Computer
Sciences
Department

Characterizing Malcode Evolution

Archit Gupta
Pavan Kuppili
Aditya Akella
Paul Barford

Technical Report #1599

August 2007

Characterizing Malcode Evolution

Archit Gupta, Pavan Kuppili, Aditya Akella and Paul Barford*

ABSTRACT mechanisms, and are developing increasingly sophisticate

and effective methods for subverting these defenses. $his i
2N arms race, and it is not difficult to argue that the good
guys are losing.

The diversity, sophistication and availability of malio®

software (malcode) pose enormous challenges for securin
networks and end hosts from attacks. In this paper, we an-))
alyze a large corpus of malcode meta data compiled over a ©One of the most common methods for defending against

period 0f19 years Our aim is to understand how malcode attacksis toinstall anti-virus (AV) software on end ho#ts.
has evolved over the years and in particular how different A Software is based on using a set of signatures thatidentif

instances of malcode relate to one another. We develop aattacks and intrusions from malicious software. When these

novel graph pruning technique to establish the underlying Signature sets are kept up to date, AV software provides a
relationships between different instances of malcodecase Nigh level of protection to end hosts. The process of creat-

on temporal information and key common phrases identi- N9 Signature sets is central to all AV companies (likewise
fied in the malcode descriptions. Our algorithm enables a fOr Signature-based network intrusion detection/prevent

range of possible inheritance structures, which we inves- SYStems). Itis based in large part on capturing malicious bi
tigate through extensive manual validation. The resulting Naries used in Internet attacks using honeypots [1] and by
“most likely” malcode family trees show unique structure sharing _captured binaries with othgr companies. While A_/
and diverse characteristics. We present an evaluatiomeggr COMPanies are able to generate signatures quickly after in-
characteristics of malcode evolution and also drill down on St@nces of malcode have been captured, it is stélagtive

the details of the most interesting and potentially dangero ~ Process that gives t_he’advantage to the attackers.
malcode families. The AV companies’ measurement activity is almost al-

Our approach is not definitive and could be improved given WaYs coupled with an annotation process that takes place af-
better meta data. Nevertheless, it is our hope that this new!€r @ Signature has been developed to detect a new instance of
perspective on malcode evolution will be of great help in the Malcode. This meta-data is used for internal documentation
development of more effective defenses in the future. and is typically made available to the community through
web sites €.9.,[17, 26, 25]). This meta-data represents a
1. INTRODUCTION rich sodulrce olf informati_on (;)B mrz]ilcode thatt_] to date h_as re-
o o _ _ mained largely unexamined by the research community.
ingMZ:;ZIOL'JI'Sh:(r:(teN:ri Ig;irll; rlcre]::)ec:rr'][stif t%g"{‘ggﬁn?é ;na?\?rgg)-p- In this paper, we inve§tigate the details of a large corpus of
ular pre.ss about new vulnerabilities and new types of at- Lneegzoggr:;illr;% le\fgffﬁes;Zﬁalt;?,reagsd%i?zs;;gf Zor\]/aes;s
tacks, and the rapidly increasing economic incentives areyqry diverse malware which differ widely in their level of
sure to catalyze this activity for a long time to come. Well gqphistication, potency, methods of spreading etc (some of
known examples of malicious activity include denial of ser- he malware we study are known to have spread via floppy

vice, spam, information gathering, and resource gathering giskettes). To the best of our knowledge, ours idftlst-ever
In all cases, this activity is based on the use of softward-(ma long-term empirical study of the evolution of malware.

code/malware) that enables attacks to be carried out from o, specific interest is in understanding gwlving rela-
one or more hosts distributed throughout the Internet. tionshipsbetween different instances of malcode over time;
Creating effective countermeasures for these threa@ugt |, other words, we are interested in identifying and study-
with challenges. First, the ever increasing complexity of ing malcode families. Examples of characteristics that can
inter-networked systems and software means that it is ex-reflect relationships of interest include targeting a commo
tremely difficult to build them to be inherently free fromvul -y nerapility, using a common method for scanning or denial
nerabilities. Second, it is well know that security is not an ¢ seryice and, especially, sharing specific pieces of cale —
intrinsic feature of Internet architecture. The consegeds practice that is widely known to be common in malcode de-
that security is realized as a patchwork of add-on software, ye|opment. Our challenge in establishing these relatipssh
features and capabilities that are unlikely to ever clolgpal is that we are working with meta-data thigscribespecific

portunities for intelligent and determined attackers. r@hi jystances of malcode and not with the malcode itself (there
and perhaps most significantly, the authors of malcode are

well aware of the details of network and end host security 1o _ - proposals such as vulnerability-based signatgedsipd

*Computer Science Department, the University of Wisconsin - semantic-aware signatures [31] offer some opportunitesduce
Madison. E-mail: archit,pavan,akella,pb@cs.wisc.edu. the attackers advantage.

are also well know challenges in working with malcode bi- 2. RELATED WORK
naries). Thus, identifying specific instances of, for exlemp There are a growing number of empirical studies of mali-

code sharing, is impossible unless it is somehow identified ., s activity in the Internet. Well know examples of these

in the description. A further challenge is that most of the de ¢ jude [22, 21, 19, 20, 30, 23, 14]. These studies are often
scriptions are entered in plain English sentences, andehenc ¢, 1sed on a particular segment of malicious activity such
they areunstructured as denial of service attacks or worm outbreaks, and the re-

We develop a novel method for evaluating malcode meta- s frequently coincide with the emergence of new threats
data that has two components: text mining and graph prun-p;ore recently, Freilinget al. [12] and Rajalet al. [24] pro-

ing. The first component identifies the frequent phrases in \;iqeq empirical details on the escalation of botnet agtivit

the textual descriptions of all instances of malcode in our e of the most potent threats in the Internet today. In all
data set. This process not only enables suppression of CoMgases, these studies take advantage of a particular measure
mon phrasese(g.,“The following entry”), but also €xposes ment infrastructure such as Dshield.org [28] or distribute
the key featurgs_ of malcode as expressed in specific SeqIeNCRoneypots [1] as a means for gathering data, and typically
of text. Thus, itimposes structure on the unstructureditxt ,6\ide statistical characterizations of the data. Sirtia
descriptions. This immediately makes several analyses pos yhege studies, the data analyzed in our study is based on 24x7
sible - for example, we can now develop metrics to estimate o \vare gathering and annotation conducted by AV compa-

the similarity between two malware instances. nies. However, we only rely on meta-data not actual malcode
The second component of our evaluation methodology be- (source or binaries) themselves

gins by considering all instances of malcode as a fully con-

nected graph. We then prune the edges of the graph basefleen captured can provide interesting insights. However,
on phrase/word similarities using two different thr(_asrmxid it is challenging because the authors are increasinglygusin
rameters. The graphs that result after the pruning processechniques to confound this analysis. Disassemblersgdebu
reflect _both théemporal and feature-based relationshijes gers and system monitors are common tools used by AV
tween mstances_ of malcode. . . companies to generate signatures and create the documenta-

In our analysis, we explore the trade-offs of using dif- jon ysed in our study [6, 4, 3]. An alternative is to evaluate
ferent pruning threshold values. Fortunately, the angalyst . -\vare source code which can sometimes be found on the
who document the malcode also label many instances with\yap or in Usenet newsgroups. A recent example of source
names that indicates membership in a particular faneily.(code analysis of bots can be found in [9].
W32/Bagle.n@MM). These labels provide a means for val- - the notion of considering Internet malware in a biolog-
idating the family trees that result from our analysis. Wsin jca1 and immunological context has a relatively long his-
this approach, we identify a threshold parameterizatian th tory (e.g.,[10, 13, 11]). Excellent, comprehensive refer-
results in what we argue is a “mostly likely” set of families. oce material on malware can be found in [27]. Btaal.

