache. CSP_O shows much larger reduc-
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Figure 8: Energy delay product comparison.

tion over HRTM, especially for Apache, OLTP, and Zeus. Apache,
for example, shows an overall cache energy reduction of 18% com-
pared to the baseline. This additional reduction in CSP_O is de-
rived primarily from a significant reduction in the L2 accesses, es-
pecially for instructions, resulting in savings in switching energy.
Of course, the leakage energy is also conserved, due to both an
improved runtime and a smaller L2.

The energy overhead for data transfers due to CT is also marginal
in CSP_O (up to 1.1% in Apache), as we expect from its low la-
tency overhead in Figure 3. As explained in Section 4.1, the CT
mechanism has two parts: saving VCPU registers in the current
PCPU and restoring the same at the remote PCPU. The first part
mostly requires local private cache access, especially for Apache
and Zeus where CT events are more frequent and thus the regions of
memory used for this purpose remain in the private caches, thereby
expending low energy. A substantial component of the energy over-
head comes from the second part, which requires access into the
L2 cache, interconnect and the remote cache. The CT overhead re-
ported here is the directly measurable overhead: switching energy
due to register state transfer. Energy overhead from other thread
data, which are transferred on demand, are not included in the CT
overhead explicitly, but they appear in various components of cache
energy shown in the figure.

The multicore systems we model use a directory based coher-
ence protocol, which does not need to broadcast all messages over
the interconnect. While our simulator infrastructure currently lacks
a model for global interconnect energy estimation, we expect that
CSP_O will perform favorably compared to the baseline system
and HRTM. First, we find that the aggregate bandwidth require-
ment (which directly translates into interconnect switching activ-
ity) is improved even after accounting for the computation transfer
overhead. Second, the leakage component of the interconnect en-
ergy is also favorable due to a significant reduction in runtime for
CSP_O.

6.5 Energy Delay Product
We show the comparison of the energy-delay product across the

three schemes in Figure 8. As expected, CSP_O performs sig-
nificantly better than both the baseline machine and HRTM. This
energy-delay benefit is derived both from the conservation of over-
all energy, as well as the improvement in runtime. Quantitatively,
the energy-delay improvement tracks well with the runtime reduc-
tion observed: more improvement is seen in benchmarks which
also show higher speedup, indicating efficient use of microarchi-
tectural structures in CSP_O. The best improvement is achieved by
Apache, resulting in a 20% lower energy-delay product. Zeus and



OLTP also show impressive energy-delay improvements of 15%
and 10%, respectively. On the other hand, pgoltp and pmake show
more modest savings, also reflected in their smaller runtime im-
provement. HRTM, on the other hand, performs similarly to the
baseline system.

In summary, CSP_O is able to provide both superior energy and

delay, by efficiently employing a larger pool of core resources,
while remaining within the same power envelope, and SAF, com-
pared to the baseline and HRTM system. Energy and delay ben-
efits are derived from several components of a multicore system,
clearly demonstrating the effectiveness of the novel OPMS design
paradigm.

7. RELATED WORK
While previous research has implicitly used an over-provisioned

system to improve energy efficiency and thermal characteristics
[14, 24], this work presents a novel perspective on designing an
over-provisioned system in the light of current technology trends.
We leverage the Computation Spreading work by Chakraborty, et.
al. [8], to impart dynamic specialization on structurally identical
cores of an OPMS.

Several previous proposals have looked into the
power/performance implications of varying resource provi-
sioning for caches and cores using multi-programmed workloads
(e.g., [26]) and multithreaded scientific workloads (e.g., [28]). In
this work, we focus on multithreaded server class workloads and
evaluate the energy-efficiency of an OPMS system. To the best
of our knowledge, no previous work has looked at utilizing an
over-provisioned system for these workloads.

Many past proposals advocate activity migration to mitigate ther-
mal hot spots [14, 27, 37]. While adopting different mechanisms
and underlying microarchitectures, all of them attempt to take recti-
fying action after a certain threshold temperature is sensed, indicat-
ing a forthcoming thermal emergency. In this work, we continually
move the computation around to avoid exercising one particular re-
source for a long enough duration to incur a thermal emergency.

