

Computer
Sciences
Department

WYSINWYX: What You See is Not What you Execute
(Thesis)

Gogul Balakrishnan

Technical Report #1603

August 2007

WYSINWYX: WHAT YOU SEE IS NOT WHAT YOU EXECUTE

by

Gogul Balakrishnan

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences Department)

at the

UNIVERSITY OF WISCONSIN–MADISON

2007

c© Copyright by Gogul Balakrishnan 2007

All Rights Reserved

i

To my beloved grandma Rajakrishnammal. . .

ii

ACKNOWLEDGMENTS

First of all, I would like to thank my parents Mr. Balakrishnan and Mrs. Manickam for making

my education a priority even in the most trying circumstances. Without their love and constant

support, it would not have been possible for me to obtain my Ph.D.

Next, I would like to thank my advisor, Prof. Thomas Reps, who, without an iota of exagger-

ation, was like a father to me in the US. He taught me the importance of working from the basics

and the need for clarity in thinking. I have learnt a lot of things from him outside work: writing,

sailing, safety on the road, and so on; the list is endless. He was a source of constant support and

inspiration. He usually goes out of his way to help his students—he was with me the whole night

when we submitted our first paper! I don’t think my accomplishments would have been possible

without his constant support. Most of what I am as a researcher is due to him. Thank you, Tom.

I would also like to thank GrammaTech, Inc. for providing the basic infrastructure for

CodeSurfer/x86. I am really grateful to Prof. Tim Teitelbaum for allocating the funds and the

time at GrammaTech to support our group at the University of Wisconsin. Special thanks go to

Radu Gruian and Suan Yong, who provided high-quality software and support. I have always

enjoyed the discussions and the interactions I had with them.

Furthermore, I would like to thank Prof. Nigel Boston, Prof. Susan Horwitz, Prof. Ben Liblit,

and Prof. Mike Swift for being on my committee and for the stimulating discussions during my

defense. I would like to specially thank Prof. Susan Horwitz, Prof. Tom Reps, and Prof. Mike

Swift for their insightful comments on a draft of my dissertation. Their comments have definitely

improved the readability of this dissertation.

I would also like to thank Prof. V. Uma Maheswari, who introduced me to compilers at Anna

University. She also taught me to take life as it is.

iii

I would like to specially thank Junghee Lim for being a great office mate and also for taking

over the implementation of some parts of the analysis algorithms in CodeSurfer/x86. In addi-

tion, I would like to thank the other students in PL research: Evan Driscoll, Denis Gopan, Nick

Kidd, Raghavan Komondoor, Akash Lal, Alexey Loginov, Dave Melski, Anne Mulhern, and Cindy

Rubio González. I have always had interesting discussions with them and their feedback on my

presentations have always been helpful.

I would also like to thank the members of the Wisconsin Safety Analyzer (WiSA) group: Prof.

Somesh Jha, Prof. Bart Miller, Mihai Christodorescu, Vinod Ganapathy, Jon Giffin, Shai Rubin,

and Hao Wang. I have always enjoyed being part of the WiSA group, and the bi-yearly trips for

the project reviews were always fun.

My dissertation research was supported by a number of sources, including the Office of Naval

Research, under grant N00014-01-1-0708, the Homeland Security Advanced Research Projects

Agency (HSARPA) under AFRL contract FA8750-05-C-0179, and the Disruptive Technology Of-

fice (DTO) under AFRL contract FA8750-06-C-0249. I am thankful to our ONR program man-

agers Dr. Ralph Wachter and Gary Toth for their support.

Finally, I would like to thank my sister Arini, and my friends, Anto, George, Jith, Muthian,

Piramanayagam, Prabu, Pranay, Sanjay, Senthil, Veeve, Vicky, and Vinoth, for making my six

years in Madison less stressful. I will always remember the Tamil, Telugu, Hindi, and English

movies we watched late in the night on a BIG screen at Oaktree. Moreover, I cannot forget our

Idlebrain Cricket Club.

DISCARD THIS PAGE

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . xi

1 Introduction . 1

1.1 Advantages of Analyzing Executables . 8
1.2 Challenges in Analyzing Executables . 10

1.2.1 No Debugging/Symbol-Table Information 11
1.2.2 Lack Of Variable-like Entities . 12
1.2.3 Information About Memory-Access Expressions 12

1.3 CodeSurfer/x86: A Tool for Analyzing Executables 13
1.4 The Scope of Our Work . 16
1.5 Contributions and Organization of the Dissertation 18

2 An Abstract Memory Model . 20

2.1 Memory-Regions . 21
2.2 Abstract Locations (A-Locs) . 23

3 Value-Set Analysis (VSA) . 26

3.1 Value-Set . 28
3.2 Abstract Environment (AbsEnv) . 30
3.3 Representing Abstract Stores Efficiently . 31
3.4 Intraprocedural Analysis . 32

3.4.1 Idioms . 37
3.4.2 Predicates for Conditional Branch Instructions 38

3.5 Interprocedural Analysis . 39
3.5.1 Abstract Transformer for call→enter Edge 41
3.5.2 Abstract Transformer for exit→end-call Edge 43

v

Page

3.5.3 Interprocedural VSA algorithm . 44
3.6 Indirect Jumps and Indirect Calls . 45
3.7 Context-Sensitive VSA . 46

3.7.1 Call-Strings . 46
3.7.2 Context-Sensitive VSA Algorithm . 48
3.7.3 Memory-Region Status Map . 49

3.8 Soundness of VSA . 49

4 Value-Set Arithmetic . 51

4.1 Notational Conventions . 51
4.2 Strided-Interval Arithmetic . 51

4.2.1 Addition (+si) . 53
4.2.2 Unary Minus (−si

u) . 55
4.2.3 Subtraction (−si), Increment (++si), and Decrement (−−si) 56
4.2.4 Bitwise Or (|si) . 56
4.2.5 Bitwise not (∼si), And (&si), and Xor (∧si) 60
4.2.6 Strided-Interval Arithmetic for Different Radices 60

4.3 Value-Set Arithmetic . 62
4.3.1 Addition (+vs) . 63
4.3.2 Subtraction (−vs) . 64
4.3.3 Bitwise And (&vs), Or (|vs), and Xor (∧vs) 64
4.3.4 Value-Set Arithmetic for Different Radices 65

5 Improving the A-loc Abstraction . 66

5.1 Overview of our Approach . 67
5.1.1 The Problem of Indirect Memory Accesses 67
5.1.2 The Problem of Granularity and Expressiveness 69

5.2 Background . 71
5.2.1 Aggregate Structure Identification (ASI) 72

5.3 Recovering A-locs via Iteration . 75
5.4 Generating Data-Access Constraints . 77
5.5 Interpreting Indirect Memory-References . 81
5.6 Hierarchical A-locs . 85
5.7 Convergence . 86
5.8 Pragmatics . 87
5.9 Experiments . 87

5.9.1 Comparison of A-locs with Program Variables 88
5.9.2 Usefulness of the A-locs for Static Analysis 91

vi

Page

6 Recency-Abstraction for Heap-Allocated Storage 97

6.1 Problems in Using the Allocation-Site Abstraction in VSA 100
6.1.1 Contents of the Fields of Heap-Allocated Memory-Blocks 101
6.1.2 Resolving Virtual-Function Calls in Executables 101

6.2 An Abstraction for Heap-Allocated Storage . 104
6.3 Formalizing The Recency-Abstraction . 106
6.4 Experiments . 110

7 Other Improvements to VSA . 113

7.1 Widening . 113
7.2 Affine-Relation Analysis (ARA) . 116
7.3 Limited Widening . 118
7.4 Priority-based Iteration . 119

7.4.1 Experiments . 122
7.5 GMOD-based Merge Function . 122

7.5.1 Experiments . 125

8 Case Study: Analyzing Device Drivers . 134

8.1 Background . 135
8.2 The Need For Path-Sensitivity In Device-Driver Analysis 135
8.3 Path-Sensitive VSA . 138
8.4 Experiments . 140

9 Related Work . 148

9.1 Information About Memory Accesses in Executables 148
9.2 Identification of Structures . 154
9.3 Recency-Abstraction For Heap-Allocated Storage 156

10 Conclusions And Future Directions . 159

LIST OF REFERENCES . 163

DISCARD THIS PAGE

vii

LIST OF TABLES

Table Page

4.1 Cases to consider for addition of strided intervals. 53

4.2 Signed minOR(a,b, c,d) and maxOR(a,b, c,d). 58

5.1 C++ Examples for improved a-loc recovery. 88

5.2 Driver examples for improved a-loc recovery. 92

5.3 Executable examples for improved a-loc recovery. 93

5.4 Geometric mean of the fraction of trackable memory operands in the final round. . . . 94

5.5 Statistics on trackable memory operands using improved a-locs. 96

6.1 Results of the experiments for the recency-abstraction. 111

7.1 The results of using register-save information in ARA. 118

7.2 Number of iterations required to converge with a priority-based worklist. 123

7.3 Comparison of the fraction of trackable memory operands in the final round. 127

7.4 Running time for VSA with GMOD-based merge function. 129

8.1 Configurations of the VSA algorithm used to analyze Windows device drivers. 144

8.2 Results of checking the PendedCompletedRequest rule in Windows device drivers . . . 144

DISCARD THIS PAGE

viii

LIST OF FIGURES

Figure Page

1.1 Example of unexpected behavior due to compiler optimization. 10

1.2 Layout of activation record for procedure main in Ex.1.2.1 11

1.3 Organization of CodeSurfer/x86. 15

2.1 Abstract Memory Model . 22

2.2 A-locs identified by IDAPro for procedure main in Ex.1.2.1 24

3.1 Abstract transformers for VSA. 34

3.2 Intraprocedural VSA Algorithm. 35

3.3 High-level predicates for conditional jump instructions. 39

3.4 Layout of the memory-regions for the program in Ex.3.5.1. 40

3.5 Relative positions of the AR-regions of the caller (C) and callee (X) at a call. 41

3.6 Transformer for call→enter edge. 42

3.7 Abstract transformer for exit→end-call edge. 43

3.8 Propagate procedure for interprocedural VSA. 45

3.9 Context-Sensitive VSA algorithm. 47

3.10 Call-graph and Memory-region Status Map. 50

4.1 Implementation of abstract addition (+si) for strided intervals. 54

4.2 Implementation of minOR [115, p. 59] and maxOR [115, p. 60]. 57

ix

Figure Page

4.3 Counting trailing 0’s of x [115, p. 86]. 59

4.4 Intutition for computing strides in the abstract bitwise-or operation (|si). 59

4.5 Operations on Bool3s. 62

5.1 Layout of activation record for procedure main in Ex.1.2.1 70

5.2 Data-Access Constraint (DAC) language. 73

5.3 ASI DAG, ASI Tree and structure recovered by ASI for Ex.1.2.1. 74

5.4 Algorithm to convert a given strided interval into an ASI reference. 79

5.5 Algorithm to convert two strided intervals into an ASI reference. 80

5.6 Hierarchical a-locs. 86

5.7 ASI information vs debugging information. 90

6.1 Weak-update problem for malloc blocks. 98

6.2 Value-Set Analysis (VSA) results (when the allocation-site abstraction is used). 102

6.3 Resolving virtual-function calls in executables. 103

6.4 A trace of the evolution of parts of the AbsEnvs for three instructions in a loop. 107

6.5 Improved VSA information for the program in Fig. 6.2 with recency abstraction. . . . 108

7.1 Widening Example. 114

7.2 Supergraph and exploded supergraph. 115

7.3 Effect of iteration order on efficiency of abstract interpretation. 119

7.4 Effects of iteration order on the precision of range analysis. 120

7.5 Algorithm to compute priority numbers for call-string suffixes. 121

7.6 Algorithm to compute priority numbers for CFG nodes. 122

7.7 Example showing the need for a GMOD-based merge function. 124

x

Figure Page

7.8 GMOD-based merge function. 125

7.9 Context-sensitive VSA algorithm with GMOD-based merge function. 126

7.10 Effects of the GMOD-based merge function on the strong trackability of use-operands. 130

7.11 Effects of the GMOD-based merge function on the strong trackability of kill-operands. 131

7.12 Effects of the GMOD-based merge function on the weak trackability of kill-operands. 132

7.13 Percentage of strongly-trackable indirect operands in different rounds of VSA. 133

8.1 A device driver and a property automaton. 136

8.2 Abstract states computed for the AddDevice routine in Fig. 8.1 137

8.3 Path-sensitive VSA algorithm. 141

8.4 Finite-state machine for the rule PendedCompletedRequest. 143

8.5 An example illustrating false positives in device-driver analysis. 145

8.6 Finite-state machine that tracks the contents of the variable status. 146

xi

ABSTRACT

There is an increasing need for tools to help programmers and security analysts understand

executables. For instance, commercial companies and the military increasingly use Commercial

Off-The Shelf (COTS) components to reduce the cost of software development. They are inter-

ested in ensuring that COTS components do not perform malicious actions (or can be forced to

perform malicious actions). Viruses and worms have become ubiquitous. A tool that aids in un-

derstanding their behavior can ensure early dissemination of signatures, and thereby control the

extent of damage caused by them. In both domains, the questions that need to be answered can-

not be answered perfectly—the problems are undecidable—but static analysis provides a way to

answer them conservatively.

In recent years, there has been a considerable amount of research activity to develop analysis

tools to find bugs and security vulnerabilities. However, most of the effort has been on analysis

of source code, and the issue of analyzing executables has largely been ignored. In the security

context, this is particularly unfortunate, because performing analysis on the source code can fail to

detect certain vulnerabilities due to the WYSINWYX phenomenon: “What You See Is Not What

You eXecute”. That is, there can be a mismatch between what a programmer intends and what is

actually executed on the processor.

Even though the advantages of analyzing executables are appreciated and well-understood,

there is a dearth of tools that work on executables directly. The overall goal of our work is to

develop algorithms for analyzing executables, and to explore their applications in the context of

program understanding and automated bug hunting. Unlike existing tools, we want to provide

xii

useful information about memory accesses, even in the absence of debugging information. Specif-

ically, the dissertation focuses on the following aspects of the problem:

• Developing algorithms to extract intermediate representations (IR) from executables that

are similar to the IR that would be obtained if we had started from source code. The re-

covered IR should be similar to that built by a compiler, consisting of the following ele-

ments: (1) control-flow graphs (with indirect jumps resolved), (2) a call graph (with indirect

calls resolved), (3) the set of variables, (4) values of pointers, (5) sets of used, killed, and

possibly-killed variables for control-flow graph nodes, (6) data dependences, and (7) types

of variables: base types, pointer types, structs, and classes.

• Using the recovered IR to develop tools for program understanding and for finding bugs and

security vulnerabilities.

The algorithms described in this dissertation are incorporated in a tool we built for analyzing

Intel x86 executables, called CodeSurfer/x86.

Because executables do not have a notion of variables similar to the variables in programs

for which source code is available, one of the important aspects of IR recovery is to determine a

collection of variable-like entities for the executable. The quality of the recovered variables affects

the precision of an analysis that gathers information about memory accesses in an executable, and

therefore, it is desirable to recover a set of variables that closely approximate the variables of the

original source-code program. On average, our technique is successful in identifying correctly

over 88% of the local variables and over 89% of the fields of heap-allocated objects. In contrast,

previous techniques, such as the one used in the IDAPro disassembler, recovered 83% of the local

variables, but 0% of the fields of heap-allocated objects.

Recovering useful information about heap-allocated storage is another challenging aspect of IR

recovery. We propose an abstraction of heap-allocated storage called recency-abstraction, which is

somewhere in the middle between the extremes of one summary node per malloc site and complex

shape abstractions. We used the recency-abstraction to resolve virtual-function calls in executables

obtained by compiling C++ programs. The recency-abstraction enabled our tool to discover the

xiii

address of the virtual-function table to which the virtual-function field of a C++ object is initialized

in a substantial number of cases. Using this information, we were able to resolve, on average, 60%

of the virtual-function call sites in executables that were obtained by compiling C++ programs.

To assess the usefulness of the recovered IR in the context of bug hunting, we used

CodeSurfer/x86 to analyze device-driver executables without the benefit of either source code or

symbol-table/debugging information. We were able to find known bugs (that had been discovered

by source-code analysis tools), along with useful error traces, while having a low false-positive

rate.

1

Chapter 1

Introduction

There is an increasing need for tools to help programmers and security analysts understand

executables. For instance, commercial companies and the military increasingly use Commercial

Off-The Shelf (COTS) components to reduce the cost of software development. They are inter-

ested in ensuring that COTS components do not perform malicious actions (or can be forced to

perform malicious actions). Viruses and worms have become ubiquitous. A tool that aids in un-

derstanding their behavior can ensure early dissemination of signatures, and thereby control the

extent of damage caused by them. In both domains, the questions that need to be answered can-

not be answered perfectly—the problems are undecidable—but static analysis provides a way to

answer them conservatively.

In the past few years, there has been a considerable amount of research activity [15, 25, 30, 38,

43, 49, 61, 63, 113] to develop analysis tools to find bugs and security vulnerabilities. However,

most of the effort has been on analysis of source code, and the issue of analyzing executables has

largely been ignored. In the security context, this is particularly unfortunate, because performing

analysis on the source code can fail to detect certain vulnerabilities because of the WYSINWYX

phenomenon: “What You See Is Not What You eXecute”. That is, there can be a mismatch

between what a programmer intends and what is actually executed on the processor. The following

source-code fragment, taken from a login program, is an example of such a mismatch [66]:

memset(password, ‘\0’, len);

free(password);

The login program temporarily stores the user’s password—in clear text—in a dynamically

allocated buffer pointed to by the pointer variable password. To minimize the lifetime of the

2

password, which is sensitive information, the code fragment shown above zeroes-out the buffer

pointed to by password before returning it to the heap. Unfortunately, a compiler that performs

useless-code elimination may reason that the program never uses the values written by the call on

memset and therefore the call on memset can be removed, thereby leaving sensitive information

exposed in the heap. This is not just hypothetical; a similar vulnerability was discovered during

the Windows security push in 2002 [66]. This vulnerability is invisible in the source code; it can

only be detected by examining the low-level code emitted by the optimizing compiler.

The WYSINWYX phenomenon is not restricted to the presence or absence of procedure calls;

on the contrary, it is pervasive: security vulnerabilities can exist because of a myriad of platform-

specific details due to features (and idiosyncrasies) of the compiler and the optimizer. These can

include (i) memory-layout details (i.e., offsets of variables in the run-time stack’s activation records

and padding between fields of a struct), (ii) register usage, (iii) execution order, (iv) optimizations,

and (v) artifacts of compiler bugs. Such information is hidden from tools that work on intermediate

representations (IRs) that are built directly from the source code. Access to such information

can be crucial; for instance, many security exploits depend on platform-specific features, such as

the structure of activation records. Vulnerabilities can escape notice when a tool does not have

information about adjacency relationships among variables.

Apart from the problem of missing security vulnerabilities, there are other problems associated

with tools that analyze source code:

• Analyses based on source code1 typically make (unchecked) assumptions, e.g., that the pro-

gram is ANSI-C compliant. This often means that an analysis does not account for be-

haviors that are allowed by the compiler (e.g., arithmetic is performed on pointers that are

subsequently used for indirect function calls; pointers move off the ends of arrays and are

subsequently dereferenced; etc.)

• Programs typically make extensive use of libraries, including dynamically linked libraries

(DLLs), which may not be available in source-code form. Typically, analyses are performed
1Terms like “analyses based on source code” and “source-level analyses” are used as a shorthand for “analyses that

work on intermediate representations (IRs) built from the source code.”

3

using code stubs that model the effects of library calls. Because these are created by hand

they are likely to contain errors, which may cause an analysis to return incorrect results.

• Programs are sometimes modified subsequent to compilation, e.g., to perform optimizations

or insert instrumentation code [114]. (They may also be modified to insert malicious code

[71, 111].) Such modifications are not visible to tools that analyze source.

• The source code may have been written in more than one language. This complicates the life

of designers of tools that analyze source code because multiple languages must be supported,

each with its own quirks.

• Even if the source code is primarily written in one high-level language, it may contain in-

lined assembly code in selected places. Source-level tools typically either skip over inlined

assembly code [36] or do not push the analysis beyond sites of inlined assembly code [4].

In short, there are a number of reasons why analyses based on source code do not provide the right

level of detail for checking certain kinds of properties:

• Source-level tools are only applicable when source is available, which limits their usefulness

in security applications (e.g., to analyzing code from open-source projects). In particular,

source-level tools cannot be applied to analyzing viruses and worms.

• Even if source code is available, a substantial amount of information is hidden from analyses

that start from source code, which can cause bugs, security vulnerabilities, and malicious

behavior to be invisible to such tools. Moreover, a source-code tool that strives to have

greater fidelity to the program that is actually executed would have to duplicate all of the

choices made by the compiler and optimizer; such an approach is doomed to failure.

Moreover, many of the issues that arise when analyzing source code disappear when analyzing

executables:

• The entire program can be analyzed—including libraries that are linked to the program. Be-

cause library code can be analyzed directly, it is not necessary to rely on potentially unsound

models of library functions.

4

• If an executable has been modified subsequent to compilation, such modifications are visible

to the analysis tool.

• Source code does not have to be available.

• Even if the source code was written in more than one language, a tool that analyzes executa-

bles only needs to support one language.

• Instructions inserted because of inlined assembly directives in the source code are visible,

and do not need to be treated any differently than other instructions.

Even though the advantages of analyzing executables are appreciated and well-understood, there

is a dearth of tools that work on executables directly.

Disassemblers [67] and debuggers [2] constitute one class of tools that work on executables.

Disassemblers start by classifying the raw bytes of an executables into code and data. Disassem-

blers are generally good at recovering control-flow information from the executable. For instance,

IDAPro [67], a popular disassembler, identifies functions and also the control-flow graph (CFG)

for each function. Moreover, IDAPro builds a call graph that shows the caller and callee relation-

ships among functions identified by IDAPro. However, disassemblers provide little or no useful

information about the contents of memory at the instructions in an executable, and hence, disas-

semblers provide no information about dataflow between instructions that access memory. Lack

of information about memory accesses affects the ability of a disassembler to recover control-flow

information in the presence of indirect jumps and indirect calls. Consequently, understanding the

behavior of an executable using a disassembler requires substantial effort, such as running the

executable in a debugger, manually tracking the flow of data through memory, etc.

Cifuentes et al. [33, 34, 35] proposed techniques that recover high-level data-flow informa-

tion from executables. They use the recovered information to perform decompilation and slicing.

However, their techniques recover useful data-flow information only when the instructions involve

registers. To deal with instructions involving memory accesses, they use unsound heuristics that

can mislead an analyst. For instance, to determine whether a memory write at one instruction

5

affects the memory read at another instruction, they simply compare the syntactic form of the

memory-write and memory-read operands.

Similarly, Debray et al. [45] proposed a flow-sensitive, context-insensitive algorithm to deter-

mine if two memory operands are aliases by determining a set of symbolic addresses for each

register at each instruction. When computing the set of symbolic addresses, memory accesses are

treated conservatively; whenever a register is initialized with a value from memory, the register is

assumed to hold any possible address. The algorithm proposed by Debray et al. is sound, i.e., it

errs on the side of safety by classifying two memory operands as aliases whenever it is not able to

establish otherwise. Because of the conservative treatment of memory accesses, if the results of

the algorithm were used in security applications, such as detecting buffer-overruns, it would result

in a lot of false positives, which would limit its usefulness.

Tools such as ATOM [104], EEL [74], Vulcan [103], and Phoenix [3] provide a platform for

analyzing executables. However, these tools require symbol-table or debugging information to be

present. Hence, they are not applicable in situations where debugging information is not available,

such as analysis of COTS components, viruses, worms, etc.

The overall goal of my dissertation work is to develop algorithms and build tools for analyz-

ing executables, and to explore their applications in the context of program understanding and

automated bug hunting. However, unlike existing tools, we want to provide sound and useful in-

formation about memory accesses even in the absence of symbol-table or debugging information.

Specifically, we want a tool that can provide information to an analyst either to understand the

behavior of the executable or to build further analysis algorithms that are similar to those that have

been developed for source code. To be able to apply analysis techniques like the ones used in

[15, 25, 30, 38, 43, 49, 61, 63, 113], one already encounters a challenging program-analysis prob-

lem. From the perspective of the model-checking community, one would consider the problem to

be that of “model extraction”: one needs to extract a suitable model from the executable. From

the perspective of the compiler community, one would consider the problem to be “IR recovery”:

one needs to recover intermediate representations from the executable that are similar to those that

6

would be available had one started from source code. Specifically, my research focuses on the

following aspects of the problem:

• Developing algorithms to extract intermediate representations (IR) from executables that are

similar to the IR that would be obtained if we had started from source code. The recovered

IR should be similar to that built by a compiler, consisting of the following elements:

– control-flow graphs (with indirect jumps resolved)

– a call graph (with indirect calls resolved)

– the set of variables

– values of pointers

– used, killed, and possibly-killed variables for CFG nodes

– data dependences

– types of variables: base types, pointer types, structs, and classes

• Using the recovered IR to develop tools for program understanding and for finding bugs and

security vulnerabilities.

While the reader may wonder about how effective anyone can be at understanding how a pro-

gram behaves by studying its low-level code, a surprisingly large number of people are engaged,

on a daily basis, in inspecting low-level code that has been stripped of debugging information.

These include hackers of all hat shades (black, grey, and white), as well as employees of anti-virus

companies, members of computer incident/emergency response teams, and members of the intelli-

gence community. Automatic recovery of an IR from an executable can simplify the tasks of those

who inspect executables, as well as those who build analysis tools for executables. The following

are some possible uses of the IR:

• In the context of security analysis, building a data-dependence and a control-dependence

graph is invaluable because it highlights the chain of dependent instructions in an executable.

7

Consider an analyst who is inspecting an executable that is suspected to be a Trojan. If the

data-dependence graph for the executable is available, identifying the data that is manipu-

lated by the Trojan might be as simple as following the data dependences backwards from

the sites of suspicious system calls to see what locations are accessed, and what values they

might hold.

To build data-dependence graphs that are useful for such applications, it is imperative that

the IR-recovery algorithm provide useful information about memory accesses. This is some-

thing that has been beyond the capabilities of previous techniques [33, 34, 35, 45]; it is

addressed by the techniques presented in Chapters 2 through 7.

Furthermore, to build a useful control-dependence graph, it is important that the IR-recovery

algorithm resolve indirect calls with sufficient precision, which is challenging for executa-

bles compiled from C++ programs with virtual-function calls. (The task of resolving indirect

calls in executables compiled from C++ programs is becoming important because an increas-

ing amount of malware is being written in C++.) The techniques presented in Chapters 2

through 7, but especially Chapters 5 and 6, provide help with this issue.

• The recovered IR can be used as the basis for performing further analysis on the executables.

For instance, unlike source-code programs, executables do not have a notion of variables.

One of the outputs of our IR-recovery algorithm is a set of variables for the executable,

which may be used as a basis for tracking memory operations in a tool for finding bugs

in executables. Our experience with using the recovered IR for finding bugs in Windows

device-driver executables is discussed in Ch. 8.

The remainder of this chapter is organized as follows. Sect. 1.1 provides more examples that

show the advantages of analyzing executables. Sect. 1.2 presents the challenges in building a

tool for analyzing executables. Sect. 1.3 discusses the architecture of CodeSurfer/x86, our tool

for analyzing executables. Sect. 1.4 discusses the scope of our work. Sect. 1.5 summarizes the

contributions made by our work.

8

1.1 Advantages of Analyzing Executables

The example presented earlier showed that an overzealous optimizer can cause there to be a

mismatch between what a programmer intends and what is actually executed by the processor.

Additional examples of this sort have been discussed by Boehm [19]. He points out that when

threads are implemented as a library (e.g., for use in languages such as C and C++, where threads

are not part of the language specification), compiler transformations that are reasonable in the

absence of threads can this sort have been discussed by Boehm [19]. He points out that when

threads are implemented as a library (e.g., for use in languages such as C and C++, where threads

are not part of the language specification), compiler transformations that are reasonable in the

absence of threads can cause multi-threaded code to fail—or exhibit unexpected behavior—for

subtle reasons that are not visible to tools that analyze source code.

A second class of examples for which analysis of an executable can provide more accurate

information than a source-level analysis arises because, for many programming languages, certain

behaviors are left unspecified by the semantics. In such cases, a source-level analysis must account

for all possible behaviors, whereas an analysis of an executable generally only has to deal with one

possible behavior—namely, the one for the code sequence chosen by the compiler. For instance,

in C and C++ the order in which actual parameters are evaluated is not specified: actuals may be

evaluated left-to-right, right-to-left, or in some other order; a compiler could even use different

evaluation orders for different functions. Different evaluation orders can give rise to different

behaviors when actual parameters are expressions that contain side effects. For a source-level

analysis to be sound, at each call site it must take the union of the descriptors that result from

analyzing each permutation of the actuals. In contrast, an analysis of an executable only needs to

analyze the particular sequence of instructions that lead up to the call.

A second example in this class involves pointer arithmetic and an indirect call:
int (*f)(void);

int diff = (char*)&f2 - (char*)&f1; // The offset between f1 and f2

f = &f1;

f = (int (*)())((char*)f + diff); // f now points to f2

(*f)(); // indirect call;

9

Existing source-level analyses (that we know of) are ill-prepared to handle the above code. The

conventional assumption is that arithmetic on function pointers leads to undefined behavior, so

source-level analyses either (a) assume that the indirect function call might call any function, or

(b) ignore the arithmetic operations and assume that the indirect function call calls f1 (on the

assumption that the code is ANSI-C compliant). In contrast, the analysis described in Ch. 3 for

executables correctly identifies f2 as the invoked function. Furthermore, the analysis can detect

when arithmetic on addresses creates an address that does not point to the beginning of a function;

the use of such an address to perform a function “call” is likely to be a bug (or else a very subtle,

deliberately introduced security vulnerability).

A third example related to unspecified behavior is shown in Fig. 1.1. The C code on the left

uses an uninitialized variable (which triggers a compiler warning, but compiles successfully). A

source-code analyzer must assume that local can have any value, and therefore the value of v in

main is either 1 or 2. The assembly listings on the right show how the C code could be compiled,

including two variants for the prologue of function callee. The Microsoft compiler (cl) uses the

second variant, which includes the following strength reduction:

The instruction sub esp,4 that allocates space for local is replaced by

a push instruction of an arbitrary register (in this case, ecx).
In contrast to an analysis based on source code, an analysis of an executable can determine that

this optimization results in local being initialized to 5, and therefore v in main can only have the

value 1.

A fourth example related to unspecified behavior involves a function call that passes fewer

arguments than the procedure expects as parameters. (Many compilers accept such (unsafe) code

as an easy way to implement functions that take a variable number of parameters.) With most

compilers, this effectively means that the call-site passes some parts of one or more local variables

of the calling procedure as the remaining parameters (and, in effect, these are passed by reference—

an assignment to such a parameter in the callee will overwrite the value of the corresponding local

in the caller.) An analysis that works on executables can be created that is capable of determining

10

int callee(int a, int b) {
int local;
if (local == 5) return 1;
else return 2;

}

int main() {
int c = 5;
int d = 7;

int v = callee(c,d);
// What is the value of v here?
return 0;

}

mov [ebp+var_8], 5
mov [ebp+var_C], 7
mov eax, [ebp+var_C]
push eax
mov ecx, [ebp+var_8]
push ecx
call _callee
. . .

Standard prolog Prolog for 1 local
push ebp push ebp
mov ebp, esp mov ebp, esp
sub esp, 4 push ecx

Figure 1.1 Example of unexpected behavior due to compiler optimization. The box at the top
right shows two variants of code generated by an optimizing compiler for the prologue of callee.

Analysis of the second of these reveals that the variable local necessarily contains the value 5.

what the extra parameters are [11], whereas a source-level analysis must either make a cruder

over-approximation or an unsound under-approximation.

1.2 Challenges in Analyzing Executables

To solve the IR-recovery problem, there are numerous obstacles that must be overcome, many

of which stem from the fact that a program’s data objects are not easily identifiable.

Example 1.2.1 The program shown below will be used as an example to describe the ideas. The

program initializes all elements of array pts[5] and returns pts[0].y. The x-members of each

element are initialized with the value of the global variable a and the y-members are initialized

with the value of global variable b. The initial values of the global variables a and b are 1 and 2,

respectively. The disassembly is also shown. By convention, esp is the stack pointer in the x86

architecture. Instruction 1 allocates space for the locals of main on the stack. Fig. 1.2 shows how

the variables are laid out in the activation record of main. Note that there is no space for variable

i in the activation record because the compiler promoted i to register edx. Similarly, there is no

space for pointer p because the compiler promoted it to register eax.

11

typedef struct {
int x,y;

} Point;

int a = 1, b = 2;

int main(){
int i, *py;

Point pts[5], *p;

py = &pts[0].y;

p = &pts[0];

for(i = 0; i < 5; ++i) {
p->x = a;

p->y = b;

p += 8;

}
return *py;

}

proc main ;

1 sub esp, 44 ;Allocate locals

2 lea eax, [esp+8] ;t1 = &pts[0].y

3 mov [esp+0], eax ;py = t1

4 mov ebx, [4] ;ebx = a

5 mov ecx, [8] ;ecx = b

6 mov edx, 0 ;i = 0

7 lea eax,[esp+4] ;p = &pts[0]

L1: mov [eax], ebx ;p->x = a

8 mov [eax+4],ecx ;p->y = b

9 add eax, 8 ;p += 8

10 inc edx ;i++

11 cmp edx, 5 ;

12 jl L1 ;(i < 5)?L1:exit loop

13 mov edi, [esp+0] ;t2 = py

14 mov eax, [edi] ;set return value (*t2)

15 add esp, 44 ;Deallocate locals

16 retn ;

Instructions L1 through 12 correspond to the for-loop in the C program. Instruction L1 updates

the x-members of the array elements, and instruction 8 updates the y-members. Instructions 13 and

14 correspond to initializing the return value for main. �

-40

-36

ret-addr

-32

pts[4].y

pts[4].x

pts[0].x

pts[0].y

-8

-4

0

. . .

py -44

Figure 1.2 Layout of the activation record for procedure main in Ex.1.2.1.

1.2.1 No Debugging/Symbol-Table Information

For many kinds of potentially malicious programs (including most COTS products, viruses,

and worms), debugging information is entirely absent; for such situations, an alternative source of

information about variable-like entities is needed. In any case, even if it is present, it cannot be

relied upon. For this reason, the techniques that are developed to recover IR from an executable

should not rely on symbol-table and debugging information being present.

12

1.2.2 Lack Of Variable-like Entities

When analyzing executables, it is difficult to track the flow of data through memory. Source-

code-analysis tools track the flow of data through variables, which provide a finite abstraction of

the address space of the program. However, in executables, as is evident from the disassembly in

Ex.1.2.1, memory is accessed either directly—by specifying an absolute address—or indirectly—

through an address expression of the form “[base + index × scale + offset]”, where base and

index are registers, and scale and offset are integer constants. Therefore, one option is to track

the contents of each memory-location in the program. However, with the large address spaces of

today’s machines, it is infeasible to keep track statically of the contents of each memory address

during the analysis. Without symbol-table and debugging information, a set of variable-like entities

has to be inferred.

1.2.3 Information About Memory-Access Expressions

Information about memory-access expressions is a crucial requirement for any tool that works

on executables. There has been work in the past on analysis techniques to obtain such information.

However, they are either overly-conservative or unsound in their treatment of memory accesses.

Let us consider the problem of determining data dependences between instructions in executables.

An instruction i1 is data dependent on another instruction i2 if i1 reads the data that i2 writes. For

instance, in Ex.1.2.1, instruction 14 is data dependent on instruction 8 because instruction 8 writes

to pts[0].y and instruction 14 reads from pts[0].y. On the other hand, instruction 14 is not data

dependent on instruction L1. The alias-analysis algorithm proposed by Debray et al. [45] assumes

that any memory write can affect any other memory read. Therefore, their algorithm reports that

instruction 14 is data dependent on both L1 and 8, i.e., it provides an overly-conservative treatment

of memory operations, which can result in a lot of false positives. On the other hand, Cifuentes et

al. [34] use heuristics to determine if two memory operands are aliases of one another, and hence

may fail to identify the data dependence between instruction 8 and instruction 14.

Obtaining information about memory-access operations in an executable is difficult because

13

• While some memory operations use explicit memory addresses in the instruction (easy),

others use indirect addressing via address expressions (difficult).

• Arithmetic on addresses is pervasive. For instance, even when the value of a local variable is

loaded from its slot in an activation record, address arithmetic is performed—as is illustrated

in instructions 2, 7 and 13 in Ex.1.2.1.

• There is no notion of type at the hardware level, so address values cannot be distinguished

from integer values. For instance, in Ex.1.2.1, 8 is used as an address in instruction 5 and as

an integer in instruction 9.

• Memory accesses do not have to be aligned, so word-sized address values could potentially

be cobbled together from misaligned reads and writes.

• Moreover, it is challenging to obtain reasonable information about the heap. Simple abstrac-

tions for the heap, such as assuming one summary node per malloc site [8, 105, 42] provide

little useful information about the heap when applied to executables. Complex shape ab-

stractions [100] cannot be applied to executables due to scalability reasons.

My work has developed new techniques for analyzing memory accesses in executables that

address these challenges, recover interesting information about memory accesses, and have a cost

that is acceptable, at least for certain applications.

1.3 CodeSurfer/x86: A Tool for Analyzing Executables

Along with GrammaTech, Inc., I have been developing a tool called CodeSurfer/x86 that can

be used for analyzing executables. CodeSurfer/x86 makes use of both IDAPro [67], a disassembly

toolkit, and GrammaTech’s CodeSurfer system [36], a toolkit for building program-analysis and

inspection tools. Fig. 1.3 shows the various components of CodeSurfer/x86. This section sketches

how these components are combined in CodeSurfer/x86.

An x86 executable is first disassembled using IDAPro. In addition to the set of control-flow

graphs for the executable, IDAPro also provides access to the following information: (1) procedure

14

boundaries, (2) calls to library functions (identified using an algorithm called the Fast Library Iden-

tification and Recognition Technology (FLIRT) [53]), and (3) statically known memory addresses

and offsets.

IDAPro provides access to its internal resources via an API that allows users to create plug-ins

to be executed by IDAPro. GrammaTech created a plug-in to IDAPro, called the Connector, that

creates data structures to represent the information obtained from IDAPro. The IDAPro/Connector

combination is also able to create the same data structures for dynamically linked libraries, and

to link them into the data structures that represent the program itself. This infrastructure permits

whole-program analysis to be carried out—including analysis of the code for all library functions

that are called.

The information that is obtained from IDAPro is incomplete in several ways:

• IDAPro uses heuristics to resolve indirect jumps. Consequently, it may not resolve all in-

direct jumps correctly, i.e., it may not find all possible successors to an indirect jump and

in some cases it might even identify incorrect successors. Therefore, the control-flow graph

that is constructed from IDAPro might be incorrect/incomplete. Similarly, IDAPro might not

resolve some indirect calls correctly. Therefore, a call graph created from IDAPro-supplied

information is also incomplete/incorrect.

• IDAPro does not provide a safe estimate of what memory locations are used and/or modified

by each instruction in the executable. Such information is important for tools that aid in

program understanding or bug finding.

Because the information from IDAPro is incorrect/incomplete, it is not suitable as an IR for

automated analysis. Based on the data structures in the Connector, I have developed Value-Set

Analysis (VSA), a static-analysis algorithm that augments and corrects the information provided

by IDAPro in a safe way. Specifically, it provides the following information: (1) an improved set

of control-flow graphs (w/ indirect jumps resolved), (2) an improved call graph (w/ indirect calls

resolved), (3) a set of variable-like entities called a-locs, (4) values held by a-locs at each point

in the program (including possible address values that they may hold), and, (5) used, killed, and

15

Value added beyond IDA Pro

CodeSurfer

Build SDG

Browse

Binary

Connector

Value-set
Analysis

Initial estimate of
• code vs. data
• procedures
• call sites
• malloc sites

IDA Pro

Build
CFGs

Parse
Binary

• fleshed-out CFGs
• fleshed-out call graph
• used, killed, may-killed
variables for CFG nodes

• points-to sets
• reports of violations

Binary
Rewriter

Decompiler

Security
Analyzers

User Scripts

Figure 1.3 Organization of CodeSurfer/x86.

possibly-killed a-locs for CFG nodes. This information is emitted in a format that is suitable for

CodeSurfer.

CodeSurfer takes in this information and builds its own collection of IRs, consisting of abstract-

syntax trees, control-flow graphs, a call graph, and a system dependence graph (SDG). An SDG

consists of a set of program dependence graphs (PDGs), one for each procedure in the program.

A vertex in a PDG corresponds to a construct in the program, such as a statement or instruction, a

call to a procedure, an actual parameter of a call, or a formal parameter of a procedure. The edges

correspond to data and control dependences between the vertices [52]. The PDGs are connected

together with interprocedural edges that represent control dependences between procedure calls

and entries, and data dependences between actual parameters and formal parameters/return values.

Dependence graphs are invaluable for many applications, because they highlight chains of de-

pendent instructions that may be widely scattered through the program. For example, given an

instruction, it is often useful to know its data-dependence predecessors (instructions that write

to locations read by that instruction) and its control-dependence predecessors (control points that

may affect whether a given instruction gets executed). Similarly, it may be useful to know for a

given instruction its data-dependence successors (instructions that read locations written by that

16

instruction) and control-dependence successors (instructions whose execution depends on the de-

cision made at a given control point). CodeSurfer provides access to the IR through a Scheme API,

which can be used to build further tools for analyzing executables.