Our graph generation mechanism unearths 702 malware, esent a study more closely related to our own that infers
families. The details of the families are fascinating. Welfin 6 phyiogeny.e., behavior characteristics of malware shell-
instances of families that are very shortlived, and ott@st 4 4e [16]. Our work is most similar to these studies in that
persist for years. \We find families that have a large fanout \ e 150 aim to establish evolutionary relationships between
i.e.,many children after the root (frequently the case forwell . o\vare.
known malcode) and others that are quite narrow. One of the \yhjje the overall objective of finding relationships in mal-
most interesting aspects of our analysis is how new malcode,y4re is similar to our own, the above studies differ in thadat
families evolve from old families — we provide an in-depth 54 algorithmic mechanisms they employ. Another key dif-

characterization of this phenomenon as well. _ ference is that our study provides a very “long-term” view
The long-term objective of our study is to contribute 10yt the evolution of malware. Our work is unique in that it

building a foundation for Internet security systems that ar a5 several insights into a multitude of malware fansilie
robust and proactivddy expanding the perspective on mal- 54 their evolution patterns.

code. It is our hope tha_t analyzing the_e\{olving families of Froman algorithmic stand-point, our study is informed by
malcode may help to guide efforts at building defense mech- yiq - work in data and text mining. Zaki describes an effi-
anisms in much the same way that virologists attempt 10 ¢ient algorithm for identifying frequent sequences in targ
identify the most likely flu strains on an annual basis. data sets [32]. While efficiency is less of an issue in our
The remainder of this paper is organized as follows. In ok methods for finding all frequent sequences such as

Section 2 we discuss prior work related to 0ur§tudy. Details {,qse described in [8] are important. Temporal text mining
of the malcode meta-database and our analysis methodology gies are particularly relevant. For example, Mai and Zha
are described in Section 3. The results of our evaluation areasent a temporal text mining algorithm used to identify

presented in Sections 4 and 5. We summarize our study andpthemes" and then apply it to news articles (thereby creatin

discuss future work in Section 6. thematic graphs) [18]. Finally, Lét al. use text mining to
explore the bugs related to “copy and paste” in Linux and

Evaluating the details of malcode binaries once they have

FreeBSD variants in [15]. Copy and paste is also common from unstructured data when combined with other structured
in malware variants. However, without source code, it is dif information can provided interesting views into the evolu-

ficult to apply the same method of analysis. tion of malware. Note that structured data can be exploited
much more readily than the unstructured text. As an exam-
3. MALWARE FAMILIES ple, we use the discovery date to “orient” the edges in our

malware relationship graph and to indicate the possibility
that the newer of the two malware was spawned from the
older one. We describe this in Section 3.4.

Our dataset contains a wealth of information on a large
number of malware instances. Almost all of this informa-
tion is entered by hand, after capturing and deconstructing
the malicious code in a controlled environment. Since the 3.3 Schema Discovery Via Text Mining
information is entered manually, it is semantically richkdan)
quite detailed. However, not all malicious code is desctibe In order to make the unstructured textual descriptions more

to the same extent of detail or using the same English con-Useful toward the construction of malware relationships, w
structs! attempt to impose a suitable schema and convert the textual

In this section, we begin by providing details on the mal- descriptions into a set of tuples that follow the schemahEac

ware dataset. We then describe the first component of ourPiece of malware is then mapped onto a tuple, each field of
analysis, which creates a uniform schema for malware de-Which describes a key property. With this in place, we can
scriptions based alext mining The schema provides a base- then define aimilarity functionover the tuples which quan-
line from which we can establish relationships between mal- tifies the relationship between malware.

ware instances. Next, we describe guaph pruning algo- To obtain the appropriate schema from the textual descrip-

rithm that we use to generate “likely” malware family trees. tions, we usérequent phrase extractioWe consider phrases
which occur frequently throughout all textual descripton

3.1 Description of the Dataset and make each such phrase a column in the schema. Thus,

The malware meta data that we evaluate is the McAfee €ach malware is represented by a tuple in the schema and
Avert Labs Threat Library [17]. There are 44,504 malware the columns take boolean values indicating the presence or
instances in the database, spanning a period of 19 years fronfbsence of the corresponding phrases in the description for
1987 to 2006. The database schema is quite exhaustive andh€ malware. _
is summarized in Table 1. The schema provides a variety of We used a frequent phrase extraction tool from the IR
information - e.g., the malware name, discovery date of the COmmunity, Extrphr32 [2], which extracts tieaximalfre-
malware, size of the malware (in bytes), malware type, “dan- guent phrases: a maximal frequent phrase is not a substring
ger” of payload, prevalence etc. However, from the point of of any other frequgnt phrase. The tool also gon3|ders only
view of inferring relationships between malware, the most those phrases which do not start or stop V\‘z?tbp”vvords
useful fields are the ones with rich textual descriptions. We these are common English words like “the”, “out” etc. Ac-
focus on three such fields - malware characteristics, method counting for stopwords allows us to weed out common phrases
of infection, and indications of infection. A total of 8,182 Which do not carry much significance. To determine if a

malware instances include detailed text descriptionsésgh ~ Phrase is frequent or not, we use a tunable parameter
three fields. Therefore, we focus our efforts on these 8,182 Phrases which occur fewer thantimes are considered in-

instances. frequent and hence not useful.
Gleaning relationship information from free text (gener- We used the frequent phrase extraction approach on the

ated by many different people over time) is quite challeng- *Virus characteristics”, “methods of infection”, and “iied-
ing, and we describe our approach in more detail below. tions of infection” text columns. We tuned the threshold pa-

rameter and finally ended up with 6500 frequent phrases.
3.2 Challenges in Mining the Data Not all of the resulting phrases were informative, however.

The textual descriptions for the malware provide a wealth 1© 9uard against inferring spurious relationships based on
of “interesting” information. However, these descripgon N€se phrases, we manually weeded out the phrases which
carry no specific structure or organization. Thus, we are did not seem to have much significance or did not clearly
faced with the challenge of systematically separating theay ~ €XPress a possible relationship with other malware (these i
from the chaff in these textual descriptions, with as liie ~ ¢lude generic single-word adjectives and verbs, and other
man input as possible, and uncovering the most informative SNOrt phrases such as fpllowmgl;ext » “application is de-
properties of malware. This is crucial in order for us to be Signed”, and “descriptionis meant’).
able to infer the relationships between malware with high After this manual pass, we were left with5300 phrases.
confidence. Our first insight is that we can use techniques 20ur analysis completely ignores other structured fieldshsas
from Information Retrleval_ to ’.“'”e the most 'mpoﬂta”t prc?,p- the potency and the prevalence of malware. This is because we
erties as well as to establish if tV\./o_malwa.re are “related” to \yant to focus primarily on the understanding how the différaal-
one another. We elaborate on this in Section 3.3. ware families evolve over time.

A second insight we use is that the information obtained 3Note that this process could be automated.

