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Characterizing Malcode Evolution

Archit Gupta, Pavan Kuppili, Aditya Akella and Paul Barford∗

ABSTRACT
The diversity, sophistication and availability of malicious
software (malcode) pose enormous challenges for securing
networks and end hosts from attacks. In this paper, we an-
alyze a large corpus of malcode meta data compiled over a
period of19 years. Our aim is to understand how malcode
has evolved over the years and in particular how different
instances of malcode relate to one another. We develop a
novel graph pruning technique to establish the underlying
relationships between different instances of malcode based
on temporal information and key common phrases identi-
fied in the malcode descriptions. Our algorithm enables a
range of possible inheritance structures, which we inves-
tigate through extensive manual validation. The resulting
“most likely” malcode family trees show unique structure
and diverse characteristics. We present an evaluation of gross
characteristics of malcode evolution and also drill down on
the details of the most interesting and potentially dangerous
malcode families.

Our approach is not definitive and could be improved given
better meta data. Nevertheless, it is our hope that this new
perspective on malcode evolution will be of great help in the
development of more effective defenses in the future.

1. INTRODUCTION
Malicious activity in the Internet is growing at an alarm-

ing rate. There are daily reports in the technical and pop-
ular press about new vulnerabilities and new types of at-
tacks, and the rapidly increasing economic incentives are
sure to catalyze this activity for a long time to come. Well
known examples of malicious activity include denial of ser-
vice, spam, information gathering, and resource gathering.
In all cases, this activity is based on the use of software (mal-
code/malware) that enables attacks to be carried out from
one or more hosts distributed throughout the Internet.

Creating effective countermeasures for these threats is fraught
with challenges. First, the ever increasing complexity of
inter-networked systems and software means that it is ex-
tremely difficult to build them to be inherently free from vul-
nerabilities. Second, it is well know that security is not an
intrinsic feature of Internet architecture. The consequence is
that security is realized as a patchwork of add-on software,
features and capabilities that are unlikely to ever close all op-
portunities for intelligent and determined attackers. Third,
and perhaps most significantly, the authors of malcode are
well aware of the details of network and end host security
∗Computer Science Department, the University of Wisconsin -
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mechanisms, and are developing increasingly sophisticated
and effective methods for subverting these defenses. This is
an arms race, and it is not difficult to argue that the good
guys are losing.

One of the most common methods for defending against
attacks is to install anti-virus (AV) software on end hosts.All
AV software is based on using a set of signatures that identify
attacks and intrusions from malicious software. When these
signature sets are kept up to date, AV software provides a
high level of protection to end hosts. The process of creat-
ing signature sets is central to all AV companies (likewise
for signature-based network intrusion detection/prevention
systems). It is based in large part on capturing malicious bi-
naries used in Internet attacks using honeypots [1] and by
sharing captured binaries with other companies. While AV
companies are able to generate signatures quickly after in-
stances of malcode have been captured, it is still areactive
process that gives the advantage to the attackers.1

The AV companies’ measurement activity is almost al-
ways coupled with an annotation process that takes place af-
ter a signature has been developed to detect a new instance of
malcode. This meta-data is used for internal documentation
and is typically made available to the community through
web sites (e.g., [17, 26, 25]). This meta-data represents a
rich source of information on malcode that to date has re-
mained largely unexamined by the research community.

In this paper, we investigate the details of a large corpus of
malcode using McAfee’s threat library database, which has
been compiled over the past 19 years. Our data-set covers
very diverse malware which differ widely in their level of
sophistication, potency, methods of spreading etc (some of
the malware we study are known to have spread via floppy
diskettes). To the best of our knowledge, ours is thefirst-ever
long-term empirical study of the evolution of malware.

Our specific interest is in understanding theevolving rela-
tionshipsbetween different instances of malcode over time;
In other words, we are interested in identifying and study-
ing malcode families. Examples of characteristics that can
reflect relationships of interest include targeting a common
vulnerability, using a common method for scanning or denial
of service and, especially, sharing specific pieces of code –a
practice that is widely known to be common in malcode de-
velopment. Our challenge in establishing these relationships
is that we are working with meta-data thatdescribesspecific
instances of malcode and not with the malcode itself (there

1Recent proposals such as vulnerability-based signatures [29] and
semantic-aware signatures [31] offer some opportunities to reduce
the attackers advantage.



are also well know challenges in working with malcode bi-
naries). Thus, identifying specific instances of, for example
code sharing, is impossible unless it is somehow identified
in the description. A further challenge is that most of the de-
scriptions are entered in plain English sentences, and hence
they areunstructured.