1.4 The Scope of Our Work

Analyzing executables directly is difficult and challenging; one cannot expect to design algo-

rithms that handle arbitrary low-level code. Therefore, a few words are in order about the goals,

capabilities, and assumptions underlying our work:

• Given an executable as input, the goal is to check whether the executable conforms to a

“standard” compilation model—i.e., a runtime stack is maintained; activation records (ARs)

are pushed on procedure entry and popped on procedure exit; each global variable resides

at a fixed offset in memory; each local variable of a procedure f resides at a fixed offset

in the ARs for f ; actual parameters of f are pushed onto the stack by the caller so that

the corresponding formal parameters reside at fixed offsets in the ARs for f ; the program’s

instructions occupy a fixed area of memory, are not self-modifying, and are separate from

the program’s data.

If the executable does conform to this model, the system will create an IR for it. If it does

not conform, then one or more violations will be discovered, and corresponding error reports

will be issued (see Sect. 3.8).

We envision CodeSurfer/x86 as providing (i) a tool for security analysis, and (ii) a general

infrastructure for additional analysis of executables. Thus, in practice, when the system

produces an error report, a choice is made about how to accommodate the error so that

analysis can continue (i.e., the error is optimistically treated as a false positive), and an IR is

produced; if the user can determine that the error report is indeed a false positive, then the

IR is valid.

• The analyzer does not care whether the program was compiled from a high-level language,

or hand-written in assembly. In fact, some pieces of the program may be the output from a

17

compiler (or from multiple compilers, for different high-level languages), and others hand-

written assembly.

• In terms of what features a high-level-language program is permitted to use, CodeSurfer/x86

is capable of recovering information from programs that use global variables, local vari-

ables, pointers, structures, arrays, heap-allocated storage, objects from classes (and subob-

jects from subclasses), pointer arithmetic, indirect jumps, recursive procedures, and indirect

calls through function pointers (but not runtime code generation or self-modifying code).

• Compiler optimizations often make VSA less difficult, because more of the computation’s

critical data resides in registers, rather than in memory; register operations are more easily

deciphered than memory-access operations. The analyzer is also capable of dealing with

optimizations such as tail calls and tail recursion.

• The major assumption that we make is that IDAPro is able to disassemble a program and

build an adequate collection of preliminary IRs for it. Even though (i) the CFG created by

IDAPro may be incomplete due to indirect jumps, and (ii) the call-graph created by IDAPro

may be incomplete due to indirect calls, incomplete IRs do not trigger error reports. Both

the CFG and the call-graph will be fleshed out according to information recovered during

the course of VSA (see Sect. 3.6). In fact, the relationship between VSA and the preliminary

IRs created by IDAPro is similar to the relationship between a points-to-analysis algorithm

in a C compiler and the preliminary IRs created by the C compiler’s front end. In both cases,

the preliminary IRs are fleshed out during the course of analysis.

Specifically, we are not able to deal with the following issues:

• We are not able to handle executables that modify the code section on-the-fly, i.e., executa-

bles with self-modifying code. When it is applied for such executables, our IR-recovery

algorithm will uncover evidence that the executable might modify the code section, and will

notify the user of the possibility.

18

• Our algorithms are capable of handling executables that contain certain kinds of obfusca-

tions, such as instruction reordering, garbage insertion, register renaming, memory-access

reordering, etc. We cannot deal with executables that use obfuscations such as unpack-

ing/encryption; however, our techniques would be useful when applied to a memory snap-

shot after unpacking has been completed. Our algorithm also relies on the disassembly layer

of the system to identify procedure calls and returns, which is challenging in the face of

some obfuscation techniques.

Even though we are not able to tackle such issues, the techniques that we have developed

remain valuable (from the standpoint of what they can provide to a security analyst), and represent

a significant advance over the prior state of the art.

1.5 Contributions and Organization of the Dissertation

The specific technical contributions of our work, along with the organization of the dissertation,

are summarized below:

In Ch. 2, we present an abstract memory model that is suitable for analyzing executables. The

following concepts form the backbone of our abstract memory model: (1) memory-regions, and

(2) variable-like entities referred to as a-locs.

In Ch. 3, we present Value-Set Analysis (VSA), a combined pointer-analysis and numeric-

analysis algorithm based on abstract interpretation [40], which provides useful information about

memory accesses in an executable. In particular, at each program point, VSA provides informa-

tion about the contents of registers that appear in an indirect memory operand; this permits VSA

to determine the addresses that are potentially accessed, which, in turn, permits it to determine the

potential effects of an instruction that contains indirect memory operands on the state of memory.

VSA is thus capable of dealing with operations that read from or write to memory, unlike previous

techniques which either ignore memory operations altogether [45] or treat memory operations in

an unsound manner [33, 34, 35].

19

In Ch. 4, we present the abstract domain used during VSA. The VSA domain is based on two’s-

complement arithmetic, as opposed to many numeric abstract domains, such as the interval domain

[39] and the polyhedral domain [60], which use unbounded integers or unbounded rationals. Using

a domain based on two’s-complement arithmetic is important to ensure soundness when analyzing

programs (either as an executable or in source-code form) in the presence of integer overflows.

In Ch. 5, we present an abstract-interpretation-based algorithm that combines VSA and Aggre-

gate Structure Identification (ASI) [93] to recover variable-like entities (the a-locs of our abstract

memory model) for the executable. ASI is an algorithm that infers the substructure of aggre-

gates used in a program based on how the program accesses them. On average, our technique

is successful in identifying correctly over 88% of the local variables and over 89% of the fields

of heap-allocated objects. In contrast, previous techniques, such as the one used in the IDAPro

disassembler, recovered 83% of the local variables, but 0% of the fields of heap-allocated objects.

In Ch. 6, we present an abstraction of heap-allocated storage referred to as recency-abstraction.

Recency-abstraction is somewhere in the middle between the extremes of one summary node per

malloc site [8, 42, 105] and complex shape abstractions [100]. In particular, recency-abstraction

enables strong updates to be performed in many cases, and at the same time, ensures that the

results are sound. Using recency-abstraction, we were able to resolve, on average, 60% of the

virtual-function calls in executables that were obtained by compiling C++ programs.

In Ch. 7, we present several techniques that improve the precision of the basic VSA algorithm

presented in Ch. 3. All of the techniques described in Chapters 2 through 7 are incorporated in the

tool that we built for analyzing Intel x86 executables, called CodeSurfer/x86.

In Ch. 8, we present our experience with using CodeSurfer/x86 to find bugs in Windows device-

driver executables. We used CodeSurfer/x86 to analyze device-driver executables without the ben-

efit of either source code or symbol-table/debugging information. We were able to find known bugs

(that had been discovered by source-code analysis tools), along with useful error traces, while hav-

ing a low false-positive rate.

We discuss related work in Ch. 9, and present our conclusions in Ch. 10.

20

Chapter 2

An Abstract Memory Model

One of the several obstacles in IR recovery is that a program’s data objects are not easily iden-

tifiable in an executable. Consider, for instance, a data dependence from statement a to statement

b that is transmitted by write/read accesses on some variable x. When performing source-code

analysis, the programmer-defined variables provide us with convenient compartments for tracking

such data manipulations. A dependence analyzer must show that a defines x, b uses x, and there is

an x-def-free path from a to b. However, in executables, memory is accessed either directly—by

specifying an absolute address—or indirectly—through an address expression of the form “[base

+ index × scale + offset]”, where base and index are registers, and scale and offset are integer

constants. It is not clear from such expressions what the natural compartments are that should be

used for analysis. Because executables do not have intrinsic entities that can be used for analysis

(analogous to source-level variables), a crucial step in the analysis of executables is to identify

variable-like entities. If debugging information is available (and trusted), this provides one pos-

sibility; however, even if debugging information is available, analysis techniques have to account

for bit-level, byte-level, word-level, and bulk-memory manipulations performed by programmers

(or introduced by the compiler) that can sometimes violate variable boundaries [9, 80, 94]. If

a program is suspected of containing malicious code, even if debugging information is present,

it cannot be entirely relied upon. For these reasons, it is not always desirable to use debugging

information—or at least to rely on it alone—for identifying a program’s data objects. (Similarly,

past work on source-code analysis has shown that it is sometimes valuable to ignore information

available in declarations and infer replacement information from the actual usage patterns found

in the code [48, 86, 93, 102, 112].)

21

In this chapter, we present an abstract memory model for analyzing executables.

2.1 Memory-Regions

A simple model for memory is to consider memory as an array of bytes. Writes (reads) in

this trivial memory model are treated as writes (reads) to the corresponding element of the array.

However, there are some disadvantages in such a simple model:

• It may not be possible to determine specific address values for certain memory blocks, such

as those allocated from the heap via malloc. For the analysis to be sound, writes to (reads

from) such blocks of memory have to be treated as writes to (reads from) any part of the

heap, which leads to imprecise (and mostly useless) information about memory accesses.

• The runtime stack is reused during each execution run; in general, a given area of the runtime

stack will be used by several procedures at different times during execution. Thus, at each

instruction a specific numeric address can be ambiguous (because the same address may

belong to different Activation Records (ARs) at different times during execution): it may

denote a variable of procedure f, a variable of procedure g, a variable of procedure h, etc.

(A given address may also correspond to different variables of different activations of f.)

Therefore, an instruction that updates a variable of procedure f would have to be treated as

possibly updating the corresponding variables of procedures g, h, etc., which also leads to

imprecise information about memory accesses.

To overcome these problems, we work with the following abstract memory model [11]. Al-

though in the concrete semantics the activation records for procedures, the heap, and the memory

area for global data are all part of one address space, for the purposes of analysis, we separate the

address space into a set of disjoint areas, which are referred to as memory-regions (see Fig. 2.1).

Each memory-region represents a group of locations that have similar runtime properties: in par-

ticular, the runtime locations that belong to the ARs of a given procedure belong to one memory-

region. Each (abstract) byte in a memory-region represents a set of concrete memory locations. For

a given program, there are three kinds of regions: (1) the global-region, for memory locations that

22

. . .

. . .

GLOBAL DATA

GLOBAL DATA

AR of G

AR of G

. . .

AR of F

AR of G

AR of F

Runtime Address Space Memory Regions

Figure 2.1 Abstract Memory Model

hold initialized and uninitialized global data, (2) AR-regions, each of which contains the locations

of the ARs of a particular procedure, and (3) malloc-regions, each of which contains the locations

allocated at a particular malloc site. We do not assume anything about the relative positions of

these memory-regions.

For an n-bit architecture, the size of each memory-region in the abstract memory model is 2n.

For each region, the range of offsets within the memory-region is [−2n−1, 2n−1 − 1]. Offset 0 in

an AR-region represents all concrete addresses at which an activation record for the procedure is

created. Offset 0 in a malloc-region represents all concrete addresses at which the heap block is

allocated. For the global-region, offset 0 represents the concrete address 0.

The analysis treats all data objects, whether local, global, or in the heap, in a fashion similar

to the way compilers arrange to access variables in local ARs, namely, via an offset. We adopt

this notion as part of our abstract semantics: an abstract memory address is represented by a pair:

(memory-region, offset).

By convention, esp is the stack pointer in the x86 architecture. On entry to a procedure P,

esp points to the top of the stack, where the new activation record for P is created. Therefore, in

our abstract memory model, esp holds abstract address (AR P, 0) on entry to procedure P, where

AR P is the activation-record region associated with procedure P. Similarly, because malloc returns

the starting address of an allocated block, the return value for malloc (if allocation is successful)

23

is the abstract address (Malloc n, 0), where Malloc n is the memory-region associated with the

call-site on malloc.1

Example 2.1.1 Fig. 2.2(b) shows the memory-regions for the program in Ex.1.2.1. There is a

single procedure, and hence two regions: one for global data and one for the AR of main. Further-

more, the abstract address of local variable py is the pair (AR main,-44) because it is at offset

-44 with respect to the AR’s creation point. Similarly, the abstract address of global variable b is

(Global,8). �

2.2 Abstract Locations (A-Locs)

Memory-regions provide a way of summarizing information about a set of concrete addresses,

but they alone do not provide an analog of the source-level variables used in source-code analysis.

As pointed out earlier, executables do not have intrinsic entities like source-code variables that can

be used for analysis; therefore, the next step is to recover variable-like entities from the executable.

We refer to such variable-like entities as a-locs (for “abstract locations”).

Heretofore, the state of the art in recovering variable-like entities is represented by IDAPro

[67], a commercial disassembly toolkit. IDAPro’s algorithm is based on the observation that the

data layout of the program is established before generating the executable; therefore, accesses to

global variables appear as “[absolute-address]”, and accesses to local variables appear as “[esp

+ offset]” or “[ebp − offset]” in the executable. IDAPro identifies such statically-known absolute

addresses, esp-based offsets, and ebp-based offsets in the program, and treats the set of locations in

between two such absolute addresses or offsets to be one a-loc. That is, IDAPro recovers variables

based on purely local techniques.2 We refer to IDAPro’s algorithm as the Semi-Naı̈ve algorithm.

Let us look at the a-locs identified by Semi-Naı̈ve algorithm for the program in Ex.1.2.1.

1 CodeSurfer/x86 actually uses an abstraction of heap-allocated storage that involves more than one memory-region
per call-site on malloc [12]. This is discussed in Ch. 6

2 IDAPro does incorporate a few global analyses, such as one for determining changes in stack height at call-sites.
However, the techniques are ad-hoc and based on heuristics.

24

-40

-36

ret-addr

-32

pts[4].y

pts[4].x

pts[0].x

pts[0].y

-8

-4

0

. . .

py -44

mem_8

mem_4
8

4

Global Region
-40

-36

ret-addr
0

var_44
-44

var_36

var_40

AR_main

-231

FormalGuard
4

231-1

LocalGuard

(a) (b)

Figure 2.2 (a) Layout of the activation record for procedure main in Ex.1.2.1; (b) a-locs
identified by IDAPro.

Global a-locs In Ex.1.2.1, instructions “mov ebx, [4]” and “mov ecx,[8]” have direct mem-

ory operands, namely, [4] and [8]. IDAPro identifies these statically-known absolute addresses

as the starting addresses of global a-locs and treats the locations between these addresses as one

a-loc. Consequently, IDAPro identifies addresses 4..7 as one a-loc, and the addresses 8..11 as an-

other a-loc. Therefore, we have two a-locs: mem 4 (for addresses 4..7) and mem 8 (for addresses

8..11). (Note that an executable can have separate sections for read-only data. The global a-locs in

such sections are marked as read-only a-locs.)

Local a-locs Local a-locs are determined on a per-procedure basis as follows. At each instruc-

tion in the procedure, IDAPro computes the difference between the value of esp (or ebp) at that

point and the value of esp at procedure entry. These computed differences are referred to as

sp delta.3 After computing sp delta values, IDAPro identifies all esp-based indirect operands

in the procedure. In Ex.1.2.1, instructions “lea eax, [esp+8]”, “mov [esp+0], eax”, “lea

eax, [esp+4]”, and “mov edi, [esp+0]” have esp-based indirect operands. Recall that on

entry to procedure main, esp contains the abstract address (AR main, 0). Therefore, for every

3 Note that when computing the sp delta values, IDAPro uses heuristics to identify changes to esp (or ebp) at
procedure calls and instructions that access memory. Therefore, the sp delta values may be incorrect (i.e., unsound).
Consequently, the layout obtained by IDAPro for an AR may be incorrect. However, this is not an issue for our
algorithms (such as the Value-Set Analysis algorithm discussed in Ch. 3) that use the a-locs identified by IDAPro; all
our algorithms have been designed to be resilient to IDAPro having possibly provided an incorrect layout for an AR.

25

esp/ebp-based operand, the computed sp delta values give the corresponding offset in AR main.

For instance, [esp+0], [esp+4], and [esp+8] refer to offsets -44, -40 and -36 respectively in

AR main. This gives rise to three local a-locs: var 44, var 40, and var 36. Note that var 44

corresponds to all of the source-code variable py. In contrast, var 40 and var 36 correspond to

disjoint segments of array pts[]: var 40 corresponds to program variable pts[0].x; var 36

corresponds to the locations of program variables pts[0].y, p[1..4].x, and p[1..4].y. In

addition to these a-locs, an a-loc for the return address is also defined; its offset in AR main is 0.

In addition to the a-locs identified by IDAPro, two more a-locs are added:(1) a FormalGuard

that spans the space beyond the topmost a-loc in the AR-region, and (2) a LocalGuard that spans

the space below the bottom-most a-loc in the AR-region. FormalGuard and LocalGuard delimit

the boundaries of an activation record. Therefore, a memory write to FormalGuard or LocalGuard

represents a write beyond the end of an activation record.

Heap a-locs In addition to globals and locals, we have one a-loc per heap-region. There are no

heap a-locs for Ex.1.2.1 because it does not access the heap.

Registers In addition to the global, heap, and local a-locs, registers are also considered to be

a-locs.

Once the a-locs are identified, we also maintain a mapping from a-locs to (rgn, off, size) triples,

where rgn represents the memory-region to which the a-loc belongs, off is the starting offset of the

a-loc in rgn, and size is the size of the a-loc. The starting offset of an a-loc a in a region rgn is de-

noted by offset(rgn, a). For Ex.1.2.1, offset(AR main,var 40) is -40 and offset(Global,

mem 4) is 4. This mapping is used to interpret memory-dereferencing operations as described in

Sect. 3.4.

26

Chapter 3

Value-Set Analysis (VSA)

As described in Sect. 1.2, one of the significant obstacles in analyzing executables is that it

is very difficult to obtain useful information about how the program manipulates data in memory.

This chapter describes the value-set analysis (VSA) algorithm, which provides useful informa-

tion about memory accesses in an executable. VSA is a combined numeric-analysis and pointer-

analysis algorithm that determines a safe approximation of the set of numeric values or addresses

that each register and a-loc holds at each program point. In particular, at each program point, VSA

provides information about the contents of registers that appear in an indirect memory operand; this

permits it to determine the addresses (and hence the a-locs) that are potentially accessed, which,

in turn, permits it to determine the potential effects on the state of an instruction that contains an

indirect memory operand.

The problem that VSA addresses has similarities with the pointer-analysis problem that has

been studied in great detail for programs written in high-level languages. For each variable (say v),

pointer analysis determines an over-approximation of the set of variables whose addresses v can

hold. Similarly, VSA determines an over-approximation of the set of addresses that a register or a

memory location holds at each program point. For instance, VSA determines that at instruction L1

in Ex.1.2.1 eax holds offsets −40, −32, −24, . . . , −8 in the activation record of procedure main,

which corresponds to the addresses of field x of the elements of array pts[0..4].

On the other hand, VSA also has some of the flavor of numeric static analyses, where the goal

is to over-approximate the integer values that each variable can hold; in addition to information

about addresses, VSA determines an over-approximation of the set of integer values that each data

27

object can hold at each program point. For instance, VSA determines that at instruction L1, edx

holds numeric values in the range [0, 4].

A key feature of VSA is that it tracks integer-valued and address-valued quantities simultane-

ously. This is crucial for analyzing executables because numeric values and addresses are indistin-

guishable at runtime. Moreover, unlike earlier algorithms [33, 34, 35, 45], VSA takes into account

data manipulations involving memory locations also.

VSA is based on abstract interpretation [40], where the aim is to determine the possible states

that a program reaches during execution, but without actually running the program on specific

inputs. Abstract-interpretation techniques explore the program’s behavior for all possible inputs

and all possible states that the program can reach. To make this feasible, the program is run in the

aggregate, i.e., on descriptors that represent collections of memory configurations. The universal

set of descriptors used in abstract interpretation is referred to as an abstract domain.

VSA is a flow-sensitive, context-sensitive, interprocedural, abstract-interpretation algorithm

(parameterized by call-string length [101]) that is based on an independent-attribute abstract do-

main. Informally, an element in the abstract domain for VSA associates each a-loc (including

registers) in the executable with an (abstract) set of memory addresses and numeric values. That

is, an element in the abstract domain represents a set of concrete (i.e., run-time) states of a pro-

gram. In the rest of this chapter, we formalize the VSA domain and describe the value-set analysis

(VSA) algorithm in detail.

This chapter is organized as follows. Sects. 3.1, 3.2, and 3.3 describe the VSA domain.

Sects. 3.4, 3.5, and 3.7 describe several variations of the VSA algorithm. Sect. 3.6 describes how

VSA handles indirect jumps and indirect calls. Sect. 3.8 discusses soundness issues. CodeSurfer/x86

uses the context-sensitive VSA algorithm described in Sect. 3.7. Algorithms described in Sects. 3.4

and 3.5 are simply used to present the core ideas that are needed to describe the context-sensitive

VSA algorithm.

28

3.1 Value-Set

A value-set represents a set of memory addresses and numeric values. Recall from Sect. 2.1

that every memory address is a pair (memory-region, offset). Therefore, a set of memory addresses

can be represented by a set of tuples of the form (rgni 7→ {oi1, oi2, ..., oini
}). A value-set uses a

k-bit strided-interval (SI) [94] to represent the set of offsets in each memory region. A k-bit strided

interval s[l, u] represents a set of integers {i ∈ [−2k−1, 2k−1 − 1] | l ≤ i ≤ u, i ≡ l(mod s)}.

• s is called the stride.

• [l, u] is called the interval.

• 0[l, l] represents the singleton set {l}.

We also call ⊥ a strided interval; it denotes the empty set of offsets.

Consider the set of addresses S = {(Global 7→ {1, 3, 5, 9}), (AR main 7→ {−48,−40})}.

The value-set for S is the set {(Global 7→ 2[1,9]), (AR main 7→ 8[−48,−40])}. Note that the

value-set for S is an over-approximation; the value-set includes the global address 7, which is not

an element of S. For conciseness, a value-set will be shown as an r-tuple of SIs, where r is the

number of memory-regions for the executable. By convention, the first component of the r-tuple

represents addresses in the Global memory-region. Using the concise notation, the value-set for

S is the 2-tuple, (2[1,9],8[−48,−40]).

A value-set is capable of representing a set of memory addresses as well as a set of numeric

values. For instance, the 2-tuple (2[1,9],⊥) denotes the set of numeric values {1, 3, 5, 7, 9} as well

as the set of addresses {(Global, 1), (Global, 3), . . . , (Global, 9)}; the 2-tuple (⊥,8[−48,−40])

represents the set of addresses {(AR main,−48), (AR main,−40)}. This is a crucial requirement

for analyzing executables because numbers and addresses are indistinguishable in an executable.

Advantages of Strided Intervals for Analysis of Executables We chose to use SIs instead of

ranges because, in our context, it is important for the analysis to discover alignment and stride

information so that it can interpret indirect-addressing operations that implement either (i) field-

access operations in an array of structs, or (ii) pointer-dereferencing operations.

29

Let *a denote the contents of a-loc a. When the contents of a-loc a is not aligned with the

boundaries of other a-locs, a memory access *a can fetch portions of two a-locs; similarly, a write

to *a can overwrite portions of two a-locs. Such operations can be used to forge new addresses.

For instance, suppose that the address of a-loc x is 1000, the address of a-loc y is 1004, and the

contents of a is 1001. Then *a (as a 4-byte fetch) would retrieve 3 bytes of x and 1 byte of y.

This issue motivated the use of SIs because SIs are capable of representing certain non-convex

sets of integers, and ranges (alone) are not. Suppose that the contents of a is the set {1000, 1004};

then *a (as a 4-byte fetch) would retrieve all of x (and none of y) or all of y (and none of x). The

range [1000, 1004] includes the addresses 1001, 1002, and 1003, and hence *[1000, 1004] (as

a 4-byte fetch) could result in a forged address. However, because VSA is based on SIs, {1000,

1004} is represented exactly, as the SI 4[1000, 1004]. If VSA were based on range information

rather than SIs, it would either have to try to track segments of (possible) contents of data objects,

or treat such dereferences conservatively by returning >vs, thereby losing track of all information.

The Value-Set Abstract Domain Value-sets form a lattice. Informal descriptions of a few 32-bit

value-set operators are given below. Ch. 4 describes the operations on value-sets in detail.

• (vs1vvs vs2): Returns true if the value-set vs1 is a subset of vs2, false otherwise.

• (vs1 uvs vs2): Returns the meet (intersection) of value-sets vs1 and vs2.

• (vs1 tvs vs2): Returns the join (union) of value-sets vs1 and vs2.

• (vs1∇vs vs2): Returns the value-set obtained by widening [39] vs1 with respect to vs2, e.g.,

if vs1 = (4[40,44]) and vs2 = (4[40,48]), then (vs1∇vs vs2) = (4[40,231 − 3]). Note

that the upper bound for the interval in the result is 231 − 3 (and not 231 − 1) because

231 − 3 is the maximum positive value that is congruent to 40 modulo 4.

• (vs+vs c): Returns the value-set obtained by adjusting all values in vs by the constant c, e.g.,

if vs = (4,4[4,12]) and c = 12, then (vs+vs c) = (16,4[16,24]).

30

• ∗(vs, s): Returns a pair of sets (F, P). F represents the set of “fully accessed” a-locs: it

consists of the a-locs that are of size s and whose starting addresses are in vs. P represents

the set of “partially accessed” a-locs: it consists of (i) a-locs whose starting addresses are in

vs but are not of size s, and (ii) a-locs whose addresses are in vs but whose starting addresses

and sizes do not meet the conditions to be in F .

• RemoveLowerBounds(vs): Returns the value-set obtained by setting the lower bound

of each component SI to −231. For example, if vs = ([0,100], [100,200]), then

RemoveLowerBounds(vs)= ([−231,100], [−231,200]).

• RemoveUpperBounds(vs): Similar to RemoveLowerBounds, but sets the upper bound of

each component to 231 − 1.

3.2 Abstract Environment (AbsEnv)

AbsEnv (for “abstract environment”) is the abstract domain used during VSA to represent a

set of concrete stores that arise at a given program point. This section formalizes AbsEnv.

Let Proc denote the set of memory-regions associated with procedures in the program;

AllocMemRgn denote the set of memory-regions associated with heap-allocation sites; Global

denote the memory-region associated with the global data area; and a-locs[R] denote the a-locs

that belong to memory-region R. We work with the following basic domains:

MemRgn = {Global} ∪ Proc ∪ AllocMemRgn

ValueSet = MemRgn→ StridedInterval⊥

AlocEnv[R] = a-locs[R]→ ValueSet

Flag = {CF,ZF,SF,PF,AF,OF}
Flag represents the set of x86 flags. An x86 flag is either set to TRUE or FALSE at runtime. To

represent multiple possible Boolean values, we use the abstract domain Bool3:

Bool3 = {FALSE,MAYBE, TRUE}.

In addition to the Booleans FALSE and TRUE, Bool3 has a third value, MAYBE, which means

“may be FALSE or may be TRUE”.

31

AbsEnv maps each region R to its corresponding AlocEnv[R], each register to a ValueSet, and

each Flag to a Bool3:

AbsEnv =

(register→ ValueSet)

× (Flag→ Bool3)

× ({Global} → AlocEnv[Global])

× (Proc→ AlocEnv[Proc]⊥)

× (AllocMemRgn→ AlocEnv[AllocMemRgn]⊥)

That is, an AbsEnv represents a set of concrete states that arise at a program point on a set of runs

of a program. Because the values of read-only locations cannot change during program execution,

read-only a-locs are not included in AbsEnv for efficiency.

In the above definitions, ⊥ is used to denote a partial map. For instance, a ValueSet may not

contain offsets in some memory-regions. Similarly, in AbsEnv, a procedure P whose activation

record is not on the stack does not have an AlocEnv[P].

We use the following notational conventions:

• Given a memory a-loc or a register a-loc a and ae ∈ AbsEnv, ae[a] refers to the ValueSet

for a-loc a in ae.

• Given vs ∈ ValueSet and r ∈ MemRgn, vs[r] refers to the strided interval for memory-

region r in vs.

• Given f ∈ Flag and ae ∈ AbsEnv, ae[f] refers to the Bool3 for flag f in ae.

3.3 Representing Abstract Stores Efficiently

To represent the abstract store at each program point efficiently, we use applicative dictionaries,

which provide a space-efficient representation of a collection of dictionary values when many of

the dictionary values have nearly the same contents as other dictionary values in the collection

[96, 84].

32

Applicative dictionaries can be implemented using applicative balanced trees, which are stan-

dard balanced trees on which all operations are carried out in the usual fashion, except that when-

ever one of the fields of an interior node M would normally be changed, a new node M ′ is created

that duplicates M , and changes are made to the fields of M ′. To be able to treat M ′ as the child

of parent(M), it is necessary to change the appropriate child-field in parent(M), so a new node is

created that duplicates parent(M), and so on, all the way to the root of the tree. Thus, new nodes

are introduced for each of the original nodes along the path from M to the root of the tree.

Because an operation that restructures a standard balanced tree may modify all of the nodes on

the path to the root anyway, and because a single operation on a standard balanced tree that has n

nodes takes at most O(log n) steps, the same operation on an applicative balanced tree introduces

at most O(log n) additional nodes and also takes at most O(log n) steps. The new tree resulting

from the operation shares the entire structure of the original tree except for the nodes on a path

from M ′ to the root, plus at most O(log n) other nodes that may be introduced to maintain the

balance properties of the tree. In our implementation, the abstract stores from the VSA domain

are implemented using applicative AVL trees [84]. That is, each function or partial function in a

component of AbsEnv is implemented with an applicative AVL tree.

The use of shared data structures to reduce the space required for program analysis has a long

history; it includes applicative shared dictionaries [84, 96], shared set representations [92], and

binary decision diagrams [23, 24]. Recent work that discusses efficient representations of data

structures for program analysis includes [18, 78].

3.4 Intraprocedural Analysis

This subsection describes an intraprocedural version of VSA. For the time being, we consider

programs that have a single procedure and no indirect jumps. To aid in explaining the algorithm, we

adopt a C-like notation for program statements. We will discuss the following kinds of instructions,

where R1 and R2 are two registers of the same size, c, c1, and c2 are explicit integer constants, and

33

≤ and ≥ represent signed comparisons:

R1 = R2 + c R1 ≤ c

*(R1 + c1) = R2 + c2 R1 ≥ R2

R1 = *(R2 + c1) + c2

Conditions of the two forms shown on the right are obtained from the instruction(s) that set condi-

tion codes used by branch instructions (see Sect. 3.4.2).

The analysis is performed on a control-flow graph (CFG) for the procedure. The CFG consists

of one node per x86 instruction, and there is a directed edge n1→n2 between a pair of nodes n1

and n2 in the CFG if there is a flow of control from n1 to n2. The edges are labeled with the

instruction at the source of the edge. If the source of an edge is a branch instruction, then the edge

is labeled according to the outcome of the branch. For instance in the CFG for the program in

Ex.1.2.1, the edge 12→L1 is labeled edx<5, whereas the edge 12→13 is labeled edx≥5. Each

CFG has two special nodes: (1) an enter node that represents the entry point of the procedure, (2)

an exit node that represents the exit point of the procedure.

Each edge in the CFG is associated with an abstract transformer that captures the semantics of

the instruction represented by the CFG edge. Each abstract transformer takes an in ∈ AbsEnv and

returns a new out ∈ AbsEnv. Sample abstract transformers for various kinds of edges are listed in

Fig. 3.1. Interesting cases in Fig. 3.1 are described below:

• Because each AR region of a procedure that may be called recursively—as well as each

heap region—potentially represents more than one concrete data object, assignments to their

a-locs must be modeled by weak updates, i.e., the new value-set must be joined with the

existing one, rather than replacing it (see case two of Fig. 3.1).

• Furthermore, unaligned writes can modify parts of various a-locs (which could possibly

create forged addresses). In case 2 of Fig. 3.1, such writes are treated safely by setting the

values of all partially modified a-locs to >vs. Similarly, case 3 treats a load of a potentially

forged address as a load of >vs. (Techniques for more precise handling of partial accesses to

a-locs are discussed in Ch. 5.)

34

Instruction AbstractTransformer(in: AbsEnv): AbsEnv

R1 = R2 + c
Let out := in and vsR2 := in[R2]
out[R1] := vsR2 +vs c
return out

∗(R1 + c1) = R2 + c2

Let vsR1 := in[R1], vsR2 := in[R2], (F, P) = ∗(vsR1 +vs c1, s), and out := in
Let Proc be the procedure containing the instruction
if (|F | = 1 ∧ |P | = 0 ∧ (F has no heap a-locs or a-locs of recursive procedures)) then

out[v] := vsR2 +vs c2, where v ∈ F // Strong update
else

for each v ∈ F do
out[v] := out[v]tvs(vsR2 +vs c2) // Weak update

end for
end if
for each v ∈ P do // Set partially accessed a-locs to >vs

out[v] := >vs

end for
return out

R1 = ∗(R2 + c1) + c2

Let vsR2 := in[R2], (F, P) = ∗(vsR2 +vs c1, s) and out := in
if (|P | = 0) then

Let vsrhs :=
⊔vs{in[v] | v ∈ F}

out[R1] := vsrhs +vs c2
else

out[R1] := >vs

end if
return out

R1 ≤ c
Let vsc := ([−231, c],>si, . . . ,>si) and out := in
out[R1] := in[R1]uvs vsc
return out

R1 ≥ R2

Let vsR1 := in[R1] and vsR2 := in[R2]
Let vslb := RemoveUpperBounds(vsR2) and vsub := RemoveLowerBounds(vsR1)
out := in
out[R1] := vsR1 uvs vslb

out[R2] := vsR2 uvs vsub

return out

Figure 3.1 Abstract transformers for VSA. (In cases 2 and 3, s represents the size of the
dereference performed by the instruction.)

Given a CFG G for a procedure (without calls), the goal of intraprocedural VSA is to annotate

each node n with absEnvn ∈ AbsEnv, where absEnvn represents an over-approximation of the

set of memory configurations that arise at node n over all possible runs of the program. The

intraprocedural version of the VSA algorithm is given in Fig. 3.2. The value of absEnventer consists

of information about the initialized global variables and the initial value of the stack pointer (esp).

35

1: decl worklist: Set of Node
2:
3: proc IntraProceduralVSA()
4: worklist := {enter}
5: absEnventer := Initial values of global a-locs and esp

6: while (worklist 6= ∅) do
7: Select and remove a node n from worklist
8: m := Number of successors of node n
9: for i = 1 to m do
10: succ := GetCFGSuccessor(n, i)
11: edge amc := AbstractTransformer(n→ succ, absEnvn)
12: Propagate(succ, edge amc)
13: end for
14: end while
15: end proc
16:
17: proc Propagate(n: Node, edge amc: AbsEnv)
18: old := absEnvn
19: new := oldtae edge amc
20: if (old 6= new) then
21: absEnvn := new
22: worklist := worklist ∪ {n}
23: end if
24: end proc

Figure 3.2 Intraprocedural VSA Algorithm.

The AbsEnv abstract domain has very long ascending chains.1 Hence, to ensure termination,

widening needs to be performed. Widening needs to be carried out at at least one edge of every

cycle in the CFG; however, the edge at which widening is performed can affect the accuracy of the

analysis. To choose widening edges, our implementation of VSA uses techniques from [20] (see

Sect. 7.1).

Example 3.4.1 This example presents the results of intraprocedural VSA for the program in Ex.1.2.1.

For the program in Ex.1.2.1, the AbsEnv for the entry node of main is {esp 7→ (⊥,0), mem 4

7→ (1,⊥), mem 8 7→ (2,⊥)}. Recall that instruction “L1:mov [eax], ebx” updates the x mem-

bers of array pts. Instruction “14: mov eax, [edi]” initializes the return value of main to

p[0].y. The results of the VSA algorithm at instructions L1, 8, and 14 are as follows:

1 The domain is of bounded height because strided intervals are based on 32-bit 2’s complement arithmetic. How-
ever, for a given executable, the bound is very large: each a-loc can have up to |MemRgn| SIs; hence the height is
(n× |MemRgn| × 232), where n is the total number of a-locs.

36

Instruction L1 and 8 Instruction 14

esp 7→ (⊥,−44)
mem 4 7→ (1,⊥)
mem 8 7→ (2,⊥)
eax 7→ (⊥,8[−40,231 − 7])
ebx 7→ (1,⊥)
ecx 7→ (2,⊥)
edx 7→ (1[0,4],⊥)
edi 7→ >vs

var 44 7→ (⊥,−36)

esp 7→ (⊥,−44)
mem 4 7→ (1,⊥)
mem 8 7→ (2,⊥)
eax 7→ (⊥,8[−40,231 − 7])
ebx 7→ (1,⊥)
ecx 7→ (2,⊥)
edx 7→ (5,⊥)
edi 7→ (⊥,−36)

var 44 7→ (⊥,−36)

That is, we have the following facts:

• At instruction L1, the set of possible values for edx is {0, 1, 2, 3, 4}. At instruction 14, the

only possible value for edx is 5. (Recall that edx corresponds to the loop variable i in the C

program.)

• At instruction L1, eax holds the following set of addresses:

{(AR main,−40), (AR main,−32), . . . , (AR main,0), . . . , (AR main,231 − 7)}

That is, at instruction L1, eax holds the addresses of the local a-locs var 40, var 36,

ret-addr, and FormalGuard. (See Fig. 2.2(b) for the layout of AR main.) Therefore, in-

struction L1 possibly modifies var 40, var 36, ret-addr, and FormalGuard.

Similarly, at instruction 8, eax+4 refers to the following set of addresses:

{(AR main,−36), (AR main,−28), . . . , (AR main,4), . . . , (AR main,231 − 3)}

Therefore, instruction 8 possibly modifies var 36 and FormalGuard.

• At instruction 14, the only possible value for edi is the address (AR main,−36), which

corresponds to the address of the local a-loc var 36.

The value-sets obtained by the analysis can be used to discover the data dependences that exist

between instructions 8 and 14. At instruction 8, the set of possibly-modified a-locs is {var 36,

FormalGuard}. At instruction 14, the set of used a-locs is {var 36}. Reaching-definitions analy-

sis based on this information reveals that instruction 14 is data dependent on instruction 8. How-

ever, reaching-definitions analysis based on the information at instruction L1 would also reveal

37

that instruction 14 is also data dependent on instruction L1, which is spurious (i.e., a false posi-

tive), because the set of actual addresses accessed at instruction L1 and instruction 14 are different.

The reason for the spurious data dependence is that the Semi-Naı̈ve algorithm, described in Ch. 2,

recovers too coarse a set of a-locs. For instance, for the program in Ex.1.2.1, the Semi-Naı̈ve al-

gorithm failed to recover any information about the array pts. Ch. 5 presents an improved a-loc

recovery algorithm that is capable of recovering information about arrays, fields of structs, etc.,

thereby reducing the number of spurious data dependences.

At instruction L1, the set of possibly-modified a-locs includes ret-addr, which is the a-loc for

the return address. This is because the analysis was not able to determine a precise upper bound

for eax at instruction L1, although register edx has a precise upper and lower bound at instruction

L1. Note that, because eax and edx are incremented in lock-step within the loop, the affine relation

eax = (esp + edx× 8) + 4 holds at instruction L1. We discuss in Sect. 7.2 how the implemented

system actually uses such affine relations to find precise upper or lower bounds for registers, such

as eax, within a loop. �

3.4.1 Idioms

Before applying an abstract transformer, the instruction is checked to see if it matches a pat-

tern for which we know how to carry out abstract interpretation more precisely than if value-set

arithmetic is performed directly. Some examples are given below.

XOR r1,r2, when r1 = r2 = r. The XOR instruction sets its first operand to the bitwise exclusive-

or (∧) of the instruction’s two operands. The idiom catches the case when XOR is used to set a

register to 0; hence, the a-loc for register r is set to the value-set (0[0,0],⊥, . . .).

TEST r1,r2, when r1 = r2 = r. The TEST instruction computes the bitwise and (&) of its two

operands, and sets the SF, ZF, and PF flags according to the result. The idiom addresses how the

value of ZF is set when the value-set of r has the form (si,⊥, . . .):

38

ZF :=


TRUE if γ(si) = {0}

FALSE if γ(si) ∩ {0} = ∅

MAYBE otherwise

where ‘γ’ is the concretization function for the strided-interval domain (see Defn. 4.2.1).

CMP a,b or CMP b,a. In the present implementation, we assume that an allocation always suc-

ceeds (and hence value-set analysis only explores the behavior of the system on executions in

which allocations always succeed). Under this assumption, we can apply the following idiom:

Suppose that k1, k2, . . . are malloc-regions, the value-set for a is (⊥, . . . , sik1, sik2, . . .), and the

value-set for b is (0[0,0],⊥, . . .). Then ZF is set to FALSE.

3.4.2 Predicates for Conditional Branch Instructions

In x86 architectures, predicates used in high-level control constructs such as if, while, for,

etc. are implemented using conditional branch instructions. A conditional branch instruction (say

jxx TGT) evaluates a predicate involving the processor’s flags and transfers control to the target

instruction (TGT) if the predicate expression is TRUE; otherwise, it transfers control to the next

instruction. For instance, a jl instruction evaluates the conditional expression SF = 1, where SF

is the sign flag. It is not clear from conditional expressions such as SF = 1 what the high-level

predicate is.

To determine the high-level predicate, it is necessary to consider the instruction that sets the

processor’s flags before the conditional jump instruction is executed. In Ex.1.2.1, i < 5 is com-

piled down to the x86 instruction sequence (cmp edx, 5; jl L1). The cmp operation sets the

processor’s flags to the result of computing the arithmetic expression edx − 5. Instruction “cmp

edx, 5” sets SF to 1 iff (edx − 5 < 0), i.e., iff edx < 5. Because instruction jl is preceded by

“cmp edx, 5” and jl transfers control to L1 iff SF = 1, we conclude that the instruction sequence

(cmp edx, 5; jl L1) implements the high-level predicate edx < 5. High-level predicates for

various instruction sequences involving conditional jump instructions are shown in Fig. 3.3.