[Fields/Attributes [Type of Data [Example | Comment |
virus_k Structured 133997 Primary identifier in Database
virus_.name Unstructured W32/Mytob.be@MM Name of the malware
length Structured 49,278 bytes Size of the binary of the malwarg
discoverydate Structured 2005-05-26 00:00:00.000 Date of discovery of malware
dateadded Structured 2005-05-26 13:37:35.060 Date malware was added
removek Semi-structured “All Users: Use current engine Instructions for removing malware

(411 possible valuesand DAT files for detection and removal |..”
virus_typek Semi-structured Virus Type of malware
(11 possible values)
virus_subtypek Semi-structured Email Sub type of malware
(202 possible values)
dangerof_payloadk Structured 0 5 implies the payload is dangerdus
(Range: [1..5]) 0 implies no information
prevalencek Structured 0 The prevalence of the malware.
(Range: [1..4]) 0 implies no information
virus_characteristics | Unstructured “This detection is for a mass-mailing worrdescription of malware
that combines W32/Mydoom@MM
functionality with W32/Sdbot.worm
functionality...”
methodof_infection Unstructured “... Finally the virus sends itself via SMTPMethod of infecting a host
constructing messages using its own
SMTP engine. The worm guesses the
recipient email server, prepending the
target domain name with
the following strings ...”
indicationsof_infection| Unstructured “The Sdbot functionality in the worm Indications that a host is infected

is designed to contact the following
IRC server, join a specified channel,
and wait for further instructions:

irc.blackcarder.net (on TCP port 7000)...|”

Table 1: A summary of the McAfee dataset. A subset of the fieldsf the database are described along with their
structuring and an example.

A few examples of the phrases that were used in our schemao mine the underlying relationships and to understand mal-
ware evolution. We first start with a completely connected

follow:

“This virus constructs messages using its own
SMTP engine. Target email addresses are har-

vested from files”

“memory resident at the top of system memory
but below the 640k dos boundary, hooking inter-

rupt 21.”

“Its spreading activity remains only in the ger-
man language version of microsoft word. How-
ever, the virus may be able to execute its payload

in another language version.”

Using the obtained schema, we create and populate a tabl

of all malware.

3.4 Constructing the Graph

Our goal is to derive a grapfi’, whose vertices are the
malware in our dataset, and whose edges accurately reflec
the true underlying relationship between pairs of malware.
We deriveG’ using a multi-stage graph pruning approach.
As we argue in Section 3.5, the graphis actually a collec-

tion of multiple differentmalware families

As mentioned earlier, each malware has an associated “time
of discovery” field. This is a crucial piece of information
which we use along with the database of frequent phrases,

graph G with directed, weighted edges: each vertex in this
graph is a piece of malware, and the weight of an edge is
the similarity between the sets of frequent phrases adsdcia
with the malware. Edges point from the older malware to the
more recent one. The similarity metric ranges between 0 and
1 andis defined as follows: For an edge— B between two
malwareA and B, let S(A — B) be the set of properties in

the above frequent phrase database which are common be-

tween A and B. The weight of the edge‘ﬁ%ﬁe)', where

| B| is the number of defined properties in B d8dx)| is the

cardinality of SetS(z). Thus, the similarity metric captures
fow many of A's properties are also shared by B.

Note that if | B| is very small, then we do not have suf-
ficient information to relate it to other malware. To pre-

vent such malware from corrupting our malware relation-
iship graph, we introduce a threshold If |B| < ~, we do

hot considerB in creating the graplé”’. We sety = 10,
which we admit is an arbitrary choice, and could still intro-
duce spurious relationships. However, as we argue below,
our conservative graph pruning algorithm is designed to fur
ther prune such edges.
Overall, we do not consider 2174 malware instances in
our analysis because they do not satisfy{threshold.

When are two pieces of malware “related”?In our analy- original complete graplé and consider those edges G

sis, we use the term “relationship” to mean that that the two whose weights lie between andd;. We call these “fuzzy”
malware in question share several important characesjsti edges. We selectively add a small subset of these fuzzy
such as method of infection, method of spreading, and theedges back to the graght’ to obtain the target’, as de-
symptoms exhibited by infected hosts. Based on anecdotalscribed next.

evidence [5], we speculate that such similarities arisetdue If a piece of malware has a good edge incident on it, then
one or both of the following two reasons: (1) The authors we prune all the fuzzy edges incident on it. Furthermore,
of the malicious code share some routines with each other.we prune out the fuzzy edges whose unique contribution is
This practice of code sharing is known to be common in the less thanj,. From the remaining fuzzy edges incident on a
black hat community. Or, (2) The authors of the malware malware, we take a minimal subset whose total contribution
exploit the same set of vulnerabilities in an operating sys- is greater tha;. We delete all the other incoming edges.
tem, use the same vector for spreading, etc, but there is no Note thaty; /- is the maximum number of incoming fuzzy
explicit code sharing. While there could be other reasons, edges on any malware. We refer to malware which have
we argue that identifying relationships on the basis of Whic one or more fuzzy edges incident on them as “fuzzy nodes”.

properties are shared between malware is important in orderlf, for a certain malware, the total contribution of all fyzz
to design effective defenses and to contain future malwareedges is less that, then it is likely that the malware evolved

strains in a more timely fashion.
Graph construction. We now describe a simple, multi-
stage technique for systematically deleting insignifiestges
from the fully-connected graph G to obtain the underlying
relationship graphi’.

We define an edge AB as “good” if the weight of the
edge is above the threshalgd. When|A| and|B| are suf-
ficiently high, then a “good” A~B edge indicates exactly

fairly independently.

The careful reader may note that our approach for adding
the fuzzy edges is very conservative. This is a deliberate
choice we made - while fuzzy edges are useful, we don't
want them to create spurious evolutionary relationships in
our malware families. After including the fuzzy edges se-
lected in this manner, we finally have the graph For
completeness, we provide a formal description of our graph

what we are looking for: that B shares several key features construction algorithm in Figure 3.4.

with A, and it is likely to be derived from, or to be otherwise

closely related, to A. In our relationship graph, we referto 3 5 EFrom the Relationship Graph to Malware

malware which have a good edge incident on them as “good

nodes”. Thus, the first stage of our pruning algorithm is sim-
ple: we just remove all non-good edges frén

Now consider the case when node C has two “good” in-
coming edges from malware A and B. It might be the case
that A and B are themselves very similar to each other, an
that C actually evolved from A. Thus, we must delete the
incoming edge from B.

To enforce this, we use another thresh&dn the second
stage of our graph pruning. If an edge does moiguely
contribute more thad,, we prune the edge. Specifically, say
a node C has a pair of incoming edgés— C andB — C.

We check if'S(A_’C)lgls(B_’c)‘ < d2 (the numerator in the
inequality computes the set difference). If this ineqyakt
satisfied, we delete the incoming edge with the lower weight.

It turns out that this two-stage pruning is overly aggres-
sive; the graph we end up with after the pruning“~—is
a subgraph of our targét’. This is becaus&” only has
good edges. Thus, it misses out on some key relationship

no significant parent i7"’ (i.e, there is no incoming good
edge), but it may still share important properties with riault
ple other malware—in a sense, it may have “evolved” from
multiple parents. Such “bundling of threats” has in factrbee
observed in the wild (e.g. the creation of thiet ob worm
from earlier variantddydoomandSDBot) [5]. It is impor-
tant that our targef”’ capture such relationships.

To accommodate situations of this kind, we revisit the

Families

The final grapiG’ contains several connectedmponents
Each component is a directed acyclic graph. Furthermore,
each component will contain one or more malware with zero

dedges incident on them. We refer to such malwarmats.

Most components will have a single root. We refer to such
components asreesor malware familiesor family trees
Henceforth, we use these three terms interchangeably.

Whenever a component has more than one root, it is be-
cause fuzzy nodes and fuzzy edges exist at the lower levels
of the component. In such cases, we “split” the component
into as many malware families as the number of roots. We
assign each fuzzy malware to the family tree in which it ap-
pears earliest according to a depth first search startirigeat t
root of the family. We break ties in favor of the family which
contributed the heaviest edge incident on the malware.