We develop a novel method for evaluating malcode meta-
data that has two components: text mining and graph prun-
ing. The first component identifies the frequent phrases in
the textual descriptions of all instances of malcode in our
data set. This process not only enables suppression of com-
mon phrases (e.g.,“The following entry”), but also exposes
the key features of malcode as expressed in specific sequences
of text. Thus, it imposes structure on the unstructured textual
descriptions. This immediately makes several analyses pos-
sible - for example, we can now develop metrics to estimate
the similarity between two malware instances.

The second component of our evaluation methodology be-
gins by considering all instances of malcode as a fully con-
nected graph. We then prune the edges of the graph based
on phrase/word similarities using two different thresholdpa-
rameters. The graphs that result after the pruning process
reflect both thetemporal and feature-based relationshipsbe-
tween instances of malcode.

In our analysis, we explore the trade-offs of using dif-
ferent pruning threshold values. Fortunately, the analysts
who document the malcode also label many instances with
names that indicates membership in a particular family (e.g.,
W32/Bagle.n@MM). These labels provide a means for val-
idating the family trees that result from our analysis. Using
this approach, we identify a threshold parameterization that
results in what we argue is a “mostly likely” set of families.

Our graph generation mechanism unearths 702 malware
families. The details of the families are fascinating. We find
instances of families that are very short lived, and others that
persist for years. We find families that have a large fanout
i.e.,many children after the root (frequently the case for well
known malcode) and others that are quite narrow. One of the
most interesting aspects of our analysis is how new malcode
families evolve from old families – we provide an in-depth
characterization of this phenomenon as well.

The long-term objective of our study is to contribute to
building a foundation for Internet security systems that are
robust and proactiveby expanding the perspective on mal-
code. It is our hope that analyzing the evolving families of
malcode may help to guide efforts at building defense mech-
anisms in much the same way that virologists attempt to
identify the most likely flu strains on an annual basis.

The remainder of this paper is organized as follows. In
Section 2 we discuss prior work related to our study. Details
of the malcode meta-database and our analysis methodology
are described in Section 3. The results of our evaluation are
presented in Sections 4 and 5. We summarize our study and
discuss future work in Section 6.

2. RELATED WORK
There are a growing number of empirical studies of mali-

cious activity in the Internet. Well know examples of these
include [22, 21, 19, 20, 30, 23, 14]. These studies are often
focused on a particular segment of malicious activity such
as denial of service attacks or worm outbreaks, and the re-
ports frequently coincide with the emergence of new threats.
More recently, Freilinget al. [12] and Rajabet al. [24] pro-
vided empirical details on the escalation of botnet activity –
one of the most potent threats in the Internet today. In all
cases, these studies take advantage of a particular measure-
ment infrastructure such as Dshield.org [28] or distributed
honeypots [1] as a means for gathering data, and typically
provide statistical characterizations of the data. Similar to
these studies, the data analyzed in our study is based on 24x7
malware gathering and annotation conducted by AV compa-
nies. However, we only rely on meta-data not actual malcode
(source or binaries) themselves.

Evaluating the details of malcode binaries once they have
been captured can provide interesting insights. However,
it is challenging because the authors are increasingly using
techniques to confound this analysis. Disassemblers, debug-
gers and system monitors are common tools used by AV
companies to generate signatures and create the documenta-
tion used in our study [6, 4, 3]. An alternative is to evaluate
malware source code which can sometimes be found on the
Web or in Usenet newsgroups. A recent example of source
code analysis of bots can be found in [9].

The notion of considering Internet malware in a biolog-
ical and immunological context has a relatively long his-
tory (e.g., [10, 13, 11]). Excellent, comprehensive refer-
ence material on malware can be found in [27]. Maet al.
present a study more closely related to our own that infers
the phylogenyi.e.,behavior characteristics of malware shell-
code [16]. Our work is most similar to these studies in that
we too aim to establish evolutionary relationships between
malware.

While the overall objective of finding relationships in mal-
ware is similar to our own, the above studies differ in the data
and algorithmic mechanisms they employ. Another key dif-
ference is that our study provides a very “long-term” view
into the evolution of malware. Our work is unique in that it
offers several insights into a multitude of malware families
and their evolution patterns.