39

cmp X, Y sub X, Y test X, Y

Flag Predicate Predicate Flag Predicate Predicate Flag Predicate Predicate
Unsigned Comparisons

ja,jnbe ¬CF ∧ ¬ZF X >u Y ¬CF ∧ ¬ZF X′ 6= 0 ¬ZF X&Y 6= 0
jae,jnb,jnc ¬CF X ≥u Y ¬CF ? TRUE TRUE

jb,jnae,jc CF X <u Y CF X′ 6= 0 FALSE FALSE

jbe,jna CF ∨ ZF X ≤u Y CF ∨ ZF ? ZF X&Y = 0
je,jz ZF X = Y ZF X′ = 0 ZF X&Y = 0
jne,jnz ¬ZF X 6= Y ¬ZF X′ 6= 0 ¬ZF X&Y 6= 0

Signed Comparisons
jg,jnle ¬ZF ∧ (OF⇔ SF) X > Y ¬ZF ∧ (OF⇔ SF) X′ = 0 ¬ZF ∧ ¬SF (X&Y 6= 0) ∧ (X > 0 ∨ Y > 0)
jge,jnl OF⇔ SF X ≥ Y OF⇔ SF ? ¬SF (X ≥ 0 ∨ Y ≥ 0)
jl,jnge (OF⊕ SF) X < Y (OF⊕ SF) X′ = 0 SF (X < 0 ∧ Y < 0)
jle,jng ZF ∨ OF⊕ SF X ≤ Y ZF ∨ (OF⊕ SF) ? ZF ∨ SF (X&Y = 0) ∨ (X < 0 ∧ Y < 0)
(Note: A⊕ B = (¬A ∧ B) ∨ (A ∧ ¬B), & refers to the bitwise AND operation.)

Figure 3.3 High-level predicates for conditional jump instructions. (The flag predicates under
“test X, Y” have been simplified: test sets CF and OF to FALSE.)

3.5 Interprocedural Analysis

Let us consider procedure calls, but ignore indirect jumps and calls for now. The interpro-

cedural algorithm is similar to the intraprocedural algorithm, but analyzes the supergraph of the

executable.

Supergraph In addition to the nodes used in an intraprocedural CFG, a supergraph has two

nodes for every call-site: a call node and an end-call node. A supergraph for a program is obtained

by first building CFGs for individual procedures and adding edges among call, end-call, and enter

nodes as follows:

• For every call-site call P, an edge is added from the CFG node for call P to the enter

node of procedure P.

• For every procedure P, an edge is added from the exit node of P to the end-call node associ-

ated with every call to procedure P.

The call→enter and the exit→end-call edges are referred to as linkage edges. The abstract trans-

formers for non-linkage edges in a supergraph are similar to the ones used in Sect. 3.4. The abstract

transformers for the linkage edges are discussed in this section.

40

-44

-40

ret-addr
0

ext_48
-48

var_40

ext_44

AR_main

arg_0

ret-addr

8

0

arg_4

4

AR_initArray

mem_8
8

4

Global Region

mem_4

Figure 3.4 Layout of the memory-regions for the program in Ex.3.5.1. (LocalGuard and
FormalGuard are not shown.)

Example 3.5.1 We use the program shown below to explain the interprocedural version of VSA.

The program consists of two procedures, main and initArray. Procedure main has an array

pts of struct Point objects, which is initialized by calling initArray. After initialization,

initArray returns the value of pts[0].y.

typedef struct {
int x,y;

} Point;

int a = 1, b = 2;

int initArray(

struct Points pts[],

int n) {
int i, *py, *p;

py = &pts[0].y;

p = &pts[0];

for(i = 0; i < n; ++i) {
p->x = a;

p->y = b;

p += 8;

}
return *py;

}

int main(){
Point pts[5];

return initArray(pts, 5);

}

proc initArray ;

1 sub esp, 4 ;Allocate locals

2 lea eax, [esp+16] ;t1 = &pts[0].y

3 mov [esp+0], eax ;py = t1

4 mov ebx, [4] ;ebx = a

5 mov ecx, [8] ;ecx = b

6 mov edx, 0 ;i = 0

7 lea eax, [esp+12] ;p = &pts[0]

L1: mov [eax], ebx ;p->x = a

8 mov [eax+4],ecx ;p->y = b

9 add eax, 8 ;p += 8

10 inc edx ;i++

11 cmp edx,[esp+4] ;

12 jl L1 ;(i < n)?L1:exit loop

13 mov edi, [esp+0] ;t2 = py

14 mov eax, [edi] ;set return value (*t2)

15 add esp, 12 ;Deallocate locals and

;actuals

16 retn ;

;

proc main ;

17 sub esp, 40 ;Allocate locals

18 push 5 ;2nd actual

19 push esp ;1st actual

20 call initArray ;

21 add esp, 40 ;

22 retn ;

The memory-regions and their layout are shown in Fig. 3.4. Note that all the local variables in

initArray are mapped to registers in the disassembly: i is mapped to edx, p is mapped to eax,

and py is mapped to edi. Therefore, AR initArray only has the following three a-locs: the return

address, formal parameter arg 0, and formal parameter arg 4. �

41

Observation 3.5.2 In our abstract memory model, we do not assume anything about the relative

positions of the memory-regions. However, at a call, it is possible to establish the relative positions

of the caller’s AR-region (AR C) and the callee’s AR-region (AR X). Fig. 3.5 illustrates this idea.

At runtime, AR C and AR X overlap on the stack just before a call is executed. Specifically, the

abstract address (AR C,−s) in memory-region AR C corresponds to the abstract address (AR X,4) in

memory-region AR X. Therefore, the value of esp at a call refers to the abstract address (AR C,−s)

or (AR X,4). This observation about the relative positions of AR C and AR X established at a call-site

is used to develop the abstract transformers for the linkage edges.

For instance, at instruction 20 in Ex.3.5.1, (AR main,−48) corresponds to (AR initArray, 4).

Note that the observation about the relative positions of AR main and AR initArray at instruc-

tion 20 enables us to establish a correspondence between the formal parameters arg 0 and arg 4

of AR initArray and the actual parameters ext 48 and ext 44 of AR main, respectively. (See

Fig. 3.4.) This correspondence between the actuals parameters of the caller and the formal pa-

rameters of the callee is used to initialize the formal parameters in the abstract transformer for a

call→enter edge. �

. . .

GLOBAL DATA

AR_X

AR_C

. . .

esp

(AR_C, 0)

s (AR_C, -s)
(or)

(AR_X, 4)return address

(AR_X, 0)

Figure 3.5 Relative positions of the AR-regions of the caller (C) and callee (X) at a call.

3.5.1 Abstract Transformer for call→enter Edge

The pseudo-code for the abstract transformer for the call→enter edge is shown in Fig. 3.6.

Procedure CallEnterTransformer takes the current AbsEnv value at the call node as an argument

and returns a new AbsEnv value for the call→enter edge. As a first step, the value-set of esp

42

1: proc CallEnterTransformer(in : AbsEnv): AbsEnv
2: Let C be the caller and X be the callee.
3: out := in
4: out[esp] := (⊥, . . . ,0, . . . ,⊥) // 0 occurs in the slot for AR X

5: for each a-loc a ∈ a-locs[AR X] do
6: Let Sa be the size of the a-loc a.
7: // Find the corresponding a-locs in AR C.
8: (F, P) := ∗(in[esp] +vs offset(AR X, a), Sa)
9: newa := ⊥vs

10: if (P 6= ∅) then
11: newa := >vs

12: else
13: vsactuals := tvs{in[v] | v ∈ F}
14: newa := vsactuals
15: end if
16: if X is recursive then
17: out[a] := in[a]tvs newa
18: else
19: out[a] := newa
20: end if
21: end for
22: return out
23: end proc

Figure 3.6 Transformer for call→enter edge.

in the newly computed value is set to (⊥, . . . ,0, . . . ,⊥), where the 0 occurs in the slot for AR X

(line [4] in Fig. 3.6). This step corresponds to changing the current AR from that of AR C to AR X.

After initializing esp, for every a-loc a ∈ a-locs[AR X], the corresponding set of a-locs in the

AR X is determined (line [8] of Fig. 3.6), and a new value-set for a (namely newa) is computed

(lines [6]–[15] of Fig. 3.6). (Note that line [8] of Fig. 3.6 is based on Obs. 3.5.2.) If procedure X is

not recursive, the value-set for a in out is initialized to newa (line [19] of Fig. 3.6). If procedure X

is recursive, a weak update is performed (line [17] of Fig. 3.6). It is necessary to perform a weak

update (rather than a strong update as at line [19] of Fig. 3.6) because the AR-region for a recursive

procedure (say P) represents more than one concrete instance of P’s activation record. Note that

initialization of the a-locs of callee X (lines [5]–[20] of Fig. 3.6) has the effect of copying the actual

parameters of caller C to the formal parameters of callee X.2

2Note that when processing the other instructions of callee X that update the value of a formal parameter, we do
not update the corresponding actual parameter of the caller, which is unsound. We do not update the value-set of the
actual parameter simultaneously because we do not know relative positions of AR C and AR X at these instructions.
The problem can be addressed by tracking the relative positions of the memory-regions at all instructions (and an
experimental implementation that does so was carried out by J. Lim).

43

1: proc MergeAtEndCall(inc: AbsEnv, inx: AbsEnv): AbsEnv
2: out := inx

3: Let AR C be the caller’s memory-region.
4: Let AR X be the callee’s memory-region.
5: out[ebp] := inc[ebp]
6: SIc := inc[esp][AR C]
7: SIx := inx[esp][AR X]
8: if (SIx 6= ⊥) then
9: VS′esp := out[esp]
10: VS′esp[AR C] := (SIc +si SIx)

11: if (AR C 6= AR X) then VS′esp[AR X] := ⊥
12: out[esp] := VS′esp
13: for each a-loc a ∈ a-locs[AR X]\{FormalGuard, LocalGuard} do
14: Update those a-locs in a-locs[AR C] that correspond to a. (This step is similar to lines [5]–[20] of Fig. 3.6.)
15: end for
16: else
17: out[esp] := inx[esp]
18: end if
19: return out
20: end proc

Figure 3.7 Abstract transformer for exit→end-call edge.

Example 3.5.3 In the fixpoint solution for the program in Ex.3.5.1, the AbsEnv for the enter node

of initArray is as follows:

mem 4 7→ (1,⊥,⊥) eax 7→ (⊥,−40,⊥)
mem 8 7→ (2,⊥,⊥) esp 7→ (⊥,⊥,0)
arg 0 7→ (⊥,−40,⊥) ext 48 7→ (⊥,−40,⊥)
arg 4 7→ (5,⊥,⊥) ext 44 7→ (5,⊥,⊥)

(The regions in the value-sets are listed in the following order: (Global, AR main, AR initArray).)

Note that the formal parameters arg 0 and arg 4 of initArray have been initialized to the value-

sets of the corresponding actual parameters ext 48 and ext 44, respectively. �

3.5.2 Abstract Transformer for exit→end-call Edge

Unlike other abstract transformers, the transformer for the exit→end-call edge takes two AbsEnv

values: (1) inc, the AbsEnv value at the corresponding call node, and (2) inx, the AbsEnv value at

the exit node. The desired value for the exit→end-call edge is similar to inx except for the value-

sets of ebp, esp, and the a-locs of AR C. The new out ∈ AbsEnv is obtained by merging inc and

inx, as shown in Fig. 3.7.

44

In standard code, the value of ebp at the exit node of a procedure is usually restored to the

value of ebp at the call. Therefore, the value-set for ebp in the new out is obtained from the value-

set for ebp at the call-site (line [5] of Fig. 3.7). The actual implementation of VSA checks the

assumption that the value-set of ebp at the exit node has been restored to the value-set of ebp at the

corresponding call node by comparing inx[ebp] and inc[ebp]. If inx[ebp] is different from inc[ebp],

VSA issues a report to the user.

Obs. 3.5.2 about the relative positions of AR-regions AR C and AR X is used to determine the

value-set for esp at the end-call node (lines [6]–[18] of Fig. 3.7). Recall that if esp holds the

abstract address (AR C, s) at the call, (AR C, s) corresponds to (AR X,4). When the call is executed,

the return address is pushed on the stack. Therefore, at the enter node of procedure X, esp holds

the abstract address (AR C, s − 4) or (AR X,0). Consequently, if esp holds the abstract address

(AR X, t) at the exit node of procedure X3, the value-set of esp in the new AbsEnv value for the

exit→end-call edge can be set to (AR C, s +si t). For instance, at the call instruction 20 in Ex.3.5.1,

the value-set for esp is (⊥,−48,⊥). Therefore, the abstract address (AR main,−48) corresponds

to the abstract address (AR initArray,4). Furthermore, at the exit node of procedure initArray,

esp holds the abstract address (AR initArray,8). Consequently, the value-set of esp at the end-

call node is the abstract address (AR main,−40). Note that this adjustment to esp corresponds to

restoring the space allocated for actual parameters at the call-site of AR main. Finally, the value-

sets of the a-locs in a-locs[AR C] are updated, which is similar to lines [5]–[20] of Fig. 3.6. If the

value-set for esp at the exit node has no offsets in AR X (the false branch of the condition at line [8]

of Fig. 3.7), the value-set of esp for the exit→end-call edge is set to the value-set for esp at the

exit node. (The condition at line [8] of Fig. 3.7 is usually false for procedures, such as alloca, that

do not allocate a new activation record on the stack.)

3.5.3 Interprocedural VSA algorithm

The algorithm for interprocedural VSA is similar to the intraprocedural VSA algorithm given

in Fig. 3.2 except that the Propagate procedure is replaced with the one shown in Fig. 3.8.

3 We assume that the return address has been popped off the stack when the exit node is processed.

45

1: proc Propagate(n: node, edge amc: AbsEnv)
2: old := absEnvn
3: if n is an end-call node then
4: Let c be the call node associated with n
5: edge amc := MergeAtEndCall(edge amc, absEnvc(cs))
6: end if
7: new := oldtae edge amc
8: if (old 6= new) then
9: absEnvn := new
10: worklist := worklist ∪ {n}
11: end if
12: end proc

Figure 3.8 Propagate procedure for interprocedural VSA.

3.6 Indirect Jumps and Indirect Calls

The supergraph of the program will not be complete in the presence of indirect jumps and

indirect calls. Consequently, the supergraph has to be augmented with missing jump and call

edges using abstract memory configurations determined by VSA. For instance, suppose that VSA

is interpreting an indirect jump instruction J1:jmp [1000 + eax × 4], and let the current abstract

store at this instruction be {eax 7→ (1[0,9],⊥, . . . ,⊥)}. Edges need to be added from J1 to

the instructions whose addresses could be in memory locations {1000, 1004, . . . , 1036}. If the

addresses {1000, 1004, . . . , 1036} refer to the read-only section of the program, then the addresses

of the successors of J1 can be read from the header of the executable. If not, the addresses of the

successors of J1 in locations {1000, 1004, . . . , 1036} are determined from the current abstract

store at J1. Due to possible imprecision in VSA, it could be the case that VSA reports that the

locations {1000, 1004, . . . , 1036} have all possible addresses. In such cases, VSA proceeds

without recording any new edges. However, this could lead to an under-approximation of the

value-sets at program points. Therefore, the analysis issues a report to the user whenever such

decisions are made. We will refer to such instructions as unsafe instructions. Another issue with

using the results of VSA is that an address identified as a successor of J1 might not be the start of

an instruction. Such addresses are ignored, and the situation is reported to the user.

When new edges are identified, instead of adding them right away, VSA defers the addition of

new edges until a fixpoint is reached for the analysis of the current supergraph. After a fixpoint

46

is reached, the new edges are added and VSA is restarted on the new supergraph. This process

continues until no new edges are identified during VSA.

Indirect calls are handled similarly, with a few additional complications.

• A successor instruction identified by the method outlined above may be in the middle of a

procedure. In such cases, VSA reports this to the user.

• The successor instruction may not be part of a procedure that was identified by IDAPro.

This can be due to the limitations of IDAPro’s procedure-finding algorithm: IDAPro does

not identify procedures that are called exclusively via indirect calls. In such cases, VSA can

invoke IDAPro’s procedure-finding algorithm explicitly, to force a sequence of bytes from

the executable to be decoded into a sequence of instructions and spliced into the IR for the

program. (At present, this technique has not yet been incorporated in our implementation.)

3.7 Context-Sensitive VSA

The VSA algorithm discussed so far is context-insensitive, i.e., at each node in a procedure it

does not maintain different abstract states for different calling contexts. Therefore, information

from different calling contexts can be merged, thereby resulting in a loss of precision. In this

section, we discuss a context-sensitive VSA algorithm based on the call-strings approach [101].

The context-sensitive VSA algorithm distinguishes information from different calling contexts to

a limited degree, thereby computing a tighter approximation of the set of reachable concrete states

at every program point.

3.7.1 Call-Strings

The call-graph of a program is a labeled graph in which each node represents a procedure, each

edge represents a call, and the label on an edge represents the call-site corresponding to the call

represented by the edge. A call-string [101] is a sequence of call-sites (c1c2 . . . cn) such that call-

site c1 belongs to the entry procedure, and there exists a path in the call-graph consisting of edges

47

1: decl worklist: set of 〈CallStringk,Node〉
2:
3: proc ContextSensitiveVSA()
4: worklist := {〈∅, enter〉}
5: absMemConfigenter[ε] := Initial values of global a-locs and esp

6: while (worklist 6= ∅) do
7: Select and remove a pair 〈cs, n〉 from worklist
8: m := Number of successors of node n
9: for i = 1 to m do
10: succ := GetSuccessor(n, i)
11: edge amc := AbstractTransformer(n→ succ, absMemConfign[cs])
12: cs set := GetCSSuccs(cs, n, succ)
13: for (each succ cs ∈ cs set) do
14: Propagate(succ cs, succ, edge amc)
15: end for
16: end for
17: end while
18: end proc
19:
20: proc GetCSSuccs(pred cs: CallStringk, pred: Node, succ: Node): set of CallStringk
21: result := ∅
22: if (pred is an exit node and succ is an end-call node) then
23: Let c be the call node associated with succ
24: for each succ cs in absMemConfigc do
25: if (pred cs cs succ cs) then
26: result := result ∪ {succ cs}
27: end if
28: end for
29: else if (pred is a call node and succ is an enter node) then
30: result := {(pred cs�cs pred)}
31: else
32: result := {pred cs}
33: end if
34: return result
35: end proc
36:
37: proc Propagate(cs: CallStringk, n: Node, edge amc: AbsEnv)
38: old := absMemConfign[cs]
39: if n is an end-call node then
40: Let c be the call node associated with n
41: edge amc := MergeAtEndCall(edge amc, absMemConfigc[cs])
42: end if
43: new := oldtae edge amc
44: if (old 6= new) then
45: absMemConfign[cs] := new
46: worklist := worklist ∪ {〈cs, n〉}
47: end if
48: end proc

Figure 3.9 Context-Sensitive VSA algorithm. (The function MergeAtEndCall is given in
Fig. 3.7.)

with labels c1, c2, . . . , cn. CallString is the set of all call-strings for the executable. CallSites is

the set of call-sites in the executable.

A call-string suffix of length k is either (c1c2 . . . ck) or (∗c1c2 . . . ck), where c1, c2, . . . , ck ∈

CallSites. (c1c2 . . . ck) represents the string of call-sites c1c2 . . . ck. (∗c1c2 . . . ck), which is referred

48

to as a saturated call-string, represents the set {cs|cs ∈ CallString, cs = πc1c2 . . . ck, and |π| ≥

1}. CallStringk is the set of saturated call-strings of length k, plus non-saturated call-strings of

length ≤ k. Consider the call-graph shown in Fig. 3.10(a). The set CallString2 for this call-graph

is {ε, C1, C2, C1C3, C2C4, *C3C5, *C4C5, *C5C4}.

The following operations are defined for a call-string suffix:

• cs�cs c: Let cs ∈ CallStringk and c ∈ CallSites. cs�cs c returns a new call-string suffix

c′ ∈ CallStringk as follows:

c′ =

 (c1c2 . . . cic) if cs = (c1c2 . . . ci) ∧ (i < k)

(∗c2c3 . . . ckc) if cs = (c1c2 . . . ck)

• cs1 cs cs2: Let cs1 ∈ CallStringk and cs2 ∈ CallStringk. (cs1 cs cs2) evaluates to TRUE

if cs1 leads to cs2, i.e., if ∃c ∈ CallSites such that (cs1 �cs c) = cs2; otherwise, it evaluates

to FALSE.

3.7.2 Context-Sensitive VSA Algorithm

The context-sensitive VSA algorithm associates each program point with an AbsMemConfig:

AbsMemConfig = (CallStringk → AbsEnv⊥)

That is, at every program point, VSA maps each call-string to a different AbsEnv, thereby

possibly distinguishing the information obtained from different call-sites to a limited extent.

The context-sensitive VSA algorithm is shown in Fig. 3.9. The worklist consists of

〈CallString,Node〉 pairs. After selecting a pair from the worklist, a new AbsEnv is computed

for each successor edge of the node by applying the abstract transformer for the edge. In addi-

tion to computing a new AbsEnv value, we identify the call-string suffixes for each successor (see

GetCSSuccs in Fig. 3.9). For a call node, the call-string suffix for the successor node is obtained by

pushing the call node onto the end of the call-string (possibly saturating the call-string). For an exit

node, the call-string suffixes for the end-call node are the call-string suffixes at the corresponding

call that can lead to the call-string suffix at the exit. For all other nodes, the call-string suffix for the

successor is same as the current call-string suffix. For each call-string suffix cs of the successor,

49

the AbsEnv value for cs at the successor node is updated with the new AbsEnv value computed

for the successor edge (see the Propagate function in Fig. 3.9).

3.7.3 Memory-Region Status Map

Recall from case 2 of Fig. 3.1 that, for an a-loc that belongs to the AR of a recursive procedure,

it is only possible to perform a weak update during intraprocedural VSA. During context-sensitive

VSA, on the other hand, it is possibly to perform a strong update in certain cases. For instance,

we can perform a strong update for a-locs that belong to a recursive procedure, if recursion has

not yet occurred in the given calling context. During VSA, all abstract transformers are passed

a memory-region status map that indicates which memory-regions, in the context of a given call-

string cs, are summary memory-regions. Whereas the Global region is always non-summary and

all malloc-regions are always summary, to decide whether a procedure P ’s memory-region is a

summary memory-region, first call-string cs is traversed, and then the call graph is traversed, to

see whether the runtime stack could contain multiple pending activation records for P . Fig. 3.10(b)

shows the memory-region status map for different call-strings of length 2.

The memory-region status map provides one of two pieces of information used to identify

when a strong update can be performed. In particular, an abstract transformer can perform a strong

update if the operation modifies (a) a register, or (b) a non-array variable4 in a non-summary

memory-region.

3.8 Soundness of VSA

Soundness would mean that, for each instruction in the executable, value-set analysis would

identify an AbsMemConfig that over-approximates the set of all possible concrete stores that a

program reaches during execution for all possible inputs. This is a lofty goal; however, it is not

clear that a tool that achieves this goal would have practical value. (It is achievable trivially, merely

by setting all value-sets to >vs.) There are less lofty goals that do not meet this standard—but may

4 The semi-naı̈ve algorithm described in Ch. 2 does not recover information about arrays. However, the a-loc-
recovery algorithm described in Ch. 5 is capable of recovering information about arrays.

50

MAIN

BA

D

c1 c2

c3
c4

c5

Call-string Length Memory-region sta-
tus map

Comment

C1C3 2 MAIN 7→ NS, A 7→ NS,
D 7→ NS

B is inaccessible

C2C4 2 MAIN 7→ NS, B 7→ NS,
D 7→ NS,

A is inaccessible

*C5C4 2 MAIN 7→ NS, A 7→ NS,
B 7→ S,D 7→ S

(a) (b)

Figure 3.10 (a) Call-graph; (b) memory-region status map for different call-strings. (Key: NS:
non-summary, S: summary; * refers to a saturated call-string.)

result in a more practical system. In particular, we may not care if the system is sound, as long as it

can provide warnings about the situations that arise during the analysis that threaten the soundness

of the results. This is the path that we are following in our work.

Here are some of the cases in which the analysis can be unsound, but where the system gener-

ates a report about the nature of the unsoundness:

• The program is vulnerable to a buffer-overrun attack. This can be detected by identifying a

point at which there can be a write past the end of a memory-region.

• The control-flow graph and call-graph may not identify all successors of indirect jumps and

indirect calls. Report generation for such cases is discussed in Sect. 3.6.

• A related situation is a jump to a code sequence concealed in the regular instruction stream;

the alternative code sequence would decode as a legal code sequence when read out-of-

registration with the instructions in which it is concealed. The analysis could detect this

situation as an anomalous jump to an address that is in the code segment, but is not the start

of an instruction.

• With self-modifying code, the control-flow graph and call-graph are not available for analy-

sis. The analysis can detect the possibility that the program is self-modifying by identifying

an anomalous jump or call to a modifiable location, or by a write to an address in the code

region.

51

Chapter 4

Value-Set Arithmetic

In this section, we describe strided intervals and value-sets, and sketch how they are used to

define abstract transformers for x86 instructions.

4.1 Notational Conventions

We use different typefaces to make the following distinctions: integers (Z) and other mathe-

matical expressions are written in ordinary mathematical notation (e.g., 1, −231, 231 − 1, 1 ≤ 2,

etc.); variables that hold integers appear in italics (e.g., x). Bounded integers, such as unsigned

numbers and signed two’s-complement numbers, as well as variables that hold such quantities,

appear in bold (e.g., 1, −231, 231 − 1). Fragments of C code appear in Courier (e.g., 1, −231,

231 − 1, a, if(a < b){. . .}, z = x + y;).

When the same name appears in different typefaces, our convention is that the meaning changes

appropriately: x, x, and x refer to program variable x, whose signed two’s-complement value (or

unsigned value, if appropriate) is x, and whose integer value is x.

Names that denote strided intervals are also written in bold.

Let [x]m denote the congruence class of x mod m, defined as [x]m
def
= {x+ i×m | i ∈ Z}; note

that [x]0 = {x}.

4.2 Strided-Interval Arithmetic

A k-bit strided interval is a triple s[lb,ub] such that −2k ≤ lb ≤ ub ≤ 2k − 1. The meaning

of a strided interval is defined as follows:

52

Definition 4.2.1 [Meaning of a strided interval]. A k-bit strided interval s[lb,ub] represents the

set of integers

γ(s[lb,ub]) = {i ∈ [−2k, 2k − 1] | lb ≤ i ≤ ub, i ∈ [lb]s}.

�

Note that a strided interval of the form 0[a, a] represents the singleton set {a}. Except where

noted, we will assume that we are working with 32-bit strided intervals.

In a strided interval s[lb,ub], s is called the stride, and [lb,ub] is called the interval. Stride

s is unsigned; bounds lb and ub are signed.1 The stride is unsigned so that each two-element set

of 32-bit numbers, including such sets as {−231, 231 − 1}, can be denoted exactly. For instance,

{−231, 231 − 1} is represented exactly by the strided interval (232 − 1)[−231,231 − 1].

As defined above, some sets of numbers can be represented by more than one strided interval.

For instance, γ(4[4,14]) = {4, 8, 12} = γ(4[4,12]). Without loss of generality, we will assume

that all strided intervals are reduced (i.e., upper bounds are tight, and whenever the upper bound

equals the lower bound the stride is 0). For example, 4[4,12] and 0[12,12] are reduced strided

intervals; 4[4,14] and 4[12,12] are not.

The remainder of this section describes abstract arithmetic and bit-level operations on strided

intervals for use in abstract interpretation [40].

Definition 4.2.2 [Soundness criterion]. For each opsi, if si3 = si1 opsi si2, then γ(si3) ⊇

{a op b | a ∈ γ(si1) and b ∈ γ(si2)}. �

Sound algorithms for performing arithmetic and bit-level operations on intervals (i.e., strided

intervals with stride 1) are described in a book by H. Warren [115]. They provided a starting point

for the operations that we define for strided intervals, which extend Warren’s operations to take

strides into account.

Below, we summarize several of Warren’s interval operations, and describe how a sound stride

for si3 can be obtained for each operation opsi ∈ {+si, –si
u, –

si,++si, – –si, |si,∼si,&si, ∧si}.
1To reduce notation, we rely on context to indicate whether a typeface conversion denotes a conversion to a signed

two’s-complement value or to an unsigned value: if x is a stride, x denotes an unsigned value; if y is an interval bound,
y denotes a signed two’s-complement value.

53

4.2.1 Addition (+si)

Suppose that we have the following bounds on two two’s-complement values x and y: a ≤

x ≤ b and c ≤ y ≤ d. With 32-bit arithmetic, the result of x + y is not always in the interval

[a + c,b + d] because the bound calculations a + c and b + d can overflow in either the positive

or negative direction. Warren provides the method shown in Tab. 4.1 to calculate a bound on x + y.

(1) a+ c < −231, b+ d < −231 ⇒ a + c ≤ x + y ≤ b + d

(2) a+ c < −231, b+ d ≥ −231 ⇒ −231 ≤ x + y ≤ 231 − 1

(3) −231 ≤ a+ c < 231, b+ d < 231 ⇒ a + c ≤ x + y ≤ b + d

(4) −231 ≤ a+ c < 231, b+ d ≥ 231 ⇒ −231 ≤ x + y ≤ 231 − 1

(5) a+ c ≥ 231, b+ d ≥ 231 ⇒ a + c ≤ x + y ≤ b + d

Table 4.1 Cases to consider for bounding the result of adding two signed two’s-complement
numbers [115, p. 56].

Case (3) of Tab. 4.1 is the case in which neither bound calculation overflows. In cases (1)

and (5) of Tab. 4.1, the result of x + y is bounded by [a + c,b + d] even though both bound

calculations overflow. Thus, we merely need to identify cases (2) and (4), in which case the bounds

imposed are the extreme negative and positive numbers (see lines [9]–[11] of Fig. 4.1). This can

be done by the code that appears on lines [4]–[7] of Fig. 4.1: if u is negative, then case (2) holds;

if v is negative, then case (4) holds [115, p. 57].

In the proof of Thm. 4.2.4 (see below), we will make use of the following observation:

Observation 4.2.3 In case (1) of Tab. 4.1, all three sums a + c, x + y, and b + d yield values that

are too high by 232 (compared to a + c, x + y, and b + d, respectively) [115, p. 56]. Similarly, in

case (5), all three sums yield values that are too low by 232. �

Fig. 4.1 shows a C procedure that uses these ideas to compute s1[a,b] +si s2[c,d], but also

takes the strides s1 and s2 into account. The gcd (greatest common divisor) operation is used to

find a sound stride for the result.2

2By convention, gcd(0, a) = a, gcd(a, 0) = a, and gcd(0, 0) = 0.

54

1: void addSI(int a, int b, unsigned s1,

2: int c, int d, unsigned s2,

3: int& lbound, int& ubound, unsigned& s) {
4: lbound = a + c;

5: ubound = b + d;

6: int u = a & c & ∼lbound & ∼(b & d & ∼ubound);
7: int v = ((a ∧ c) | ∼(a ∧ lbound)) & (∼b & ∼d & ubound);

8: if(u | v < 0) { // case (2) or case (4)

9: s = 1;

10: lbound = 0x80000000;

11: ubound = 0x7FFFFFFF;

12: }
13: else s = gcd(s1, s2);

14: }

Figure 4.1 Implementation of abstract addition (+si) for strided intervals.

Theorem 4.2.4 [Soundness of +si]. If si3 = si1 +si si2, then γ(si3) ⊇ {a+b | a ∈ γ(si1) and b ∈

γ(si2)}. �

Proof: The soundness of the interval of si3 follows from the arguments given in [115]. We need to

show that the stride computed by procedure addSI from Fig. 4.1 is sound.

In lines [9]–[11] of Fig. 4.1, which correspond to cases (2) and (4), the answer is the entire

interval [−231, 231 − 1], so the stride of 1 is obviously sound. In all other situations, gcd is used to

find the stride.

Let si1 = s1[lb1,ub1], SI1 = γ(si1), si2 = s2[lb2,ub2], and SI2 = γ(si2). We consider the

cases where

si3 = gcd(s1, s2)[lb1 + lb2,ub1 + ub2].

Let3

b1 =

0 if s1 = 0

(ub1 − lb1)/s1 otherwise

b2 =

0 if s2 = 0

(ub2 − lb2)/s2 otherwise

Thus,
3By the assumption that we work only with reduced strided intervals, in a strided interval s[lb,ub], s 6= 0 implies

that s divides evenly into (ub− lb).

55

SI1 = {lb1 + i× s1 | 0 ≤ i ≤ b1}

= {lb1, lb1 + s1, . . . , lb1 + b1 × s1}

SI2 = {lb2 + j × s2 | 0 ≤ j ≤ b2}

= {lb2, lb2 + s2, . . . , lb2 + b2 × s2}

and SI1 + SI2 = {lb1 + lb2, . . . , lb1 + lb2 + i× s1 + j × s2, . . . , lb1 + lb2 + b1 × s1 + b2 × s2}.

Let s = gcd(s1, s2), s1 = s ×m, and s2 = s × n. We wish to show that s divides evenly into

the difference between an arbitrary element e in SI1 + SI2 and the lower-bound value lb1 + lb2.

Let e be some element of SI1 + SI2: e = (lb1 + lb2) + i × s1 + j × s2, where 0 ≤ i ≤ b1 and

0 ≤ j ≤ b2. The difference e− (lb1 + lb2) is non-negative and equals i× s1 + j× s2, which equals

s× (i×m+ j × n), and hence is divisible by s.

Moreover, by Obs. 4.2.3, when we compare the values in SI1+SI2 to the interval [−231, 231−1],

they are either

• all too low by 232 (case (1) of Tab. 4.1),

• in the interval [−231, 231 − 1] (case (3) of Tab. 4.1), or

• all too high by 232 (case (5) of Tab. 4.1).

Let −231 ≤ e′ ≤ 231 − 1 be e adjusted by an appropriate multiple of 232. Similarly, let −231 ≤

lb ≤ 231 − 1 be lb1 + lb2 adjusted by the same multiple of 232. (Note that, by Obs. 4.2.3, lb

is the minimum element if all elements of SI1 + SI2 are similarly adjusted.) The argument that

e−(lb1+lb2) is divisible by s carries over in each case to an argument that e′ ∈ [lb]s. Consequently,

γ(si3) ⊇ SI1 + SI2, as was to be shown. �

4.2.2 Unary Minus (−si
u)

Suppose that we have the following bounds on the two’s-complement value y: c ≤ y ≤

d. Then −d ≤ −y ≤ −c. The number −231 is representable as a 32-bit two’s-complement

number, but 231 is not. Moreover, if c = −231, then −c = −231 as well, which means that we

do not necessarily have −y ≤ −c (note that −c is a two’s-complement value in this expression).

However, in all other cases we have −d ≤ −y ≤ −c; by the assumption that we work only with

56

reduced strided intervals, in s[c,d] the upper bound d is achievable, which allows us to retain s as

the stride of –si
u(s[c,d]):

–si
u(s[c,d]) =


0[−231,−231] if c = d = −231

s[−d,−c] if c 6= −231

1[−231,231 − 1] otherwise

4.2.3 Subtraction (−si), Increment (++si), and Decrement (−−si)

The +si and –si
u operations on strided intervals can be used to implement other arithmetic oper-

ations, such as subtraction (–si), increment (++si), and decrement (– –si), as follows:

x –si y = x+si(–si
u y)

++si x = x+si 0[1,1]

– –si x = x+si 0[−1,−1]

4.2.4 Bitwise Or (|si)

Following Warren, [115, p. 58–63], we develop the algorithm for |si (bitwise-or on strided

intervals) by first examining how to bound bitwise-or on unsigned values and then using this as a

subroutine in the algorithm for |si. Suppose that we have the following bounds on unsigned values

x and y: a ≤ x ≤ b and c ≤ y ≤ d. The two algorithms from Warren’s book given in Fig. 4.2.4

provide bounds on the minimum and maximum possible values, respectively, that x |y can attain.

Warren argues [115, p. 58–59], that the minimum possible value of x |y can be found by

scanning a and c from left-to-right, and finding the leftmost position at which either

• a 0 of a can be changed to 1, and all bits to the right set to 0, yielding a number a′ such that

a′ ≤ b and (a′ | c) < (a | c), or

• a 0 of c can be changed to 1, and all bits to the right set to 0, yielding a number c′ such that

c′ ≤ d and (a | c′) < (a | c).

This is implemented by function minOR of Fig. 4.2.4. For instance, suppose that we have

57

1: unsigned minOR(unsigned a, unsigned b,

2: unsigned c, unsigned d) {
3: unsigned m, temp;

4: m = 0x80000000;

5: while(m != 0) {
6: if(∼a & c & m) {
7: temp = (a | m) & -m;

8: if(temp <= b) {
9: a = temp;

10: break;

11: }
12: }
13: else if(a & ∼c & m) {
14: temp = (c | m) & -m;

15: if(temp <= d) {
16: c = temp;

17: break;

18: }
19: }
20: m = m >> 1;

21: }
22: return a | c;

23: }

1: unsigned maxOR(unsigned a, unsigned b,

2: unsigned c, unsigned d) {
3: unsigned m, temp;

4: m = 0x80000000;

5: while(m != 0) {
6: if(b & d & m) {
7: temp = (b - m) | (m - 1);

8: if(temp >= a) {
9: b = temp;

10: break;

11: }
12: temp = (d - m) | (m - 1);

13: if(temp >= c) {
14: d = temp;

15: break;

16: }
17: }
18: m = m >> 1;

19: }
20: return b | d;

21: }

Figure 4.2 Implementation of minOR [115, p. 59] and maxOR [115, p. 60].

0000101 = a ≤ x ≤ b = 0001001

0010011 = c ≤ y ≤ d = 0101001.

We reject a′ = 0010000 because 0010000 6≤ 0001001 = b; however, we find that c′ =

0010100 meets the condition 0010100 ≤ 0101001 = d, and

(a | c′) = (0000101 |0010100)

= 0010101

< 0010111

= (0000101 |0010011)

= (a | c).

Note that Warren’s algorithm relies on the assumption that it is working on intervals with strides

of 1. For instance, we could select the new contribution to the lower bound, c′ = 0010100 >

0010011 = c, without having to worry about whether a stride value repeatedly added to c might

miss c′.

The algorithm to find the maximum possible value of x |y (Fig. 4.2.4) has a similar flavor [115,

p. 60].

58

a b c d signed minOR signed maxOR

< 0 < 0 < 0 < 0 minOR(a,b, c,d) maxOR(a,b, c,d)

< 0 < 0 < 0 ≥ 0 a −1

< 0 < 0 ≥ 0 ≥ 0 minOR(a,b, c,d) maxOR(a,b, c,d)

< 0 ≥ 0 < 0 < 0 c −1

< 0 ≥ 0 < 0 ≥ 0 min(a, c) maxOR(0,b,0,d)

< 0 ≥ 0 ≥ 0 ≥ 0 minOR(a,0xFFFFFFFF, c,d) maxOR(0,b, c,d)

≥ 0 ≥ 0 < 0 < 0 minOR(a,b, c,d) maxOR(a,b, c,d)

≥ 0 ≥ 0 < 0 ≥ 0 minOR(a,b, c,0xFFFFFFFF) maxOR(a,b,0,d)

≥ 0 ≥ 0 ≥ 0 ≥ 0 minOR(a,b, c,d) maxOR(a,b, c,d)

Table 4.2 Signed minOR(a,b, c,d) and maxOR(a,b, c,d) [115, p. 63]. Warren’s method
uses unsigned minOR and maxOR to find bounds on the bitwise-or of two signed

two’s-complement values x and y, where a ≤ x ≤ b and c ≤ y ≤ d. (Because a ≤ b and c ≤ d,
the nine cases shown above are exhaustive.)

Tab. 4.2 shows the method that Warren gives for finding bounds on the bitwise-or of two signed

two’s-complement values x and y, where a ≤ x ≤ b and c ≤ y ≤ d [115, p. 63]. The method

calls the procedures from Fig. 4.2.4, which find bounds on the bitwise-or of two unsigned values.

Function ntz of Fig. 4.3 counts the number of trailing zeroes of its argument x. At line [3] of

Fig. 4.3, y is set to a mask that identifies the trailing zeroes of x [115, p. 11], i.e., y is set to the

binary number 0i1j , where i+ j = 32 and j equals the number of trailing zeroes in x. The trailing

ones of y are then counted in the while-loop in lines [5]–[8].

We now turn to the algorithm for bitwise-or on strided intervals (|si). Suppose that we want to

perform s1[a,b] |si s2[c,d]. As illustrated by the topmost set shown in the left column in Fig. 4.4,

all elements in γ(s1[a,b]) share the same t1 = ntz(s1) low-order bits: because the t1 low-order

bits of stride s1 are all 0, repeated addition of s1 to a cannot affect the t1 low-order bits. Similarly,

all elements in γ(s2[c,d]) share the same t2 = ntz(s2) low-order bits.

59

1: int ntz(unsigned x) {
2: int n;

3: int y = -x & (x-1);

4: n = 0;

5: while(y != 0) {
6: n = n + 1;

7: y = y >> 1;

8: }
9: return n;

10: }

Figure 4.3 Counting trailing 0’s of x [115, p. 86].

|si

a+2s1

...
a1+s1a

t1 t1 t1

c+2s2

...
c+s2c

t2 t2 t2

a | (c+2s2)
...

a | (c+s2)a | c

min(t1,t2) min(t1,t2) min(t1,t2)

(a+s1) | (c+2s2)
...

(a+s1) | (c+s2)

min(t1,t2) min(t1,t2) min(t1,t2)

(a+s1) | c...

...

...

γ(s1[a,b]) = {a, a + s1 , a + 2s1 , . . . , b}

γ(s2[c,d]) = {c, c + s2 , c + 2s2 , . . . , d}

t1 = ntz(s1)

t2 = ntz(s2)

t = min(t1, t2)

|
min(t1,t2)

=
min(t1,t2)min(t1,t2)

= (a & mask) | (c & mask),
where mask = (1 << min(t1,t2)) – 1

Figure 4.4 Justification of the use of t = min(ntz(s1), ntz(s2)) in the stride calculation of the
abstract bitwise-or operation (|si). In particular, all values in the answer strided interval share the

same t low-order bits.