We perform this decompoasition of our relationship graph
G’ into malware trees only because it allows us to simplify

Sour analysis and speak of “most likely” malware families.
®with this decomposition, we can now study key properties

of the likely families, such as the total number of malware,
the life-span of the family, the total number of generations
etc.

Itis possible that malware instances that are classified int
different families by our algorithm are actually related- |
deed, when we examine the resulting families closely (more
in Section 5), we noticed that several well-known malware
instances (e.g. instances B&gl e malware) are spread

Part-I: Good Edges - Obtaining’” relationships where there are none. An overly conservative

For any thresholds: . choice may cause us to miss important relationships.
Hléog/ldagléglelsg.dges with weight greater than. Call these Since we only have access to malware metadata and not
the actual malware, it is hard to tell if a particular choice
2. For anode, if we have multiple incoming good edges of parameters is conservative or not. In our study, we err
(say k in number) on the side of caution and choose a parameter setting that

Look at all the"C> combination pairs of incoming edges. s a5 conservative as possible while not causing the malware
For every pair x, y of incoming edges,

if weightminus(z,y) < 82 families to become completely degenerate.
Delete either x or y We first study how to select the twis. In Table 2 we
(delete the one which has a lesser weight). illustrate the effect of 20 different parameter choiceston t
entire relationship graph. The candidate choicesifolie
on the more conservative side. This allows us to identify
several “good” relationships accurately. Our choicesitor
on the other hand, are more permissive and this allows us

Part-II: Adding fuzzy edges back &’
For each thresholas:
1. Mark all edges with weight greater thas but less than

§1. Call these “fuzzy edges” to include edges that we may have otherwise ignored due to
2. If there exists an incoming good edge (weight greater than our conservative setting fof .
41) for a node, remove all the incoming fuzzy edges for that We look at four features of the relationship graph: the
node. overall number of good and fuzzy nodes, the number of roots
3. For a node C, if there is is no incoming “good edge” and the total number of nodes that do not belong in any fam-
Look at all the* C, combination pairs of incoming fuzzy ily (i.e. isolated nodes). First, as expected, the number of
edges (there areincoming fuzzy edges). good nodes decreases with higher values,adind is unaf-
For every pair x, y of edges, ibeightminus(z, y) < b, fected bys,. The number of fuzzy nodes drops drastically
delete the edge with the lesser weight. . S
Sort the remaining fuzzy edges in the descending order of with d, and becomes insignificant whén > 0.3. The_to'
their weights and store the result in a queue Q. tal number of roots does not show a clear monotonic trend
Let P be an empty set. as it has a complex dependence on bitlandé,. On the
while(Q is not empty ANDweightunion(P) < 61) other hand, the total number of isolated nodes generally in-
Dequeue an edge from Q and add to P. creases withy;, with the total number af; = 0.9 almost

if(weightunion(P) < 61) ; _
delete all incoming edges of C 50% higher than the number&t = 0.7.

else Since our goal is to have as few isolated nodes as possible
delete all incoming edge of C which remain in Q. (to prevent the families from becoming degenerate), while

keeping our parameter choice as conservative as possble (t

eliminate spurious edges), we chase= 0.7 andj, = 0.3.

Figure 1: Constructing the malware Relationship graph. We note that a few different parameter choices (eig.o¢)
If a node C has a pair of incoming edges x and y, define =(0.6, 0.3), (0.7,0.3)) provide roughly similar tradesoff\Ve
weightunion(x,y) as% and weightminus(, y) as leave a more detailed sensitivity analysis for future work.
1S(2)—S(y)| We now turn our attention te which specifies the min-

IC] : imum number of times a phrase should appear in the text

describing the malware in order for the phrase to be consid-
ered useful. We tried various values @fto get a sense of
the quality and the number of frequent phrases we obtain.
A higher value ofo brings out the most important phrases

across multiple family trees in our classification. However
our classification ensures that members within a tree arémuc

more likely to be strongly related to each other than mem- - ;
bers across trees and characteristics that are common to a lot of malware in-

Finally, we stress that the malware in a family may not stances. A low value o, on the other hand, brings out

necessarily have been derived from one another. Rather, aII';nore selﬁctlve arlid prfemsel mform;nf(_)n,t wh||ch IS Icomrpon
family members share a collection of important properties. 0 a smailer number of malware. Irst, a Jow vaiueoo

Understanding the evolution of the shared properties acros alone looks promising. But a higher yaluecofnay also be .
the generations of a family may prove instrumental in de- useful because it allows us to relate instances of malware in

signing effective malware defenses for the entire family or situations where not all malware are descr_lbed to the same

for future strains emerging from the family. thorough ex_tent. In our approach, we decided to use a_bl-
modalo setting. We took two sets of phrases extracted with

3.6 Parameter Choice o = 30 (low setting) andr = 100 (high setting) and merged
them (after performing manual pruning on each set), where

Our allgorlt?m u]:%ehs thre? key garﬁweﬁﬁﬁsz ando. The merging means that two phrases describing the same infor-
eventual quality of the malware families hinges crucially o .01 \were considered only once.

how these parameters are chosen. A permissive setting for o
these parameters (low values for all) could cause us to infer3.7 Validation

00— 06]07]08{09|[6 —|06|]07]]08[|09|(|é6p—[06]07/08|09]||61—|06] 07| 08] 0.9
02 | 02 | 02 | 02 |
0.1 {3619]2741|1803|941| | 0.1 [1646|1837(1612|931| | 0.1 |530{949|1481(1638| | 0.1 |2387|2655| 3286|4672
0.2 [3619|2741|1803|941 0.2 | 404 | 348 | 220|100 0.2 |735/869| 824 | 573 0.2 |3424|4424| 5335|6568
0.3 |3619(2741/1803(941|| 0.3 | 61 | 58 | 36 | 18 0.3 |617|702| 631 | 458 0.3 |3885(4681| 5712|6765
0.4 [3619|2741|1803|941 0.4 3 3 3 2 0.4 |581|659| 599 | 435 0.4 |3979|4779|5777|6804
0.5 |3619(2741|1803(941| | 0.5 0 0 0 0 0.5 |582|659| 598 | 433 0.5 |3981({4782| 5781|6808

(a) Num. good nodes (b) Num. fuzzy nodes (c) Num. roots (d) Neplated nodes

Table 2: The effect ofé; and d2 on the relationship graph.

61 —|06]07]08|0.9

We note that a complete validation of all our malware fam- 02 |
ilies | t ble. E the | task of tifvire th 0.1 {0.82{1.36| 1.7 | 1.9
ilies is not possible. Even the lesser task of quan ifyireg 0.2 |1.0711.15!1.271.47
accuracy of the relationships we infer is not easy. Both of 0.3 11.02/1.04|1.24/1.41
these limitations arise because we only have access to the 0.4 [1.03/0.95|1.14(1.43
malware meta-data. We focus on the latter issue here be- 0.5 [1.05/0.97|1.17]1.43

cause it is more tractable.
One approach we considered was to check if malware that

we identify as being related also share similar names. Theentropy value partly because it has a smaller number of trees

experts who populate the malware meta-data tend to namegyerall compared to, for examplgs;, 62) = (0.7,0.3) (see
each malware according to the “family” that they believe it Taple 3).

belongs to. For example, most variants of W32/Gaobot are To further verify if we are inferring relationships erro-
named W32/Gaobot.*.*. To check if the malware classifica- neously, we augmented the above checking of names with
tion due to our algorithm aligns with the names provided by a manual check of the accuracy of some of the relation-
McAfee, we developed an “entropy metric”, described next. ships. Specifically, for each family tree we obtained, wé firs

Table 3: The entropy in the names assigned by McAfee.