From an algorithmic stand-point, our study is informed by
prior work in data and text mining. Zaki describes an effi-
cient algorithm for identifying frequent sequences in large
data sets [32]. While efficiency is less of an issue in our
work, methods for finding all frequent sequences such as
those described in [8] are important. Temporal text mining
studies are particularly relevant. For example, Mai and Zhai
present a temporal text mining algorithm used to identify
“themes” and then apply it to news articles (thereby creating
thematic graphs) [18]. Finally, Liet al. use text mining to
explore the bugs related to “copy and paste” in Linux and
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FreeBSD variants in [15]. Copy and paste is also common
in malware variants. However, without source code, it is dif-
ficult to apply the same method of analysis.

3. MALWARE FAMILIES
Our dataset contains a wealth of information on a large

number of malware instances. Almost all of this informa-
tion is entered by hand, after capturing and deconstructing
the malicious code in a controlled environment. Since the
information is entered manually, it is semantically rich and
quite detailed. However, not all malicious code is described
to the same extent of detail or using the same English con-
structs!

In this section, we begin by providing details on the mal-
ware dataset. We then describe the first component of our
analysis, which creates a uniform schema for malware de-
scriptions based ontext mining. The schema provides a base-
line from which we can establish relationships between mal-
ware instances. Next, we describe ourgraph pruning algo-
rithm that we use to generate “likely” malware family trees.

3.1 Description of the Dataset
The malware meta data that we evaluate is the McAfee

Avert Labs Threat Library [17]. There are 44,504 malware
instances in the database, spanning a period of 19 years from
1987 to 2006. The database schema is quite exhaustive and
is summarized in Table 1. The schema provides a variety of
information - e.g., the malware name, discovery date of the
malware, size of the malware (in bytes), malware type, “dan-
ger” of payload, prevalence etc. However, from the point of
view of inferring relationships between malware, the most
useful fields are the ones with rich textual descriptions. We
focus on three such fields - malware characteristics, methods
of infection, and indications of infection. A total of 8,182
malware instances include detailed text descriptions in these
three fields. Therefore, we focus our efforts on these 8,182
instances.

Gleaning relationship information from free text (gener-
ated by many different people over time) is quite challeng-
ing, and we describe our approach in more detail below.

3.2 Challenges in Mining the Data
The textual descriptions for the malware provide a wealth

of “interesting” information. However, these descriptions
carry no specific structure or organization. Thus, we are
faced with the challenge of systematically separating the wheat
from the chaff in these textual descriptions, with as littlehu-
man input as possible, and uncovering the most informative
properties of malware. This is crucial in order for us to be
able to infer the relationships between malware with high
confidence. Our first insight is that we can use techniques
from Information Retrieval to mine the most important prop-
erties as well as to establish if two malware are “related” to
one another. We elaborate on this in Section 3.3.

A second insight we use is that the information obtained

from unstructured data when combined with other structured
information can provided interesting views into the evolu-
tion of malware. Note that structured data can be exploited
much more readily than the unstructured text. As an exam-
ple, we use the discovery date to “orient” the edges in our
malware relationship graph and to indicate the possibility
that the newer of the two malware was spawned from the
older one. We describe this in Section 3.4.2

3.3 Schema Discovery Via Text Mining
In order to make the unstructured textual descriptions more

useful toward the construction of malware relationships, we
attempt to impose a suitable schema and convert the textual
descriptions into a set of tuples that follow the schema. Each
piece of malware is then mapped onto a tuple, each field of
which describes a key property. With this in place, we can
then define asimilarity functionover the tuples which quan-
tifies the relationship between malware.

To obtain the appropriate schema from the textual descrip-
tions, we usefrequent phrase extraction. We consider phrases
which occur frequently throughout all textual descriptions
and make each such phrase a column in the schema. Thus,
each malware is represented by a tuple in the schema and
the columns take boolean values indicating the presence or
absence of the corresponding phrases in the description for
the malware.

We used a frequent phrase extraction tool from the IR
community, Extrphr32 [2], which extracts themaximalfre-
quent phrases: a maximal frequent phrase is not a substring
of any other frequent phrase. The tool also considers only
those phrases which do not start or stop withstopwords:
these are common English words like “the”, “but” etc. Ac-
counting for stopwords allows us to weed out common phrases
which do not carry much significance. To determine if a
phrase is frequent or not, we use a tunable parameterσ.
Phrases which occur fewer thanσ times are considered in-
frequent and hence not useful.