As illustrated by the third set shown in the left column in Fig. 4.4, all values in the answer

strided interval share the same t low-order bits, where t = min(t1, t2). Consequently, we may take

s = 2t (= 1 << t) as the stride of the answer, and the value of the shared t low-order bits can be

calculated by r = (a & mask) | (c & mask), where mask = (1 << t) − 1.

The 32− t high-order bits are handled by masking out the t low-order bits, and then applying

the method from Tab. 4.2 for finding bounds on the bitwise-or of two signed two’s-complement

values.

60

Thus, to compute s1[a,b] |si s2[c,d], we perform the following steps:

• Set t := min(ntz(s1), ntz(s2)).

• Set s := 2t.

• Calculate the value of the shared t low-order bits as r := (a & mask) | (c & mask), where

mask = (1 << t) − 1.

• Use the method from Tab. 4.2 to bound the value of x′ |y′ for (a & ∼mask) ≤ x′ ≤

(b & ∼mask) and (c & ∼mask) ≤ y′ ≤ (d & ∼mask). Call these bounds lb and ub.

• Return the strided interval

s[((lb & ∼mask) | r), ((ub & ∼mask) | r)].

4.2.5 Bitwise not (∼si), And (&si), and Xor (∧si)

Suppose that we have bounds on x: a ≤ x ≤ b. A bound on the result of applying ∼ to x is

∼ b ≤∼ x ≤∼ a [115, p. 58]. Similarly, for strided intervals, we have

∼si(s[lb,ub]) = s[∼ ub,∼ lb]. (4.1)

Eqn. (4.1) relies on the assumption that strided intervals are reduced: the assumption guarantees

that ub ∈ γ(s[lb,ub]), and hence that ∼ ub is the least element of γ(∼si(s[lb,ub])).

By De Morgan’s Laws, and by the fact that ∼si(∼si(s[lb,ub])) = s[lb,ub], &si and ∧si can be

computed using |si and ∼si:

si1 &si si2 =∼si(∼si si1 |si∼si si2)

si1
∧si si2 = (si1 &si∼si si2) |si(∼si si1 &si si2)

=∼si(∼si si1 |si si2) |si∼si(si1 |si∼si si2)

4.2.6 Strided-Interval Arithmetic for Different Radices

An arithmetic operation in one radix can lead to a different result from the same operation

performed in another radix. Even when all radices are different powers of 2, not all effects can

61

be fixed up merely by applying a mask to the result. In particular, the values of the x86 flags

(condition codes) depend upon the radix in which an operation is performed.4

Example 4.2.5 Suppose that the 16-bit register ax has the value 0xffff . The abstract transformer

for a 16-bit addition operation, say ADD ax,1, must account for the effect on the CF (carry) flag. In

this example, CF needs to be set to 1, which is a different value than CF would have if we modeled

the 16-bit addition as a 32-bit addition of 0x0000ffff and 0x00000001 and masked out the lower

16 bits: the 32-bit addition would set CF to 0 because no carry results from the 32-bit operation. �

To make it convenient to define abstract transformers that track x86 flag values, the operations

of strided-interval arithmetic also compute abstract condition-code values that over-approximate

the values computed by the CPU, including CF (carry), ZF (zero), SF (sign), PF (parity), AF

(auxiliary carry) and OF (overflow). Each strided-interval operation opsi returns a descriptor of

the possible condition-code values that could result from applying the corresponding concrete

operation op to the concretizations of the arguments of opsi. To represent multiple possible Boolean

values, we use the abstract domain Bool3:

Bool3 = {FALSE,MAYBE, TRUE}.

In addition to the Booleans FALSE and TRUE, Bool3 has a third value, MAYBE, which means

“may be FALSE or may be TRUE”. Fig. 4.5 shows tables for the Bool3 operations && (and), ||

(or), ∧ (xor), ¬ (not), and t (join).

To account for effects like the one illustrated in Ex.4.2.5, strided-interval arithmetic is imple-

mented as a template that is parameterized on the number of bits. Zero-extend and sign-extend

operations are also provided to convert 8-bit strided intervals to 16-bit and 32-bit strided intervals,

and 16-bit strided intervals to 32-bit strided intervals.
4Most of the arithmetic and bit-level instructions in the x86 instruction set affect some subset of the flags (condition

codes), which are stored in the processor’s EFLAGS register. For example, the x86 CMP instruction subtracts the second
operand from the first operand, and sets the EFLAGS register according to the results. The values of certain bits of
EFLAGS are used by other instructions (such as the Jcc, CMOVcc, and SETcc families of instructions) to direct the flow
of control in the program.

62

&& (and) FALSE MAYBE TRUE

FALSE FALSE FALSE FALSE

MAYBE FALSE MAYBE MAYBE

TRUE FALSE MAYBE TRUE

|| (or) FALSE MAYBE TRUE

FALSE FALSE MAYBE TRUE

MAYBE MAYBE MAYBE TRUE

TRUE TRUE TRUE TRUE

¬ (not)

FALSE TRUE

MAYBE MAYBE

TRUE FALSE

∧ (xor) FALSE MAYBE TRUE

FALSE FALSE MAYBE TRUE

MAYBE MAYBE MAYBE MAYBE

TRUE TRUE MAYBE FALSE

t (join) FALSE MAYBE TRUE

FALSE FALSE MAYBE MAYBE

MAYBE MAYBE MAYBE MAYBE

TRUE MAYBE MAYBE TRUE

Figure 4.5 Operations on Bool3s.

4.3 Value-Set Arithmetic

In this section, we give a sketch of the abstract value-set arithmetic used in the VSA algo-

rithm, which is described in Ch. 3. For brevity, we usually write value-sets as tuples. We follow

the convention that the first component of a value-set refers to the set of addresses (or numbers)

in Global, and ⊥ denotes an empty set. For instance, the tuple (1[0,9],⊥, . . .) represents the

set of numbers {0, 1, . . . , 9} and the tuple (⊥,4[−40,−4],⊥, . . .) represents the set of offsets

{−40,−36, . . . ,−4} in the first AR-region.

It is useful to classify value-sets in terms of four value-set kinds:

Kind Form of value-set

VSglob (si0,⊥, . . .) si0 is a set of offsets in the

Global memory-region

VSsingle (⊥, . . . , sil,⊥, . . .) sil is a set of offsets in the

l-th memory-region (l 6= Global)

VSarb (si0, . . . , sik, . . .) sik is a set of offsets in the

k-th memory-region

>vs (>si,>si, . . .) all addresses and numeric values

Note that a value-set vs = (si0, si1, . . .) has an implicit set of concrete addresses associated with

each of the sik, k > 0: if k corresponds to an AR-region for procedure p, these are the possible

concrete stack-frame base addresses for p (relative to which local-variable offsets are calculated); if

63

k corresponds to a malloc-region, these are the possible concrete base addresses of heap-allocated

memory objects. Consequently, value-set operations cannot be performed component-wise. For

instance, it would be unsound to use (–si
u si0, –si

u si1, . . .) as the value-set for the negation of vs (i.e.,

–vs
u vs) because the implicit set of concrete addresses in (–si

u si0, –si
u si1, . . .) would not have been

negated. On the contrary, the implicit set of concrete addresses in (–si
u si0, –si

u si1, . . .) would be the

same as the implicit set of concrete addresses in vs = (si0, si1, . . .). Similar considerations hold for

other arithmetic and bit-level operations on value-sets (cf. the entries with >vs in the tables for +vs

and –vs, below).

4.3.1 Addition (+vs)

The following table shows the value-set kinds produced by +vs for different kinds of arguments:

+vs VSglob VSsingle VSarb >vs

VSglob VSglob VSsingle VSarb >vs

VSsingle VSsingle >vs >vs >vs

VSarb VSarb >vs >vs >vs

>vs >vs >vs >vs >vs

The value-set operation +vs is symmetric in its arguments, and can be defined as follows:

VSglob +vs VSglob: Let vs1 = (si10,⊥, . . .) and vs2 = (si20,⊥, . . .). Then vs1 +vs vs2 = (si10 +si si20,⊥, . . .).

VSglob +vs VSsingle: Let vs1 = (si10,⊥, . . .) and vs2 = (⊥, . . . , si2l ,⊥, . . .).

Then vs1 +vs vs2 = (⊥, . . . , si10 +si si2l ,⊥, . . .).

VSsingle +vs VSglob: Let vs1 = (⊥, . . . , si1l ,⊥, . . .) and vs2 = (si20,⊥, . . .).

Then vs1 +vs vs2 = (⊥, . . . , si1l +si si20,⊥, . . .).

VSglob +vs VSarb: Let vs1 = (si10,⊥, . . .) and vs2 = (si20, . . . , si2k, . . .).

Then vs1 +vs vs2 = (si10 +si si20, . . . , si10 +si si2k, . . .).

VSarb +vs VSglob: Let vs1 = (si10, . . . , si1k, . . .) and vs2 = (si20,⊥, . . .).

Then vs1 +vs vs2 = (si10 +si si20, . . . , si1k +si si20, . . .).

64

4.3.2 Subtraction (−vs)

The following table shows the value-set kinds produced by –vs for different kinds of arguments:

–vs VSglob VSsingle VSarb >vs

VSglob VSglob >vs >vs >vs

VSsingle VSsingle >vs >vs >vs

VSarb VSarb >vs >vs >vs

>vs >vs >vs >vs >vs

The operation –vs is not symmetric in its arguments; it produces >vs in all but the following three

cases:

VSglob –vs VSglob: Let vs1 = (si10,⊥, . . .) and vs2 = (si20,⊥, . . .). Then vs1 –vs vs2 = (si10 –si si20,⊥, . . .).

VSsingle –vs VSglob: Let vs1 = (⊥, . . . , si1l ,⊥, . . .) and vs2 = (si20,⊥, . . .).

Then vs1 –vs vs2 = (⊥, . . . , si1l –si si20,⊥, . . .).

VSarb –vs VSglob: Let vs1 = (si10, . . . , si1k, . . .) and vs2 = (si20,⊥, . . .).

Then vs1 –vs vs2 = (si10 –si si20, . . . , si1k –si si20, . . .).

4.3.3 Bitwise And (&vs), Or (|vs), and Xor (∧vs)

Let opvs ∈ {&vs, |vs, ∧vs} denote one of the binary bitwise value-set operations, and let opsi ∈

{&si, |si, ∧si} denote the corresponding strided-interval operation. Let id and annihilator denote

the following value-sets:

opvs id annihilator

&vs (0[−1,−1],⊥, . . .) (0[0,0],⊥, . . .)

|vs (0[0,0],⊥, . . .) (0[−1,−1],⊥, . . .)
∧vs (0[0,0],⊥, . . .)

VSglob opvs VSglob: Let vs1 = (si10,⊥, . . .) and vs2 = (si20,⊥, . . .).

Then vs1 opvs vs2 = (si10 opsi si20,⊥, . . .).

65

VSglob opvs VS: Let vs denote a value-set of any kind. Then

id opvs vs = vs

annihilator opvs vs = annihilator

Otherwise, (si0,⊥, . . .) opvs vs = >vs.

VS opvs VSglob: Let vs denote a value-set of any kind. Then

vs opvs id = vs

vs opvs annihilator = annihilator

Otherwise, vs opvs(si0,⊥, . . .) = >vs.

4.3.4 Value-Set Arithmetic for Different Radices

Value-set arithmetic is templatized to account for different radices. Operations on component

strided intervals are performed using the strided-interval arithmetic of the appropriate radix.

66

Chapter 5

Improving the A-loc Abstraction

IDAPro’s Semi-Naı̈ve algorithm for identifying a-locs, described in Sect. 2.2, has certain limi-

tations. IDAPro’s algorithm only considers accesses to global variables that appear as “[absolute-

address]”, and accesses to local variables that appear as “[esp + offset]” or “[ebp − offset]” in the

executable. It does not take into account accesses to elements of arrays and variables that are only

accessed through pointers, and sometimes cannot take into account accesses to fields of structures,

because these accesses are performed in ways that do not fall into any of the patterns that IDAPro

considers. Therefore, it generally recovers only very coarse information about arrays and struc-

tures. Moreover, this approach fails to provide any information about the fields of heap-allocated

objects, which is crucial for understanding programs that manipulate the heap.

The aim of the work presented in this chapter is to improve the state of the art by using abstract

interpretation [40] to replace local analyses with ones that take a more comprehensive view of the

operations performed by the program. We present an algorithm that combines Value-Set Analy-

sis (VSA) as described in Ch. 3 and Aggregate Structure Identification (ASI) [93], which is an

algorithm that infers the substructure of aggregates used in a program based on how the program

accesses them, to recover variables that are better than those recovered by IDAPro. As explained

in Sect. 5.3, the combination of VSA and ASI allows us (a) to recover variables that are based on

indirect accesses to memory, rather than just the explicit addresses and offsets that occur in the

program, and (b) to identify structures, arrays, and nestings of structures and arrays. Moreover,

when the variables that are recovered by our algorithm are used during VSA, the precision of VSA

improves. This leads to an interesting abstraction-refinement scheme; improved precision during

67

VSA causes an improvement in the quality of variables recovered by our algorithm, which, in turn,

leads to improved precision in a subsequent round of VSA, and so on.

5.1 Overview of our Approach

Our goal is to subdivide the memory-regions of the executable into variable-like entities (which

we call a-locs, for “abstract locations”). These can then be used as variables in tools that analyze

executables. Memory-regions are subdivided using the information about how the program ac-

cesses its data. The intuition behind this approach is that data-access patterns in the program

provide clues about how data is laid out in memory. For instance, the fact that an instruction

in the executable accesses a sequence of four bytes in memory-region M is an indication that the

programmer (or the compiler) intended to have a four-byte-long variable or field at the correspond-

ing offset in M. In this section, we present the problems in developing such an approach, and the

insights behind our solution, which addresses those problems. Details are provided in Sect. 5.3.

5.1.1 The Problem of Indirect Memory Accesses

The Semi-Naı̈ve algorithm described in Sect. 2.2 uses the addresses and stack-frame offsets that

occur explicitly in the program to recover variable-like entities. We will call this the Semi-Naı̈ve

algorithm. It is based on the observation that access to global variables appear as “[absolute-

address]”, and access to local variables appear as “[esp + offset]” or “[ebp − offset]” in the ex-

ecutable. Thus, absolute addresses and offsets that occur explicitly in the executable (generally)

indicate the starting addresses of program variables. Based on this observation, the Semi-Naı̈ve

algorithm identifies each set of locations between two neighboring absolute addresses or offsets

as a single variable. Such an approach produces poor results in the presence of indirect memory

operands.

Example 5.1.1 The program shown below initializes the two fields x and y of a local struct through

the pointer pp and returns 0. pp is located at offset -12,1 and struct p is located at offset -8 in the

1 Recall that we follow the convention that the value of esp (the stack pointer) at the beginning of a procedure
marks the origin of the procedure’s AR-region.

68

activation record of main. Address expression “ebp-8” refers to the address of p, and address

expression “ebp-12” refers to the address of pp.

typedef struct {
int x, y;

} Point;

int main(){
Point p, *pp;

pp = &p;

pp->x = 1;

pp->y = 2;

return 0;

}

proc main

1 mov ebp, esp

2 sub esp, 12

3 lea eax, [ebp-8]

4 mov [ebp-12], eax

5 mov [eax], 1

6 mov [eax+4], 2

7 mov eax, 0

8 add esp, 12

9 retn

Instruction 4 initializes the value of pp. (Instruction “3 lea eax, [ebp-8]” is equivalent to the

assignment eax := ebp-8.) Instructions 5 and 6 update the fields of p. Observe that, in the

executable, the fields of p are updated via eax, rather than via the pointer pp itself, which resides

at address ebp-12. �

In Ex.5.1.1, -8 and -12 are the offsets relative to the frame pointer (i.e., ebp) that occur explic-

itly in the program. The Semi-Naı̈ve algorithm would say that offsets -12 through -9 of the AR

of main constitute one variable (say var 12), and offsets -8 through -1 of AR of main constitute

another (say var 8). The Semi-Naı̈ve algorithm correctly identifies the position and size of pp.

However, it groups the two fields of p together into a single variable because it does not take into

consideration the indirect memory operand [eax+4] in instruction 6.

Typically, indirect operands are used to access arrays, fields of structures, fields of heap-

allocated data, etc. Therefore, to recover a useful collection of variables from executables, one

has to look beyond the explicitly occurring addresses and stack-frame offsets. Unlike the operands

considered in the Semi-Naı̈ve algorithm, local methods do not provide information about what an

indirect memory operand accesses. For instance, an operand such as “[ebp − offset]” (usually)

accesses a local variable. However, “[eax + 4]” may access a local variable, a global variable, a

field of a heap-allocated data-structure, etc., depending upon what eax contains.

69

Obtaining information about what an indirect memory operand accesses is not straightforward.

In this example, eax is initialized with the value of a register (minus a constant offset). In general,

a register used in an indirect memory operand may be initialized with a value read from memory.

In such cases, to determine the value of the register, it is necessary to know the contents of that

memory location, and so on. Fortunately, Value-Set Analysis (VSA), described in Ch. 3, can

provide such information.

5.1.2 The Problem of Granularity and Expressiveness

The granularity and expressiveness of recovered variables can affect the precision of analysis

clients that use the recovered variables as the executable’s data objects.

As a specific example of an analysis client, consider a data-dependence analyzer, which an-

swers such questions as: “Does the write to memory at instruction L1 in Ex.1.2.1 affect the read

from memory at instruction 14”. Note that in Ex.1.2.1 the write to memory at instruction L1

does not affect the read from memory at instruction 14 because L1 updates the x members of the

elements of array pts, while instruction 14 reads the y member of array element pts[0]. To sim-

plify the discussion, assume that a data-dependence analyzer works as follows: (1) annotate each

instruction with used, killed, and possibly-killed variables, and (2) compare the used variables of

each instruction with killed or possibly-killed variables of every other instruction to determine data

dependences.2

Consider three different partitions of the AR of main in Ex.1.2.1:

VarSet1: As shown in Fig. 5.1(b), the Semi-Naı̈ve approach from Sect. 2.2 would say that the

AR of main has three variables: var 44 (4 bytes), var 40 (4 bytes), and var 36 (36 bytes). The

variables that are possibly killed at L1 are {var 40, var 36}, and the variable used at 14 is var 36.

Therefore, the data-dependence analyzer reports that the write to memory at L1 might affect the

read at 14. (This is sound, but imprecise.)

2 This method provides flow-insensitive data-dependence information; flow-sensitive data-dependence information
can be obtained by performing a reaching-definitions analysis in terms of used, killed, and possibly-killed variables.
This discussion is couched in terms of flow-insensitive data-dependence information solely to simplify discussion; the
same issues arise even if one uses flow-sensitive data-dependence information.

70

-40

-36

ret-addr

-32

pts[4].y

pts[4].x

pts[0].x

pts[0].y

-8

-4

0

. . .

py -44

mem_8

mem_4
8

4

Global Region
-40

-36

ret-addr
0

var_44
-44

var_36

var_40

AR_main

-231

FormalGuard
4

231-1

LocalGuard

(a) (b)

Figure 5.1 (a) Layout of the activation record for procedure main in Ex.1.2.1; (b) a-locs
identified by IDAPro.

VarSet2: As shown in Fig. 5.1(a), there are two variables for each element of array pts. The

variables possibly killed at L1 are {pts[0].x, pts[1].x, pts[2].x, pts[3].x, pts[4].x},

and the variable used at instruction 14 is pts[0].y. Because these sets are disjoint, the data-

dependence analyzer reports that the memory write at instruction L1 definitely does not affect the

memory read at instruction 14.

VarSet3: Suppose that the AR of main is partitioned into just three variables: (1) py, which

represents the local variable py, (2) pts[?].x, which is a representative for the x members of

the elements of array pts, and (3) pts[?].y, which is a representative for the y members of the

elements of array pts. pts[?].x and pts[?].y are summary variables because they represent

more than one concrete variable. The summary variable that is possibly killed at instruction L1 is

pts[?].x and the summary variable that is used at instruction 14 is pts[?].y. These are disjoint;

therefore, the data-dependence analyzer reports a definite answer, namely, that the write at L1 does

not affect the read at 14.

Of the three alternatives presented above, VarSet3 has several desirable features:

• It has a smaller number of variables than VarSet2. When it is used as the set of variables in

a data-dependence analyzer, it provides better results than VarSet1.

71

• The variables in VarSet3 are capable of representing a set of non-contiguous memory loca-

tions. For instance, pts[?].x represents the locations corresponding to pts[0].x, pts[1].x,

. . . , pts[4].x. The ability to represent non-contiguous sequences of memory locations is

crucial for representing a specific field in an array of structures.

• The AR of main is only partitioned as much as necessary. In VarSet3, only one summary

variable represents the x members of the elements of array pts, while each member of each

element of array pts is assigned a separate variable in VarSet2.

A good variable-recovery algorithm should partition a memory-region in such a way that the

set of variables obtained from the partition has the desirable features of VarSet3. When debug-

ging information is available, this is a trivial task. However, debugging information is often not

available. Data-access patterns in the program provide information that can serve as a substitute

for debugging information. For instance, instruction L1 accesses each of the four-byte sequences

that start at offsets {−40, −32, . . . , −8} in the AR of main. The common difference of 8 between

successive offsets is evidence that the offsets may represent the elements of an array. Moreover,

instruction L1 accesses every four bytes starting at these offsets. Consequently, the elements of the

array are judged to be structures in which one of the fields is four bytes long.

5.2 Background

In this section, we describe Aggregate Structure Identification (ASI) [93]. This material is

related to the core of the chapter as follows:

• We use VSA as the mechanism to understand indirect memory accesses (see Ch. 3) and

obtain data-access patterns (see Sect. 5.2.1) from the executable.

• In Sect. 5.3, we show how to use the information gathered during VSA to harness ASI to the

problem of identifying variable-like entities in executables.

First, we highlight some of the features of VSA that are useful in a-loc recovery:

72

• Information about indirect memory operands: For the program in Ex.5.1.1, VSA determines

that the value-set of eax at instruction 6 is (∅,0[−8,−8]), which means that eax holds the

offset −8 in the AR-region of main. Using this information, we can conclude that [eax+4]

refers to offset −4 in the AR-region of main.

• VSA provides data-access patterns: For the program in Ex.1.2.1, VSA determines that the

value-set of eax at program point L1 is (∅,8[−40,−8]), which means that eax holds the off-

sets {−40,−32, . . . ,−8} in the AR-region of main. (These offsets are the starting addresses

of field x of elements of array pts.)

• VSA tracks updates to memory: This is important because, in general, the registers used in

an indirect memory operand may be initialized with a value read from memory. If updates

to memory are not tracked, we may neither have useful information for indirect memory

operands nor useful data-access patterns for the executable.

5.2.1 Aggregate Structure Identification (ASI)

Ramalingam et al. [93] observe that there can be a loss of precision in the results that are com-

puted by a static-analysis algorithm if it does not distinguish between accesses to different parts

of the same aggregate (in Cobol programs). They developed the Aggregate Structure Identifica-

tion (ASI) algorithm to distinguish among such accesses, and showed how the results of ASI can

improve the results of dataflow analysis. This section briefly describes the ASI algorithm.

ASI is a unification-based, flow-insensitive algorithm to identify the structure of aggregates

(such as arrays, C structs, etc.) in a program [93]. The algorithm ignores any type information

known about aggregates, and considers each aggregate to be merely a sequence of bytes of a given

length. The aggregate is then broken up into smaller parts depending on how it is accessed by the

program. The smaller parts are called atoms.

The data-access patterns in the program are specified to the ASI algorithm through a data-

access constraint language (DAC). The syntax of DAC programs is shown in Fig. 5.2. There

are two kinds of constructs in a DAC program: (1) DataRef is a reference to a set of bytes,

73

and provides a means to specify how the data is accessed in the program; (2) UnifyConstraint

provides a means to specify the flow of data in the program. Note that the direction of data flow

is not considered in a UnifyConstraint. The justification for this is that a flow of data from one

sequence of bytes to another is evidence that they should have the same structure. ASI uses the

constraints in the DAC program to find a coarsest refinement of the aggregates.

Pgm ::= ε | UnifyConstraint Pgm

UnifyConstraint ::= DataRef ≈ DataRef

DataRef ::= ProgVars |
DataRef[UInt:UInt] |
DataRef\UInt+

Figure 5.2 Data-Access Constraint (DAC) language. UInt is the set of non-negative integers;
UInt+ is the set of positive integers; and ProgVars is the set of program variables.

There are three kinds of data references:

• A variable P ∈ ProgVars refers to all the bytes of variable P.

• DataRef[l:u] refers to bytes l through u in DataRef. For example, P[8:11] refers to bytes

8..11 of variable P.

• DataRef\n is interpreted as follows: DataRef is an array of n elements and DataRef\n

refers to the bytes of an element of array DataRef. For example, P[0:11]\3 refers to the

sequences of bytes P[0:3], P[4:7], or P[8:11].

Instead of going into the details of the ASI algorithm, we provide the intuition behind the

algorithm by means of an example. Consider the source-code program shown in Ex.1.2.1. The

data-access constraints for the program are

pts[0:39]\5[0:3] ≈ a[0:3];

pts[0:39]\5[4:7] ≈ b[0:3];

return main[0:3] ≈ pts[4:7];

i[0:3] ≈ const 1[0:3];

p[0:3] ≈ const 2[0:3];

py[0:3] ≈ const 3[0:3];

74

The first constraint encodes the initialization of the x members, namely, pts[i].x = a. The

DataRef pts[0:39]\5[0:3] refers to the bytes that correspond to the x members in array pts.

The third constraint corresponds to the return statement; it represents the fact that the return value

of main is assigned bytes 4..7 of pts, which correspond to pts[0].y. The constraints reflect the

fact that the size of Point is 8 and that x and y are laid out next to each other.

40

44

4 ⊗⊗⊗⊗

pts i

4

return_main
8

p py

44 4

40(i1)

4 ⊗⊗⊗⊗ (i2)

ptsi

4(a1)

return_main

8(i3)4(a2)

4(a3) 4(a4)

4(a5) 4(a6)
p

4(a7)

py

4(a8)

struct {
int a3;

int a4;

struct {
int a5;

int a6;

} i3[4];

} pts;

(a) (b) (c)

Figure 5.3 (a) ASI DAG, (b) ASI tree, and (c) the struct recovered for the program in Ex.1.2.1.
(To avoid clutter, global variables are not shown.)

The result of ASI is a DAG that shows the structure of each aggregate as well as relationships

among the atoms of aggregates. The DAG for Ex.1.2.1 is shown in Fig. 5.3(a). An ASI DAG has

the following properties:

• A node represents a set of bytes.

• A sequence of bytes that is accessed as an array in the program is represented by an array

node. Array nodes are labeled with
⊗

. The number in an array node represents the number

of elements in the array. An array node has one child, and the DAG rooted at the child

represents the structure of the array element. In Fig. 5.3(a), bytes 8..39 of array pts are

identified as an array of four 8-byte elements. Each array element is a struct with two fields

of 4 bytes each.

• A sequence of bytes that is accessed like a C struct in the program is represented by a struct

node. The number in the struct node represents the length of the struct; the children of a

75

struct node represent the fields of the struct. The order of the children in the DAG represent

the order of the fields in the struct. In Fig. 5.3(a), bytes 0..39 of pts are identified as a

struct with three fields: two 4-byte scalars and one 32-byte array.

• Nodes are shared if there is a flow of data in the program involving the corresponding se-

quence of bytes either directly or indirectly. In Fig. 5.3(a), the nodes for the sequences

of bytes return main[0:3] and pts[4:7] are shared because of the return statement

in main. Similarly, the sequence of bytes that correspond to the y members of array pts,

namely pts[0:39]\5[4:7], share the same node because they are all assigned the same

constant at the same instruction.

The ASI DAG is converted into an ASI tree by duplicating shared nodes. The atoms of an

aggregate are the leaves of the corresponding ASI tree. Fig. 5.3(b) shows the ASI tree for Ex.1.2.1.

ASI has identified that pts has the structure shown in Fig. 5.3(c).

5.3 Recovering A-locs via Iteration

We use the atoms obtained from ASI as a-locs for (re-)analyzing the executable. The atoms

identified by ASI for Ex.1.2.1 are close to the set of variables VarSet3 that was discussed in

Sect. 5.1.2. One might hope to apply ASI to an executable by treating each memory-region as

an aggregate and determining the structure of each memory-region (without using VSA results).

However, one of the requirements for applying ASI is that it must be possible to extract data-

access constraints from the program. When applying ASI to programs written in languages such

as Cobol this is possible: the data-access patterns—in particular, the data-access patterns for array

accesses—are apparent from the syntax of the Cobol constructs under consideration. Unfortu-

nately, this is not the case for executables. For instance, the memory operand [eax] can either

represent an access to a single variable or to the elements of an array. Fortunately, value-sets pro-

vide the necessary information to generate data-access constraints. Recall that a value-set is an

over-approximation of the set of offsets in each memory-region. Together with the information

76

about the number of bytes accessed by each argument (which is available from the instruction),

this provides the information needed to generate data-access constraints for the executable.

Furthermore, when we use the atoms of ASI as a-locs in VSA, the results of VSA can improve.

Consider the program in Ex.5.1.1. Recall from Sect. 5.1.1 that the length of var 8 is 8 bytes.

Because value-sets are only capable of representing a set of 4-byte addresses and 4-byte values,

VSA recovers no useful information for var 8: it merely reports that the value-set of var 8 is

>vs (meaning any possible value or address). Applying ASI (using data-access patterns provided

by VSA) results in the splitting of var 8 into two 4-byte a-locs, namely, var 8.0 and var 8.4.

Because var 8.0 and var 8.4 are each four bytes long, VSA can now track the set of values or

addresses in these a-locs. Specifically, VSA would determine that var 8.0 (i.e., p.x) has the value

1 and var 8.4 (i.e., p.y) has the value 2 at the end of main.

We can use the new VSA results to perform another round of ASI. If the value-sets computed

by VSA are improved from the previous round, the next round of ASI may also improve. We can

repeat this process as long as desired, or until the process converges (see Sect. 5.7).

Although not illustrated by Ex.5.1.1, additional rounds of ASI and VSA can result in further

improvements. For example, suppose that the program uses a chain of pointers to link structs of

different types, e.g., variable ap points to a struct A, which has a field bp that points to a struct

B, which has a field cp that points to a struct C, and so on. Typically, the first round of VSA

recovers the value of ap, which lets ASI discover the a-loc for A.bp (from the code compiled for

ap->bp); the second round of VSA recovers the value of ap->bp, which lets ASI discover the a-loc

for B.cp (from the code compiled for ap->bp->cp); etc.

To summarize, the algorithm for recovering a-locs is

1. Run VSA using a-locs recovered by the Semi-Naı̈ve approach.

2. Generate data-access patterns from the results of VSA

3. Run ASI

4. Run VSA

77

5. Repeat steps 2, 3, and 4 until there are no improvements to the results of VSA.3

It is important to understand that VSA generates sound results for any collection of a-locs with

which it is supplied. However, if supplied with very coarse a-locs, many a-locs will be found

to have the value >vs at most points. By refining the a-locs in use, more precise answers are

generally obtained. For this reason, ASI is used only as a heuristic to find a-locs for VSA; i.e.,

it is not necessary to generate data-access constraints for all memory accesses in the program.

Because ASI is a unification-based algorithm, generating data-access constraints for certain kinds

of instructions leads to undesirable results. Sect. 5.8 discusses some of these cases.

In short, our abstraction-refinement principles are as follows:

1. VSA results are used to interpret memory-access expressions in the executable.

2. ASI is used as a heuristic to determine the structure of each memory-region according to

information recovered by VSA.

3. Each ASI tree reflects the memory-access patterns in one memory-region, and the leaves of

the ASI trees define the a-locs that are used for the next round of VSA.

ASI alone is not a replacement for VSA. That is, ASI cannot be applied to executables without the

information that is obtained from VSA—namely value-sets.

In the rest of this section, we describe the interplay between VSA and ASI: (1) we show how

value-sets are used to generate data-access constraints for input to ASI, and (2) how the atoms in

the ASI trees are used as a-locs during the next round of VSA.

5.4 Generating Data-Access Constraints

This section describes the algorithm that generates ASI data-references for x86 operands. Three

forms of x86 operands need to be considered: (1) register operands, (2) memory operands of form

“[register]”, and (3) memory operands of the form “[base + index × scale + offset]”.

3 Or, equivalently, until the set of a-locs discovered in step 3 is unchanged from the set previously discovered in
step 3 (or step 1).

78

To prevent unwanted unification during ASI, we rename registers using live-ranges. For a

register r, the ASI data-reference is rlr[0 : n− 1], where lr is the live-range of the register at the

given instruction and n is the size of the register (in bytes).

In the rest of the section, we describe the algorithm for memory operands. First, we consider

indirect operands of the form [r]. To gain intuition about the algorithm, consider operand [eax] of

instruction L1 in Ex.1.2.1. The value-set associated with eax is (∅,8[−40,−8]). The stride value

of 8 and the interval [−40,−8] in the AR of main provide evidence that [eax] is an access to the

elements of an array of 8-byte elements in the range [−40,−8] of the AR of main; an array access

is generated for this operand.

Recall that a value-set is an n-tuple of strided intervals. The strided interval s[l, u] in each com-

ponent represents the offsets in the corresponding memory-region. Fig. 5.4 shows the pseudocode

to convert offsets in a memory-region into an ASI reference. Procedure SI2ASI takes the name of

a memory-region r, a strided interval s[l, u], and length (the number of bytes accessed) as argu-

ments. The length parameter is obtained from the instruction. For example, the length for [eax]

is 4 because the instruction at L1 in Ex.1.2.1 is a four-byte data transfer. The algorithm returns a

pair in which the first component is an ASI reference and the second component is a Boolean. The

significance of the Boolean component is described later in this section. The algorithm works as

follows: If s[l, u] is a singleton (i.e., it represents just a single value, and thus s = 0 and l = u),

then the ASI reference is the one that accesses offsets l to l+ length−1 in the aggregate associated

with memory-region r. If s[l, u] is not a singleton, then the offsets represented by s[l, u] are treated

as references to an array. The size of the array element is the stride s whenever (s ≥ length).

However, when (s < length) an overlapping set of locations is accessed by the indirect memory

operand. Because an overlapping set of locations cannot be represented using an ASI reference,

the algorithm chooses length as the size of the array element. This is not a problem for the sound-

ness of subsequent rounds of VSA because of refinement principle 2. The Boolean component of

the pair denotes whether the algorithm generated an exact ASI reference or not. The number of

elements in the array is b(u− l)/sizec+ 1.

79

Require: The name of a memory-region r, strided interval s[l, u], number of bytes accessed length.
Ensure: A pair in which the first component is an ASI reference for the sequence of length bytes starting at offsets s[l, u] in memory-region r

and the second component is a Boolean that represents whether the ASI reference is an exact reference (true) or an approximate one (false). (‖
denotes string concatenation.)

proc SI2ASI(r: String, s[l, u]: StridedInterval, length: Integer)
if s[l, u] is a singleton then

return 〈r ‖ “[l : l + length− 1]”, true〉
else

size := max(s, length)
n := b(u− l)/sizec+ 1
ref := r ‖ “[l : u+ size− 1]\n[0 : length− 1]”
return 〈ref, (s ≥ length)〉

end if
end proc

Figure 5.4 Algorithm to convert a given strided interval into an ASI reference.

For operands of the form [r], the set of ASI references is generated by invoking procedure

SI2ASI shown in Fig. 5.4 for each non-empty memory-region in r’s value-set. For Ex.1.2.1, the

value-set associated with eax at L1 is (∅,8[−40,−8]). Therefore, the set of ASI references is

{AR main[(-40):(-1)]\5[0:3]}.4 There are no references to the Global region because the set of

offsets in that region is empty.

The algorithm for converting indirect operands of the form [base + index × scale + offset] is

given in Fig. 5.5. One typical use of indirect operands of the form [base + index × scale + off-

set] is to access two-dimensional arrays. Note that scale and offset are statically-known constants.

Because abstract values are strided intervals, we can absorb scale and offset into base and index.

Hence, without loss of generality, we only discuss memory operands of the form [base+index].

Assuming that the two-dimensional array is stored in row-major format, one of the registers (usu-

ally base) holds the starting addresses of the rows and the other register (usually index) holds the

indices of the elements in the row. Fig. 5.5 shows the algorithm to generate an ASI reference,

when the set of offsets in a memory-region is expressed as a sum of two strided intervals as in

[base+index]. Note that we could have used procedure SI2ASI shown in Fig. 5.4 by computing

the abstract sum (+si) of the two strided intervals. However, doing so results in a loss of precision

because strided intervals can only represent a single stride exactly, and this would prevent us from

4 Offsets in a DataRef cannot be negative. Negative offsets are used for clarity. Negative offsets are mapped to the
range [0, 231 − 1]; non-negative offsets are mapped to the range [231, 232 − 1].

80

Require: The name of a memory-region r, two strided intervals s1[l1, u1] and s2[l2, u2], number of bytes accessed length.
Ensure: An ASI reference for the sequence of length bytes starting at offsets s1[l1, u1] + s2[l2, u2] in memory region r.

proc TwoSIsToASI(r: String, s1[l1, u1]: StridedInterval, s2[l2, u2]: StridedInterval, length: Integer)
if (s1[l1, u1] or s2[l2, u2] is a singleton) then

return SI2ASI(r, s1[l1, u1] +si s2[l2, u2], length)
end if
if s1 ≥ (u2 − l2 + length) then

baseSI := s1[l1, u1]
indexSI := s2[l2, u2]

else if s2 ≥ (u1 − l1 + length) then
baseSI := s2[l2, u2]
indexSI := s1[l1, u1]

else
return SI2ASI(r, s1[l1, u1] +si s2[l2, u2], length)

end if
〈baseRef, 〉 := SI2ASI(r,baseSI, stride(baseSI)) // SI2ASI always returns an exact reference here.
return baseRef ‖ SI2ASI(“”, indexSI, length)

end proc

Figure 5.5 Algorithm to convert the set of offsets represented by the sum of two strided intervals
into an ASI reference.

recovering the structure of two-dimensional arrays. (In some circumstances, our implementation

of ASI can recover the structure of arrays of 3 and higher dimensions.)

Procedure TwoSIsToASI works as follows: First, it determines which of the two strided intervals

is used as the base because it is not always apparent from the representation of the operand. The

strided interval that is used as the base should have a stride that is greater than the length of the

interval in the other strided interval. Once the roles of the strided intervals are established, the

algorithm generates the ASI reference for base followed by the ASI reference for index. In some

cases, the algorithm cannot establish either of the strided intervals as the base. In such cases,

the algorithm computes the abstract sum (+si) of the two strided intervals and invokes procedure

SI2ASI.

Procedure TwoSIsToASI generates a richer set of ASI references than procedure SI2ASI shown

in Fig. 5.4. For example, consider the indirect memory operand [eax+ecx] from a loop that

traverses a two-dimensional array of type char[5][10]. Suppose that the value-set of ecx is

(∅, 10[−50,−10]), the value-set of eax is (1[0, 9], ∅), and length is 1. For this example, the ASI

reference that is generated is “AR[-50:-1]\5[0:9]\10[0:0]”. That is, AR is accessed as an

array of five 10-byte entities, and each 10-byte entity is accessed as an array of ten 1-byte entities.

81

5.5 Interpreting Indirect Memory-References

This section describes a lookup algorithm that finds the set of a-locs accessed by a memory

operand. The algorithm is used to interpret pointer-dereference operations during VSA. For in-

stance, consider the instruction “mov [eax], 10”. During VSA, the lookup algorithm is used to

determine the a-locs accessed by [eax] and the value-sets for the a-locs are updated accordingly.

In Ch. 3, the algorithm to determine the set of a-locs for a given value-set is trivial because each

memory-region in Ch. 3 consists of a linear list of a-locs generated by the Semi-Naı̈ve approach.

However, after ASI is performed, the structure of each memory-region is an ASI tree.

Ramalingam et al. [93] present a lookup algorithm to retrieve the set of atoms for an ASI ex-

pression. However, their lookup algorithm is not appropriate for use in VSA because the algorithm

assumes that the only ASI expressions that can arise during lookup are the ones that were used

during the atomization phase. Unfortunately, this is not the case during VSA, for the following

reasons:

• ASI is used as a heuristic. As will be discussed in Sect. 5.8, some data-access patterns that

arise during VSA should be ignored during ASI.

• The executable can possibly access fields of those structures that have not yet been broken

down into atoms. For example, the initial round of ASI, which is based on a-locs recovered

by the Semi-Naı̈ve approach, will not include accesses to the fields of structures. However,

the first round of VSA may access structure fields.

We will use the tree shown in Fig. 5.3(b) to describe the lookup algorithm. Every node in the

tree is given a unique name (shown within parentheses). The following terms are used in describing

the lookup algorithm:

• NodeFrag is a descriptor for a part of an ASI tree node and is denoted by a triple 〈name,

start, length〉, where name is the name of the ASI tree node, start is the starting offset

within the ASI tree node, and length is the length of the fragment.

82

• NodeFragList is an ordered list of NodeFrag descriptors, [nd1, nd2, . . . , ndn]. A

NodeFragList represents a contiguous set of offsets in an aggregate. For example,

[〈a3, 2, 2〉, 〈a4, 0, 2〉] represents the offsets 2..5 of node i1; offsets 2..3 come from 〈a3, 2, 2〉

and offsets 4..5 come from 〈a4, 0, 2〉.

The lookup algorithm traverses the ASI tree, guided by the ASI reference for the given mem-

ory operand. First, the memory operand is converted into an ASI reference using the algo-

rithm described in Sect. 5.4, and the resulting ASI reference is broken down into a sequence

of ASI operations. The task of the lookup algorithm is to interpret the sequence of opera-

tions working left-to-right. There are three kinds of ASI operations: (1) GetChildren(aloc),

(2) GetRange(start, end), and (3) GetArrayElements(m). For example, the list

of ASI operations for “pts[0:39]\10[0:1]” is [GetChildren(pts), GetRange(0,39),

GetArrayElements(10), GetRange(0,1)]. Each operation takes a NodeFragList as argu-

ment and returns a set of NodeFragList values. The operations are performed from left to right.