For memory-bound applications (such as server applications),
prior research has demonstrated that voltage-frequency scaling
yields a superior energy-delay product, as long as the performance
degradation is within an acceptable limit [17, 26]. The bulk of the
energy benefit is derived from supply voltage scaling, while the
energy-delay improvement arises due to only limited increases in
delay, since memory latencies are not scaled in tandem with fre-
quency. However, aggressive scaling of voltage may not be feasi-
ble in the future technology generations, where the expected supply
voltage will be below 1.0V [9, 13, 14]. Moreover, dynamic fre-
quency scaling of individual cores is less attractive when running
multithreaded server workloads: First, poor performance and un-
predictable behavior can result from these complex applications in
the presence of performance asymmetry [4]. Second, multithreaded
server application have much more commonality in the code exe-
cuted by multiple threads [8], and therefore show less variability
in the memory stall times experienced by individual cores, than do
multi-programmed SPEC workloads (as used in [17]). For these
reasons, we did not consider the impact of dynamic voltage and
frequency scaling in this paper. Instead, we assumed a slightly re-
duced voltage and much reduced frequency, modeling multicore
systems that already incorporate significant benefit from static or
dynamic VFS techniques

8. CONCLUSIONS
This paper considered a novel proposal for future multicore pro-

cessors where, despite an increasing number of transistors, power
considerations will significantly limit the number of chip resources
that can be active simultaneously. Using the projected device char-
acteristics from the ITRS Roadmap, we showed that the Simultane-

ously Active Fraction (SAF)—the fraction of resources that can be
used simultaneously to perform computation—is falling with each
successive technology generation.

To use the growing pool of resources, while honoring the con-
straints imposed by a shrinking SAF, we proposed the use of a
SAF-aware Over-provisioned Multicore System (OPMS) design.
Unlike traditional systems, where processing core resources are
provisioned for simultaneous and continuous use, in an OPMS the
number of processing cores on the chip exceeds the allowable num-
ber of simultaneously active cores. To remain within the allowable
power budget, individual cores transition between active and inac-
tive states at different times, resulting in a system with a constantly-
changing set of processing resources.

We considered how to use an OMPS to improve the computa-
tion and energy efficiency while processing multithreaded server
workloads. Leveraging a recently-proposed technique Computa-

tion Spreading [8], and a lightweight VMM, to distribute the col-
lective computation of multithreaded workloads across all of the
cores in an OPMS, we saw how the prediction structures of a given
core could be specialized, thus improving its computation and en-
ergy efficiency. Using an elaborate evaluation infrastructure, we
observed an energy-delay product improvement of 5–20% for our
multithreaded, server class applications. In addition, regular in-
terleaving of computation with idle periods naturally improved the
chip’s thermal characteristics.

This paper is an initial foray into what we feel will be a promi-
nent model for processing chips in the future: chips with more pro-
cessing cores than can be active at any given time. We expect this
to be the case since the continuing demand to reduce the SAF will
move the granularity for activity reduction from small pieces of
logic (e.g., via clock gating) to functional units or cache blocks,
to entire processing cores. We considered one scenario for such a
system and showed how it could be used to achieve computing and
energy efficiency for multithreaded server workloads. Many other
opportunities are likely to arise with such over-provisioned multi-
core systems, and exploiting these opportunities will create many
new problems that will have to be solved not only in the hardware
and firmware, but even in the software layers above.
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study of parallel bioinformatics workloads. In Proc. of 12th

HPCA, 2006.
[23] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and

D. M. Tullsen. Single-isa heterogeneous multi-core
architectures: The potential for processor power reduction.
In Proc. of 36th MICRO, 2003.

[24] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and
K. I. Farkas. Single-ISA heterogeneous multi-core

architectures for multithreaded workload performance. In
Proc. of 31st ISCA, 2004.

[25] J. Li and J. F. Martinez. Dynamic power-performance
adaptation of parallel computation on chip multiprocessors.
In Proc. of 12th HPCA, 2006.

[26] Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron. CMP
design space exploration subject to physical constraint. In
Proc. of 12th HPCA, 2006.

[27] W. Liao, L. He, and K. Lepak. Temperature and supply
voltage aware performance and power modeling at the
microarchitecture level. Trans. on Comp.-Aided Design of

Integrated Circuits and Sys., 24(7), 2005.
[28] M. Monchiero, R. Canal, and A. González. Design space

exploration for multicore architectures: A
power/performance/thermal view. In Proc. of 20th ICS, 2006.

[29] E. J. Nowak et al. Scaling beyond the 65 nm node with
FinFET-DGCMOS. In Proc. of the Custom Integrated

Circuits Conf., 2003.
[30] Open Source Development Labs. Database test suite.

http://osdldbt.sourceforge.net/. Viewed 5/29/2007.
[31] E. Pakbaznia, F. Fallah, and M. Pedram. Charge recycling in

MTCMOS circuits: concept and analysis. In Proc. of 43th

DAC, 2006.
[32] PostgreSQL. PostgreSQL: the world’s most advanced open

source database. http://www.postgresql.org/.
[33] P. Ranganathan and N. Jouppi. Enterprise IT trends and

implications on system architecture research. In Proc. of 11th

HPCA, 2005.
[34] S. Rusu et al. A 65-nm dual-core multithreaded XeonÂő
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