We used the frequent phrase extraction approach on the
“virus characteristics”, “methods of infection”, and “indica-
tions of infection” text columns. We tuned the threshold pa-
rameter and finally ended up with≈ 6500 frequent phrases.
Not all of the resulting phrases were informative, however.
To guard against inferring spurious relationships based on
these phrases, we manually weeded out the phrases which
did not seem to have much significance or did not clearly
express a possible relationship with other malware (these in-
clude generic single-word adjectives and verbs, and other
short phrases such as “following text”, “application is de-
signed”, and “description is meant”).3

After this manual pass, we were left with≈ 5300 phrases.

2Our analysis completely ignores other structured fields, such as
the potency and the prevalence of malware. This is because we
want to focus primarily on the understanding how the different mal-
ware families evolve over time.
3Note that this process could be automated.
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Fields/Attributes Type of Data Example Comment
virus k Structured 133997 Primary identifier in Database
virus name Unstructured W32/Mytob.be@MM Name of the malware
length Structured 49,278 bytes Size of the binary of the malware
discoverydate Structured 2005-05-26 00:00:00.000 Date of discovery of malware
dateadded Structured 2005-05-26 13:37:35.060 Date malware was added
removek Semi-structured “All Users: Use current engine Instructions for removing malware

(411 possible values)and DAT files for detection and removal ...”
virus type k Semi-structured Virus Type of malware

(11 possible values)
virus subtypek Semi-structured Email Sub type of malware

(202 possible values)
dangerof payloadk Structured 0 5 implies the payload is dangerous

(Range: [1..5]) 0 implies no information
prevalencek Structured 0 The prevalence of the malware.

(Range: [1..4]) 0 implies no information
virus characteristics Unstructured “This detection is for a mass-mailing wormDescription of malware

that combines W32/Mydoom@MM
functionality with W32/Sdbot.worm
functionality...”

methodof infection Unstructured “... Finally the virus sends itself via SMTPMethod of infecting a host
constructing messages using its own
SMTP engine. The worm guesses the
recipient email server, prepending the
target domain name with
the following strings ...”

indicationsof infection Unstructured “The Sdbot functionality in the worm Indications that a host is infected
is designed to contact the following
IRC server, join a specified channel,
and wait for further instructions:
irc.blackcarder.net (on TCP port 7000)... ”

Table 1: A summary of the McAfee dataset. A subset of the fieldsof the database are described along with their
structuring and an example.

A few examples of the phrases that were used in our schema
follow:

“This virus constructs messages using its own
SMTP engine. Target email addresses are har-
vested from files”
“memory resident at the top of system memory
but below the 640k dos boundary, hooking inter-
rupt 21.”
“Its spreading activity remains only in the ger-
man language version of microsoft word. How-
ever, the virus may be able to execute its payload
in another language version.”

Using the obtained schema, we create and populate a table
of all malware.

3.4 Constructing the Graph
Our goal is to derive a graphG′, whose vertices are the

malware in our dataset, and whose edges accurately reflect
the true underlying relationship between pairs of malware.
We deriveG′ using a multi-stage graph pruning approach.
As we argue in Section 3.5, the graphG′ is actually a collec-
tion of multiple differentmalware families.

As mentioned earlier, each malware has an associated “time
of discovery” field. This is a crucial piece of information
which we use along with the database of frequent phrases,

to mine the underlying relationships and to understand mal-
ware evolution. We first start with a completely connected
graph G with directed, weighted edges: each vertex in this
graph is a piece of malware, and the weight of an edge is
the similarity between the sets of frequent phrases associated
with the malware. Edges point from the older malware to the
more recent one. The similarity metric ranges between 0 and
1 and is defined as follows: For an edgeA → B between two
malwareA andB, let S(A → B) be the set of properties in
the above frequent phrase database which are common be-
tween A and B. The weight of the edge is|S(A→B)|

|B| , where
|B| is the number of defined properties in B and|S(x)| is the
cardinality of SetS(x). Thus, the similarity metric captures
how many of A’s properties are also shared by B.