The argument of each operation comes from the result of the operation that is immediately to its

left. The a-locs that are accessed are all the a-locs in the final set of NodeFrag descriptors.

The GetChildren(aloc) operation returns a NodeFragList that contains NodeFrag descrip-

tors corresponding to the children of the root node of the tree associated with the aggregate aloc.

GetRange(start, end) returns a NodeFragList that contains NodeFrag descriptors repre-

senting the nodes with offsets in the given range [start : end].

GetArrayElements(m) treats the given NodeFragList as an array ofm elements and returns

a set of NodeFragList lists. Each NodeFragList list represents an array element. There can be

more than one NodeFragList for the array elements because an array can be split during the

atomization phase and different parts of the array might be represented by different nodes.

The following examples illustrate traces of a few lookups.

Example 5.5.1 Lookup pts[0:3]

83

[〈i1, 0, 40〉]

GetChildren(pts) ⇓

[〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈i2, 0, 32〉]

GetRange(0,3) ⇓

[〈a3, 0, 4〉]

GetChildren(pts) returns the NodeFragList [〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈i2, 0, 32〉]. Applying GetRange(0,3)

returns [〈a3, 0, 4〉] because that describes offsets 0..3 in the given NodeFragList. The a-loc that

is accessed by pts[0:3] is a3. �

Example 5.5.2 Lookup pts[0:39]\5[0:3]

Let us look at GetArrayElements(5) because the other operations are similar to Ex.5.5.1.

GetArrayElements(5) is applied to [〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈i2, 0, 32〉]. The total length of the

given NodeFragList is 40 and the number of required array elements is 5. Therefore, the size

of the array element is 8. Intuitively, the operation unrolls the given NodeFragList and creates

a NodeFragList for every unique n-byte sequence starting from the left, where n is the length of

the array element. In this example, the unrolled NodeFragList is [〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈a5, 0, 4〉,

〈a6, 0, 4〉, . . . , 〈a5, 0, 4〉, 〈a6, 0, 4〉]. The set of unique 8-byte NodeFragLists has two ordered lists:

{[〈a3, 0, 4〉, 〈a4, 0, 4〉], [〈a5, 0, 4〉, 〈a6, 0, 4〉]}.
[〈i1, 0, 40〉]

GetChildren(pts) ⇓

[〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈i2, 0, 32〉]

GetRange(0,39) ⇓

[〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈i2, 0, 32〉]

GetArrayElements(5) ⇓

[〈a3, 0, 4〉, 〈a4, 0, 4〉],

[〈a5, 0, 4〉, 〈a6, 0, 4〉]

GetRange(0,3) ⇓

[〈a3, 0, 4〉],

[〈a5, 0, 4〉]

84

�

Example 5.5.3 Lookup pts[8:37]\5[0:5]

This example shows a slightly complicated case of the GetArrayElements operation. Un-

rolling of [〈i2, 0, 30〉] results in four distinct representations for 6-byte array elements, namely,

[〈a5, 0, 4〉, 〈a6, 0, 2〉], [〈a6, 2, 2〉, 〈a5, 0, 4〉], [〈a6, 0, 4〉, 〈a5, 0, 2〉], and [〈a5, 2, 2〉, 〈a6, 0, 4〉].
[〈i1, 0, 40〉]

GetChildren(pts) ⇓

[〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈i2, 0, 32〉]

GetRange(8, 37) ⇓

[〈i2, 0, 30〉]

GetArrayElements(5) ⇓

[〈a5, 0, 4〉, 〈a6, 0, 2〉], [〈a6, 2, 2〉, 〈a5, 0, 4〉],

[〈a6, 0, 4〉, 〈a5, 0, 2〉], [〈a5, 2, 2〉, 〈a6, 0, 4〉]

GetRange(0, 5) ⇓

[〈a5, 0, 4〉, 〈a6, 0, 2〉], [〈a6, 2, 2〉, 〈a5, 0, 4〉],

[〈a6, 0, 4〉, 〈a5, 0, 2〉], [〈a5, 2, 2〉, 〈a6, 0, 4〉]
�

Handling an access to a part of an a-loc. The abstract transformers for VSA as shown in

Fig. 3.1 do not handle partial updates to a-locs (i.e., updates to parts of an a-loc) precisely. For

instance, the abstract transformer for “∗(R1 + c1) = R2 + c2” in Fig. 3.1 sets the value-sets of all

the partially accessed a-locs to >vs. Consider “pts[0:1] = 0x10”.5 The lookup operation for

pts[0:1] returns [〈a3, 0, 2〉], where 〈a3, 0, 2〉 refers to the first two bytes of a3. The abstract trans-

former from Fig. 3.1 “gives up” (because only part of a3 is affected) and sets the value-set of a3 to

>vs, which would lead to imprecise results. Similarly, a memory read that only accesses a part of

an a-loc is treated conservatively as a load of >vs (cf. case 3 of Fig. 3.1). The abstract transformers

for VSA are modified as outlined below to handle partial updates and partial reads precisely.

5 Numbers that start with “0x” are in C hexadecimal format.

85

The value-set domain (see Ch. 4, [94]) provides bit-wise operations such as bit-wise and (&vs),

bit-wise or (|vs), left shift (�vs), right shift (�vs), etc. We use these operations to adjust the value-

set associated with an a-loc when a partial update has to be performed during VSA. Assuming

that the underlying architecture is little-endian, the abstract transformer for “pts[0:1] = 0x10”

updates the value-set associated with a3 as follows:

ValueSet′(a3) = (ValueSet(a3) &vs 0xffff0000) |vs (0x10).

(A read that only accesses a part of an a-loc is handled in a similar manner.)

5.6 Hierarchical A-locs

The iteration of ASI and VSA can over-refine the memory-regions. For instance, suppose

that the 4-byte a-loc a3 in Fig. 5.3(b) used in some round i is partitioned into two 2-byte a-locs,

namely, a3.0, and a3.2 in round i + 1. This sort of over-refinement can affect the results of VSA;

in general, because of the properties of strided-intervals, a 4-byte value-set reconstructed from two

adjacent 2-byte a-locs can be less precise than if the information was retrieved from a 4-byte a-

loc. For instance, suppose that at some instruction S, a3 holds either 0x100000 or 0x110001. In

round i, this information is exactly represented by the 4-byte strided interval 0x10001[0x100000,

0x110001] for a3. On the other hand, the same set of numbers can only be over-approximated

by two 2-byte strided intervals, namely, 1[0x0000, 0x0001] for a3.0, and 0x1[0x10,0x11] for a3.2

(for a little-endian machine). Consequently, if a 4-byte read of a3 in round i + 1 is handled by

reconstituting a3’s value from a3.0 and a3.2, the result would be less precise:

ValueSet(a3) = (ValueSet(a3.2)�vs 16)|vsValueSet(a3.0)

= {0x100000, 0x100001, 0x110000, 0x110001}

⊃ {0x100000, 0x110001}.
We avoid the effects of over-refinement by keeping track of the value-sets for a-loc a3 as well

as a-locs a3.0 and a3.2 in round i+ 1. Whenever any of a3, a3.0, and a3.2 is updated during round

i+ 1, the overlapping a-locs are updated as well. For example, if a3.0 is updated then the first two

bytes of the value-set of a-loc a3 are also updated (for a little-endian machine). For a 4-byte read

of a3, the value-set returned would be 0x10001[0x100000, 0x110001].

86

2(a3.0)

4(a3)

2(a3.2)

Figure 5.6
Hierarchical a-locs.

In general, if an a-loc a of length ≤ 4 gets partitioned into a sequence of

a-locs [a1, a2, . . . , an] during some round of ASI, in the subsequent round of

VSA, we use a as well as {a1, a2, . . . , an}. We also remember the parent-

child relationship between a and the a-locs in {a1, a2, . . . , an} so that we can

update a whenever any of the ai is updated during VSA and vice versa. In

our example, the ASI tree used for round i+ 1 of VSA is identical to the tree in Fig. 5.3(b), except

that the node corresponding to a3 is replaced with the tree shown in Fig. 5.6.

One of the sources of over-refinement is the use of union types in the program. The use of

hierarchical a-locs allows at least some degree of precision to be retained in the presence of unions.

5.7 Convergence

The first round of VSA uncovers memory accesses that are not explicit in the program, which

allows ASI to refine the a-locs for the next round of VSA, which may produce more precise value-

sets because it is based on a better set of a-locs. Similarly, subsequent rounds of VSA can uncover

more memory accesses, and hence allow ASI to refine the a-locs. The refinement of a-locs cannot

go on indefinitely because, in the worst case, an a-loc can only be partitioned into a sequence

of 1-byte chunks. However, in practice, the refinement process converges before the worst-case

partitioning occurs. Also, the set of targets that VSA determines for indirect function-calls and

indirect jumps may change when the set of a-locs (and consequently, their value-sets) changes

between successive rounds. This process cannot go on indefinitely because the set of a-locs cannot

change between successive rounds forever. Therefore, the iteration process converges when the

set of a-locs, and the set of targets for indirect function calls and indirect jumps does not change

between successive rounds.

87

5.8 Pragmatics

ASI takes into account the accesses and data transfers involving memory, and finds a partition

of the memory-regions that is consistent with these transfers. However, from the standpoint of

accuracy of VSA and its clients, it is not always beneficial to take into account all possible accesses:

• VSA might obtain a very conservative estimate for the value-set of a register (say R). For

instance, the value-set for R could be >vs, meaning that register R can possibly hold all ad-

dresses and numbers. For a memory operand [R], we do not want to generate ASI references

that refer to each memory-region as an array of 1-byte elements.

• Some compilers initialize the local stack frame with a known value to aid in debugging

uninitialized variables at runtime. For instance, some versions of the Microsoft Visual Studio

compiler initialize all bytes of a local stack frame with the value 0xC. The compiler might do

this initialization by using a memcpy. Generating ASI references that mimic memcpy would

cause the memory-region associated with this procedure to be broken down into an array of

1-byte elements, which is not desirable.

To deal with such cases, some options are provided to tune the analysis:

• The user can supply an integer threshold. If the number of memory locations that are ac-

cessed by a memory operand is above the threshold, no ASI reference is generated.

• The user can supply a set of instructions for which ASI references should not be generated.

One possible use of this option is to suppress memcpy-like instructions.

• The user can supply explicit references to be used during ASI.

In our experiments, we only used the integer-threshold option (which was set to 500).

5.9 Experiments

In this section, we present the results of our preliminary experiments, which were designed to

answer the following questions:

88

1. How do the a-locs identified by abstraction refinement compare with the program’s debug-

ging information? This provides insight into the usefulness of the a-locs recovered by our

algorithm for a human analyst.

2. How much more useful for static analysis are the a-locs recovered by an abstract-interpretation-

based technique when compared to the a-locs recovered by purely local techniques?

5.9.1 Comparison of A-locs with Program Variables

To measure the quality of the a-locs identified by the abstraction-refinement algorithm, we used

a set of C++ benchmarks collected from [6] and [88]. The characteristics of the benchmarks are

shown in Tab. 5.1. The programs in Tab. 5.1 make heavy use of inheritance and virtual functions,

and hence are a challenging set of examples for the algorithm.

Instructions Procedures Malloc Sites
NP 252 5 2
primes 294 9 1
family 351 9 6
vcirc 407 14 1
fsm 502 13 1
office 592 22 4
trees 1299 29 10
deriv1 1369 38 16
chess 1662 41 24
objects 1739 47 5
simul 1920 60 2
greed 1945 47 1
ocean 2552 61 13
deriv2 2639 41 58
richards 3103 74 23
deltablue 5371 113 26

Table 5.1 C++ Examples

We compiled the set of programs shown in Tab. 5.1 using the Microsoft VC 6.0 compiler with

debugging information, and ran the a-loc-recovery algorithm on the executables produced by the

compiler until the results converged. After each round of ASI, for each program variable v present

89

in the debugging information, we compared v with the structure identified by our algorithm (which

did not use the debugging information), and classified v into one of the following categories:

• Variable v is classified as matched if the a-loc-recovery algorithm correctly identified the

size and the offsets of v in the corresponding memory-region.

• Variable v is classified as over-refined if the a-loc-recovery algorithm partitioned v into

smaller a-locs. For instance, a 4-byte int that is partitioned into an array of four char

elements is classified as over-refined.

• Variable v is under-refined if the a-loc-recovery algorithm identified v to be a part of a larger

a-loc. For instance, if the algorithm failed to partition a struct into its constituent fields, the

fields of the struct are classified as under-refined.

• Variable v is classified as incomparable if v does not fall into one of the above categories.

The results of the classification process for the local variables and fields of heap-allocated

data structures are shown in Fig. 5.7(a) and Fig. 5.7(b), respectively. The leftmost column for

each program shows the results for the a-locs recovered using the Semi-Naı̈ve approach, and the

rightmost bar shows the results for the final round of the abstraction-refinement algorithm.

On average, our technique is successful in identifying correctly over 88% of the local variables

and over 89% of the fields of heap-allocated objects (and was 100% correct for fields of heap-

allocated objects in over half of the examples). In contrast, the Semi-Naı̈ve approach recovered

83% of the local variables, but 0% of the fields of heap-allocated objects.

Fig. 5.7(a) and Fig. 5.7(b) show that for some programs the results improve as more rounds of

analysis are carried out. In most of the programs, only one round of ASI was required to identify all

the fields of heap-allocated data structures correctly. In some of the programs, however, it required

more than one round to find all the fields of heap-allocated data-structures. Those programs that

required more than one round of ASI-VSA iteration used a chain of pointers to link structs of

different types, as discussed in Sect. 5.3.

90

(a)

(b)

Figure 5.7 Breakdown (as percentages) of how a-locs matched with program variables: (a) local
variables, and (b) fields of heap-allocated data-structures.

91

Most of the example programs do not have structures that are declared local to a procedure.

This is the reason why the Semi-Naı̈ve approach identified a large fraction of the local variables

correctly. The programs primes and fsm have structures that are local to a procedure. As shown

in Fig. 5.7(a), our approach identifies more local variables correctly for these examples.

5.9.2 Usefulness of the A-locs for Static Analysis

The aim of this experiment was to evaluate the quality of the variables and values discovered

as a platform for performing additional static analysis. In particular, because resolution of indi-

rect operands is a fundamental primitive that essentially any subsequent analysis would need, the

experiment measured how well we can resolve indirect memory operands not based on global ad-

dresses or stack-frame offsets (e.g., accesses to arrays and heap-allocated data objects). We ran

several rounds of VSA on the collection of commonly used Windows executables listed in Tab. 5.3

and Windows device drivers listed in Tab. 5.2, as well as the set of benchmarks from Tab. 5.1. The

executables for the Windows device driver examples in Tab. 5.2 were obtained by compiling the

driver source code along with the harness and O S environment model used in the SDV toolkit [14].

(See Ch. 8 for more details.) For the programs in Tab. 5.1 and Tab. 5.2, we ran VSA-ASI iteration

until convergence. For the programs in Tab. 5.3, we limited the number of VSA-ASI rounds to at

most three. Round 1 of VSA performs its analysis using the a-locs recovered by the Semi-Naı̈ve

approach; all subsequent rounds of VSA use the a-locs recovered by the abstraction-refinement

algorithm. After the first and final rounds of VSA, we labeled each memory operand as follows:

• A memory operand is untrackable if the size of all the a-locs accessed by the memory

operand is greater than 4 bytes, or if the value-set obtained by evaluating the address ex-

pression of the memory operand (according to the VSA abstract semantics) is >vs.

• A memory operand is weakly-trackable if the size of some a-loc accessed by the memory

operand is less than or equal to 4 bytes, and the value-set obtained by evaluating the address

expression of the memory operand is not >vs.

92

Driver Procedures Instructions n Time
src/vdd/dosioctl/krnldrvr 70 2824 3 21s
src/general/ioctl/sys 76 3504 3 37s
src/general/tracedrv/tracedrv 84 3719 3 1m
src/general/cancel/startio 96 3861 3 26s
src/general/cancel/sys 102 4045 3 26s
src/input/moufiltr 93 4175 3 4m
src/general/event/sys 99 4215 3 31s
src/input/kbfiltr 94 4228 3 3m
src/general/toaster/toastmon 123 6261 3 5m
src/storage/filters/diskperf 121 6584 3 7m
src/network/modem/fakemodem 142 8747 3 16m
src/storage/fdc/flpydisk 171 12752 3 31m
src/input/mouclass 192 13380 2 1h 51m
src/input/mouser 188 13989 3 40m
src/kernel/serenum 184 14123 3 38m
src/wdm/1394/driver/1394diag 171 23430 3 28m
src/wdm/1394/driver/1394vdev 173 23456 3 23m

Table 5.2 Windows Device Drivers. (n is the number of VSA-ASI rounds.)

• A memory operand is strongly-trackable if the size of all the a-locs accessed by the memory

operand is less than or equal to 4 bytes, and the value-set obtained by evaluating the address

expression of the memory operand is not >vs.

Recall that VSA can track value-sets for a-locs that are less than or equal to 4 bytes, but reports

that the value-set for a-locs greater than 4 bytes is >vs. Therefore, untrackable memory operands

are the ones for which VSA provides no useful information at all, and strongly-trackable mem-

ory operands are the ones for which VSA definitely provides useful information. For a weakly-

trackable memory operand, VSA provides some useful information if the operand is used to update

the contents of memory; however, no useful information is obtained if the operand is used to read

the contents of memory. For instance, if [eax] in “mov [eax], 10” is weakly-trackable, then

VSA would have updated the value-set for those a-locs that were accessed by [eax] and were of

size less than or equal to 4 bytes. (The value-sets for the a-locs of size greater than 4 bytes would

already hold the value >vs.) However, if [eax] in “mov ebx, [eax]” is weakly-trackable, then

at least one of the a-locs accessed by [eax] holds the value >vs. Because the value-set of the des-

tination operand in a mov instruction is set to the join (tvs) of the value-sets of the a-locs accessed

by source operand ([eax] in our example), the value-set of ebx is set to >vs; this situation is not

93

Instructions Procedures Malloc Sites n Time
mplayer2 14270 172 0 2 0h 11m
smss 43034 481 0 3 2h 8m
print 48233 563 17 3 0h 20m
doskey 48316 567 16 3 2h 4m
attrib 48785 566 17 3 0h 23m
routemon 55586 674 6 3 2h 28m
cat 57505 688 24 3 0h 54m
ls 60543 712 34 3 1h 10m

Table 5.3 Windows Executables. (n is the number of VSA-ASI rounds.)

different from the case when [eax] is untrackable. We refer to a memory operand that is used to

read the contents of memory as a use-operand, and a memory operand that is used to update the

contents of memory as a kill-operand.

In Tab. 5.5, the “Weakly-Trackable Kills” column shows the fraction of kill-operands that were

weakly-trackable during the first and final rounds of the abstraction-refinement algorithm, and the

“Strongly-Trackable Uses” column shows the fraction of use-operands that were strongly-trackable

during the first and final round of the algorithm. (Note that “Weakly-Trackable Kills” includes all

of the “Strongly-Trackable Kills”.) In the table, we have classified memory operands as either

direct or indirect. A direct memory operand is a memory operand that uses a global address or

stack-frame offset. An indirect memory operand is a memory operand that does not use a global

address or a stack-frame offset (e.g., a memory operand that accesses an array or a heap-allocated

data object).

Both the Semi-Naı̈ve approach and our abstract-interpretation-based a-loc-recovery algorithm

provide good results for direct memory operands. However, the results for indirect memory

operands are substantially better with the abstraction-interpretation-based method. For the set

of C++ programs from Tab. 5.1, the classification of memory operations improves at 50% to 100%

of the indirect kill-operands, and at 7% to 100% of the indirect use-operands. For the set of

Windows device drivers from Tab. 5.2, the classification of memory operations improves at 8%

(fakemodem: 5%→ 13%) to 39% (ioctl/sys, tracedrv: 16%→ 55%) of the indirect kill-operands,

and at 5% (1394diag, 1394vdev: 5% → 10%) to 28% (tracedrv: 48% → 76%) of indirect use-

operands. Similarly, for the Windows executables from Tab. 5.3, the results of VSA improves at

94

Geometric Mean For The Final Round
Category Weakly-Trackable Strongly-Trackable Strongly-Trackable

Indirect Kills (%) Indirect Kills (%) Indirect Uses (%)
C++ Examples 83% 80% 46%
Windows Device Drivers 33% 30% 29%
Windows Executables 22% 19% 6%

Table 5.4 Geometric mean of the fraction of trackable memory operands in the final round.

4% (routemon: 7% → 11%) to 39% (mplayer2: 12% → 51%) of the indirect kill-operands, and

up to 8% (attrib, print: 4% → 12%, 6% → 14%) of the indirect use-operands. (Both kinds

of improvement mean that the results of VSA are also improved; because the registers used in an

indirect memory operand are initialized with the contents of another (register or memory) a-loc, an

increase in the percentage of strongly-trackable indirect operands suggests that the value-sets de-

termined by VSA for the a-locs are more precise in the final round when compared to the previous

rounds.)

We were surprised to find that the Semi-Naı̈ve approach was able to provide a small amount of

useful information for indirect memory operands. For instance, trees, greed, ocean, deltablue,

and all the Windows executables have a non-zero percentage of trackable memory operands. On

closer inspection, we found that these indirect memory operands access local or global variables

that are also accessed directly elsewhere in the program. (In source-level terms, the variables are

accessed both directly and via pointer indirection.) For instance, a local variable v of procedure P

that is passed by reference to procedure Q will be accessed directly in P and indirectly in Q.

Tab. 5.4 summarizes the results of our experiments. Our abstract-interpretation-based a-loc

recovery algorithm works well for the C++ examples, but the algorithm is not so successful for the

Windows device driver examples and the Windows executables. Several sources of imprecision in

VSA prevent us from obtaining useful information at all of the indirect memory operands in the

Windows device drivers and Windows executables. One such source of imprecision is widening

[40]. VSA uses a widening operator during abstract interpretation to accelerate fixpoint computa-

tion (see Sect. 7.1). Due to widening, VSA may fail to find non-trivial bounds for registers that

are used as indices in indirect memory operands. These indirect memory operands are labeled as

untrackable. The fact that the VSA domain is non-relational amplifies this problem. (To a limited

95

extent, we overcome the lack of relational information by obtaining relations among x86 regis-

ters from an additional analysis called affine-relation analysis. See Sect. 7.2 for details.) Note

that the widening problem is orthogonal to the issue of finding the correct set of variables. Even

if our a-loc recovery algorithm recovers all the variables correctly, imprecision due to widening

persists. Sect. 7.5 describes a technique that reduces the undesirable effects of widening. When

the technique described in Sect. 7.5 is used, the percentage of trackable memory operands in the

final round improves substantially for the Windows device driver examples—namely, from the

percentages 33%, 30%, and 29% shown in Tab. 5.4 to 90%, 85%, and 81% as reported in Tab. 7.3.

Nevertheless, the results are encouraging. For the Windows executables, the number of mem-

ory operands that have useful information in round n is 2 to 4 times the number of memory

operands that have useful information in round 1; i.e., the results of static analysis do signifi-

cantly improve when a-locs recovered by the abstraction-interpretation-based algorithm are used

in the place of a-locs recovered from purely local techniques.

96

Weakly-Trackable Strongly-Trackable Strongly-Trackable
Kills (%) Kills (%) Uses (%)

Indirect Direct Indirect Direct Indirect Direct
Round 1 n 1 n 1 n 1 n 1 n 1 n
NP (4) 0 100 100 100 0 100 100 100 0 100 100 100
primes (4) 0 100 100 100 0 100 100 100 0 83 100 100
family (4) 0 100 100 100 0 100 100 100 0 100 100 100
vcirc (5) 0 100 100 100 0 100 100 100 0 100 100 100
fsm (2) 0 50 100 100 0 50 100 100 0 29 98 100
office (3) 0 100 100 100 0 100 100 100 0 100 100 100
trees (5) 10 100 98 100 5 100 98 100 25 61 96 100
deriv1 (4) 0 100 97 99 0 100 97 99 0 77 98 98
chess (3) 0 60 99 99 0 50 99 99 0 25 100 100
objects (5) 0 100 100 100 0 100 100 100 0 94 100 100
simul (3) 0 100 71 100 0 100 71 100 0 38 57 100
greed (5) 3 53 99 100 3 32 99 100 3 10 98 98
ocean (3) 9 90 99 100 9 90 99 100 6 42 98 100
deriv2 (5) 0 100 100 100 0 100 100 100 0 97 95 100
richards (2) 0 68 100 100 0 62 100 100 0 7 99 99
deltablue (3) 1 57 99 100 1 57 99 100 0 16 99 99
src/vdd/dosioctl/krnldrvr (3) 16 45 93 100 16 45 93 100 48 66 99 100
src/general/ioctl/sys (3) 16 55 94 100 16 55 94 100 36 53 36 51
src/general/tracedrv/tracedrv (3) 16 55 95 100 16 55 95 100 48 76 98 100
src/general/cancel/startio (3) 14 39 94 100 13 39 94 100 41 56 97 99
src/general/cancel/sys (3) 14 39 95 100 13 39 95 100 45 61 97 99
src/input/moufiltr (3) 8 21 96 100 8 21 96 100 30 40 99 100
src/general/event/sys (3) 12 46 95 100 11 42 95 100 26 36 96 99
src/input/kbfiltr (3) 8 20 96 100 8 20 96 100 29 40 97 100
src/general/toaster/toastmon (3) 8 23 97 100 8 21 97 100 29 41 99 100
src/storage/filters/diskperf (3) 6 20 96 100 6 19 96 100 17 23 97 100
src/network/modem/fakemodem (3) 5 13 93 100 4 12 93 99 9 18 89 100
src/storage/fdc/flpydisk (3) 5 22 97 100 5 16 97 100 13 27 94 99
src/input/mouclass (2) 7 27 95 100 5 24 95 100 19 16 95 99
src/input/mouser (3) 9 42 98 100 8 42 98 100 8 16 95 99
src/kernel/serenum (3) 8 32 93 100 5 25 92 99 8 16 95 99
src/wdm/1394/driver/1394diag (3) 5 52 97 100 4 44 96 100 5 10 87 100
src/wdm/1394/driver/1394vdev (3) 5 52 97 100 4 44 97 100 5 10 87 100
mplayer2 (2) 12 51 89 97 12 43 89 97 8 8 89 92
smss (3) 9 19 92 98 6 15 92 98 1 4 84 90
print (3) 2 22 92 99 2 21 92 99 6 14 89 92
doskey (3) 2 17 92 97 2 17 92 97 5 7 79 86
attrib (3) 7 24 93 98 7 23 93 98 4 12 86 90
routemon (3) 7 11 93 97 5 8 93 97 1 2 81 86
cat (3) 12 22 93 97 12 22 93 97 1 4 79 84
ls (3) 11 23 94 98 8 20 94 98 1 4 84 88

Table 5.5 Fraction of memory operands that are trackable after VSA. The number in parenthesis
shows the number of rounds (n) of VSA-ASI iteration for each executable. (For Windows

executables, the maximum number of rounds was set to 3.) Boldface and bold-italics in the
Indirect columns indicate the maximum and minimum improvements, respectively.

97

Chapter 6

Recency-Abstraction for Heap-Allocated Storage

A great deal of work has been done on algorithms for flow-insensitive points-to analysis [8, 42,

105] (including algorithms that exhibit varying degrees of context-sensitivity [31, 50, 54, 116]), as

well as on algorithms for flow-sensitive points-to analysis [64, 88]. However, all of the aforemen-

tioned work uses a very simple abstraction of heap-allocated storage, which we call the allocation-

site abstraction [29, 70]:

All of the nodes allocated at a given allocation site s are folded together into a single

summary node ns.

In terms of precision, the allocation-site abstraction can often produce poor-quality information be-

cause it does not allow strong updates to be performed. A strong update overwrites the contents of

an abstract object, and represents a definite change in value to all concrete objects that the abstract

object represents [29, 100]. Strong updates cannot generally be performed on summary objects

because a (concrete) update usually affects only one of the summarized concrete objects. If allo-

cation site s is in a loop, or in a function that is called more than once, then s can allocate multiple

nodes with different addresses. A points-to fact “p points to ns” means that program variable p may

point to one of the nodes that ns represents. For an assignment of the form p->selector1 = q,

points-to-analysis algorithms are ordinarily forced to perform a weak update: that is, selector edges

emanating from the nodes that p points to are accumulated; the abstract execution of an assignment

to a field of a summary node cannot kill the effects of a previous assignment because, in general,

only one of the nodes that ns represents is updated on each concrete execution of the assignment

statement. Because imprecisions snowball as additional weak updates are performed (e.g., for

98

assignments of the form r->selector1 = p->selector2), the use of weak updates has adverse

effects on what a points-to-analysis algorithm can determine about the properties of heap-allocated

data structures.

void foo() {
int **pp, a;

while(...) {
pp =

(int*)malloc(sizeof(int*));

if(...)

*pp = &a;

else {
// No initialization of *pp

}
**pp = 10;

}
}

void foo() {
int **pp, a;

while(...) {
pp =

(int*)malloc(sizeof(int*));

if(...)

*pp = &a;

else {
*pp = &b;

}
**pp = 10;

}
}

(a) (b)

Figure 6.1 Weak-update problem for malloc blocks.

To mitigate the effects of weak updates, many pointer-analysis algorithms in the literature

forgo soundness. For instance, in a number of pointer-analysis algorithms—both flow-insensitive

and flow-sensitive—the initial points-to set for each pointer variable is assumed to be ∅ (rather than

>). For local variables and malloc-site variables, the assumption that the initial value is ∅ is not a

safe one, and the results obtained starting from this assumption do not over-approximate all of the

program’s behaviors. The program shown in Fig. 6.1 illustrates this issue. In Fig. 6.1(a), *pp is

not initialized on all paths leading to “**pp = 10”, whereas in Fig. 6.1(b), *pp is initialized on all

paths leading to “**pp = 10”.

A pointer-analysis algorithm that makes the unsafe assumption mentioned above will not be

able to detect that the malloc-block pointed to by pp is possibly uninitialized at the dereference

pp. For Fig. 6.1(b), the algorithm concludes correctly that “pp = 10” modifies either a or b,

but for Fig. 6.1(a), the algorithm concludes incorrectly that “**pp = 10” only modifies a, which

is not sound.

99

On the other hand, assuming that the malloc-block can point to any variable or heap-allocated

object immediately after the call to malloc (i.e., has the value >) leads to sound but imprecise

points-to sets in both versions of the program in Fig. 6.1. The problem is as follows. When the

pointer-analysis algorithm interprets statements “*pp = &a” and “*pp = &b”, it performs a weak

update. Because *pp is assumed to point to any variable or heap-allocated object, performing a

weak update does not improve the points-to sets for the malloc-block (i.e., its value remains >).

Therefore, the algorithm concludes that “**pp = 10” may modify any variable or heap-allocated

object in the program.1

It might seem possible to overcome the lack of soundness by tracking whether variables and

fields of heap-allocated data structures are uninitialized (either as a separate analysis or as part of

pointer analysis). However, such an approach will also encounter the weak-update problem for

fields of heap-allocated data structures. For instance, for the program in Fig. 6.1(b), the initial

state of the malloc-block would be set to uninitialized. During dataflow analysis, when processing

“*pp = &a” and “*pp = &b” sound transformers for these statements cannot change the state of

the malloc-block to initialized because *pp points to a summary object. Hence, fields of memory

allocated at malloc-sites will still be reported as possibly uninitialized.

Even the use of multiple summary nodes per allocation site, where each summary node is

qualified by some amount of calling context (as in [58, 79]), does not overcome the problem; that

is, algorithms such as [58, 79] must still perform weak updates.

At the other extreme is a family of heap abstractions that have been introduced to discover

information about the possible shapes of the heap-allocated data structures to which a program’s

pointer variables can point [100]. Those abstractions generally allow strong updates to be per-

formed, and are capable of providing very precise characterizations of programs that manipulate

linked data structures; however, the methods are also very costly in space and time.

In this chapter, we present an abstraction for heap-allocated storage, referred to as the recency-

abstraction, that is somewhere in the middle between the extremes of one summary node per

1 Source-code analyses for C and C++ typically use the criterion “any variable whose address has been taken” in
place of “any variable”. However, this can be unsound for programs that use pointer arithmetic (i.e., perform arithmetic
operations on addresses), such as executables.

100

malloc site [8, 42, 105] and complex shape abstractions [100]. In particular, the recency-abstraction

enables strong updates to be performed in many cases, and at the same time, ensures that the results

are sound.

The recency-abstraction incorporates a number of ideas known from the literature, including

• associating abstract malloc-blocks with allocation sites (à la the allocation-site abstraction

[29, 70])

• isolating a distinguished non-summary node that represents the memory location that will be

updated by a statement (as in the k-limiting approach [65, 69] and shape analysis based on

3-valued logic [100])

• using a history relation to record information about a node’s past state [76]

• attaching numeric information to summary nodes to characterize the number of concrete

nodes represented [120]

• for efficiency, associating each program point with a single shape-graph [29, 70, 73, 99, 106]

and using an independent-attribute abstraction to track information about individual heap

locations [59].

The remainder of this chapter is organized as follows: Sect. 6.1 describes the problems in us-

ing allocation-site abstraction for heap-allocated storage in VSA. Sect. 6.2 describes our recency-

abstraction for heap-allocated data structures. Sect. 6.3 formalizes the recency-abstraction. Sect. 6.4

provides experimental results evaluating these techniques.

6.1 Problems in Using the Allocation-Site Abstraction in VSA

The version of the value-set analysis algorithm that is described in Ch. 3 uses the sound version

of the allocation-site abstraction for heap-allocated storage. Therefore, that version of VSA also

suffers from the problem of imprecision caused by weak updates as described in the previous

section. In this section, we describe the effects of weak updates on the quality of the IR recovered

by VSA.

101

6.1.1 Contents of the Fields of Heap-Allocated Memory-Blocks

Using the sound version of the allocation-site abstraction causes VSA to recover very coarse

information about the contents of the fields of heap-allocated memory-blocks. Consider the C pro-

gram2 shown in Fig. 6.2(a). For this example, there are three memory-regions: Global, AR main,

and malloc M1. The value-sets that are obtained from VSA at the bottom of the loop body are

shown in Fig. 6.2(b). Fig. 6.2(c) shows the value-sets in terms of the variables in the C program.

Consider the value-sets determined by VSA for the fields of the heap memory-block allocated

at M1. “elem->a 7→ >” and “elem->next 7→ >” indicate that elem->a and elem->next may

contain any possible value. VSA could not determine better value-sets for these variables because

of the weak-update problem discussed earlier. Because malloc does not initialize the block of

memory that it returns, VSA assumes (safely) that elem->a and elem->next may contain any

possible value after the call to malloc. Because malloc M1 is a summary memory-region, only

weak updates can be performed at the instructions that initialize the fields of elem. Therefore, the

value-sets associated with the fields of elem remain >.

Fig. 6.2(d) shows the information recovered by VSA pictorially. The double box denotes a

summary object. Dashed edges denote may-points-to information. In our example, VSA has

recovered the following: (1) head and elem may point to one of the objects represented by the

summary object, (2) “elem->next” may point to any possible location, and (3) “elem->a” may

contain any possible value.

6.1.2 Resolving Virtual-Function Calls in Executables

In this section, we discuss the issues that arise when trying to resolve virtual-function calls

in executables using allocation-site abstraction. Consider an executable compiled from a C++

program that uses inheritance and virtual functions. The first four bytes of an object contains the

address of the virtual-function table. We will refer to these four bytes as the VFT-field. In an

executable, a call to new results in two operations: (1) a call to malloc to allocate memory, and (2)

2We use C code in our discussions to make the issues easier to understand.

102

struct List {
int a;

struct List* next;

};

int main() {
int i;

struct List* head = NULL;

struct List* elem;

for(i = 0; i < 5; ++i) {
M1: elem = (struct List*)

malloc(sizeof(struct List));

elem->a = i;

elem->next = head;

L1: head = elem;

}
return 0;

}

(a)

º

a next

º
elem

head

(d)

AR main 7→ (

i 7→ [(Global 7→ 1[0,4])]

head 7→ [(malloc M1 7→ 0[0,0])]

elem 7→ [(malloc M1 7→ 0[0,0])]

)

malloc M1 7→ (

Field 0 7→ >
Field 4 7→ >

)

(b)

i 7→ [(Global 7→ 1[0,4])]

head 7→ [(malloc M1 7→ 0[0,0])]

elem 7→ [(malloc M1 7→ 0[0,0])]

elem->a 7→ >
elem->next 7→ >

(c)

Figure 6.2 Value-Set Analysis (VSA) results (when the allocation-site abstraction is used): (a) C
program; (b) value-sets after L1 (registers and global variables are omitted); (c) value-sets in (b)
interpreted in terms of the variables in the C program; and (d) graphical depiction of (c). (The

double box denotes a summary region. Dashed edges denote may-points-to information.)

a call to the constructor to initialize (among other things) the VFT-field. A virtual-function call in

source code gets translated to an indirect call through the VFT-field (see the CFG in Fig. 6.3).

When source code is available, one way of resolving virtual-function calls is to associate type

information with the pointer returned by the call to new and then propagate that information to

other pointers at assignment statements. However, type information is usually not available in

executables. Therefore, to resolve a virtual-function call, information about the contents of the

VFT-field needs to be available. For a static-analysis algorithm to determine such information, it

has to track the flow of information through the instructions in the constructor. Fig. 6.3 illustrates

the results if the allocation-site abstraction is used. Using the allocation-site abstraction alone,

103

p = malloc()

p->vt = &VT

f
g

f
g

MallocBlock VirtualTable

ºººº
ºººº
ºººº

ºººº
ºººº

ºººº

(*(p->vt + x))()

···
···

Figure 6.3 Resolving virtual-function calls in executables. (A double box denotes a summary
node.)

it would not be possible to establish the link between the object and the virtual-function table:

because the summary node represents more than one block, the interpretation of the instruction

that sets the VFT-field can only perform a weak update, i.e., it can only join the virtual-function

table address with the existing addresses, and not overwrite the VFT-field in the object with the

address of the virtual-function table. After the call to malloc, the fields of the object can have

any value (shown as >); computing the join of > with any value results in >, which means that

the VFT-field can point to anywhere in memory (shown as dashed arrows). Therefore, a definite

link between the object and the virtual-function table is never established, and (if a conservative

algorithm is desired) a client of the analysis can only conclude that the virtual-function call may

resolve to any possible function.

The key to resolving virtual-function calls in executables is to be able to establish that the VFT-

field definitely points to a certain virtual-function table. Sect. 6.2 describes an extension of the

VSA domain that uses the recency-abstraction, and shows how it is able to establish a definite link

between an object’s VFT-field and the appropriate virtual-function table in many circumstances.

104

6.2 An Abstraction for Heap-Allocated Storage

This section describes the recency-abstraction. The recency-abstraction is similar in some

respects to the allocation-site abstraction, in that each abstract node is associated with a particular

allocation site; however, the recency-abstraction uses two memory-regions per allocation site s:

AllocMemRgn = {MRAB[s],NMRAB[s] | s an allocation site}

• MRAB[s] represents the most-recently-allocated block that was allocated at s. Because

there is at most one such block in any concrete configuration, MRAB[s] is never a summary

memory-region.

• NMRAB[s] represents the non-most-recently-allocated blocks that were allocated at s. Be-

cause there can be many such blocks in a given concrete configuration, NMRAB[s] is gen-

erally a summary memory-region.

In addition, each MRAB[s],NMRAB[s] ∈ AllocMemRgn is associated with a “count”

value, denoted by MRAB[s].count and NMRAB[s].count, respectively, which is a value of type

SmallRange = {[0, 0], [0, 1], [1, 1], [0,∞], [1,∞], [2,∞]}. The count value records a range for

how many concrete blocks the memory-region represents. While NMRAB[s].count can have any

SmallRange value, MRAB[s].count will be restricted to take on only values in {[0, 0], [0, 1], [1, 1]},

which represent counts for non-summary regions. Consequently, an abstract transformer can per-

form a strong update on a field of MRAB[s], when the count is [1, 1].3

In addition to the count, each MRAB[s],NMRAB[s] ∈ AllocMemRgn is also associated with a

“size” value, denoted by MRAB[s].size and NMRAB[s].size, respectively, which is a value of type

StridedInterval. The size value represents an over-approximation of the set of sizes of the con-

crete blocks that the memory-region represents. This information can be used to report potential

memory-access violations that involve heap-allocated data. For instance, if MRAB[s].size of an al-

location site s is 0[12, 12], the dereference of a pointer whose value-set is [(MRAB[s] 7→ 0[16, 16])]

would be reported as a memory-access violation.

3 When the count is [0, 1], one approach would be to report a possible NULL-pointer dereference, perform an
assume(MRAB[s].count = [1, 1]), and perform a strong update on the result.

105

The recency-abstraction is beneficial when the initialization of objects is between two succes-

sive allocations at the same allocation site.

• It is particularly effective for tracking the initialization of the VFT-field (the field of an object

that holds the address of the virtual-function table) because the usual case is that the VFT-

field is initialized in the constructor, and remains unchanged thereafter.

• Inside methods that operate on lists, doubly-linked lists, and other linked data structures,

an analysis based on the recency-abstraction would typically be forced to perform weak

updates. The recency-abstraction does not go as far as methods for shape analysis based on

3-valued logic [100], which can materialize a non-summary node for the memory location

that will be updated by a statement and thereby make a strong update possible; however, such

analysis methods are considerably more expensive in time and space than the one described

here.

Example 6.2.1 Fig. 6.4 shows a trace of the evolution of parts of the AbsEnvs for three instruc-

tions in a loop during VSA. It is assumed that there are three fields in the memory-regions MRAB

and NMRAB (shown as the three rectangles within MRAB and NMRAB). Double boxes around

NMRAB objects in Fig. 6.4(c) and (d) are used to indicate that they are summary memory-regions.