Assume our algorithm generates k family trdes.., 7. checked if most of the members share a common prefix (e.g.
Let there beN families of malware according to names in \W32/Gaobot). If this check is not satisfied, we manually
the McAfee database. Say a McAfee famillzasn; mem- check the meta-data to see if we erroneously inferred a rela-
bers, and these are distributed acrossitfemily trees out- tionship. In almost all the cases, we observed strong simila
put by our algorithm. If, for the McAfee family, the frac- jties between a “parent” and its “child”. Besides, some well

tions of its members across ottrees arefi, .., fk;cthen the known malware evolutions were also observed in our family
entropy of that family in our classificationds = X7_; (— f;log f; trees. For example, our trees expose the evolutidyobb
The mean entropy of all the McAfee families will 6%%\17";1*61 from MldoomandebOt y which is well documented in the
i=1" i
The entropy value lies between 0 alagok. The entrlopy popular and technical press.

value will be smaller if members of the same McAfee family Laterf, IP:] ?ectlonfS, Y\I'_e show the enu;e ;amny trees flor
go into a single family generated by our algorithm. Note S°M€0 the largest families we uncovered. Amore complete

that this metric is based only on the malware which have I\Et gf t.he f7amilies we inferred may be found at our Project
been classified into named families by McAfee. Note also eb site [7].
that this metric does not quantify the evolutionary pasern

Nonetheless, it provides a good sanity check. 4. GROSS CHARACTERISTICS OF MAL-
For (01,82) = (0.7,0.3) we obtaink = 702 trees. Thus, WARE EVOLUTION
a random algorithm will have an entropylely; 702 = 9.45. As mentioned earlier, only 8182 malware from the en-

In comparison, our algorithm results in an entropy of 1.04 tire malware database had a non-trivial amount of textual
(see Table 3). Drawing a simple analogy, the entropy metric gescription associated with them. Our analysis focuses on
can be interpreted as the mean number of binary questions tqhese malware. After employing the parameters described
ask in order to decide \{vh|ch tree a malware goes into. Thus,in Section 3 and applying the tree decomposition process,
for the members of a single McAfee-named family, we need e ended up with a collection of 702 malware family trees.
to ask only~ 1 question (equivalent to deciding between 2 gyerall, 4681 malware were not classified into any family

trees) instead of the worst cased questions. _ because of our choice of thresholds. In all, we have 2741
We note that the entropy metric is less useful in actually good nodes and just 58 fuzzy nodes.

choosing the parameters. This is mainly because different post of the analysis in this section provides a deeper look
choices of the parameter space results in different nunfber o jntg the key properties of the 702 families, focusing mainly
trees. The smaller the number of trees, the smaller the uppeipn the larger ones. We look at several features, such as the
bound on entropy, and the smaller the value of the entropy sjzes of the families, how deep the families are, how many
itself. For instance, the settin@,, d2) = (0.6,0.1) haslow gyccessors originate from a given malware in a family, how

100 . . - . - each malware family. It is likely that the new generation

s] malware were released in response to specific counter-mesasu
zg i : that were developed by AV companies to contain the pre-
g | _ vious generation. Thus, this analysis provides us a brief
5 5t . glimpse into the arms race between malware authors and AV
o 1 experts. In Figure 3, we show the distribution of the depths

zz I] of the 25 largest families. On average, these families span 7

5] generations! In Section 4.2, we study the time-span of these

50 s L Cfofnumber of podes in a trge. generations, and find that some of them span a few years.
0 20 40 60 80 100 120

Number of nodes in tree.

Figure 2: The cdf of the number of nodes in a tree.

100

95

long a time must elapse before a new generation of malware %0
is spawned from a predecessor etc. We hope that this gross &
characterization of malware families will be useful in un- 8o
derstanding the evolution and expansion of potent malware
families. sl)

We stress that our analysis is preliminary and is aimed o caf of maximum fanout of trees. ———
at providing a first-cut insight into malware evolution. Our 55 s . Cdf of root fanout of trees. - —
choice of parameters has been very conservative, and we be- 0 ° Y otofree 20 2
lieve that this causes us to infer fewer relationships thiaatw Figure 4: Cdf of maximum and root fan-outs in a tree.
actually exist. With better textual descriptions and more i Figure 4 shows the cdf of the maximum fanoutin a tree, as
formed approaches for setting the thresholds, it may be pos- '

X : :) ; well as the fan-out of the root of the tree. In several fargjlie
sible to infer many more malware relationships with even 200

: .) each malware spawns few other malware over time: 89% of
higher confidence. We do believe, however, that the gross

- . : . the trees have a maximum fanout less than 5; and 93.7% of
characteristics we derive, such as the relative sizes of mal

o : . o o the roots have a fanout less than 5. However, we do observe
ware families etc., will remain qualitatively similar (esp . :
cially for the largest families we identify) two trees with & maximum fan-out 20.

y 9 y). Since the root and maximum fan-out distributions are dif-
4.1 Analysis of size and fanout ferent, we immediately infer that the root may not necessar-
ily have the largest fan-out. This happens whenever some

intermediate malware bundles together a lot more exploits
than any of its predecessors and in turn becomes the source

Cdf

75 |
70 -/

Figure 2 shows the cumulative distribution of the number
of malware in each family tree. We note that a large number
of trees are very small> 90% of the trees have less than ¢, itiple future strains. In fact, we observed this phe-
10 nodes and0% of the trees have just two nodes (a single ,omenon in our in-depth analysis of thgt ob family tree
edge). We do find it very interesting that a handful of the (more in Section 5).

families among the ones we identify are very large: 5 of the = Aihygh not shown here, we found that the five largest
families have more then 50 malware each and the maximums, ilies have maximum fan-outs of 16, 24. 12. 8 and 10,

number of malwar_e in a family is 118! Late_r in this section, and root fan-outs of 1, 24, 12, 1 and 5, respectively. These

we delve deeper into some of the properties of the 5 large ¢ mjjies have 118, 95, 58, 51 and 50 malware respectively.

trees. In Section 5, we study the key features that are ré-yye note that in two of the five cases, the root has a single de-
tamg_d across generations of malware in some of these Iargescendant; and in two other cases, the root has the maximum
families. number descendants among all nodes in a tree. In general,
we note that the large families are characterized by malware
(root or intermediate) that spawn numerous other strains.

18 T T T T T T T T T
16 | E
14 + -

ol | 4.2 Time-span of Evolution
w0} . Each edge in the graph we obtain has an assodegth

Height of the tree

8 . We define the length of an edge as the difference in the
6r 7 “time of discovery” field in the two malware; we measure

ar] the length in days. Edge lengths help us understand the time

(2) L . . Heights of the 25 largest families. —+— | duration over which the the successors of potent malware

20 30 40 5 60 70 8 90 100 110 120 instances are developed and released. Since the “time-of dis

. Number of nodies in a tree - covery” is entered when the malware was first analyzed by
Figure 3: The height for the top 25 families. McAfee, our estimate of the length of an edge may be off

We now briefly look at the number of “generations” in from the true time lag between the first appearances of the

two malware. Nevertheless, it provides an interesting view 6000
into the evolutionary trends.

T T T T
+Correlation between fanout and mean length of outgoing links. ~ +

5000 B

+

100 : . " : %n 4000 - * q
%0 1 é’ 3000 |- § . N
80 1 o +

© +
70 q £ 2000-% + ¢ T B
60 - H Tt .
3 50 7 § 1000 - §$§+ + o4+ +

40] = OE §%§i£+£++f+ L
30 1 0 5 10 15 20 25
20 - Fanout of node
12 . . . ot of edge engins 1 Figure 6: The correlation between the fanout of a node

o 1000 2000 2000 2000 5000 5000 and the mean length of its outgoing edges.