Note that if |B| is very small, then we do not have suf-
ficient information to relate it to other malware. To pre-
vent such malware from corrupting our malware relation-
ship graph, we introduce a thresholdγ. If |B| < γ, we do
not considerB in creating the graphG′. We setγ = 10,
which we admit is an arbitrary choice, and could still intro-
duce spurious relationships. However, as we argue below,
our conservative graph pruning algorithm is designed to fur-
ther prune such edges.

Overall, we do not consider 2174 malware instances in
our analysis because they do not satisfy theγ threshold.
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When are two pieces of malware “related”?In our analy-
sis, we use the term “relationship” to mean that that the two
malware in question share several important characteristics,
such as method of infection, method of spreading, and the
symptoms exhibited by infected hosts. Based on anecdotal
evidence [5], we speculate that such similarities arise dueto
one or both of the following two reasons: (1) The authors
of the malicious code share some routines with each other.
This practice of code sharing is known to be common in the
black hat community. Or, (2) The authors of the malware
exploit the same set of vulnerabilities in an operating sys-
tem, use the same vector for spreading, etc, but there is no
explicit code sharing. While there could be other reasons,
we argue that identifying relationships on the basis of which
properties are shared between malware is important in order
to design effective defenses and to contain future malware
strains in a more timely fashion.
Graph construction. We now describe a simple, multi-
stage technique for systematically deleting insignificantedges
from the fully-connected graph G to obtain the underlying
relationship graph,G′.

We define an edge A→B as “good” if the weight of the
edge is above the thresholdδ1. When|A| and |B| are suf-
ficiently high, then a “good” A→B edge indicates exactly
what we are looking for: that B shares several key features
with A, and it is likely to be derived from, or to be otherwise
closely related, to A. In our relationship graph, we refer to
malware which have a good edge incident on them as “good
nodes”. Thus, the first stage of our pruning algorithm is sim-
ple: we just remove all non-good edges fromG.

Now consider the case when node C has two “good” in-
coming edges from malware A and B. It might be the case
that A and B are themselves very similar to each other, and
that C actually evolved from A. Thus, we must delete the
incoming edge from B.

To enforce this, we use another thresholdδ2 in the second
stage of our graph pruning. If an edge does notuniquely
contribute more thanδ2, we prune the edge. Specifically, say
a node C has a pair of incoming edgesA → C andB → C.
We check if |S(A→C)−S(B→C)|

|C| < δ2 (the numerator in the
inequality computes the set difference). If this inequality is
satisfied, we delete the incoming edge with the lower weight.

It turns out that this two-stage pruning is overly aggres-
sive; the graph we end up with after the pruning—G′′—is
a subgraph of our targetG′. This is becauseG′′ only has
good edges. Thus, it misses out on some key relationships
between malware: For example, a certain malware may have
no significant parent inG′′ (i.e, there is no incoming good
edge), but it may still share important properties with multi-
ple other malware—in a sense, it may have “evolved” from
multiple parents. Such “bundling of threats” has in fact been
observed in the wild (e.g. the creation of theMytob worm
from earlier variantsMydoom andSDBot) [5]. It is impor-
tant that our targetG′ capture such relationships.

To accommodate situations of this kind, we revisit the

original complete graphG and consider those edges inG
whose weights lie betweenδ2 andδ1. We call these “fuzzy”
edges. We selectively add a small subset of these fuzzy
edges back to the graphG′′ to obtain the targetG′, as de-
scribed next.

If a piece of malware has a good edge incident on it, then
we prune all the fuzzy edges incident on it. Furthermore,
we prune out the fuzzy edges whose unique contribution is
less thanδ2. From the remaining fuzzy edges incident on a
malware, we take a minimal subset whose total contribution
is greater thanδ1. We delete all the other incoming edges.

Note thatδ1/δ2 is the maximum number of incoming fuzzy
edges on any malware. We refer to malware which have
one or more fuzzy edges incident on them as “fuzzy nodes”.
If, for a certain malware, the total contribution of all fuzzy
edges is less thatδ1, then it is likely that the malware evolved
fairly independently.

The careful reader may note that our approach for adding
the fuzzy edges is very conservative. This is a deliberate
choice we made - while fuzzy edges are useful, we don’t
want them to create spurious evolutionary relationships in
our malware families. After including the fuzzy edges se-
lected in this manner, we finally have the graphG′. For
completeness, we provide a formal description of our graph
construction algorithm in Figure 3.4.