For brevity, in Fig. 6.4 the effect of each instruction is denoted using C syntax; the original

source code in the loop body contains a C++ statement “p = new C”, where C is a class that has

virtual methods f and g. The symbols f and g that appear in Fig. 6.4 represent the addresses of

methods f and g. The symbol p and the two fields of VT represent variables of the Global region.

The dotted lines in Fig. 6.4(b)–(d) indicate how the value of NMRAB after the malloc statement

depends on the value of MRAB and NMRAB before the malloc statement.

The AbsEnvs stabilize after four iterations. Note that in each of Fig. 6.4(a)–(d), it can be estab-

lished that the instruction “p->vt = &VT” modifies exactly one field in a non-summary memory-

region, and hence a strong update can be performed on p->vt. This establishes a definite link—

i.e., a must-point-to link—between MRAB and VT. The net effect is that the analysis establishes

106

a definite link between NMRAB and VT as well: the vt field of each object represented by NM-

RAB must point to VT. The analysis implicitly (and automatically) carries out a form of inductive

reasoning, which establishes that the property—the definite link to VT—holds for all iterations. �

Example 6.2.2 Fig. 6.5 shows the improved VSA information recovered for the program from

Fig. 6.2 at the end of the loop when the recency-abstraction is used. In particular, we have the

following information:

• elem and head definitely point to the beginning of the MRAB region.

• elem->a contains the values (or global addresses) {0, 1, 2, 3, 4}.

• elem->next may be 0 (NULL) or may point to the beginning of the NMRAB region.

• NMRAB.a contains the values (or global addresses) {0, 1, 2, 3, 4}.

• NMRAB.next may be 0 (NULL) or may point to the beginning of the NMRAB region.

�

6.3 Formalizing The Recency-Abstraction

The recency-Abstraction is formalized with the following basic domains (where underlining

indicates differences from the domains given in Sect. 5.2):

MemRgn = {Global} ∪ Proc ∪ AllocMemRgn

ValueSet = MemRgn→ StridedInterval⊥

AlocEnv[R] = a-locs[R]→ ValueSet

SmallRange = {[0, 0], [0, 1], [1, 1], [0,∞], [1,∞], [2,∞]}

AllocAbsEnv[R] = SmallRange× StridedInterval× AlocEnv[R]

The analysis associates each program point with an AbsMemConfig:

107

MRAB VT

MRAB VT

f
g

f
g

f
g

ºººº

ºººº

ºººº

ºººº

ºººº

p = malloc()

p→→→→vt = &VT

§§§§

while . . .

T

F

p

p

MRAB NMRAB VT

NMRAB

f
g

f
g

f
g

ºººº

ºººº

ºººº

ºººº

ºººº

v

v

v

MRAB VT

p

p

p

p = malloc()

p→→→→vt = &VT

§§§§

while . . .

T

F

s

s

s

(a) (b)

MRAB NMRAB VT

NMRAB

f
g

f
g

f
g

7777

ºººº

ºººº

ºººº

ºººº

ºººº

v w

v 7777 w

v 7777 w

MRAB VT

p

p

p

p = malloc()

p→→→→vt = &VT

§§§§

while . . .

T

F

s

s

ss

MRAB NMRAB VT

NMRAB

f
g

f
g

f
g

7777

ºººº

ºººº

ºººº

ºººº

ºººº

v

v 7777 w

v 7777 w

MRAB VT

v 7777 w

p

p

p

p = malloc()

p→→→→vt = &VT

§§§§

while . . .

T

F

ss

s

s

(c) (d)

Figure 6.4 A trace of the evolution of parts of the AbsEnvs for three instructions in a loop.
(Values v and w are unspecified values presented to illustrate that t is applied on corresponding
fields as the previous MRAB value is merged with NMRAB during the abstract interpretation of

an allocation site.)

108

MRAB NMRAB

head
0,1[0,4] 0,1[0,4]

elem

Figure 6.5 Improved VSA information for the program from Fig. 6.2 at the end of the loop (i.e.,
just after L1) when the recency-abstraction is used. (The double box denotes a summary region.

Dashed edges denote may-points-to information.)

AbsEnv =

(register→ ValueSet)

× ({Global} → AlocEnv[Global])

× (Proc→ AlocEnv[Proc]⊥)

× (AllocMemRgn→ AllocAbsEnv[AllocMemRgn])

AbsMemConfig = (CallStringk → AbsEnv⊥)

Let count, size, and alocEnv, respectively, denote the SmallRange, StridedInterval, and

AlocEnv[AllocMemRgn] associated with a given AllocMemRgn. A given absEnv ∈ AbsEnv

maps allocation memory-regions, such as MRAB[s] or NMRAB[s], to 〈count, size, alocEnv〉

triples.

The transformers for various operations are defined as follows:

• At the entry point of the program, the AbsMemConfig that describes the initial state records

that, for each allocation site s, the AllocAbsEnvs for both MRAB[s] and NMRAB[s] are

〈[0, 0],⊥StridedInterval, λvar.⊥ValueSet〉.

• The transformer for allocation site s transforms absEnv to absEnv′, where absEnv′ is

identical to absEnv, except that all ValueSets of absEnv that contain [...,MRAB[s] 7→

si1,NMRAB[s] 7→ si2, ...] become [..., ∅,NMRAB[s] 7→ si1 t si2, ...] in absEnv′. In x86

code, return values are passed back in register eax. Let size denote the size of the block

allocated at the allocation site. The value of size is obtained from the value-set associated

with the parameter of the allocation method. In addition, absEnv′ is updated on the following

109

arguments:

absEnv′(MRAB[s]) = 〈[0, 1], size, λvar.>vs〉

absEnv′(NMRAB[s]).count = absEnv(NMRAB[s]).count +SR absEnv(MRAB[s]).count

absEnv′(NMRAB[s]).size = absEnv(NMRAB[s]).sizetsi absEnv(MRAB[s]).size

absEnv′(NMRAB[s]).alocEnv = absEnv(NMRAB[s]).alocEnv talocEnv absEnv(MRAB[s]).alocEnv

absEnv′(eax) = [(Global 7→ 0[0, 0]), (MRAB[s] 7→ 0[0, 0])]

where +SR denotes SmallRange addition. In the present implementation, we assume that an

allocation always succeeds;g hence, in place of the first and last lines above, we use

absEnv′(MRAB[s]) = 〈[1, 1], size, λvar.>vs〉

absEnv′(eax) = [(MRAB[s] 7→ 0[0, 0])].

Consequently, the analysis only explores the behavior of the system on executions in which

allocations always succeed.

• The join absEnv1 t absEnv2 of absEnv1, absEnv2 ∈ AbsEnv is performed pointwise; in

particular,

absEnv′(MRAB[s]) = absEnv1(MRAB[s])tae absEnv2(MRAB[s])

absEnv′(NMRAB[s]) = absEnv1(NMRAB[s])tae absEnv2(NMRAB[s])

where the join of two AllocMemRgns is also performed pointwise:

〈count1, size1, alocEnv1〉 t 〈count2, size2, alocEnv2〉

= 〈count1 tSR count2, size1 tsi size2, alocEnv1 talocEnv alocEnv2〉.

In all other abstract transformers (e.g., assignments, data movements, interpretation of conditions,

etc.), MRAB[s] and NMRAB[s] are treated just like other memory regions—i.e., Global and the

AR-regions—with one exception:

• During VSA, all abstract transformers are passed a memory-region status map that

indicates which memory-regions, in the context of a given call-string suffix cs,

110

are summary memory-regions. The summary-status information for MRAB[s] and

NMRAB[s] is obtained from the values of AbsMemConfig(cs)(MRAB[s]).count and

AbsMemConfig(cs)(NMRAB[s]).count, respectively.

6.4 Experiments

This section describes the results of our experiments using the recency abstraction. The first

three columns of numbers in Tab. 6.1 show the characteristics of the set of examples that we used

in our evaluation. These programs were originally used by Pande and Ryder in [88] to evaluate

their algorithm for resolving virtual-function calls in C++ programs. The programs in C++ were

compiled without optimization4 using the Microsoft Visual Studio 6.0 compiler and the .obj files

obtained from the compiler were analyzed. We did not make use of debugging information in the

experiments.

The final six columns of Tab. 6.1 report the performance (both accuracy and time) of the version

of VSA that incorporates the recency abstraction to help resolve virtual-function calls.

• In these examples, every indirect call-site in the executable corresponds to a virtual-function

call-site in the source code.

• The column labeled ‘Unreachable’ shows the number of (apparently) unreachable indirect

call-sites.

• The column labeled ‘Resolved’ shows the number of indirect call-sites for which VSA was

able to identify at least some of the targets of the indirect call.

• The column labeled ‘Sound IR?’ shows whether VSA could have missed some targets for an

indirect call. Recall from Sect. 3.6 that if VSA determines that the target set of an indirect

call is the set of all possible addresses, VSA reports the call-site to the user, but does not

explore any procedures from that call-site. This is a source of false negatives, and occurred

4Note that unoptimized programs generally have more memory accesses than optimized programs; optimized
programs make more use of registers, which are easier to analyze than memory accesses. Thus, for static analysis of
stripped executables, unoptimized programs generally represent a greater challenge than optimized programs.

111

for 9 of the 15 programs (’×’ in the ’Sound IR?’ column). On the other hand, for the 6

programs for which the ’Sound IR?’ column is ’
√

’, VSA identified all the possible targets

for every indirect call. Therefore, any call-sites reported in the ’Unreachable’ column are

definitely unreachable. In particular, the eight call-sites that were identified as unreachable

in deriv1 are definitely unreachable.

Indirect calls
Instructions Procedures Total Unreachable Resolved Resolved % Sound IR? Time (seconds)

NP 252 5 6 0 6 100%
√

1
primes 294 9 2 0 1 50% × 1
family 351 9 3 0 3 100%

√
1

vcirc 407 14 5 0 5 100%
√

1
fsm 502 13 1 0 1 100%

√
2

office 592 22 4 0 4 100%
√

<1
trees 1299 29 3 1 1 33% × 12
deriv1 1369 38 18 8 0 100%

√
16

chess 1662 41 1 0 0 0% × 17
objects 1739 47 23 17 5 22% × 5
simul 1920 60 3 0 1 33% × 19
greed 1945 47 17 6 7 41% × 92
shapes 1955 39 12 0 8 67% × 66
ocean 2552 61 5 3 0 0% × 41
deriv2 2639 41 56 32 24 43% × 60

Table 6.1 Characteristics of the example programs, together with the number of indirect calls
that were resolved or determined as unreachable by VSA. The bold entry indicates that eight

call-sites in deriv1 are identified as definitely unreachable.

It is important to realize that these results are obtained solely by using abstract interpretation

to track the flow of data through memory (including the heap). The analysis algorithm does not

rely on symbol-table or debugging information; instead it uses the structure-discovery mecha-

nism described in Ch. 5. On average (computed via a geometric mean excluding the 0% entries),

our method resolved 60% of the virtual-function call-sites, whereas previous tools for analyzing

executables—such as IDAPro, as well as our own previous work using VSA without the recency

abstraction, as described in Ch. 3—fail to resolve any of the virtual-function call-sites.

Manual inspection revealed that most of the situations in which VSA could not resolve indirect

call-sites were due to VSA not being able to establish that some loop definitely initializes all of

the elements of some array. The problem is as follows: In some of the example programs, an

112

array of pointers to objects is initialized via a loop. These pointers are later used to perform a

virtual-function call. Even when VSA succeeded in establishing the link between the VFT-field

and the virtual-function table, VSA could not establish that all elements of the array are definitely

initialized by the instruction in the loop, and hence the abstract value that represents the values of

the elements of the array remains >vs.

Note that this issue is orthogonal to the problem addressed in this chapter. That is, even if one

were to use other mechanisms (such as the one described in [57]) to establish that all the elements

of an array are initialized, the problem of establishing the link between the VFT-field and the

virtual-function table still requires mechanisms similar to the recency abstraction.

This issue makes it difficult for us to give a direct comparison of our approach with that of [88];

in particular, [88] makes the unsafe assumption that elements in an array of pointers (say, locally

allocated or heap allocated) initially point to nothing (∅), rather than to anything (>). Suppose that

p[] is such an array of pointers and that a loop initializes every other element with &a. A sound

result would be that p’s elements can point to anything. However, because in the algorithm used

in [88] the points-to set of p is initially ∅, [88] would determine that all of p’s elements (definitely)

point to a, which is unsound.

113

Chapter 7

Other Improvements to VSA

7.1 Widening

Widening is an extrapolation technique used in abstract interpretation [40] to ensure the termi-

nation of abstract-interpretation algorithms with lattices of infinite, or very large, height. Let us

consider an example. Interval analysis is an instantiation of the abstract-interpretation framework

that determines a range [l, u] for each program variable at each statement in the program. Consider

the CFG shown in Fig. 7.1(a). Interval analysis proceeds by computing successive approximations

of the range for each variable at each node until a fixpoint is reached. The ranges computed for

edge 3→2 at each iteration are shown in Fig. 7.1(b). Note that the range for i reaches a fixpoint,

which is the range [1, 9]. On the other hand, the range for variable j computed at edge 3→2 never

reaches a fixpoint. Hence, interval analysis, as described here, will not terminate (or will take a

long time to terminate if only ranges of n-bit integers are being considered). A widening operator

is used at back-edges to ensure termination (or to force abstract interpretation to terminate more

rapidly) in such cases. The widening operator (∇) for intervals is defined as follows:

[l1, u1]∇[l2, u2] = [l, u], where, l =

 l1 l1 ≤ l2

−∞ otherwise
, u =

 u1 u1 ≥ u2

∞ otherwise

For the CFG in Fig. 7.1(a), the only back-edge is the edge from node 3 to node 2. To ensure ter-

mination, the widening operator is applied when computing new ranges for the program variables

at edge 3→2 before the predicate (i < 10) is applied. The ranges computed for the variables at

114

each iteration with widening are shown in Fig. 7.1(c). With widening, interval analysis terminates;

for edge 3→2, the range computed for i is [1, 9] and the range for j is [−∞, 9].

We call edges at which widening is to be applied widening edges. Imprudent use of the widen-

ing operator can result in very imprecise ranges for the variables; hence, widening edges should be

chosen with caution, and there should be as few of them as possible. Generally, it is necessary that

each loop be cut by a widening edge.

i := 0
j := 10

i < 10

return

truefalse

1:

i++
j--

2:

3:

4:

i j

[1, 1] [9, 9]
[1, 2] [8, 9]
[1, 3] [7, 9]

...
...

[1, 9] [1, 9]
[1, 9] [0, 9]
[1, 9] [−1, 9]

...
...

i

oldi newi oldi∇newi i < 10
⊥ [1, 1] [1, 1] [1, 1]

[1, 1] [1, 2] [1,∞] [1, 9]
j

oldj newj oldj∇newj i < 10
⊥ [9, 9] [9, 9] [9, 9]

[9, 9] [8, 9] [−∞, 9] [−∞, 9]

(a) (b) (c)

Figure 7.1 (a) Example program; (b) ranges for i and j at edge 3→2 without widening; (c)
ranges for i and j at edge 3→2 with widening. (oldi and newi refer to the range for variable i in

the previous iteration and current iteration respectively.)

VSA also needs a widening operator because, although the value-set lattice is of bounded

height, the height is very large. For VSA, widening edges are identified as follows (in the order

listed below):

• We identify intra-procedural back-edges by performing a decomposition of intra-procedural

CFGs into hierarchical strongly-connected components using the algorithm described by

Bourdoncle [20].

• We identify inter-procedural back-edges by performing a depth-first search over a graph G,

where G is the supergraph of the program without the intra-procedural back-edges identified

in the previous step.

115

end-call P

call P

end-call P

call P

exit main

enter main

enter P

exit P

1

2

3

4

5

6

7

8

end-call P

call P

end-call P

call P

exit main

enter main

enter P

exit P

〈〈〈〈����,5〉〉〉〉

〈〈〈〈2,7〉〉〉〉

enter P

exit P

〈〈〈〈����,6〉〉〉〉

〈〈〈〈����,4〉〉〉〉

〈〈〈〈����,3〉〉〉〉

〈〈〈〈����,2〉〉〉〉

〈〈〈〈����,1〉〉〉〉

〈〈〈〈2,8〉〉〉〉

〈〈〈〈4,7〉〉〉〉

〈〈〈〈4,8〉〉〉〉

(a) (b)

Figure 7.2 (a) A loop in a supergraph due to inter-procedurally invalid paths; (b) Supergraph
exploded with call-string suffixes of length 1.

Note that, for inter-procedural back-edges, it is not enough to identify strongly-connected com-

ponents in the call-graph because, in addition to inter-procedural loops resulting from recursion,

there can also be inter-procedural loops resulting from inter-procedurally invalid paths. Fig. 7.2

shows such an example; the loop 4, 7, 8, 3, and 4 in Fig. 7.2(a) (the dashed butterfly shape) is

inter-procedurally invalid, and edge 4→7 is the corresponding inter-procedural back-edge. It is

necessary to identify such back-edges because VSA is only partially context-sensitive, and there-

fore, it may explore some inter-procedurally invalid paths.

Let G0 be the supergraph for the program. Let Gk be the graph obtained by exploding su-

pergraph G0 using call-string suffixes of length k. Fig. 7.2(b) shows the exploded graph for the

supergraph in Fig. 7.2(a). Note that context-sensitive VSA with call-strings of length k explores

graph Gk during abstract interpretation and not G0.

Theorem 7.1 The algorithm to identify widening edges ensures that there is at least one widening

edge for every loop in Gk.

Proof: Let G0
− be the supergraph obtained by removing intra-procedural back-edges. For every

loop σk in Gk, there is a corresponding loop σ0 in G0: map each Gk edge of the form 〈cs1, n〉 →

〈cs2,m〉 in σk to the edge n → m in G0. If all edges in σ0 are also in G0
− then the DFS on

G0
− identifies a widening edge for the loop. Otherwise, the edges in σ0 that are not in G0

− are

intra-procedural widening edges. Therefore, there is at least one widening edge for loop σk. �

116

7.2 Affine-Relation Analysis (ARA)

Recall that for Ex.1.2.1, VSA was unable to find a finite upper bound for eax at instruction

L1. This causes ret-addr to be added to the set of possibly-modified a-locs at instruction L1.

This section describes how our implementation of VSA obtains improved results, by identifying

and then exploiting integer affine relations that hold among the program’s registers, using an inter-

procedural algorithm for affine-relation analysis due to Müller-Olm and Seidl [81]. The algorithm

is used to determine, for each program point, all affine relations that hold among an x86’s eight

registers. More details about the algorithm can be found in [81].

An integer affine relation among variables ri (i = 1 . . . n) is a relationship of the form a0 +∑n
i=1 airi = 0, where the ai (i = 1 . . . n) are integer constants. An affine relation can also be

represented as an (n + 1)-tuple, (a0, a1, . . . , an). Let I denote the set of 32-bit two’s-complement

integers. An affine relation represents a hyperplane in the point space In, namely the set of points

given by {(r1, . . . , rn) | a0 +
∑n

i=1 airi = 0, ri ∈ I} that satisfy the affine relation. An affine

relation is a constraint on the point space; a set of affine relations will be treated as a conjunction

of constraints (i.e., its meaning is the intersection of the respective point spaces).

There are two opportunities for incorporating information about affine relations: (i) in the

interpretation of conditional-branch instructions, and (ii) in an improved widening operation. Our

implementation of VSA incorporates both of these uses of affine relations. The use of affine

relations in the interpretation of conditional-branch instructions is discussed in this section. The

other use of affine relations is deferred to Sect. 7.3.

At instruction L1 in the program in Ex.1.2.1, eax, esp, and edx are all related by the affine

relation eax = (esp+ 8× edx) + 4. When the true branch of the conditional jl L1 is interpreted,

edx is bounded on the upper end by 4, and thus the value-set edx at L1 is ([0,4],⊥). (A value-set

in which all SIs are ⊥ except the one for the Global region represents a set of pure numbers, as

well as a set of global addresses.) In addition, the value-set for esp at L1 is (⊥,−44). Using these

value-sets and solving for eax in the above relation yields

eax = (⊥,−44) + 8× ([0,4],⊥) + 4 = (⊥,−44) + (8× [0,4]) + 4 = (⊥,8[−40,−8]).

117

In this way, a sharper value for eax at L1 is obtained than would otherwise be possible. Such

bounds cannot be obtained for loops that are controlled by a condition that is not based on indices;

however, the analysis is still safe in such cases.

Our implementation of affine-relation analysis (ARA) uses the affine-relation domain based

on machine arithmetic (arithmetic modulo 232) of Müller-Olm and Seidl [82]. Because the affine-

relation domain is based on machine arithmetic, an abstract operation on the elements of the do-

main is able to take care of arithmetic overflow, which is important for analyzing executables.

Caller-Save and Callee-Save Registers Typically, at a call instruction, a subset of the machine

registers is saved on the stack, either in the caller or the callee, and restored at the return. Such

registers are called the caller-save and callee-save registers, respectively. A register-save opera-

tion involves a write to memory, and a register-restore operation involves an update of a register

with a value from memory. Because ARA only keeps track of information involving registers, all

affine relations involving saved registers are lost because of the memory-read and memory-write

operations at a call. To overcome this problem, we use a separate analysis to determine caller-

save and callee-save registers, and use that information to preserve the affine relations involving

the caller-save or callee-save registers at a call. Specifically, in the abstract ARA transformer for

an exit→end-call edge, the value of a saved register is set to its value before the call, and the

value of any other register is set to the value at the exit node of the callee. We used the Extended

Weighted Pushdown System (EWPDS) framework [72] to implement ARA that uses caller-save

and callee-save information.

The results of using register-save information during ARA are shown in Tab. 7.1. The column

labeled ‘Branches with useful information’ refers to the number of branch points at which ARA

recovered at least one affine relation. The last column shows the number of branch points at which

ARA recovered more affine relations when register-save information is used. Tab. 7.1 shows that

the information recovered by ARA is better in 44%–63% of the branch points that had useful

information if register-save information is used.

118

Branches with

Memory (MB) Time (s) useful information

Program Instructions Procedures Branches Calls ∗ † ∗ † ∗ † Improvement

tracert 101149 1008 8501 4271 70 22 24 27 659 1021 387 (59%)

finger 101814 1032 8505 4324 70 23 24 30 627 999 397 (63%)

lpr 131721 1347 10641 5636 102 36 36 46 1076 1692 655 (61%)

rsh 132355 1369 10658 5743 104 36 37 45 1073 1661 616 (57%)

javac 135978 1397 10899 5854 118 43 44 58 1376 2001 666 (48%)

ftp 150264 1588 12099 6833 121 42 43 61 1364 2008 675 (49%)

winhlp32 179488 1911 15296 7845 156 58 62 98 2105 2990 918 (44%)

regsvr32 297648 3416 23035 13265 279 117 145 193 3418 5226 1879 (55%)

notepad 421044 4922 32608 20018 328 124 147 390 3882 5793 1988 (51%)

cmd 482919 5595 37989 24008 369 144 175 444 4656 6856 2337 (50%)

Table 7.1 Comparison of the results of ARA with register-save information at calls (†) against the
results of ARA without register-save information at calls (∗).

7.3 Limited Widening

Halbwachs et al. [60] introduced the “widening-up-to” operator (also called limited widening),

which attempts to prevent widening operations from “over-widening” an abstract store to +∞ (or

−∞). To perform limited widening, it is necessary to associate a set of inequalities M with each

widening location. For polyhedral analysis, they defined P∇MQ to be the standard widening op-

eration P∇Q, together with all of the inequalities of M that satisfy both P and Q. They proposed

that the set M be determined by the linear relations that force control to remain in the loop. Our

implementation of VSA incorporates a limited-widening algorithm, adapted for strided intervals.

For instance, suppose that P = (x 7→ 3[0,11]), Q = (x 7→ 3[0,14]), and M = {x ≤ 28}.

Ordinary widening would produce (x 7→ 3[0,231 − 2]), whereas limited widening would pro-

duce (x 7→ 3[0,26]). In some cases, however, the a-loc for which VSA needs to perform limited

widening is a register r1, but not the register that controls the execution of the loop (say r2). In such

cases, the implementation of limited widening uses the results of affine-relation analysis—together

with known constraints on r2 and other register values—to determine constraints that must hold

on r1. For instance, if the loop back-edge has the label r2 ≤ 20, and affine-relation analysis has

119

determined that r1 = 4× r2 always holds at this point, then the constraint r1 ≤ 80 can be used for

limited widening of r1’s value-set.

7.4 Priority-based Iteration

The VSA algorithm described in Fig. 3.9 selects a random entry from the worklist for process-

ing. Processing worklist entries in a random order during abstract interpretation can be inefficient.

Consider the CFG shown in Fig. 7.3. There are two possible orders in which the nodes can be

processed to compute a fixpoint: (1) (1, 2, 4, 5, 3, 4, 5), and (2) (1, 2, 3, 4, 5). Clearly, the latter

order is more efficient because it requires fewer iterations. In real-world examples, especially in

the presence of loops, there can be a huge difference between the number of iterations required to

reach a fix-point using different iteration orders. Therefore, it is desirable to choose an efficient

order in which to process the nodes.

1

2 3

4

i:= 1

i++

return

i:= 0

5

if(...)

Figure 7.3 Effect of iteration order on efficiency of abstract interpretation.

Moreover, in abstract domains that require widening (see Sect. 7.1), such as the VSA domain,

the order in which the nodes are processed may also result in imprecise information. We illus-

trate the effect of iteration order on precision using range analysis. Consider the CFG shown in

Fig. 7.4(a). Note that edge 5→4 in the CFG is a back-edge. Therefore, widening is performed at

edge 5→4. Consider the following iteration orders during range analysis:

• Order 1: 1, 2, 4, 5, 3, 4, 5, 4, 5, . . . , 6.

• Order 2: 1, 2, 3, 4, 5, 4, 5, . . . , 6.

120

The main difference between Order 1 and Order 2 is that in Order 2 the analysis does not

start processing the nodes in the loop until all the predecessors of the head of the loop have been

processed. For this reason, the value of i stabilizes before the loop is processed. Fig. 7.4(b) shows

the ranges for i at edge 5→4 with the different iteration orders. Note that when widening edge

5→4 is processed after nodes 1, 2, 4, 5, 3 and 4 have been visited, i is widened via ([0, 0]∇[0, 1]),

which produces [0,∞]. Consequently, the range for i at edge 5→4 has an upper bound of∞ with

Order 1, but it has a bound of 1 with Order 2. Clearly, it is preferable to use Order 2.

1

2 3

4

if(...)

i:= 1

while(...)

...

return

i:= 0

5

6

oldi newi oldi∇newi

⊥ [0, 0] [0, 0]
[0, 0] [0, 1] [0,∞]
[0,∞] [0,∞] [0,∞]

Order: 1, 2, 4, 5, 4, 3, 4, 5, 4, . . .

oldi newi oldi∇newi

⊥ [0, 1] [0, 1]
[0, 1] [0, 1] [0, 1]

Order: 1, 2, 3, 4, 5, 4, . . .

(a) (b)

Figure 7.4 Effects of iteration order on the precision of range analysis: (a) example program and
(b) range for i at edge 5→4 with different iteration orders.

To control the order in which the nodes are processed during VSA, we replace the worklist

used in Fig. 3.9 with a priority queue from which the element with the least value (in a total order

described below) will be selected at each propagation step of VSA. To compute a priority number

for a worklist entry, we compute two different priority numbers: (1) an intra-procedural priority

number for each node in the CFG (see Fig. 7.6), and (2) a priority number for every possible call-

string suffix (see Fig. 7.5). For a given worklist entry 〈cs, n〉, the priority is created by forming the

pair 〈GetPriNum(cs,GetCFG(n)), priNum(n)〉. The ordering on worklist entries for the priority

queue is the following lexicographic order:

〈cs1, n1〉 < 〈cs2, n2〉 ⇐⇒

 (priNum(cs1) < priNum(cs2))∨

((priNum(cs1) = priNum(cs2)) ∧ (priNum(n1) < priNum(n2)))

121

1: proc GetPriNum(cs: CallStringk, cfg: Graph)
2: if (cs is not saturated) then
3: return length(cs)
4: else
5: Let c be the bottom-most call-site in cs.
6: Let P be the procedure to which c belongs.
7: Let G′ be the call-graph with all back-edges removed.
8: Let n be the longest distance from main to P in G′

9: return (n+ k)
10: end if
11: end proc

Figure 7.5 Algorithm to compute priority numbers for call-string suffixes.

The intuition behind the algorithm that assigns priority numbers to call-strings (Fig. 7.5) is

that the nodes that belong to procedures earlier in the call-chain should be processed first. If the

call-string cs is not saturated, we return the length of call-string cs as the priority number (line [3]

in Fig. 7.5). On the other hand, if the call-string is saturated we find the procedure (say P) to which

the bottom-most call-site in cs belongs, and return (n + k), where k is the maximum possible

length of a call-string suffix and n is the length of the longest (non-cyclic) path from procedure P

to procedure main in the call-graph (line [9] in Fig. 7.5). (For each procedure P, n is precomputed.)

The intuition behind the algorithm to assign priority numbers to nodes in a CFG (Fig. 7.6) is

that a node should not processed until all of its predecessors have been processed. To assign priority

numbers to CFG nodes, we iterate over the SCCs in the CFG in topological order. Whenever an

SCC consisting of a single node is encountered, the next priority number is assigned to the node

in the SCC (line [8] in Fig. 7.6). On the other hand, if an SCC (say s) consisting of more than one

node is encountered, a node n ∈ s that has at least one edge from outside the SCC is chosen. A new

graph s′ is obtained by removing all edges to node n in SCC s. Note that graph s′ has no cycles that

include node n. Moreover, for SCCs that represent natural loops, node n is the loop header. Priority

numbers to nodes in s\{n} are assigned by calling AssignPriNum on s′ recursively (line [12] in

Fig. 7.6). For node n, the priority number is assigned such that it has the lowest priority over all

nodes in s (line [13] in Fig. 7.6). Therefore, node n is not processed until all the other nodes in s

are processed. Fig. 7.6(b) shows the priorities assigned to nodes for various CFGs. (Algorithm in

Fig. 7.6 is based on Bourdoncle’s algorithm [20] to decompose a graph into hierarchical SCCs.)

122

1: decl nextPriNum: integer
2:
3: proc AssignPriNum(G: Graph)
4: Compute SCCs in G. Let S be the SCC graph.
5: for (each SCC s in S in topological order) do
6: if (s contains a single node n) then
7: priNum(n) := nextPriNum
8: nextPriNum := nextPriNum + 1
9: else
10: Pick a node n ∈ s such that ∃(m→ n) ∈ G\s.
11: Let s′ be the graph s with all edges

of the form (m→ n) removed.
12: AssignPriNum(s′)
13: priNum(n) := nextPriNum
14: nextPriNum := nextPriNum + 1
15: end if
16: end for
17: end proc
18:
19: proc AssignPriNumForCFG(G: Graph)
20: nextPriNum := 0
21: AssignPriNum(G)
22: end proc

1

6

2 3

4

5

1

5

3

2

4

6

(a) (b)

Figure 7.6 (a) Algorithm to compute priority numbers for CFG nodes, and (b) priorities assigned
for nodes with AssignPriNum(G: Graph).

7.4.1 Experiments

We used the Windows device drivers shown in Tab. 7.2 to evaluate the effect of using a priority-

based worklist on the number of iterations required for the VSA algorithm to converge. Tab. 7.2

shows the number of worklist iterations required in round 0 of the two different versions of VSA:

(1) VSA with an unordered worklist, and (2) VSA with a priority-based worklist. In a few cases,

the VSA algorithm that uses an unordered worklist requires fewer iterations (toastmon, diskperf).

However, for most of the cases, the VSA algorithm that uses an unordered worklist requries more

iterations to converge; in fact, for some examples, the unordered-worklist version requires 2 to

6 times more iterations to converge than the priority-based-worklist version (serenum, mouclass,

1394diag).

7.5 GMOD-based Merge Function

In Sect. 3.5.2, we described MergeAtEndCall, the procedure used to compute AbsEnv for an

end-call node during VSA. Although procedure MergeAtEndCall computes a sound AbsEnv value

123

Driver Unordered worklist Ordered worklist
src/vdd/dosioctl/krnldrvr 24,817 18,872
src/general/ioctl/sys 30,523 29,312
src/general/cancel/startio 24,717 23,042
src/general/cancel/sys 26,019 24,883
src/input/moufiltr 139,866 113,091
src/general/event/sys 37,792 25,552
src/input/kbfiltr 142,308 114,747
src/general/toaster/toastmon 52,596 173,121
src/storage/filters/diskperf 239,878 296,389
src/network/modem/fakemodem 631,536 630,133
src/storage/fdc/flpydisk 898,022 878,003
src/input/mouclass 3,727,227 605,487
src/input/mouser 998,420 851,575
src/kernel/serenum 1,757,356 826,850
src/wdm/1394/driver/1394diag 2,082,135 652,205
src/wdm/1394/driver/1394vdev 1,790,529 577,685

Table 7.2 Number of iterations required to converge with a priority-based worklist.

for an end-call node, it may not always be precise. Consider the supergraph shown in Fig. 7.7. In

any concrete execution, the only possible value for g at node 4 is 0. However, context-insensitive

VSA (i.e., VSA with call-strings of length 0) computes the range [0,∞] for g at node 4. Consider

the path (say π) in the supergraph consisting of the nodes 6, 9, 10, and 4. Note that 6→9 is a

widening edge. Although path π is inter-procedurally invalid, context-insensitive VSA explores π.

Therefore, the effects of statement g++ at node 5 and the results of widening at 6→9 are propagated

to node 4, and consequently, the range computed for g at node 4 by context-insensitive VSA is

[0,∞]. One possible solution to the problem is to increase the length of call-strings. However, it

is impractical to increase the length of call-strings beyond a small value. Therefore, increasing the

call-string length is not a complete solution to the problem.

Suppose that we modify MergeAtEndCall as shown in Fig. 7.8. Recall that the merge function

takes two AbsEnv values: (1) inc, the AbsEnv value at the corresponding call node, and (2) inx,

the AbsEnv value at the corresponding exit node. Let C and X be the procedures containing the call

and exit nodes, respectively, and let AR C and AR X be the AR-regions associated with procedures

C and X, respectively. The differences between the old and the new merge functions are underlined

in Fig. 7.8. In procedure MergeAtEndCall, the value-sets of all a-locs in inx, except esp, ebp, and

actual parameters, are propagated to the AbsEnv value at the end-call node. On the other hand,

124

end-call P

call P

end-call P

call P

exit main

enter main

enter P

exit P
g++

1

2

3

4

5

6

7

9

10

g := 0

8

Figure 7.7 Example showing the need for a GMOD-based merge function.

in procedure GMODMergeAtEndCall, only the value-sets of a-locs that are modified (directly or

transitively) in procedure X are propagated from inx to the AbsEnv value at the end-call node.

The value-sets for other a-locs are obtained from inc. (See lines [2]–[4] of Fig. 7.8(b).) Because

procedure P does not modify global variable g, using GMODMergeAtEndCall during context-

insensitive VSA results in better information at nodes 4 and 7; at node 4 the range for g is [0, 0],

and at node 7 the range for g is [1, 1].

Changing the merge function as shown in Fig. 7.8 requires information about the set of a-

locs that are modified directly or transitively by each procedure in the executable, i.e., we need to

perform GMOD analysis [37]. To perform GMOD analysis, information about a-locs modified by

each x86 instruction in the executable is required. However, as we pointed out in Ch. 3, complete

information about a-locs accessed by an x86 instruction is not available until the end of VSA. To

overcome this problem, we take advantage of the fact that several rounds of VSA are performed.

For round 0 of VSA, procedure MergeAtEndCall is used as the merge function at end-call nodes.

For any subsequent round (say i > 0), procedure GMODMergeAtEndCall is used as the merge

function. The GMOD sets for round i are computed using the VSA results from round i−1. Fig. 7.9

shows the modified version of context-sensitive VSA algorithm that uses GMODMergeAtEndCall.

Recall from Sect. 3.6 that if VSA determines that the target of an indirect jump or an indirect call

is any possible address, it does not add any new edges. Consequently, in the presence of indirect

jumps and indirect calls, the supergraph used during round i− 1 of VSA can be different from the

125

1: proc MergeAtEndCall(inc: AbsEnv, inx: AbsEnv): AbsEnv
2: in′c := SetAlocsToTop(inc, U − GMOD[X])

3: in′x := SetAlocsToTop(inx, GMOD[X])

4: out := in′c uae in′x
5: Let AR C be the caller’s memory-region.
6: Let AR X be the callee’s memory-region.
7: out[ebp] := inc[ebp]
8: SIc := inc[esp][AR C]
9: SIx := inx[esp][AR X]
10: if (SIx 6= ⊥) then
11: VS′esp := out[esp]
12: VS′esp[AR C] := (SIc +si SIx)

13: if (AR C 6= AR X) then VS′esp[AR X] := ⊥
14: out[esp] := VS′esp
15: for each a-loc a ∈ a-locs[AR X]\{FormalGuard, LocalGuard}

do
16: Update those a-locs in a-locs[AR C] that correspond to a.

(This step similar to lines [5]–[20] of Fig. 3.6.)
17: end for
18: else
19: out[esp] := inx[esp]
20: end if
21: return out
22: end proc

Figure 7.8 GMOD-based merge function. GMOD[X] represents the set of a-locs modified
(directly or transitively) by procedure X, and U is the universal set of a-locs. (Underlining

indicates the differences from the merge function shown in Fig. 3.7.)

supergraph used during round i. Therefore, for round i of VSA, it may not be sound to use the

GMOD sets computed using the VSA results from round i− 1. To ensure that the VSA results in

round i are sound, when round i reaches a fixpoint, GMOD sets are recomputed using the VSA

results (GMOD′ in Fig. 7.9) and are compared against the GMOD sets computed using the VSA

results from round i − 1 (GMOD′ in Fig. 7.9). If they are equal then the VSA results computed in

round i of VSA are sound; therefore, VSA terminates. Otherwise, all call-sites c ∈ CallSites

are added to the worklist and VSA continues with the new worklist (lines [19]–[25] in Fig. 7.9).

For each call-site c, only those call-strings that have a non-bottom AbsEnv at c are added to the

worklist (line [22] in Fig. 7.9).

7.5.1 Experiments

We used the Window device drivers shown in Tab. 7.4 to evaluate the effect of using the

GMOD-based merge function on the precision of value-set analysis. We analyzed each device

driver using the following versions of VSA: (1) VSA with the merge function shown in Fig. 3.7,

126

1: decl worklist: set of 〈CallStringk,Node〉
2:
3: proc ContextSensitiveVSA()
4: worklist := {〈∅, enter〉}
5: absEnventer := Initial values of global a-locs and esp

6: while (worklist 6= ∅) do
7: while (worklist 6= ∅) do
8: Remove a pair 〈cs, n〉 from worklist
9: m := Number of successors of node n
10: for i = 1 to m do
11: succ := GetSuccessor(n, i)
12: edge amc := AbstractTransformer(n→ succ, absMemConfign[cs])
13: cs set := GetCSSuccs(cs, n, succ)
14: for (each succ cs ∈ cs set) do
15: Propagate(succ cs, succ, edge amc)
16: end for
17: end for
18: end while
19: GMOD′ := ComputeGMOD()

20: if (GMOD′ 6= GMOD) then
21: for each call-site c ∈ CallSites and cs ∈ CallStringk do
22: if inc[cs] 6= ⊥ then worklist := worklist ∪ {〈cs, c〉}
23: end for
24: GMOD := GMOD′

25: end if
26: end while
27: end proc
28:
29: proc GetCSSuccs(pred cs: CallStringk, pred: Node, succ: Node): set of CallStringk
30: result := ∅
31: if (pred is an exit node and succ is an end-call node) then
32: Let c be the call node associated with succ
33: for each succ cs in absMemConfigc do
34: if (pred cs cs succ cs) then
35: result := result ∪ {succ cs}
36: end if
37: end for
38: else if (succ is a call node) then
39: result := {(pred cs�cs c)}
40: else
41: result := {pred cs}
42: end if
43: return result
44: end proc
45:
46: proc Propagate(cs: CallStringk, n: Node, edge amc: AbsEnv)
47: old := absMemConfign[cs]
48: if n is an end-call node then
49: Let c be the call node associated with n
50: edge amc := GMODMergeAtEndCall(edge amc, absMemConfigc[cs])
51: end if
52: new := oldtae edge amc
53: if (old 6= new) then
54: absMemConfign[cs] := new
55: worklist := worklist ∪ {〈cs, n〉}
56: end if
57: end proc

Figure 7.9 Context-sensitive VSA algorithm with GMOD-based merge function. (Underlining
indicates the differences from the context-sensitive VSA algorithm shown in Fig. 3.9.)

127

Geometric Mean For The Final Round
Category Weakly-Trackable Strongly-Trackable Strongly-Trackable

Indirect Kills (%) Indirect Kills (%) Indirect Uses (%)
Without GMOD-based merge function 33% 30% 29%
With GMOD-based merge function 90% 85% 81%

Table 7.3 Comparison of the fraction of trackable memory operands in the final round.

and (2) VSA with the GMOD-based merge function shown in Fig. 7.8. Except for the difference

in the merge function, all the other parameters, such as the length of the call-string, the number

of rounds of VSA-ASI iteration, etc., were the same for both versions. We used a 64-bit Intel

Xeon 3GHz processor with 16GB of physical memory for the experiments. (Although the ma-

chine has 16GB of physical memory, the size of virtual user address space per process is limited

to 4GB.) Based on the results of the final round of each run, we classified the memory operands in

the executable into untrackable, weakly-trackable, and strongly-trackable operands, as described

in Sect. 5.9.2.