Length of an edge (days) 6000

Figure 5: The Cdf Of the the |engthS Of a” the edges. g s f?orrelatlon between fanout and minimum length of outgoing links. +]

Figure 5 shows a cdf of the lengths of all edges in our £
relationship graph. We see that 90% of the edge lengths are £ 4000 - e T
less than 730 days long. Thus, it appears that most malware £ ., L 1 i
are spawned from their predecessors in under two years. s -

We note that 0.5% of the edges — or 35 edges — are longer 5 [+ ° 1
than 7yrs. These edges are spread across 23 families, of § 1000 - i M . .
which 20 families have fewer than 10 malware. Thus, the £ |} ii Bhe Lo e L .

5 10 15 20 25

long edges do not affect our observations regarding the$arg 0
families. Long edges usually appear when a malware in-
stance that has an early timestamp (say in the early nijeties
is also accompanied by a rich text description. Newer mal-
ware which have poor textual descriptions end up sharing
quite a few features in common with this earlier instance. We now study the temporal patterns in the “birth”, life-
The newer malware, however, mostly appear as terminal nodegan, and “death” of malware families. Our focus is on un-
in the family tree. derstanding how these evolutionary dynamics changed over
Note that it is highly unlikely there is any evolution or the past decade or so. We note that this analysis sheds more
code copying going on between the two malware connectedjight on the effect that two concurrent phenomena have on
by a long edge. Nevertheless we include the long edges inthe overall prevalence of malware: (1) the ongoing race be-
our analysis because they bring to focus important characte tween malware code writers, and the anti-virus companies,
istics that even the malware which are separated by severalyhich could cause some families to have a very long life
years share with each ottfer, time; and (2) the improvements in operating system and ap-

Figures 6 and 7 show scatter-plots of the fanout of a mal- plication software security, which could cause early de#th
ware versus the mean and the minimum length of its outgo- some families.

ing edges, respectively. These plots helps us understand th

correlation between the popularity of a malware - defined 1400 — - - - - - - - -
in terms of how many immediate successors are spawned 1200
from it - and the time to the evolution of its successors. We
note an interesting trend: malware with a high fanout do not
have any long outgoing edges. In other words, it seems that
malware which spawn a lot of children (perhaps because the
malware’s source code was reused very frequently), do so
relatively quickly! Focusing on malware which spawn few 200 .
successors, we note that a much longer time may elapse be- 0 N Tmeline of mawaje. -
fore they spawn their first successors. For example, in Fig 7, 1998 1990 19921994 1996 1996 2000 2002 2004

Year

there are several cases where the minimum edge length is gigyre 8: The number of malware spawned each year.
> 1000 days for malware with a fan-out 5.

Fanout of node
Figure 7: The correlation between the fanout of a node
and the minimum length of its outgoing edges.

1000 B

800 B

600 B

Number of malware

400 B

Figure 8 shows the time line of the distribution of “time

4.3 Evolution Dynamics of Malware Families of discovery” fields in the malware, binned by the year. This
“We believe that it is possible to modify our algorithm to peun graph_ cover all the 81.82 pie_ces of malware W_hiCh have text
such edges (by imposing a threshold on the maximum allowed descriptions. Thus, this plot includes even the isolatetkso

length of an edge). This is one direction we plan to explore in in our relationship graph. We ignore all other malware in the
future work. database. The key point to note is that there is a definite

Cdf

10

Cdf of lifetime of trees. —+—
C(I1f of 25 !argesl llrees. X

0 500

1000 1500 2000 2500 3000 3500 4000 4500 5000

Lifetime of tree (days)

80
70
60
50
40

30

Number of malware

20

10

-

-

e

-

Family 1. —+—
Family 2. —--x-+
Family’3. ---*-+-
Family 4. Begy
T Fan_]ﬂ;gi;;l?. i

1988

1990

1992

1994

1996
Year

1998

2000 2002 2004

Figure 9: The cdf of the tree lifetimes for all families as
well as the top 25 families.

Figure 11: The timeline of the five largest families.

were active. By 1998, the two curves almost meet indicat-
ing (perhaps) that most of the vulnerabilities of the early
nineties were patched. Along the same lines, we can infer
that the early 2000’s saw a revival of sorts in malware ex-
ploits (the two plots are almost parallel). These obseowati

are supported by the anecdotal evidence on the prevalence of
malware in recent years.

The right half of Figure 10 is even more interesting: the
slope of the “birth of trees” curve becomes very steep, yet
the gap between the two curves remains roughly fixed. This
is representative of the ongoing tussle between malware au-
thors and AV companies. For every malware family the AV
companies eliminate, malware authors are able to come up
with newer families which (possibly) exploit newer vulner-
abilities. Thus, AV companies have their task cut out - they
need to be extremely pro-active in identifying and eliminat
ing new malware families in a timely fashion.

We now focus on the 5 largest families and dig a bit deeper

700 T T T T T T T T L
600
500
400

300

Number of trees

200

100 | X

Death of tree. —+—
Blirth of trge. X

IR ! ! 1 1
1988 1990 1992 1994 1996 1998
Year

Figure 10: The cumulative count of the number of fami-
lies born and the number of extinct trees.

2000 2002 2004

slump in the number of new malware between 1994-1996
and also in 1998.

We now look at individual malware families and study
their evolutionary trends. Figure 9 shows the cdf of the to-

tal lifetime of the 25 largest malware families as well as the 15 their life-spans (a more in-depth analysis is presénte
cdf of the lifetime of all families. The lifetime of a family ;1 the next section). Figure 11 shows the timelines of the
is defined as the difference in the timestamp of the root and fi e |argest families. The largest family was chiefly active i
the timestamp of the most recent member of the family. We 1997 and 1998. The members of this family do not have any
note that 80% of all families have a lifetime less than 900 specific McAfee family name. Most of the members of this
days (around 2.5yrs) years). However, a small fraction of ¢y are viruses which infect files. These viruses mostly
the families, roughly 10%, last more than 2000 days (around g reaq via floppy diskettes and online downloads. The sec-
5 years!). Among the top 25 families, we see thai0% of ond largest family is an Adware family and was widely ac-
the families have a lifetime greater than 1000 days (aroundy;ye in 2005 (80 malware in 2005). It continues to be active
2.5 years), and 20% of them have a lifetime more than 2300 54 myst be monitored closely. The third and fifth largest
days (around 6 years). Thus, itappears that the large @nili ¢ jjies are Word Macro families and were mainly active in

have very long lifetimes. , 1997. The fourth largest family (a Joke family) has had a
We consider families which were last seen in 2006 to be very long lifespan. It was first seen in 1995, and was last

“a_\ctiye”..These families have not.been in<_:|luded in thg above gaan in 2004. It was mainly active in 2002 and 2003.

distributions. There are 74 “active” families, of which 45

have more than 2_n0des. Fl_thhermore, we found thgt .10 of5. A DEEPER LOOK AT SOME MALWARE

the 25 largest families are still active. The 45 active faasil

with > 2 nodes have been around for a mean time of 527 FAMILIES

days. In this section we drill down on the details of some of
Figure 10 delves deeper into the evolution dynamics. Here the largest families we identified in our analysis. We pro-

we compare the cumulative counts over time of the total vide further details on these families and also highliglet th

number of trees born and the total number of trees that diedunexpected characteristics exposed by our graph generatio

since the first family originated in 1987. The gap between technique. We name each family according to the most com-

the two cumulative counts indicates the number of families monly appearing McAfee-assigned name across all malware

alive in a given year. Note that there is a huge gap betweenin the family. In some cases where we show graphical rep-

the two plots in the early 1990s, indicating that a lot of sree resentations of the families, we also use the McAfee names