Fig. 7.10 shows the percentage of strongly-trackable direct use-operands and the percentage of

strongly-trackable indirect use-operands for the two different versions. For direct use-operands,

both the versions perform equally well—the percentage of strongly-trackable direct use-operands

is 100% for almost all the cases. This is expected because a direct memory operand uses a global

address or a stack-frame offset. Therefore, the set of addresses accessed by a direct operand can

be easily recovered from the instruction itself (global address) or using some local analyses, such

as the sp delta analysis (cf. Sect. 2.2) in IDAPro. On the other hand, for indirect use-operands,

the VSA with the GMOD-based merge function is more precise. We observe a similar trend in the

percentage of strongly-trackable kill-operands and weakly-trackable kill-operands (see Figs. 7.11

and 7.12). Tab. 7.3 summarizes the results for indirect operands. Overall, on average (computed via

a geometric mean), when the VSA algorithm with the GMOD-based merge function is used, 85%

of the indirect kill-operands are strongly-trackable in the final round, and 81% of the indirect use-

operands are strongly-trackable in the final round. Whereas, on average, when the VSA algorithm

128

with the merge function from Fig. 3.7 is used, only 30% of the indirect kill-operands are strongly-

trackable in the final round, and only 29% of the indirect use-operands are strongly-trackable in

the final round.

Tab. 7.4 shows the time taken for the two versions of VSA. The running times are comparable

for smaller programs. However, for larger programs, the VSA algorithm with the GMOD-based

merge function runs slower by 2 to 5 times. We believe that the slowdown is due to the increased

precision during VSA. Recall that we use applicative AVL trees to represent the abstract stores (cf.

Sect. 3.3). In our representation, if an a-loc a has >vs (meaning any possible address or value), the

AVL tree for the abstract store has no entry for a. If the VSA algorithm is precise, there are more

a-locs with a non->vs value-set. Therefore, there are more entries in the AVL trees for the abstract

stores. Consequently, every abstract operation on the abstract store takes more time.

The graphs in Fig. 7.13 shows the percentage of strongly-trackable indirect operands (for six of

the Windows device drivers listed in bold in Tab. 7.4) in different rounds for the two versions. The

graphs show the positive interactions that exist between ASI and VSA as described in Ch. 5: the

percentage of strongly-trackable indirect operands increases with each round for both the versions.

However, for the VSA algorithm without the GMOD-based merge function, the improvements in

the percentage of strongly-trackable indirect operands peter out after the third round, because the

value-sets computed for the a-locs are not as precise as value-sets computed by the VSA algorithm

with the GMOD-based merge function.

129

Running time (seconds)
Driver Procedures Instructions No GMOD With GMOD
src/vdd/dosioctl/krnldrvr 70 284 34 25
src/general/ioctl/sys 76 2824 63 58
src/general/tracedrv/tracedrv 84 3719 122 45
src/general/cancel/startio 96 3861 44 32
src/general/cancel/sys 102 4045 43 33
src/input/moufiltr 93 4175 369 427
src/general/event/sys 99 4215 53 61
src/input/kbfiltr 94 4228 370 404
src/general/toaster/toastmon 123 6261 576 871
src/storage/filters/diskperf 121 6584 647 809
src/network/modem/fakemodem 142 8747 1410 2149
src/storage/fdc/flpydisk 171 12752 2883 5336
src/input/mouclass 192 13380 10484 13380
src/input/mouser 188 13989 4031 8917
src/kernel/serenum 184 14123 3777 9126
src/wdm/1394/driver/1394diag 171 23430 3149 12161
src/wdm/1394/driver/1394vdev 173 23456 2461 10912

Table 7.4 Running times for VSA with GMOD-based merge function. (The column labeled “No
GMOD” shows the running times for VSA that uses the merge function from Fig. 3.7.

Round-by-round details of the fraction of strongly-trackable indirect operands are given in
Fig. 7.13 for the drivers listed above in bold face.)

130

0%

20%

40%

60%

80%

100%

krnldrvr

tracedrv

ioctl/sys

m
oufiltr

cancel/sys

kbfiltr

cancel/startio

event/sys

toastm
on

diskperf

fakem
odem

serenum

m
ouclass

flpydisk

m
ouser

1394diag

1394vdev

Percentage of Strongly-Trackable Direct Use-operands

Without GMOD-based merge function With GMOD-based merge function

0%

20%

40%

60%

80%

100%

krnldrvr

tracedrv

ioctl/sys

m
oufiltr

cancel/sys

kbfiltr

cancel/startio

event/sys

toastm
on

diskperf

fakem
odem

serenum

m
ouclass

flpydisk

m
ouser

1394diag

1394vdev

Percentage of Strongly-Trackable Indirect Use-operands

Without GMOD-based merge function With GMOD-based merge function

Figure 7.10 Effects of using the GMOD-based merge function on the percentage of
strongly-trackable direct use-operands and indirect use-operands for the Windows device drivers.

131

0%

20%

40%

60%

80%

100%

krnldrvr

tracedrv

ioctl/sys

m
oufiltr

cancel/sys

kbfiltr

cancel/startio

event/sys

toastm
on

diskperf

fakem
odem

serenum

m
ouclass

flpydisk

m
ouser

1394diag

1394vdev

Percentage of Strongly-Trackable Direct Kill-operands

Without GMOD-based merge function With GMOD-based merge function

0%

20%

40%

60%

80%

100%

krnldrvr

tracedrv

ioctl/sys

m
oufiltr

cancel/sys

kbfiltr

cancel/startio

event/sys

toastm
on

diskperf

fakem
odem

serenum

m
ouclass

flpydisk

m
ouser

1394diag

1394vdev

Percentage of Strongly-Trackable Indirect Kill-operands

Without GMOD-based merge function With GMOD-based merge function

Figure 7.11 Effects of using the GMOD-based merge function on the percentage of
strongly-trackable direct kill-operands and indirect kill-operands for the Windows device drivers.

132

0%

20%

40%

60%

80%

100%

krnldrvr

tracedrv

ioctl/sys

m
oufiltr

cancel/sys

kbfiltr

cancel/startio

event/sys

toastm
on

diskperf

fakem
odem

serenum

m
ouclass

flpydisk

m
ouser

1394diag

1394vdev

Percentage of Weakly-Trackable Direct Kill-operands

Without GMOD-based merge function With GMOD-based merge function

0%

20%

40%

60%

80%

100%

krnldrvr

tracedrv

ioctl/sys

m
oufiltr

cancel/sys

kbfiltr

cancel/startio

event/sys

toastm
on

diskperf

fakem
odem

serenum

m
ouclass

flpydisk

m
ouser

1394diag

1394vdev

Percentage of Weakly-Trackable Indirect Kill-operands

Without GMOD-based merge function With GMOD-based merge function

Figure 7.12 Effects of using the GMOD-based merge function on the percentage of
weakly-trackable direct kill-operands and indirect kill-operands for the Windows device drivers.

133

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5

Round number

Percentage of strongly-trackable indirect use-operands

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5

Round number

Percentage of strongly-trackable indirect kill-operands

(a) Percentages for the VSA algorithm without the GMOD-based merge function.

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5

Round number

Percentage of strongly-trackable indirect use-operands

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5

Round number

Percentage of strongly-trackable indirect kill-operands

(b) Percentages for the VSA algorithm with the GMOD-based merge function.

Figure 7.13 Percentage of strongly-trackable indirect operands in different rounds for the
Windows device drivers.

134

Chapter 8

Case Study: Analyzing Device Drivers

A device driver is a program in the operating system that is responsible for managing a hard-

ware device attached to the system. In the Windows operating system, a (kernel-level) device

driver resides in the address space of the kernel, and runs at a high privilege level; therefore, a bug

in a device driver can cause the entire system to crash. The Windows kernel API [87] requires

the programmer to follow a complex set of rules: (1) a call to the API functions IoCallDriver

or PoCallDriver must occur only at a certain interrupt request level (IRQL), (2) the API func-

tion IoCompleteRequest should not called twice with the same parameter, (3) the API function

ExFreePool should not be called with a NULL parameter, etc. The device drivers running in a given

Windows installation may have been written by less-experienced or less-skilled programmers that

those who wrote the Windows kernel itself. Because of the complex nature of the Windows kernel

API, the probability of introducing a bug when writing a device driver is high. This is one of the

sources of instability in the Windows platforms.

According to Swift et al. [110], bugs in kernel-level device drivers cause 85% of the system

crashes in the Windows XP operating system. Several solutions [15, 14, 32, 110] have been pro-

posed in the past to improve the reliability of device drivers. Swift et al. [109, 110] propose a

runtime solution in which they isolate the device driver in a light-weight protection domain in the

kernel space using a combination of hardware and software techniques, thereby reducing the pos-

sibility of whole-system crashes due to a bug in a device driver. Ball et al. [15, 14] developed the

Static Driver Verifier (SDV), a tool based on model checking to find bugs in device-driver source

code. A kernel API usage rule is described as a finite-state machine (FSM), and SDV analyzes

the source code for the driver to determine whether there is a path in the driver that violates the

135

rule. Existing approaches rely on the source code for the device driver being available. However,

source code is not usually available for Windows device drivers. Moreover, static-analysis-based

or model-checking-based techniques that analyze source code could fail to find the causes of bugs,

due to the WYSINWYX phenomenon. This is especially true for device drivers written in object-

oriented languages such as C++ [5]. In this chapter, we describe a case study in which we used

CodeSurfer/x86 to find problems in Windows device drivers by analyzing the executable directly.

8.1 Background

A device driver is analogous to a library that exports a collection of subroutines. Each subrou-

tine exported by a driver implements an action that needs to be performed when the OS makes an

I/O request (on behalf of a user application or when a hardware-related event occurs). For instance,

when a new device is attached to the system, the OS invokes the AddDevice routine provided by

the device driver; when new data arrives on a network interface, the OS calls the DeviceRead

routine provided by the driver, and so on. For every I/O request, the OS creates a structure called

the “I/O Request Packet (IRP)” that consists of information such as the type of the I/O request,

the parameters associated with the request, etc., and invokes the driver’s appropriate dispatch rou-

tine. A driver’s dispatch routine performs the necessary actions, and returns a value indicating the

status of the request. For instance, if a driver successfully completes the I/O request, the driver’s

dispatch routine calls the IoCompleteRequest API function to notify the OS that the request has

been completed and returns the value STATUS SUCCESS. Similarly, if the I/O request is not com-

pleted within the dispatch routine, the driver calls the IoMarkPending API function and returns

STATUS PENDING, and so on.

8.2 The Need For Path-Sensitivity In Device-Driver Analysis

Fig. 8.1(a) shows a (simplified) version of an AddDevice routine from a Windows device driver.

In Windows, a given driver might manage several devices. For each device that the driver manages,

it maintains an object of type DEVICE OBJECT, which is defined in the Windows API. Typically, the

136

DEVICE OBJECT for a device is initialized in the AddDevice routine provided by the driver. The

AddDevice routine shown in Fig. 8.1(a) performs either of the following actions: (1) initializes

pdo to a newly created DEVICE OBJECT object, initializes some fields of the newly created object,

and returns 0, or (2) initializes pdo to NULL and returns −1.

1:

2: int AddDevice() {
3: DEVICE OBJECT* pdo;

4: int status;

5: if(. . .) {
6: pdo = malloc(sizeof(DEVICE OBJECT));

7: status = 0;

8: }
9: else {
10: pdo = NULL;

11: status = -1;

12: }
13: . . .
14: . . .
15: if(status != 0)

16: return -1;

17: pdo->x = . . . ;
18: return 0;

19: }

UNSAFE

SAFE

ERROR

pdo = Valid objectpdo = NULL

*pdo

*

pdo = Valid object

pdo = NULL

(a) (b)

Figure 8.1 (a) AddDevice routine from a Windows device driver, and (b) a finite-state machine
that encodes the rule that pdo should not be dereferenced if it is NULL. (DEVICE OBJECT is a data

structure that is defined in the Windows kernel API.)

Let us consider the following memory-safety property: pdo should not be used in a dereference

operation if its value is NULL. Note that the AddDevice routine in Fig. 8.1(a) does not violate the

property. Fig. 8.1(b) shows a finite-state machine that encodes the memory-safety property.

One possible approach to determining if there is a null-pointer dereference in the AddDevice

routine is as follows. Starting from the initial state (UNSAFE) at the entry point of AddDevice,

find a set of reachable states at each statement in AddDevice. This can be done by determining

the states for the successors at each statement based on the transitions in the finite-state machine

that encodes the memory-safety property. Fig. 8.2(a) shows the set of reachable states for various

statements in Fig. 8.1(a). At line [17] in the AddDevice routine, the set of reachable states is

{UNSAFE, SAFE}. Therefore, this approach concludes that there could be a null-pointer derefer-

ence, which is sound but not precise. The set of reachable states computed for line [17] includes

137

the state UNSAFE because the outcome of various branches in the function were not taken into

account during the propagation of automaton states. Moreover, this approach does not maintain

different states for different paths, i.e., it is not path-sensitive.

Line Reachable state
3 UNSAFE
8 SAFE
12 UNSAFE
15 SAFE, UNSAFE
17 SAFE, UNSAFE

Line Results of VSA
3 pdo 7→ >

status 7→ >
8 pdo 7→ {(malloc 6,0)}

status 7→ {(Global,0)}
12 pdo 7→ {(Global,0)}

status 7→ {(Global,−1)}
13 pdo 7→ {(Global,0), (malloc 6,0)}

status 7→ {(Global,1[−1,0])}
15 pdo 7→ {(Global,0), (malloc 6,0)}

status 7→ {(Global,1[−1,0])}
17 pdo 7→ {(Global,0), (malloc 6,0)}

status 7→ {(Global,0)}

Line VSA + Property States
3 UNSAFE:

pdo 7→ >
status 7→ >

8 SAFE:
pdo 7→ {(malloc 6,0)}
status 7→ {(Global,0)})

12 UNSAFE:
pdo 7→ {(Global,0)}
status 7→ {(Global,−1)}

15 SAFE:
pdo 7→ {(malloc 6,0)}
status 7→ {(Global,0)})

UNSAFE:
pdo 7→ {(Global,0)}
status 7→ {(Global,−1)}

17 SAFE:
pdo 7→ {(malloc 6,0)}
status 7→ {(Global,0)})

(a) (b) (c)

Figure 8.2 Abstract states computed for the AddDevice routine in Fig. 8.1: (a) reachable states
obtained by propagating states based on the finite-state machine in Fig. 8.1, (b) results obtained

from VSA, and (c) results obtained by combining state propagation and VSA.

Another possible approach is to use abstract interpretation to determine the abstract memory

configurations at each statement in the procedure and use the results to check the memory-safety

property. Suppose that we have the results of VSA and want to use them to check the memory-

safety property; the property can be checked as follows:

If the value-set computed for pdo at a statement contains NULL and the statement

dereferences pdo, then the memory-safety property is potentially violated.

Fig. 8.2(b) shows the abstract states computed by VSA for various statements of the AddDevice

routine in Fig. 8.1(b).

Unfortunately, the approach based on VSA also reports a possible null-pointer dereference at

line [17]. The reason for the imprecision in this case is the lack of path-sensitivity. At line [13],

we have the following relationship between pdo and status: pdo is NULL when status is -1,

138

and pdo is not NULL when status is 0. Observe that the value-sets computed by VSA at lines [8]

and [12] capture the correlation between pdo and status. However, VSA merges the information

from lines [8] and [12] when computing the abstract memory configuration for line [13], thereby

losing the correlation between pdo and status. Consequently, VSA is not able to conclude that

pdo cannot be NULL at line [17]. Hence, it reports a possible null-pointer dereference.

Das et al. [43] show how to obtain a limited degree of path-sensitivity by combining the propa-

gation of automaton states with the propagation of abstract-state values during abstract interpreta-

tion. The basic idea is to use a reduced cardinal product [40] of the domain of property-automaton

states and the domain used in abstraction interpretation. Fig. 8.2(c) shows the results obtained by

using a reduced cardinal product of the domain of property states, namely {UNSAFE, SAFE}, and

AbsEnv. At line [17], the results show that pdo cannot be NULL. Therefore, we can conclude there

is definitely no null-pointer dereference in the AddDevice procedure.

8.3 Path-Sensitive VSA

This section describes how the propagation of the property automaton states and the VSA

algorithm are combined to obtain a limited degree of path-sensitivity. To simplify the discussion,

the ideas are initially described using the context-insensitive VSA algorithm (cf. Sect. 3.5); the

combination of the context-sensitive VSA algorithm (cf. Sect. 3.7) and the property-automaton

state propagation is discussed at the end of this section.

Recall that the context-insensitive VSA algorithm associates each program point with an AbsEnv

value (cf. Sect. 3.2). Let State be the set of property-automaton states. The path-sensitive VSA

algorithm associates each program point with an AbsMemConfigps value:

AbsMemConfigps = ((State× State)→ AbsEnv⊥)

In the pair of property-automaton states at a node n, the first component refers to the state of

the property automaton at the enter node of the procedure to which node n belongs, and the second

component refers to the current state of the property automaton at node n. If an AbsEnv entry for

the pair 〈s0, scur〉 exists at node n, then scur is reachable at node n from a memory configuration at

the enter node in which the property automaton was in state s0.

139

The path-sensitive VSA algorithm is shown in Fig. 8.3. The path-sensitive VSA algorithm is

similar in structure to the context-sensitive VSA algorithm shown in Fig. 3.9. The worklist consists

of triples of the form 〈State,State,Node〉. A triple 〈enter state, cur state, n〉 is selected from the

worklist, and for each successor edge of node n, a new AbsEnv value is computed by applying the

corresponding abstract transformer (line [11] of Fig. 8.3).

After computing a new AbsEnv value, the set of pairs of states for the successor is identi-

fied (see the GetSuccStates procedure in Fig. 8.3). For a non-linkage edge pred→succ, the set

of pairs of states for the target of the edge is obtained by applying the NextStates function to

〈enter state, cur state〉 (line [34] of Fig. 8.3). The NextStates function pairs enter state with all

possible second-component states according to the property automaton’s transition relation for

edge pred→succ. For a call→enter edge, the only new state is the pair 〈cur state, cur state〉

(line [30] of Fig. 8.3). For an exit→end-call edge, the set of pairs of states for the end-call node

is determined by examining the set of pairs of states at the corresponding call (lines [24]–[28]

of Fig. 8.3); for each 〈call enter state, call cur state〉 at the call node such that (call cur state =

enter state), the pair 〈call enter state, cur state〉 is added to the result.

Note that the condition (call cur state = enter state) is similar to the condition (pred cs cs

succ cs) at line [25] of Fig. 3.9. Just as the condition at line [25] of Fig. 3.9 checks if succ cs

is reachable from pred cs in the call graph, the condition at line [25] of Fig. 8.3 checks if

〈enter state, cur state〉 at the exit node is reachable from 〈call state, call enter state〉 at the call

node in the property automaton. The need to check the condition (call cur state = enter state) at

an exit node is the reason for maintaining a pair of states at each node. If we do not maintain a pair

of states, it would not be possible to determine the property-automaton states at the call that reach

the given property-automaton state at the exit node. (In essence, we are doing a natural join a tuple

at a time. That is, the subset of State×State at the call node represents a reachability relation R1

for the property automaton’s possible net change in state as control moves from the caller’s enter

node to the call site; the subset of State× State at the exit node represents a reachability relation

R2 for the property automaton’s net change in state as control moves from the callee’s enter node

140

to the exit node. The subset of State × State at the end-call node, representing a reachability

relation R3, is their natural join, given by R3(x, y) = ∃z. R1(x, z) ∧R2(z, y).)

Finally, in the AbsMemConfigps value for the successor node, the AbsEnv values for all the

pairs of states that were identified by GetSuccStates are updated with the newly computed AbsEnv

value (see the Propagate function in Fig. 8.3).

It is trivial to combine the path-sensitive VSA algorithm in Fig. 8.3 and the context-sensitive

algorithm in Fig. 3.9 to get a VSA that can distinguish paths as well as calling contexts to a

limited degree. In the combined algorithm, each node is associated with a value from the following

domain:

AbsMemConfigps-cs = ((State× CallStringk × State)→ AbsEnv⊥)

The GetSuccStates function in the new algorithm would have the combined features of the

GetCSSuccs procedure from Fig. 3.9 and the GetSuccStates procedure from Fig. 8.3.

8.4 Experiments

We used the version of the VSA algorithm that combines the path-sensitive VSA algorithm de-

scribed in Sect. 8.3 and the context-sensitive VSA algorithm described in Sect. 3.7 to find problems

in Windows device drivers. Our goal was to evaluate whether by analyzing device-driver binaries

(without accessing source code, symbol-tables, or debugging information) CodeSurfer/x86 could

find the bugs that the Static Driver Verifier (SDV) [15, 14] tool finds in Windows device drivers.

We selected a subset of drivers from the Windows Driver Development Kit (DDK) [1] release

3790.1830 for our case study. For each driver, we obtained an executable by compiling the driver

source code along with the harness and the OS environment model [14] of the SDV toolkit.

A harness in the SDV toolkit is C code that simulates the possible calls to the driver that could

be made by the operating system. An application generates requests, which the OS passes on to the

device driver. Both levels are modeled by the harness. The harness defined in the SDV toolkit acts

as a client that exercises all possible combinations of the dispatch routines that can occur in two

successive calls to the driver. The harness that was used in our experiments performs the following

actions on the driver (in the order given below):

141

1: decl worklist: set of 〈State,State,Node〉
2:
3: proc PathSensitiveVSA()
4: worklist := {〈StartState, StartState, enter〉}
5: absMemConfigps

enter[〈StartState, StartState〉] := Initial values of global a-locs and esp

6: while (worklist 6= ∅) do
7: Select and remove a triple 〈enter state, cur state, n〉 from worklist
8: m := Number of successors of node n
9: for i = 1 to m do
10: succ := GetSuccessor(n, i)
11: edge amc := AbstractTransformer(n→ succ, absMemConfigps

n [〈enter state, cur state〉])
12: succ states := GetSuccStates(enter state, cur state, n, succ)
13: for (each 〈succ enter state, succ cur state〉 ∈ succ states) do
14: Propagate(enter state, succ enter state, succ cur state, succ, edge amc)
15: end for
16: end for
17: end while
18: end proc
19:
20: proc GetSuccStates(enter state: State, cur state: State, pred: Node, succ: Node): set of 〈State,State〉
21: result := ∅
22: if (pred is an exit node and succ is an end-call node) then
23: Let c be the call node associated with succ
24: for each 〈call enter state, call cur state〉 in absMemConfigps

c do
25: if (call cur state = enter state) then
26: result := result ∪ {〈call enter state, cur state〉}
27: end if
28: end for
29: else if (pred is a call node and succ is an enter node) then
30: result := {〈cur state, cur state〉}
31: else
32: // Pair enter state with all possible second-component states according to
33: // the property automaton’s transition relation for input edge pred→ succ
34: result := NextStates(pred→succ, 〈enter state, cur state〉)
35: end if
36: return result
37: end proc
38:
39: proc Propagate(pred enter state: State, enter state: State, cur state: State, n: Node, edge amc: AbsEnv)
40: old := absMemConfigps

n [〈enter state, cur state〉]
41: if n is an end-call node then
42: Let c be the call node associated with n
43: edge amc := MergeAtEndCall(edge amc, absMemConfigps

c [〈enter state, pred enter state〉])
44: end if
45: new := oldtae edge amc
46: if (old 6= new) then
47: absMemConfigps

n [〈enter state, cur state〉] := new
48: worklist := worklist ∪ {〈enter state, cur state, n〉}
49: end if
50: end proc

Figure 8.3 Path-sensitive VSA algorithm. (The function MergeAtEndCall is given in Fig. 3.7.
Underlining highlights differences with the version of VSA given in Fig. 3.9.)

142

1. The harness calls the DriverEntry routine, which initializes the driver’s data structures and

the global state.

2. The harness calls the driver’s AddDevice routine to simulate the addition of a device to the

system.

3. The harness calls the driver’s plug-and-play dispatch routine with an IRP MN START DEVICE

I/O request packet to simulate the starting of the device by the operating system.

4. The harness calls any dispatch routine, deferred procedure call, interrupt service routine, etc.

to simulate various actions on the device.

5. The harness calls the driver’s plug-and-play dispatch routine with an IRP MN REMOVE DEVICE

I/O request packet to simulate the removal of the device by the operating system.

6. Finally, the harness calls the driver’s Unload routine to simulate the unloading of the driver

by the operating system.

The OS environment model in the SDV toolkit consists of a collection of functions (written in

C) that conservatively model the API functions in the Windows DDK. The models are conservative

in the sense that they simulate all possible behaviors of an API function. For instance, if an API

function Foo returns the value 0 or 1 depending upon the input arguments, the model for Foo

consists of a non-deterministic if statement that returns 0 in the true branch and 1 in the false

branch. Modeling the API functions conservatively enables a static-analysis tool to explore all

possible behaviors of the API.

We had to make some changes to the OS models used in the SDV toolkit because SDV’s

models were never meant to be executed. They were also not designed to be compiled and used

as models of the OS environment by an analyzer that works on machine instructions, such as

CodeSurfer/x86. For instance, each driver has a device-extension structure that is used to maintain

extended information about the state of each device managed by the driver. The number of fields

and the type of each field in the device-extension structure is specific to a driver. However, in SDV’s

143

START

PENDING

COMPLETED

PENDING ∧∧∧∧COMPLETED

ERROR

A: “return status ≠≠≠≠ STATUS_PENDING”

A

A,B
A,B

B

B: “return status ==== STATUS_PENDING”

*

C

D C

D

C: IoMarkPending

D: IoCompleteRequest

D C,D

C

Figure 8.4 Finite-state machine for the rule PendedCompletedRequest.

OS model, an single integer variable is used to represent the device-extension object. Therefore,

in an driver executable built using SDV’s models, when the driver writes to a field at offset o of

the device extension structure, it would appear as a write to the memory address that is offset o

bytes from memory address of the integer that represents the device-extension object. We also

encountered the WYSINWYX phenomenon while using SDV’s OS models. For instance, the OS

model uses a function named SdvMakeChoice to represent non-deterministic choice. However, the

body of SdvMakeChoice only contains a single “return 0” statement.1 Consequently, instead of

exploring all possible behaviors of an API function, CodeSurfer/x86 would explore only a subset

of the behaviors of the API function. We had to modify SDV’s OS environment model to avoid

such problems.

We chose the following “PendedCompletedRequest” rule for our case study:

A driver’s dispatch routine does not return STATUS PENDING on an I/O Request Packet

(IRP) if it has called IoCompleteRequest on the IRP, unless it has also called IoMarkIrp-

Pending.

1According to Tom Ball [13], the SDV toolkit uses a special C compiler that treats the SdvMakeChoice function
specially.

144

Configuration A-locs GMOD-based merge function? Property Automaton
� Semi-Naı̈ve Algorithm (cf. Ch. 2) Yes Fig. 8.4
~ ASI-based algorithm (cf. Ch. 5) No Fig. 8.4
} ASI-based algorithm (cf. Ch. 5) Yes Fig. 8.4
F ASI-based algorithm (cf. Ch. 5) Yes Cross-product of the automata

in Figs. 8.4 and 8.6

Table 8.1 Configurations of the VSA algorithm used to analyze Windows device drivers.

� ~ } F
Feasible Feasible Feasible Feasible

Driver Procedures Instructions Result Trace? Result Trace? Result Trace? Result Trace?
src/vdd/dosioctl/krnldrvr 70 2824 FP -

√
-

√
-

√
-

src/general/ioctl/sys 76 3504 FP -
√

-
√

-
√

-
src/general/tracedrv/tracedrv 84 3719 FP -

√
-

√
-

√
-

src/general/cancel/startio 96 3861 FP - FP -
√

-
√

-
src/general/cancel/sys 102 4045 FP -

√
-

√
-

√
-

src/input/moufiltr 93 4175 × No × No × No × Yes
src/general/event/sys 99 4215 FP -

√
-

√
-

√
-

src/input/kbfiltr 94 4228 × No × No × No × Yes
src/general/toaster/toastmon 123 6261 FP - FP - FP -

√
-

src/storage/filters/diskperf 121 6584 FP - FP - FP -
√

-
src/network/modem/fakemodem 142 8747 FP - FP - FP -

√
-

src/storage/fdc/flpydisk 171 12752 FP - FP - FP - FP -
src/input/mouclass 192 13380 FP - FP - FP - FP -
src/input/mouser 188 13989 FP - FP - FP - FP -
src/kernel/serenum 184 14123 FP - FP - FP -

√
-

src/wdm/1394/driver/1394diag 171 23430 FP - FP - FP - FP -
src/wdm/1394/driver/1394vdev 173 23456 FP - FP - FP - FP -√

: passes rule, ×: a real bug found, and FP: False positive. (The SDV toolkit found the bugs in both ‘moufiltr’ and ‘kbfiltr’ with no false positives.)

Table 8.2 Results of checking the PendedCompletedRequest rule in Windows device drivers. (See
Tab. 8.1 for an explanation of �, }, ~, andF.)

Fig. 8.4 shows the finite-state machine for the rule.2 We used the different configurations of the

VSA algorithm shown in Tab. 8.1 for our experiments, and Tab. 8.2 shows the results. The column

labeled “Result” shows if the VSA algorithm reported that the ERROR state in the PendedComplet-

edRequest FSM is reachable at any node n from the initial memory configuration at the entry node

of the executable. As discussed in Sect. 5.1, the Semi-Naı̈ve algorithm (cf. Sect. 2.2) does not

provide a-locs of the right granularity and expressiveness. Therefore, not surprisingly, the config-

uration ‘�’ reports false positives3 for all the driver examples. Similarly, configuration ‘~’, which

does not use the GMOD-based merge function (cf. Sect. 7.5), also reports a lot of false positives.

2 According to the Windows DDK documentation, IoMarkPending has to be called before IoCompleteRequest.
However, the finite-state machine defined for the rule in the SDV toolkit is the one shown in Fig. 8.4—we used the
same finite-state machine for our experiments.

3 In this case, a false positive reports that the ERROR state is (possibly) reachable at some node n, when, in fact, it
is never reachable. This is sound but imprecise.

145

int dispatch routine(. . .) {
int status, c = 0;

.

.

.

status = STATUS PENDING;

P1:if(. . .) {
status = STATUS SUCCESS;

c = 1;

}
P2:

.

.

.

if(c == 1) {
IoCompleteRequest(. . .)

}
P3: return status;

}

Information at P3 with the FSM shown in Fig. 8.6
START:

c 7→ {0, 1}
status 7→ {STATUS SUCCESS, STATUS PENDING}

COMPLETED:

c 7→ {0, 1}
status 7→ {STATUS SUCCESS, STATUS PENDING}

Information at P3 with the FSM shown in Fig. 8.4
ST PENDING:

c 7→ {0}
status 7→ {STATUS PENDING}

ST NOT PENDING:

c 7→ {1}
status 7→ {STATUS SUCCESS}

Figure 8.5 An example illustrating false positives in device-driver analysis.

Configuration ‘}’, which uses only the PendedCompletedRequest FSM, also reports a lot of

false positives. Fig. 8.5 shows an example that illustrates one of the reasons for the false positives

in configuration ‘}’. As shown in the right column of Fig. 8.5, the set of values for status at the

return statement (P3) for the property-automaton state COMPLETED contains both STATUS PENDING

and STATUS SUCCESS. Therefore, VSA reports that the dispatch routine possibly violates the Pend-

edCompletedRequest rule. The problem is similar to the one illustrated in Sect. 8.2— because the

state of the PendedCompletedRequest automaton is same after both branches of the if statement

at P1 are analyzed, VSA merges the information from both of the branches, and therefore the

correlation between c and status is lost after the statement at P2.

Fig. 8.6 shows an FSM that enables VSA to maintain the correlation between c and status.

Basically, the FSM enables VSA to distinguish the paths in the executable based on the contents of

the variable status. We refer to a variable (such as status in Fig. 8.6) that is used to keep track

of the current status of the I/O request in a dispatch routine as the status-variable. To be able to

use the FSM in Fig. 8.6 for analyzing an executable, it is necessary to determine the status-variable

for each procedure. However, because debugging information is usually not available, we use the

following heuristic to identify the status-variable for each procedure in the executable:

By convention, eax is used as the return value in an x86 architecture. Therefore, the

local variable (if any) that is used to initialize the value of eax just before returning

from the dispatch routine is the status-variable.

146

ST_UNKNOWN

ST_PENDING

ST_NOT_PENDING

A: “status : ==== x, where x ≠≠≠≠ STATUS_PENDING”

C

B

B: “status : ==== STATUS_PENDING”

A

C: “status : ==== ?”B
A

C

C

Figure 8.6 Finite-state machine that tracks the contents of the variable status.

Configuration ‘F’ uses the property automaton obtained by combining the PendedComplete-

dRequest FSM and the FSM shown in Fig. 8.6 (instantiated using the above heuristic) using a

cross-product construction. As shown in Tab. 8.2, for configuration ‘F’, the number of false posi-

tives is substantially reduced.

Finding a Counter-Example Trace If the VSA algorithm reports that the ERROR state in the

property automaton is reachable, it would be useful to find a sequence of instructions that shows

how the property automaton can be driven to an error state. We use the Weighted Pushdown System

(WPDS) [95] framework to find such counter-example traces; the algorithm described in Sect. 8.3

was augmented to emit a WPDS on-the-fly. The WPDS constructed is equivalent to a WPDS that

would be obtained by a cross-product of the property automaton and a Pushdown System (PDS)

modeling the interprocedural control-flow graph, except that, by emitting the WPDS on-the-fly as

VSA variant ‘F’ is run, the cross-product WPDS is pruned according to what the VSA algorithm

and the property automaton both agree on as being reachable. The WPDS is constructed as follows:

147

PDS rules Control flow modeled by the rules

q, 〈[n0, s]〉 ↪→ q, 〈[n1, s
′]〉 Intraprocedural CFG edge from node n0 in state s

to node n1 in state s′.

q, 〈[c, s]〉 ↪→ q, 〈[enterP, s0][r, s
′]〉 A call to procedure P from call node c in state s

q[x,s], 〈[r, s]〉 ↪→ q, 〈[r, s]〉 that returns to r in state s′. (x is the exit node of

procedure P.)

q, 〈[x, s]〉 ↪→ q[x,s], 〈〉 Return from a procedure at exit node x in state s.

The standard algorithms for solving reachability problems in WPDSs [95] provide a witness trace

that shows how a given (reachable) configuration is reachable. In our case, to obtain a counter-

example trace, we merely use the witness trace returned by the WPDS reachability algorithm

to determine if the PDS configuration q, 〈[n, ERROR]〉—where n is a node in the interprocedural

CFG—is reachable from the configuration q, 〈entermain〉.

Because the WPDS used for reachability queries is based on the results of the VSA algorithm

that computes an over-approximation of the set of reachable concrete memory states, the counter-

example traces provided by the reachability algorithm may be infeasible. In our experiments,

only for configuration ‘F’ were the counter-example traces for kbfiltr and moufiltr feasible.

(Feasibility was checked by hand.)

Summary Our experience with using a combination of the VSA algorithm and property-

automaton-state propagation to find bugs in device driver is encouraging. Using configuration

‘F’, we were able to either verify the absence of a bug or identify the bug for a majority of our

test cases. However, it required a lot of manual effort to construct a property automaton that has

sufficient fidelity to lessen the number of false positives reported by the tool. We believe that au-

tomating the process of refining the property automaton would make the tool based on VSA more

useful for finding bugs in device drivers.

148

Chapter 9

Related Work

9.1 Information About Memory Accesses in Executables

There is an extensive body of work on techniques to obtain information from executables by

means of static analysis, including [7, 9, 16, 17, 33, 34, 35, 45, 58, 74, 83]. However, previous work

on analyzing memory accesses in executables has dealt with memory accesses very conservatively:

generally, if a register is assigned a value from memory, it is assumed to take on any value. VSA

does a much better job than previous work because it tracks the integer-valued and address-valued

quantities that the program’s data objects can hold; in particular, VSA tracks the values of data

objects other than just the hardware registers, and thus is not forced to give up all precision when

a load from memory is encountered.

The work that is most closely related to VSA is the alias-analysis algorithm for executables

proposed by Debray et al. [45]. The basic goal of the algorithm proposed by Debray et al. [45] is

similar to that of VSA: for them, it is to find an over-approximation of the set of values that each

register can hold at each program point; for us, it is to find an over-approximation of the set of

values that each (abstract) data object can hold at each program point, where data objects include

memory locations in addition to registers. In their analysis, a set of addresses is approximated

by a set of congruence values: they keep track of only the low-order bits of addresses. However,

unlike VSA, their algorithm does not make any effort to track values that are not in registers.

Consequently, they lose a great deal of precision whenever there is a load from memory.

The two other pieces of work that are most closely related to VSA are the algorithm for data-

dependence analysis of assembly code of Amme et al. [7] and the algorithm for pointer analysis on

149

a low-level intermediate representation of Guo et al. [58]. The algorithm of Amme et al. performs

only an intraprocedural analysis, and it is not clear whether the algorithm fully accounts for depen-

dences between memory locations. The algorithm of Guo et al. [58] is only partially flow-sensitive:

it tracks registers in a flow-sensitive manner, but treats memory locations in a flow-insensitive man-

ner. The algorithm uses partial transfer functions [117] to achieve context-sensitivity. The transfer

functions are parameterized by “unknown initial values” (UIVs); however, it is not clear whether

the algorithm accounts for the possibility of called procedures corrupting the memory locations

that the UIVs represent.

Cifuentes and Fraboulet [34] give an algorithm to identify an intraprocedural slice of an exe-

cutable by following the program’s use-def chains. However, their algorithm also makes no attempt

to track values that are not in registers, and hence cuts short the slice when a load from memory is

encountered.

Xu et al. [118, 119] also created a system that analyzed executables in the absence of symbol-

table and/or debugging information. The goal of their system was to establish whether or not

certain memory-safety properties held in SPARC executables. Initial inputs to the untrusted pro-

gram were annotated with typestate information and linear constraints. The analyses developed

by Xu et al. were based on classical theorem-proving techniques: the typestate-checking algo-

rithm used the induction-iteration method [108] to synthesize loop invariants and Omega [91] to

decide Presburger formulas. In contrast, the goal of the system described in the dissertation is to

recover information from an x86 executable that permits the creation of intermediate representa-

tions similar to those that can be created for a program written in a high-level language. VSA

uses abstract-interpretation techniques to determine used, killed, and possibly-killed sets for each

instruction in the program.

The xGCC tool [9] analyzes XRTL intermediate code with the aim of verifying safety proper-

ties, such as the absence of buffer overflow, division by zero, and the use of uninitialized variables.

The tool uses an abstract domain based on sets of intervals; it supports an arithmetic on this domain

that takes into account the properties of signed two’s-complement numbers. However, the domain

used in xGCC does not support the notion of strides—i.e., the intervals are strided intervals with

150

strides of 1. Because on many processors memory accesses do not have to be aligned on word

boundaries, an abstract arithmetic based solely on intervals does not provide enough information

to check for non-aligned accesses.

For instance, a 4-byte fetch from memory where the starting address is in the inter-

val [1020, 1028] must be considered to be a fetch of any of the following 4-byte sequences:

(1020, . . . , 1023), (1021, . . . , 1024), (1022, . . . , 1025), . . . , (1028, . . . , 1031). Suppose that the

program writes the addresses a1, a2, and a3 into the words at (1020, . . . , 1023), (1024, . . . , 1027),

and (1028, . . . , 1031), respectively. Because the abstract domain cannot distinguish an unaligned

fetch from an aligned fetch, a 4-byte fetch where the starting address is in the interval [1020, 1028]

will appear to allow address forging: e.g., a 4-byte fetch from (1021, . . . , 1024) contains the three

high-order bytes of a1, concatenated with the low-order byte of a2.

In contrast, if an analysis knows that the starting address of the 4-byte fetch is characterized

by the strided interval 4[1020,1028], it would discover that the set of possible values is restricted

to {a1, a2, a3}. Moreover, a tool that uses intervals rather than strided intervals is likely to suffer a

catastrophic loss of precision when there are chains of indirection operations: if the first indirection

operation fetches the possible values at (1020, . . . , 1023), (1021, . . . , 1024), . . . , (1028, . . . , 1031),

the second indirection operation will have to follow nine possibilities—including all addresses

potentially forged from the sequence a1, a2, and a3. Consequently, the use of intervals rather than

strided intervals in a tool that attempts to identify potential bugs and security vulnerabilities is

likely to cause a large number of false alarms to be reported.

Brumley and Newsome [22] present an algorithm based on Datalog programs to determine

aliases in assembly code. The idea is to convert each assembly statement into Datalog predicates.

The resulting saturated database would contain all the alias relationships. Subsequent program-

analysis tools would query the database to determine if any two memory accesses are aliases.

While their approach is interesting, it is not clear if it would be practical. For instance, they do not

have a notion of widening for loops, which would be essential to ensure that the analysis terminates

in a reasonable amount of time.

151

Similarly, there has been other work based on logic to deal with self-modifying code [26],

embedded code pointers [85], and stack-based control abstractions [51].

Decompilation. Past work on decompiling assembly code to a high-level language [35] is also

peripherally related to our work. However, the decompilers reported in the literature are some-

what limited in what they are able to do when translating assembly code to high-level code. For

instance, Cifuentes’s work [35] primarily concentrates on recovery of (a) expressions from in-

struction sequences, and (b) control flow. We believe that decompilers would benefit from the

memory-access-analysis method described in this dissertation, which can be performed prior to

decompilation proper, to recover information about numeric values, address values, physical types,

and definite links from objects to virtual-function tables [12]. By providing methods that expose

a rich source of information about the way data is laid out and accessed in executables, our work

raises the bar on what should be expected from a future best-of-breed decompilation tool.