10

to identify individual malware in the family. As we will see, depth of 8, and a maximum fanout of 7. This tree started
this allows us to better explain the results of our in-depth with 2 malware instances in 2004, had 27 instances appear
analysis. in 2005, and 15 appeared in the first few months of 2006.
In the interest of space, we analyze the key properties of Thus, it appears that this family is spreading fairly quyckl
four large family trees: the first contains “Mytob” malware The phrases that are most common among malware in this
instances predominantly, the second contains “Downldader tree include “website hosting a scripted exploit which in-

instances, the third contains instance of “Lovelettert] tre stalls the downloader onto the user s system with no user
fourth contains “Bagle” instances. interaction”, “visiting a malicious web page either by &lic

) ing on a link or by the website hosting a scripted exploit”,
5.1 Amtob Family “downloaders are not viruses and as such do not themselves

The “Mytob” malware instances are spread across severalcontain any method to replicate however they may them-
families in our classification. We show the largest Mytob selves”, “downloaders are designed to pull files from a re-
family in Fig. 12. This family is quite interesting: it does mote website and execute the files that have been down-
not just contain the members of the Mytob family, but it also loaded”, “ website being communicated is normally con-
shows the “Sdbot” family evolving into the Mytob famity. trolled by the malware author any files being downloaded
The tree shown in Figure 12 has 46 nodes, a height of 16 (thecan be remotely modified”, and “adware is installed via a
maximum among all the Mytob families), and a maximum downloader it may install it cleanly with the relevant unin-
fanout of 10. staller included for the user”. As expected, these phrases

Most of the Mytobs in this tree spread via email. We ex- given a clear indication of the most common and potentially
amined some of the phrases which were common across thesignificant properties (from the point-of-view of develogi
different generations of the malware in this tree. We notice counter-measures) of the Downloader malware.
phrases such as “sender address”, “mass mailing worm”, This tree also illustrates the advantage of using conserva-
“mail propagation”, “arrives in an email message”, “via SRIT tive parameters in our algorithm: Note that this tree seems
“via SMTP constructing messages using its own SMTP en- to have few “spurious” edges; In fadll the 44 members
gine the worm guesses the recipient email server prepend-of this particular family are classified as Downloaders by
ing the target domain”, and “worm contains strings which it McAfee.
uses to randomly generate or guess email addresses these areAmong other interesting artifacts, the root node of this
prepended as user names”. family tree,Downl oader - QO, has the maximum fanout of

Another interesting aspect of this tree is that it starts out 7. Downl oader - UT, Downl oader - ABA, Downl oaded- ABS,
with Sdbots but these eventually spawn Mytobs at a depth andDownl oader - ASE seem to be other important mem-
of 4. Actually, it is a well known fact that the Mytob fam- bers of the tree spawning numerous other descendants. This
ily derives from the Sdbot and Mydoom families [5]. Itis tree seems to be evolving in several directions. It is also
interesting to note that our classification algorithm iseabl evolving fairly quickly: a major fraction of the members of
to unearth such evolutionary trends without the direct &id o this family appeared very recently (in 2005 and 2006).
specific text describing the evolution.

Another interesting aspect of this tree is its structuree Th 5.3 ALovel et t er Family
tree is a linear chain in the initial part (i.e. all nodes have
fanout 1), but it starts branching out once the Sdbots evolve
into Mytobs. In particular, th&B82/ Myt ob. cv@Mmal-
ware instance has a maximum fanout of 10. Three of its suc-
cessorsy\82/ Myt ob. eu@M W82/ Myt ob. do@M and
W2/ Myt ob. dI @Mspawn further descendants. When we
looked closely at the “time of discovery” of these malware
instances, we realized that the family in Figure 12 seems to

; . o of 10.
be evolving along the above three main sub-families. More ev aspect of this familv is that it is verv short-lived:
interestingly, one of these sub-families (roote?&2/ Myt ob. eu@a\l}g y asp y Y :

ife- I
also has a couple of instancesi#2/ Zot ob malware. This 'thad a tota! life-span of 131 days! When we perused the
. R N online technical press to learn more about these malware in-
is a possible indication that Mytobs may be evolving into

Zotobs stances, we found that the malware in this family got a lot
’ of media attention at the time. This led to an aggressive re-
5.2 A Downloader Family sponse from the AV companies and OS vendors, leading to

. . - B , quick patches. This may explain the short lifespan that we
Next, we consider a family tree consisting of “Downloader observed for the family.

instances. This tree is shown in Fig. 13 and has 44 nodes, a The phrases which are most common to malware in this

5There is also a second small tree which shows “Mydoom” evolv- treeinclude “arrive in an email message”, “"MSKERNEL32.VBS
ing into Mytob. This is not shown here “VBS Loveletter”, “Win32DLL.vbs in order to run the worm

Next, we consider a family tree that captures instances of
“VBS/Loveletter” malware. These malware are considered
extremely potent as they are known to cause serious damage
to infected hosts. We focus on one Loveletter family that
our algorithm derived. This family contains 23 malware in-
stances (see Figure 14). All 23 are named Loveletter/* by
McAfee. The tree has a depth of 5, and a maximum fanout

11

o e Cammorroa e e Goaon wawid
~

Figure 12: A Mytob family tree.

e Yo e eSSy Y
e D) G G
S s o> o s o) o) o Voo o) i o
s e o) D Qo) sy Coneisd Qo) momeid
D o> G

Figure 13: A Downloader malware family tree.

Casrimaom (asoons>

Figure 14: A Loveletter malware family tree.

at system startup”. These phrases tell us crucial detadistab 5.4 A Bagl e Family
the family: The malwgre mstances_ arrive in email Messages; The \W32/Bagle.* collection of malware is one of the most
MSKERNEL32.VBS s one of the files the malware instances i set of malware in our entire dataset. In our clasaific

all attempt to edit; and Win32DLL.vbs is part of the key iion we found that the Bagle malware instances were spread
added to the Windows registry in order to make the worm o.ross four large family trees and seven smaller trees. The

run at system startup. Different generations in this family biggest among the large families is shown in Figure 15. This

differ mainly in the contents of the particular email thatlen family has 34 nodes, a depth of 7 and a fanout of 5. Some
up becoming the vector for the malware. '

12

W32/Bagle.n@MM

Figure 15: A Bagle family tree.

of the phrases which were common to the malware in this algorithm that is based on the similarity of frequent phsase
tree include “spoofed”, “worm opens”, “mail propagation”, between all instances of malware in our data set. In our anal-
“copies itself to folders”, “contains its own smtp engine”, ysis, we show the trade offs in graph structure using differe
“contains a remote access component”, “peer to peer appli-parameter settings and select a configuration that resudts i
cations”, “kazaa bearshare limewire”, “email addresses ar graph that we validate as being “most likely” using the mal-
harvested”, “spam”, and “mass mailing worm”. As is well ware names applied by McAfee.
known (and as the phrases seem to indicate), the Bagle vari- The resulting family trees have rich structure. We identify
ants copy themselves to the shared folders of popular peer-702 distinct malware families. Some of the families are very
to-peer applications. large, containing in excess of 50 members. We found that
The malware instances belonging to this tree were mostsome of the families were active for a few years at a stretch,
active in the year 2004, with 22 variants being discovered while others last no more than a few days. Detailed exam-
in that year. Only six new variants were discovered in 2005 ination of the trees reveals many instances where specific
and 2006. This may suggest that the malware may have lostiraits (as identified by a specific phrase) are inherited afte
some of its prevalence, but there are a few unpatched vul-many months and that one instance of malware may spawn
nerabilities that continue to be exploited by the new vdgan many others. Several of the trees are available at our girojec
of Bagle. We speculate that the high number of variants in web-site ([7] - under construction) for general perusal.
2004 may be due to the rise and popularity of peer to peer We plan to pursue several extensions to this work. First,
applications around that time, and that the drop in 2005 andwe hope to expand the corpus of malware meta-data in or-
2006 may have come about due to the community’s growing der to flesh out the evolutionary characteristics of malware
awareness of the security problems associated with popularin greater detail. Second, we believe that adding the behav-

peer-to-peer applicatiorfs. ioral characteristics such as those identified in [16] aid ot
ers will further enrich our analysis. Finally, we will work
6. CONCLUSIONS more closely with AV companies and others concerned with

malware analysis, to develop methods for anticipatingriutu
ttrends in malware development. We hope that this will en-
able AV companies to generate malware counter-measures
in a more proactive fashion.