Chang et al. [28] present a framework for translating assembly code to high-level languages,

such as C++ and Java, using a collection of cooperating decompilers. The idea is have a separation

of concerns by defining different decompilers for different tasks. For instance, one decompiler

takes care of identifying locals in a procedure, another decompiler takes care of extracting arith-

metic expressions in the high-level language, and so on. The decompilers are chained together

to form a pipeline. A decompiler takes the output of a decompiler earlier in the pipeline as its

input, which provides a mechanism for a lower-level decompiler to communicate to a higher-level

compiler. In some cases, a higher-level decompiler would have to communicate some information

to a lower-level decompiler, which is done by defining interfaces between the decompilers as re-

quired. Their modularized framework has the advantage of separating the concerns and allowing

the analyst to concentrate on a single issue when writing a decompiler, which is a desirable goal.

However, in our experience, it is not always this simple. Even the simplest decompiler—such as the

one for identifying the locals of a procedure—would require some information from a higher-level

compiler. Therefore, the advantage obtained by having separate decompilers is usually reduced by

having to define communicating interfaces between higher-level and lower-level decompilers. In

152

some cases, it might even be necessary to define communicating interfaces between every pair of

decompilers.

Analysis of programs with source code Dor et al. [47] present a static-analysis technique—

implemented for programs written in C—whose aim is to identify string-manipulation errors, such

as potential buffer overruns. In their work, a flow-insensitive pointer analysis is first used to detect

pointers to the same base address; integer analysis is then used to detect relative-offset relationships

between values of pointer variables. The original program is translated to an integer program

that tracks the string and integer manipulations of the original program; the integer program is

then analyzed to determine relationships among the integer variables, which reflect the relative-

offset relationships among the values of pointer variables in the original program. Because they

are primarily interested in establishing that a pointer is merely within the bounds of a buffer, it is

sufficient for them to use linear-relation analysis [41], in which abstract stores are convex polyhedra

defined by linear inequalities of the form
∑n

i=1 aixi ≤ b, where b and the ai are integers, and the

xi are integer variables.

In our work, we are interested in discovering fine-grained information about the structure of

memory-regions. As already discussed in Sect. 3.1, it is important for the analysis to discover

alignment and stride information so that it can interpret indirect-addressing operations that imple-

ment field-access operations in an array of structs or pointer-dereferencing operations. Because

we need to represent non-convex sets of numbers, linear-relation analysis is not appropriate. For

this reason, the numeric component of VSA is based on strided intervals, which are capable of

representing certain non-convex sets of integers.

Rugina and Rinard [98] have also used a combination of pointer and numeric analysis to de-

termine information about a program’s memory accesses. There are several reasons why their

algorithm is not suitable for the problem that we face: (i) Their analysis assumes that the pro-

gram’s local and global variables are known before analysis begins: the set of “allocation blocks”

for which information is acquired consists of the program’s local and global variables, plus the

dynamic-allocation sites. (ii) Their analysis determines range information, but does not determine

alignment and stride information. (iii) Pointer and numeric analysis are performed separately:

153

pointer analysis is performed first, followed by numeric analysis; moreover, it is not obvious that

pointer analysis could be intertwined with the numeric analysis that is used in [98].

Our analysis combines pointer analysis with numeric analysis, whereas the analyses of Rugina

and Rinard and Dor et al. use two separate phases: pointer analysis followed by numeric analysis.

An advantage of combining the two analyses is that information about numeric values can lead to

improved tracking of pointers, and pointer information can lead to improved tracking of numeric

values. In our context, this kind of positive interaction is important for discovering alignment and

stride information (cf. Sect. 3.1). Moreover, additional benefits can accrue to clients of VSA; for

instance, it can happen that extra precision will allow VSA to identify that a strong update, rather

than a weak update, is possible (i.e., an update can be treated as a kill rather than as a possible kill;

cf. case two of Fig. 3.1). The advantages of combining pointer analysis with numeric analysis have

been studied in [90]. In the context of [90], combining the two analyses only improves precision.

However, in our context, a combined analysis is needed to ensure safety.

Analysis in the presence of additional information. Several platforms have been created for

manipulating executables in the presence of additional information, such as source code and de-

bugging information, including ATOM [104], EEL [74], Phoenix [3], and Vulcan [103]. Several

people have also developed techniques to analyze executables in the presence of such additional

information [16, 17, 97]. Analysis techniques that assume access to such information are limited

by the fact that it must not be relied on when dealing with programs such as viruses, worms, and

mobile code (even if such information is present).

Bergeron et al. [16] present a static-analysis technique to check if an executable with debugging

information adheres to a user-specified security policy.

Rival [97] presents an analysis that uses abstract interpretation to check whether the assembly

code of a program produced by a compiler possesses the same safety properties as the source code.

The analysis assumes that source code and debugging information are available. First, the source

code and the assembly code of the program are analyzed. Next, the debugging information is

used to map the results of assembly-code analysis back to the source code. If the results for the

154

corresponding program points in source and assembly code are compatible, then the assembly code

possesses the same safety properties as the source code.

9.2 Identification of Structures

Aggregate structure identification (ASI) was devised by Ramalingam et al. to partition ag-

gregates according to a Cobol program’s memory-access patterns [93]. A similar algorithm was

devised by Eidorff et al. [48] and incorporated in the Anno Domini system. The original motivation

for these algorithms was the Year 2000 problem; they provided a way to identify how date-valued

quantities could flow through a program.

In our work, ASI complements VSA: ASI addresses the issue of identifying the structure of

aggregates, whereas VSA addresses the issue of over-approximating the contents of memory loca-

tions. ASI provides an improved method for the variable-identification facility of IDAPro, which

uses only much cruder techniques (and only takes into account statically known memory addresses

and stack offsets). Moreover, ASI requires more information to be on hand than is available in

IDAPro (such as the range and stride of a memory-access operation). Fortunately, this is exactly

the information that is available after VSA has been carried out, which means that ASI can be used

in conjunction with VSA to obtain improved results: after each round of VSA, the results of ASI

are used to refine the a-loc abstraction, after which VSA is run again—generally producing more

precise results.

Mycroft gives a unification-based algorithm for performing type reconstruction, including iden-

tifying structures [83]. For instance, when a register is dereferenced with an offset of 4 to perform

a 4-byte access, the algorithm infers that the register holds a pointer to an object that has a 4-byte

field at offset 4. The type system uses disjunctive constraints when multiple type reconstructions

from a single usage pattern are possible.

Mycroft points out several weaknesses of the algorithm due to the absence of certain informa-

tion. Some of these could be addressed using information obtained by the techniques described in

this disseration:

155

• Mycroft explains how several simplifications could be triggered if interprocedural side-

effect information were available. Once the information computed by the methods used

in CodeSurfer/x86 is in hand, interprocedural side-effect information could be computed by

standard techniques [37].

• Mycroft’s algorithm is unable to recover information about the sizes of arrays that are iden-

tified. In our work, affine-relation analysis (ARA) [72, 82] is used to identify, for each pro-

gram point, affine relations that hold. In essence, this provides information about induction-

variable relationships in loops, which, in turn, can allow VSA to recover information about

array sizes when, e.g., one register is used to sweep through an array under the control of a

second loop-index register.

• Mycroft does not have stride information available; however, VSA’s abstract domain is based

on strided intervals.

• Mycroft excludes from consideration programs in which addresses of local variables are

taken because “it can be unclear as to where the address-taken object ends—a struct of size

8 bytes followed by a coincidentally contiguously allocated int can be hard to distinguish

from a struct of 12 bytes.” This is a problematic restriction for a decompiler because it is

a common idiom: in C programs, addresses of local variables are frequently used as explicit

arguments to called procedures (when programmers simulate call-by-reference parameter

passing), and C++ and Java compilers can use addresses of local variables to implement

call-by-reference parameter passing.

Because the methods presented in this dissertation provide information about the usage

patterns of pointers into the stack, they would allow Mycroft’s techniques to be applied in

the presence of pointers into the stack.

It should be possible to make use of Mycroft’s techniques in conjunction with those used in

CodeSurfer/x86.

Miné [80] describes a combined data-value and points-to analysis that, at each program point,

partitions the variables in the program into a collection of cells according to how they are accessed,

156

and computes an over-approximation of the values in these cells. Miné’s algorithm is similar in

flavor to the VSA-ASI iteration scheme in that Miné finds his own variable-like quantities for

static analysis. However, Miné’s partitioning algorithm is still based on the set of variables in the

program (which our algorithm assumes will not be available). His implementation does not support

analysis of programs that use heap-allocated storage. Moreover, his techniques are not able to infer

from loop access patterns—as ASI can—that an unstructured cell (e.g., unsigned char z[32]

has internal array substructures, (e.g., int y[8]; or struct {int a[3]; int b;} x[2];).

In [80], cells correspond to variables. The algorithm assumes that each variable is disjoint

and is not aware of the relative positions of the variables. Instead, his algorithm issues an alarm

whenever an indirect access goes beyond the end of a variable. Because our abstraction of memory

is in terms of memory-regions (which can be thought of as cells for entire activation records), we

are able to interpret an out-of-bound access precisely in most cases. For instance, suppose that two

integers a and b are laid out next to each other. Consider the sequence of C statements “p = &a;

*(p+1) = 10;”. For the access *(p+1), Miné’s implementation issues an out-of-bounds access

alarm, whereas we are able to identify that it is a write to variable b. (Such out-of-bounds accesses

occur commonly during VSA because the a-loc-recovery algorithm can split a single source-level

variable into more than one a-loc, e.g., array pts in Ex.1.2.1.)

9.3 Recency-Abstraction For Heap-Allocated Storage

The recency-abstraction is similar in flavor to the allocation-site abstraction [29, 70], in that

each abstract node is associated with a particular allocation site; however, the recency-abstraction

is designed to take advantage of the fact that VSA is a flow-sensitive, context-sensitive algorithm.

Note that if the recency-abstraction were used with a flow-insensitive algorithm, it would provide

little additional precision over the allocation-site abstraction: because a flow-insensitive algorithm

has just one abstract memory configuration that expresses a program-wide invariant, the algorithm

would have to perform weak updates for assignments to MRAB nodes (as well as for assignments

to NMRAB nodes); that is, edges emanating from an MRAB node would also have to be accumu-

lated.

157

With a flow-sensitive algorithm, the recency-abstraction uses twice as many abstract nodes as

the allocation-site abstraction, but under certain conditions it is sound for the algorithm to perform

strong updates for assignments to MRAB nodes, which is crucial to being able to establish a

definite link between the set of objects allocated at a certain site and a particular virtual-function

table.

If one ignores actual addresses of allocated objects and adopts the fiction that each allocation

site generates objects that are independent of those produced at any other allocation site, another

difference between the recency-abstraction and the allocation-site abstraction comes to light:

• The allocation-site abstraction imposes a fixed partition on the set of allocated nodes.

• The recency-abstraction shares the “multiple-partition” property that one sees in the shape-

analysis abstractions of [100]. An MRAB node represents a unique node in any given con-

crete memory configuration—namely, the most recently allocated node at the allocation site.

In general, however, an abstract memory configuration represents multiple concrete memory

configurations, and a given MRAB node generally represents different concrete nodes in the

different concrete memory configurations.

Hackett and Rugina [59] describe a method that uses local reasoning about individual heap

locations, rather than global reasoning about entire heap abstractions. In essence, they use an

independent-attribute abstraction: each “tracked location” is tracked independently of other lo-

cations in concrete memory configurations. The recency-abstraction is a different independent-

attribute abstraction.

The use of count information on (N)MRAB nodes was inspired by the heap abstraction of

Yavuz-Kahveci and Bultan [120], which also attaches numeric information to summary nodes to

characterize the number of concrete nodes represented. The information on summary node u of

abstract memory configuration S describes the number of concrete nodes that are mapped to u

in any concrete memory configuration that S represents. Gopan et al. [55] also attach numeric

information to summary nodes; however, such information does not provide a characterization of

the number of concrete nodes represented: in both the abstraction described in Ch. 6 and [120],

158

each concrete node that is combined into a summary node contributes 1 to a sum that labels the

summary node; in contrast, when concrete nodes are combined together in the approach presented

in [55], the effect is to create a set of values (to which an additional numeric abstraction may then

be applied).

The size information on (N)MRAB nodes can be thought of as an abstraction of auxiliary size

information attached to each concrete node, where the concrete size information is abstracted in

the style of [55].

Strictly speaking, the use of counts on abstract heap nodes lies outside the framework of [100]

for program analysis using 3-valued logic (unless the framework were to be extended with count-

ing quantifiers [68, Sect. 12.3]). However, the use of counts is also related to the notion of

active/inactive individuals in logical structures [89], which has been used in the 3-valued logic

framework to give a more compact representation of logical structures [75, Chap. 7]. In general,

the use of an independent-attribute method in the heap abstraction described in Sect. 6.2 provides

a way to avoid the combinatorial explosion that the 3-valued logic framework suffers from: the

3-valued logic framework retains the use of separate logical structures for different combinations

of present/absent nodes, whereas counts permit them to be combined.

Several algorithms [10, 27, 44, 88, 107] have been proposed to resolve virtual-function calls in

C++ and Java programs. For each pointer p, these algorithms determine an over-approximation of

the set of types of objects that p may point to. When p is used in a virtual-function call invocation,

the set of types is used to disambiguate the targets of the call. Static information such as the class

hierarchy, aliases, the set of instantiated objects, etc. are used to reduce the size of the set of types

for each pointer p. Because we work on stripped executables, type information is not available.

The method presented in Sect. 6.2 analyzes the code in the constructor that initializes the virtual-

function pointer of an object to establish a definite link between the object and the virtual-function

table, which is subsequently used to resolve virtual-function calls. Moreover, algorithms such as

Rapid Type Analysis (RTA) [10] and Class Hierarchy Analysis (CHA) [44] rely on programs being

type-safe. The results of CHA and RTA cannot be relied on in the presence of arithmetic operations

on addresses, which are present in executables.

159

Chapter 10

Conclusions And Future Directions

Improving programmer productivity and software reliability has become one of the mantras of

programming language and compiler research in the recent years. However, most of the efforts

focus on programs with source code, and the problem of analyzing executables has been largely

ignored. The research presented in this thesis attempts to fill that gap. The main focus of this

thesis is to develop algorithms that recover an intermediate representation (IR) from an executable

that is very similar to the one that would be obtained by a compiler if we had started from source

code. Just as the IR created by a compiler forms the backbone of a tool that analyzes source code,

the IR recovered using our algorithms would form the basis of a tool that analyze executables.

Furthermore, because the IR recovered by our algorithms is similar to the IR created by a source-

code compiler, it would also be possible to leverage the research efforts on source-code analysis to

analyzing executables.

There are several challenges in recovering an IR from an executable. In this thesis, we outlined

the challenges and presented our solutions for tackling those challenges. In Ch. 2, we highlighted

the lack of a convenient abstract memory model for analyzing executables, and presented our ab-

stract memory model consisting of memory-regions and variable-like entities, referred to as a-locs.

In Ch. 3, we addressed the problem of recovering information about memory-access operations.

Specifically, we presented a combined pointer-analysis and numeric-analysis algorithm, referred

to as value-set analysis (VSA), that determines an over-approximation of the set of concrete (run-

time) states that arise at each program point on all possible inputs to the program. The results of

VSA can be used in a variety of applications such as dependence analysis, bug finding, etc. In

Ch. 4, we presented the details of the abstract arithmetic operations in the VSA domain.

160

In the subsequent chapters, we presented several improvements to the basic VSA algorithm. In

Ch. 5, we presented an improved a-loc-recovery algorithm. In Ch. 6, we proposed an inexpensive

abstraction for heap-allocated data structures, referred to as the recency abstraction, that allows us

to obtain useful information about objects allocated in the heap. A particularly important feature

of the recency abstraction is that it often permits VSA to establish a definite link from the heap-

allocated objects of a (sub) class that overrides the methods of its superclass to the virtual-function

table for the (sub) class. This is important for resolving indirect function calls in C++ programs,

for example, and could provide aid for security analysts to help them understand the workings of

malware that was written in C++ (something that is becoming increasingly important). In Ch. 7,

we presented several techniques, such as ARA, priority-based iteration, and GMOD-based merge

functions that improve the precision of the basic VSA algorithm. Priority-based iteration also

improves the running time. Other techniques may make VSA run slower, because they cause VSA

to carry around more information.

Overall, CodeSurfer/x86 is reasonably successful as a general platform for analyzing executa-

bles. As discussed in Ch. 8, we were able to use CodeSurfer/x86 to find bugs, and to verify the

absence of bugs, by analyzing device-driver executables. Our experiments in Ch. 8 are still prelim-

inary, but encouraging nevertheless. We were able to verify the absence of bugs for a majority of

our test cases, and in the test cases that had a real bug, we were able find a useful counter-example

sequence in the executable itself. From our experiments in Ch. 8, we realised that all the techniques

presented in this thesis were crucial for obtaining useful results. Several of the data structures in

device drivers use a chain of pointers—field b in structure A points to a structure B, and field c in

structure B points to structure C, and so on. Without the a-loc recovery algorithm from Ch. 5, VSA

would not have the right set of a-locs to track information about memory precisely. Moreover, de-

vice drivers use heap-allocated data structures extensively. Without the recency abstraction, VSA

would obtain no useful information about data allocated in the heap. We have only scratched the

surface in terms of the applications of CodeSurfer/x86 in analyzing device drivers. For instance,

writing device drivers in C++ is becoming increasingly popular. However, because of C++ lan-

guage features such as exceptions, constructors, destructors, etc., the compiled executable C++ is

161

vastly different from the source code. Even the guidelines [5] for writing kernel-level drivers in

C++ suggest that the programmer examine the compiled code to identify and fix problems due to

the WYSINWYX phenomenon. Therefore, it would be interesting to apply CodeSurfer/x86 for

drivers written in C++.

CodeSurfer/x86 has also been used by other researchers for a wide variety of applications,

such as extracting file formats from executables [77], identifying the propagation mechanisms and

payloads in malicious worms [21], and determining summaries for library functions [56].

Moreover, CodeSurfer/x86 has opened up new opportunities. Until now, several analysis prob-

lems that involved programs without source code were not amenable to principled static-analysis—

only ad-hoc solutions were proposed. For instance, consider the problem of binary-compatibility

checking. Ensuring binary compatibility is a major issue for the implementors of libraries and

operating systems. There is usually a well-defined interface to access the functionality provided

by a library or the OS. However, for a variety of reasons, such as to improve performance, to work

around bugs, etc., an application might break the interface by accessing a feature in an undocu-

mented way. When a new version of the library or OS is released such applications may fail to

work correctly. Compatibility problems are usually discovered through testing, which may fail to

find all problems. A tool like CodeSurfer/x86 makes such analysis problems amenable to static

analysis.

Despite the initial successes, there is room for improvement. Unlike domains such as the

polyhedral domain [60], the VSA domain does not track relationships among the variables in

the program. One of the main issues that we face in CodeSurfer/x86 is the loss of precision

due to the non-relational nature of the VSA domain. In Sect. 7.2, we showed how we recover

some of the losses in precision by using an auxiliary analysis, ARA, to track relationships among

registers. In Sects. 8.2 and 8.3, we presented a general framework to recover loss of precision in

VSA by splitting abstract VSA states at each program point based on an automaton. In Sect. 8.4,

we showed how this general mechanism can be used to reduce the number of false positives by

using an automaton (cf. Fig. 8.6) that partitions VSA states depending on the values of a variable

in a procedure. However, in all these cases, it required a lot of manual effort to identify the

162

right partitioning of the VSA states to achieve the desired level of precision. It would be useful

to automate the process of tuning the analysis so that the abstract states are partitioned only to

the extent needed for the analysis problem at hand. Abstraction-refinement techniques, such as

property simulation [43, 46], parsimonious abstractions [62], and lazy abstraction [63], have been

successfully used in source-code-analysis tools. We believe that CodeSurfer/x86 would be more

useful if such abstraction-refinement techniques are combined with the VSA algorithm, and the

other analysis already incorporated in CodeSurfer/x86.

163

LIST OF REFERENCES

[1] http://www.microsoft.com/whdc/devtools/ddk/default.mspx.

[2] OllyDbg assembler level analysis debugger. http://www.ollydbg.de/.

[3] Phoenix. http://research.microsoft.com/phoenix/.

[4] PREfast with driver-specific rules, October 2004. Windows Hardware and Driver Central
(WHDC) web site, http://www.microsoft.com/whdc/devtools/tools/PREfast-drv.mspx.

[5] C++ for kernel mode drivers: Pros and cons, February 2007. Windows Hardware and Driver
Central (WHDC) web site, http://www.microsoft.com/whdc/driver/kernel/KMcode.mspx.

[6] G. Aigner and U. Hölzle. Eliminating virtual function calls in C++ programs. In European
Conference on Object-Oriented Programming (ECOOP), pages 142–166, 1996.

[7] W. Amme, P. Braun, E. Zehendner, and F. Thomasset. Data dependence analysis of assem-
bly code. Int. J. Parallel Proc., 2000.

[8] L. O. Andersen. Binding-time analysis and the taming of C pointers. In Part. Eval. and
Semantics-Based Prog. Manip. (PEPM), pages 47–58, 1993.

[9] W. Backes. Programmanalyse des XRTL Zwischencodes. PhD thesis, Universitaet des
Saarlandes, 2004. (In German.).

[10] D. F. Bacon and P. F. Sweeney. Fast static analysis of c++ virtual function calls. In Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages 324–341,
New York, NY, USA, 1996. ACM Press.

[11] G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. In Proc.
Conf. on Compiler Construction (CC), pages 5–23, April 2004.

[12] G. Balakrishnan and T. Reps. Recency-abstraction for heap-allocated storage. In Proc.
Static Analysis Symposium (SAS), pages 221–239, August 2006.

[13] T. Ball. Personal Communication, February 2006.

164

[14] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. Ondrusek, S. K.
Rajamani, and A. Ustuner. Thorough static analysis of device drivers. In Proceedings of
the 2006 EuroSys conference, pages 73–85, New York, NY, USA, 2006. ACM Press.

[15] T. Ball and S.K. Rajamani. The SLAM toolkit. In Proc. Computer Aided Verification (CAV),
volume 2102 of Lec. Notes in Comp. Sci., pages 260–264, 2001.

[16] J. Bergeron, M. Debbabi, J. Desharnais, M.M. Erhioui, Y. Lavoie, and N. Tawbi. Static
detection of malicious code in executable programs. Int. J. of Req. Eng., 2001.

[17] J. Bergeron, M. Debbabi, M.M. Erhioui, and B. Ktari. Static analysis of binary code to iso-
late malicious behaviors. In Proc. of Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, pages 184–189, 1999.

[18] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. A static analyzer for large safety-critical software. In Conf. on Prog. Lang. Design
and Implementation (PLDI), pages 196–207, 2003.

[19] H.-J. Boehm. Threads cannot be implemented as a library. In Conf. on Prog. Lang. Design
and Implementation (PLDI), pages 261–268, 2005.

[20] F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Int. Conf. on Formal
Methods in Prog. and their Appl., Lec. Notes in Comp. Sci. Springer-Verlag, 1993.

[21] R. Brown, R. Khazan, and M. Zhivich. AWE: Improving software analysis through modular
integration of static and dynamic analyses. In Workshop on Prog. Analysis for Softw. Tools
and Eng. (PASTE), June 2007.

[22] D. Brumley and J. Newsome. Alias analysis for assembly. Technical Report CMU-CS-06-
180, Carnegie Mellon University, School of Computer Science, December 2006.

[23] R.E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans. on
Comp., C-35(6):677–691, August 1986.

[24] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model
checking: 1020 states and beyond. In Logic in Comp. Sci., pages 428–439, 1990.

[25] W. Bush, J. Pincus, and D. Sielaff. A static analyzer for finding dynamic programming
errors. Software–Practice And Experience, 30:775–802, 2000.

[26] H. Cai, Z. Shao, and A. Vaynberg. Certified self-modifying code. In Conf. on Prog. Lang.
Design and Implementation (PLDI), pages 66–77. ACM Press, 2007.

[27] Brad Calder and Dirk Grunwald. Reducing indirect function call overhead in c++ programs.
In Proc. Principles of Programming Languages (POPL), pages 397–408, New York, NY,
USA, 1994. ACM Press.

165

[28] B.-Y. E. Chang, M. Harren, and G. C. Necula. Analysis of low-level code using cooperating
decompilers. In Proc. Static Analysis Symposium (SAS), pages 318–335, 2006.

[29] D.R. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures. In Conf. on
Prog. Lang. Design and Implementation (PLDI), pages 296–310, 1990.

[30] H. Chen and D. Wagner. MOPS: An infrastructure for examining security properties of
software. In Conf. on Comp. and Commun. Sec. (CCS), pages 235–244, November 2002.

[31] B.-C. Cheng and W.W. Hwu. Modular interprocedural pointer analysis using access paths:
Design, implementation, and evaluation. In Conf. on Prog. Lang. Design and Implementa-
tion (PLDI), pages 57–69, 2000.

[32] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical study of operating
systems errors. In sosp, pages 73–88, New York, NY, USA, 2001. ACM Press.

[33] C. Cifuentes and A. Fraboulet. Interprocedural data flow recovery of high-level language
code from assembly. Technical Report 421, Univ. Queensland, 1997.

[34] C. Cifuentes and A. Fraboulet. Intraprocedural static slicing of binary executables. In Proc.
Int. Conf. on Software Maintenance (ICSM), pages 188–195, 1997.

[35] C. Cifuentes, D. Simon, and A. Fraboulet. Assembly to high-level language translation. In
Proc. Int. Conf. on Software Maintenance (ICSM), pages 228–237, 1998.

[36] CodeSurfer, GrammaTech, Inc., http://www.grammatech.com/products/codesurfer/.

[37] K.D. Cooper and K. Kennedy. Interprocedural side-effect analysis in linear time. In Conf.
on Prog. Lang. Design and Implementation (PLDI), pages 57–66, 1988.

[38] J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S. Pasareanu, Robby, and H. Zheng.
Bandera: Extracting finite-state models from Java source code. In Int. Conf. on Softw. Eng.
(ICSE), 2000.

[39] P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In Proc.
2nd. Int. Symp on Programming, Paris, April 1976.

[40] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static anal-
ysis of programs by construction of approximation of fixed points. In Proc. Principles of
Programming Languages (POPL), 1977.

[41] P. Cousot and N. Halbwachs. Automatic discovery of linear constraints among variables of
a program. In Proc. Principles of Programming Languages (POPL), pages 84–96, 1978.

[42] M. Das. Unification-based pointer analysis with directional assignments. In Conf. on Prog.
Lang. Design and Implementation (PLDI), pages 35–46, 2000.

166

[43] M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive program verification in polynomial
time. In Conf. on Prog. Lang. Design and Implementation (PLDI), pages 57–68, New York,
NY, USA, 2002. ACM Press.

[44] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented programs using
static class hierarchy analysis. In European Conference on Object-Oriented Programming
(ECOOP), pages 77–101, London, UK, 1995. Springer-Verlag.

[45] S.K. Debray, R. Muth, and M. Weippert. Alias analysis of executable code. In Proc. Prin-
ciples of Programming Languages (POPL), pages 12–24, January 1998.

[46] D. Dhurjati, M. Das, and Y. Yang. Path-sensitive dataflow analysis with iterative refinement.
In Proc. Static Analysis Symposium (SAS), pages 425–442, 2006.

[47] N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a realistic tool for statically detecting all
buffer overflows in C. In Conf. on Prog. Lang. Design and Implementation (PLDI), pages
155–167, 2003.

[48] P.H. Eidorff, F. Henglein, C. Mossin, H. Niss, M.H. Sørensen, and M. Tofte. Annodo-
mini: From type theory to year 2000 conversion tool. In Proc. Principles of Programming
Languages (POPL), pages 1–14, 2005.

[49] D.R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-
specific, programmer-written compiler extensions. In Op. Syst. Design and Impl. (OSDI),
pages 1–16, 2000.

[50] M. Fähndrich, J. Rehof, and M. Das. Scalable context-sensitive flow analysis using in-
stantiation constraints. In Conf. on Prog. Lang. Design and Implementation (PLDI), pages
253–263, 2000.

[51] X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni. Modular verification of assembly code
with stack-based control abstractions. In Conf. on Prog. Lang. Design and Implementation
(PLDI), pages 401–414, 2006.

[52] J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and its use in
optimization. Trans. on Prog. Lang. and Syst. (TOPLAS), 3(9):319–349, 1987.

[53] Fast library identification and recognition technology, DataRescue sa/nv, Liège, Belgium,
http://www.datarescue.com/idabase/flirt.htm.

[54] J.S. Foster, M. Fähndrich, and A. Aiken. Polymorphic versus monomorphic flow-insensitive
points-to analysis for C. In Proc. Static Analysis Symposium (SAS), pages 175–198, 2000.

[55] D. Gopan, F. DiMaio, N.Dor, T. Reps, and M. Sagiv. Numeric domains with summarized
dimensions. In Tools and Algs. for the Construct. and Anal. of Syst. (TACAS), pages 512–
529, 2004.

167

[56] D. Gopan and T. Reps. Lookahead widening. In Proc. of Conf. on Computer Aided Verifi-
cation (CAV), Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2006.

[57] D. Gopan, T. Reps, and M. Sagiv. A framework for numeric analysis of array operations.
In Proc. Principles of Programming Languages (POPL), pages 338–350, 2005.

[58] B. Guo, M.J. Bridges, S. Triantafyllis, G. Ottoni, E. Raman, and D.I. August. Practical and
accurate low-level pointer analysis. In 3nd Int. Symp. on Code Gen. and Opt., 2005.

[59] B. Hackett and R. Rugina. Region-based shape analysis with tracked locations. In Proc.
Principles of Programming Languages (POPL), pages 310–323, 2005.

[60] N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems using linear
relation analysis. Formal Methods in System Design, 11(2):157–185, 1997.

[61] K. Havelund and T. Pressburger. Model checking Java programs using Java PathFinder.
Softw. Tools for Tech. Transfer, 2(4), 2000.

[62] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from proofs.
In Proc. Principles of Programming Languages (POPL), pages 232–244, New York, NY,
USA, 2004. ACM Press.

[63] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Proc. Principles
of Programming Languages (POPL), pages 58–70, 2002.

[64] M. Hind and A. Pioli. Assessing the effects of flow-sensitivity on pointer alias analyses. In
Proc. Static Analysis Symposium (SAS), Lec. Notes in Comp. Sci., Pisa, Italy, September
1998. Springer-Verlag.

[65] S. Horwitz, P. Pfeiffer, and T. Reps. Dependence analysis for pointer variables. In Conf. on
Prog. Lang. Design and Implementation (PLDI), pages 28–40, 1989.

[66] M. Howard. Some bad news and some good news. Microsoft Developer Network (MSDN),
October 2002. http://msdn.microsoft.com/library/en-us/dncode/html/secure10102002.asp.

[67] IDAPro disassembler, http://www.datarescue.com/idabase/.

[68] N. Immerman. Descriptive Complexity. Springer-Verlag, New York, NY, 1999.

[69] N.D. Jones and S.S. Muchnick. Flow analysis and optimization of Lisp-like structures. In
S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory and Applications,
chapter 4, pages 102–131. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[70] N.D. Jones and S.S. Muchnick. A flexible approach to interprocedural data flow analysis
and programs with recursive data structures. In Proc. Principles of Programming Languages
(POPL), pages 66–74, 1982.

168

[71] P. A. Karger and R. R. Schell. Multics security evaluation: Vulnerability analysis. Tech.
Rep. ESD-TR-74-193, Vol. II, HQ Electronic Systems Division: Hanscom AFB, MA, USA,
June 1974.

[72] A. Lal, T. Reps, and G. Balakrishnan. Extended weighted pushdown systems. In Proc. of
Conf. on Computer Aided Verification (CAV), 2005.

[73] J.R. Larus and P.N. Hilfinger. Detecting conflicts between structure accesses. In Conf. on
Prog. Lang. Design and Implementation (PLDI), pages 21–34, 1988.

[74] J.R. Larus and E. Schnarr. EEL: Machine-independent executable editing. In Conf. on Prog.
Lang. Design and Implementation (PLDI), pages 291–300, 1995.

[75] T. Lev-Ami. TVLA: A framework for Kleene based static analysis. Master’s thesis, Tel-
Aviv University, Tel-Aviv, Israel, 2000.

[76] T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static analysis to work for veri-
fication: A case study. In Int. Symp. on Softw. Testing and Analysis (ISSTA), pages 26–38,
2000.

[77] J. Lim, T. Reps, and B. Liblit. Extracting file formats from executables. In Proceedings of
the 13th Working Conference on Reverse Engineering (WCRE), pages 23–27, Benevento,
Italy, October 2006.

[78] R. Manevich, G. Ramalingam, J. Field, D. Goyal, and M. Sagiv. Compactly representing
first-order structures for static analysis. In Proc. Static Analysis Symposium (SAS), pages
196–212, 2002.

[79] A. Milanova, A. Rountev, and B.G. Ryder. Parameterized object sensitivity for points-to
analysis for Java. Trans. on Softw. Eng. and Method., 14(1):1–41, 2005.

[80] A. Miné. Field-sensitive value analysis of embedded C programs with union types and
pointer arithmetics. In Languages, Compilers, and Tools for Embedded Systems, 2006.

[81] M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear algebra. In
Proc. Principles of Programming Languages (POPL), 2004.

[82] M. Müller-Olm and H. Seidl. Analysis of modular arithmetic. In European Symp. on Pro-
gramming (ESOP), 2005.

[83] A. Mycroft. Type-based decompilation. In European Symp. on Programming (ESOP),
1999.

[84] E.W. Myers. Efficient applicative data types. In ACM, editor, Proc. Principles of Program-
ming Languages (POPL), pages 66–75, 1984.

169

[85] Z. Ni and Z. Shao. Certified assembly programming with embedded code pointers. In Proc.
Principles of Programming Languages (POPL), pages 320–333, 2006.

[86] R. O’Callahan and D. Jackson. Lackwit: A program understanding tool based on type
inference. In Int. Conf. on Softw. Eng. (ICSE), 1997.

[87] Walter Oney. Programming the Microsoft Windows Driver Model. Microsoft Press, second
edition, 2003.

[88] H. Pande and B. Ryder. Data-flow-based virtual function resolution. In Proc. Static Analysis
Symposium (SAS), pages 238–254, 1996.

[89] S. Patnaik and N. Immerman. Dyn-FO: A parallel, dynamic complexity class. In Symp. on
Princ. of Database Syst., 1994.

[90] A. Pioli and M. Hind. Combining interprocedural pointer analysis and conditional constant
propagation. Tech. Rep. RC 21532(96749), IBM T.J. Watson Research Center, March 1999.

[91] W. Pugh. The Omega test: A fast and practical integer programming algorithm for depen-
dence analysis. In Supercomputing, pages 4–13. IEEE/ACM, 1991.

[92] W.W. Pugh. Incremental Computation and the Incremental Evaluation of Functional Pro-
grams. PhD thesis, Cornell University, 1988.

[93] G. Ramalingam, J. Field, and F. Tip. Aggregate structure identification and its application to
program analysis. In Proc. Principles of Programming Languages (POPL), pages 119–132,
January 1999.

[94] T. Reps, G. Balakrishnan, and J. Lim. Intermediate representation recovery from low-level
code. In Proc. Partial Evaluation and Semantics-Based Program Manipulation (PEPM),
pages 100–111, January 2006.

[95] T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and their ap-
plication to interprocedural dataflow analysis. Sci. of Comp. Prog., 58:206–263, October
2005.

[96] T. Reps, T. Teitelbaum, and A. Demers. Incremental context-dependent analysis for
language-based editors. Trans. on Prog. Lang. and Syst. (TOPLAS), 5(3):449–477, July
1983.

[97] X. Rival. Abstract interpretation based certification of assembly code. In Proc. Verification
Model Checking and Abstract Interpretation (VMCAI), 2003.

[98] R. Rugina and M.C. Rinard. Symbolic bounds analysis of pointers, array indices, and ac-
cessed memory regions. Trans. on Prog. Lang. and Syst. (TOPLAS), 2005.

170

[99] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with
destructive updating. Trans. on Prog. Lang. and Syst. (TOPLAS), 20(1):1–50, January 1998.

[100] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. Trans. on
Prog. Lang. and Syst. (TOPLAS), 24(3):217–298, 2002.

[101] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In S.S.
Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory and Applications, chap-
ter 7, pages 189–234. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[102] M. Siff and T.W. Reps. Program generalization for software reuse: From C to C++. In
Found. of Softw. Eng., 1996.

[103] A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binary transformation in a distributed envi-
ronment. Tech. Rep. MSR-TR-2001-50, Microsoft Research, Redmond, WA, April 2001.

[104] A. Srivastava and A. Eustace. ATOM - A system for building customized program analysis
tools. In Conf. on Prog. Lang. Design and Implementation (PLDI), 1994.

[105] B. Steensgaard. Points-to analysis in almost-linear time. In Proc. Principles of Program-
ming Languages (POPL), pages 32–41, 1996.

[106] J. Stransky. A lattice for abstract interpretation of dynamic (Lisp-like) structures. Inf. and
Comp., 101(1):70–102, Nov. 1992.

[107] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E. Gagnon, and
C. Godin. Practical virtual method call resolution for java. In Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA), pages 264–280, New York, NY,
USA, 2000. ACM Press.

[108] N. Suzuki and K. Ishihata. Implementation of an array bound checker. In Proc. Principles
of Programming Languages (POPL), pages 132–143, 1977.

[109] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy. Recovering device drivers. In
Op. Syst. Design and Impl. (OSDI), pages 1–16, 2004.

[110] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the reliability of commodity
operating systems. ACM Trans. Comput. Syst., 23(1):77–110, 2005.

[111] K. Thompson. Reflections on trusting trust. Commun. ACM, 27(8):761–763, August 1984.

[112] A. van Deursen and L. Moonen. Type inference for COBOL systems. In Working Conf. on
Reverse Eng., 1998.

[113] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step towards automated detection of
buffer overrun vulnerabilities. In Network and Dist. Syst. Security, February 2000.

171

[114] D.W. Wall. Systems for late code modification. In R. Giegerich and S.L. Graham, editors,
Code Generation – Concepts, Tools, Techniques, pages 275–293. Springer-Verlag, 1992.

[115] H.S. Warren, Jr. Hacker’s Delight. Addison-Wesley, 2003.

[116] J. Whaley and M. Lam. Cloning-based context-sensitive pointer alias analyses using binary
decision diagrams. In Conf. on Prog. Lang. Design and Implementation (PLDI), 2004.

[117] R.P. Wilson and M.S. Lam. Efficient context-sensitive pointer analysis for C programs. In
Conf. on Prog. Lang. Design and Implementation (PLDI), pages 1–12, 1995.

[118] Z. Xu, B. Miller, and T. Reps. Safety checking of machine code. In Conf. on Prog. Lang.
Design and Implementation (PLDI), pages 70–82, 2000.

[119] Z. Xu, B. Miller, and T. Reps. Typestate checking of machine code. In European Symp. on
Programming (ESOP), volume 2028 of Lec. Notes in Comp. Sci., pages 335–351. Springer-
Verlag, 2001.

[120] T. Yavuz-Kahveci and T. Bultan. Automated verification of concurrent linked lists with
counters. In Proc. Static Analysis Symposium (SAS), pages 69–84, 2002.

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	 Introduction
	Advantages of Analyzing Executables
	Challenges in Analyzing Executables
	No Debugging/Symbol-Table Information
	Lack Of Variable-like Entities
	Information About Memory-Access Expressions

	CodeSurfer/x86: A Tool for Analyzing Executables
	The Scope of Our Work
	Contributions and Organization of the Dissertation

	 An Abstract Memory Model
	Memory-Regions
	Abstract Locations (A-Locs)

	 Value-Set Analysis (VSA)
	Value-Set
	Abstract Environment (AbsEnv)
	Representing Abstract Stores Efficiently
	Intraprocedural Analysis
	Idioms
	Predicates for Conditional Branch Instructions

	Interprocedural Analysis
	Abstract Transformer for callenter Edge
	Abstract Transformer for exitend-call Edge
	Interprocedural VSA algorithm

	Indirect Jumps and Indirect Calls
	Context-Sensitive VSA
	Call-Strings
	Context-Sensitive VSA Algorithm
	Memory-Region Status Map

	Soundness of VSA

	 Value-Set Arithmetic
	Notational Conventions
	Strided-Interval Arithmetic
	Addition (+si)
	Unary Minus (-usi)
	Subtraction (-si), Increment (++si), and Decrement (--si)
	Bitwise Or (|si)
	Bitwise not (si), And (&si), and Xor (si)
	Strided-Interval Arithmetic for Different Radices

	Value-Set Arithmetic
	Addition (+vs)
	Subtraction (-vs)
	Bitwise And (&vs), Or (|vs), and Xor (vs)
	Value-Set Arithmetic for Different Radices

	 Improving the A-loc Abstraction
	Overview of our Approach
	The Problem of Indirect Memory Accesses
	The Problem of Granularity and Expressiveness

	Background
	Aggregate Structure Identification (ASI)

	Recovering A-locs via Iteration
	Generating Data-Access Constraints
	Interpreting Indirect Memory-References
	Hierarchical A-locs
	Convergence
	Pragmatics
	Experiments
	Comparison of A-locs with Program Variables
	Usefulness of the A-locs for Static Analysis

	 Recency-Abstraction for Heap-Allocated Storage
	Problems in Using the Allocation-Site Abstraction in VSA
	Contents of the Fields of Heap-Allocated Memory-Blocks
	Resolving Virtual-Function Calls in Executables

	An Abstraction for Heap-Allocated Storage
	Formalizing The Recency-Abstraction
	Experiments

	 Other Improvements to VSA
	Widening
	Affine-Relation Analysis (ARA)
	Limited Widening
	Priority-based Iteration
	Experiments

	GMOD-based Merge Function
	Experiments

	 Case Study: Analyzing Device Drivers
	Background
	The Need For Path-Sensitivity In Device-Driver Analysis
	Path-Sensitive VSA
	Experiments

	 Related Work
	Information About Memory Accesses in Executables
	Identification of Structures
	Recency-Abstraction For Heap-Allocated Storage

	 Conclusions And Future Directions
	LIST OF REFERENCES