Users throughout the Internet are plagued by malicious
attacks on an on-going basis. The task of defending agains
these attacks is complicated by many factors, including-com
plexity, scale, and the increasing sophistication of medwa
authors. The premise of our work is that an expanded per-
spective on malware behavior and in particular the relation 7. ACKNOWLEDGEMENTS
ships between malware variants will eventually lead to the The authors wish to sincerely thank Joe Telafici and his
development of more effective countermeasures. colleagues at McAfee’s AVERT Labs for granting us access

In this paper we present an analysis of malcode meta-datato the VIL database. The authors also thank Jeff Naughton
compiled by McAfee, one of the largest AV companies in for his input and guidance on this work.
the world. The meta-data describes malware that was col-
lected by McAfee and other AV companies over a period of §, REFERENCES
19 years. The objective of our work is to identify and eval- [1] The Honeynet Project. http://project.honeynet.o@)2
uate relationships between malware instances based on thel Et);g?/rl]ifsztrlj E{i‘ﬂ;’:ggghgﬁ‘;%?;}gfgﬁggg'xtphmh 2005,
details of their descriptions. We do this through a process [3] Regmon. http://www.sysinternals.com, 2005.
that begins by decomposing the descriptions into frequent [l The SofCE Driver Suite. ftp./lu.compuware. conage.

i . L. alware dangers grow as e-criminals pool resources.
phrases, and then pruning the resulting set to eliminate the ~ hitp:/mww.itweek.co.uk/itweek/news/2160344/malwaengers-grow-
superfluous phrases. Next, we establish relationships be- ggg“é”a'&
tween instances of malware using a tunable graph pruning (g The IDA Pro Disassembler and Debugger. http://www.dzgeue.com, 2007.

5 . [7] The Malware Geneology Project, University of Wisconsliadison - Malware
However, we have no data to back this up! Families. http://www.cs.wisc.edu/ archit/Malware, 2007

g

13

(8]

0]
[10]

[11]

[12

[13]

[14]

(18]

[16]

[17
[18

[19]

[20]

[21]

[22]

(23]

[24]

[25

~
Noo

[27

[28
[29

[30]

[31]

[32]

H. Ahonen-Myka. Mining All Maximal Frequent Word Sequees in a Set of
Sentences. IRroceedings of ACM International conference on Informaand
Knowledge Managemeritlew York, NY, October 2005.

P. Barford and V. YegneswaraAn Inside Look at Botnetsolume 27 of
Advances in Information Security, Malware DetectiSpringer, 2007.

M. Eichin and J. Rochlis. With Microscope and Tweezés:Analysis of the
Internet Virus of November 1988. PRroceedings of IEEE Security and
Privacy, Oakland, CA, June 1989.

S. Forrest, S. Hofmeyr, A. Somayaji, and T. LongstafSénse of Self for Unix
Processes. IRroceedings of IEEE Security and Priva€akland, CA, June
1996.

F. Freiling, T. Holz, and G. Wicherski. Botnet Trackirigxploring a
Root-Cause Methodology to Prevent Distributed Deniabefvice Attacks. In
Proceedings of The 10th European Symposium on Researchnip@er
Security (ESORICS '055eptember 2005.

J. Kephart and S. White. Directed-Graph Empdemiolaigi¢todels of
Computer Viruses. liProceedings of IEEE Security and Privaakland, CA,
June 1991.

A. Kumar, V. Paxson, and N. Weaver. Exploiting UndentyiStructure for
Detailed Reconstruction of an Internet Scale EvenProceedings of ACM
Internet Measurement Conferen@&erkeley, CA, November 2005.

Z.Li, s. Lu, s. Myagmar, and Y. Shou. CP:Miner: Findingy-Paste and
Related Bugs in Large Scale Software CAd@&EE Transactions on Software
Engineering 32(3), March 2006.

J. Ma, J. Dunagan, H. Wang, S. Savage, and G. VoelkedigrDiversity in
Remote Code Injection Exploits. Proceedings of ACM Internet Measurement
ConferenceRio de Janeiro, Brazil, October 2006.

McAfee. Avert labs threat library. http://vil.nai.og 2007.

Q. Mei and C. Zhai. Discovering Evolutionary Theme Bats from Text - An
Exploration of Temporal Text Mining. IfProceedings of ACM SIGKDD
Chicago, IL, August 2005.

D. Moore, V. Paxson, S. Savage, C. Shannon, S. StaaifickN. Weaver. The
Spread of the Sapphire/Slammer Worm.
http://www.caida.org/outreach/papers/2003/sappbaggshire. html.

D. Moore, V. Paxson, S. Savage, C. Shannon, S. StaaifiorN. Weaver. Inside
the Slammer Worm. IProceedings of IEEE Security and Priva€yakland,
CA, June 2003.

D. Moore, C. Shannon, and J. Brown. Code Red: A Case Sindfie Spread
and Victims of an Internet Worm. IRroceedings of ACM SIGCOMM Internet
Measurement WorkshpMarseille, France, November 2002.

D. Moore, G. Voelker, and S. Savage. Inferring Intefenial of Service
Activity. In Proceedings of the 2001 USENIX Security SymposiMashington
D.C., August 2001.

R. Pang, V. Yegneswaran, P. Barford, v. Paxson, and terfen.
Characteristics of Internet Background RadiationPceedings of ACM
Internet Measurement Conferend@ormina, Italy, October 2004.

M. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A Maltiéted Approach to
Understanding the Botnet PhenomenonPioceedings of ACM Internet
Measurement Conferenddovember 2006.

Sophos. Threat analysis. http://www.sophos.conusgganalysis, 2007.
Symantec. Enterprise support knowledgebase. hitpt/.symantec.com, 2007.
P. SzorThe Art of Computer Virus Research and Defedsizison Wesley,
2005.

J. Ullrich. Dshield. http://www.dshield.org, 2005.

H. Wang, C. Guo, D. Simon, and A. Zungenmaier. Shieldn¥tability-Driven
Network Filters for Preventing Known Vulnerability Exptei In Proceedings
of ACM SIGCOMM Portland, OR, August 2004.

V. Yegneswaran, P. Barford, and J. Ullrich. Interndtusions: Global
Characteristics and Prevalence Aroceedings of ACM SIGMETRICSan
Diego, CA, June 2003.

V. Yegneswaran, J. Giffin, P. Barford, and S. Jha. An Aestture for
Generating Semantic-Aware SignaturesPhoceedings of the 2001 USENIX
Security SymposiurBaltimore, MD, August 2005.

M. Zaki. SPADE: An Efficient Algorithm for Mining Freque Sequences.
Machine Learning42(1), 2001.

14