3.5 From the Relationship Graph to Malware
Families

The final graphG′ contains several connectedcomponents.
Each component is a directed acyclic graph. Furthermore,
each component will contain one or more malware with zero
edges incident on them. We refer to such malware asroots.
Most components will have a single root. We refer to such
components astrees or malware familiesor family trees.
Henceforth, we use these three terms interchangeably.

Whenever a component has more than one root, it is be-
cause fuzzy nodes and fuzzy edges exist at the lower levels
of the component. In such cases, we “split” the component
into as many malware families as the number of roots. We
assign each fuzzy malware to the family tree in which it ap-
pears earliest according to a depth first search starting at the
root of the family. We break ties in favor of the family which
contributed the heaviest edge incident on the malware.

We perform this decomposition of our relationship graph
G′ into malware trees only because it allows us to simplify
our analysis and speak of “most likely” malware families.
With this decomposition, we can now study key properties
of the likely families, such as the total number of malware,
the life-span of the family, the total number of generations
etc.

It is possible that malware instances that are classified into
different families by our algorithm are actually related. In-
deed, when we examine the resulting families closely (more
in Section 5), we noticed that several well-known malware
instances (e.g. instances ofBagle malware) are spread
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Part-I: Good Edges - ObtainingG′′

For any thresholdδ1:
1. Mark all edges with weight greater thanδ1. Call these
“good edges”.

2. For a node, if we have multiple incoming good edges
(say k in number)

Look at all thekC2 combination pairs of incoming edges.
For every pair x, y of incoming edges,
if weightminus(x, y) < δ2

Delete either x or y
(delete the one which has a lesser weight).

Part-II: Adding fuzzy edges back toG′′

For each thresholdδ2:
1. Mark all edges with weight greater thanδ2 but less than
δ1. Call these “fuzzy edges”
2. If there exists an incoming good edge (weight greater than
δ1) for a node, remove all the incoming fuzzy edges for that
node.

3. For a node C, if there is is no incoming “good edge”
Look at all thekC2 combination pairs of incoming fuzzy
edges (there arek incoming fuzzy edges).
For every pair x, y of edges, ifweightminus(x, y) < δ2,
delete the edge with the lesser weight.
Sort the remaining fuzzy edges in the descending order of
their weights and store the result in a queue Q.
Let P be an empty set.
while(Q is not empty ANDweightunion(P ) < δ1)

Dequeue an edge from Q and add to P.
if(weightunion(P ) < δ1)

delete all incoming edges of C
else

delete all incoming edge of C which remain in Q.

Figure 1: Constructing the malware Relationship graph.
If a node C has a pair of incoming edges x and y, define
weightunion(x,y) as |S(x)∪S(y)|

|C| and weightminus(x, y) as
|S(x)−S(y)|

|C| .

across multiple family trees in our classification. However,
our classification ensures that members within a tree are much
more likely to be strongly related to each other than mem-
bers across trees.

Finally, we stress that the malware in a family may not
necessarily have been derived from one another. Rather, all
family members share a collection of important properties.
Understanding the evolution of the shared properties across
the generations of a family may prove instrumental in de-
signing effective malware defenses for the entire family or
for future strains emerging from the family.

3.6 Parameter Choice
Our algorithm uses three key parametersδ1, δ2 andσ. The

eventual quality of the malware families hinges crucially on
how these parameters are chosen. A permissive setting for
these parameters (low values for all) could cause us to infer

relationships where there are none. An overly conservative
choice may cause us to miss important relationships.

Since we only have access to malware metadata and not
the actual malware, it is hard to tell if a particular choice
of parameters is conservative or not. In our study, we err
on the side of caution and choose a parameter setting that
is as conservative as possible while not causing the malware
families to become completely degenerate.

We first study how to select the twoδs. In Table 2 we
illustrate the effect of 20 different parameter choices on the
entire relationship graph. The candidate choices forδ1 lie
on the more conservative side. This allows us to identify
several “good” relationships accurately. Our choices forδ2,
on the other hand, are more permissive and this allows us
to include edges that we may have otherwise ignored due to
our conservative setting forδ1.

We look at four features of the relationship graph: the
overall number of good and fuzzy nodes, the number of roots
and the total number of nodes that do not belong in any fam-
ily (i.e. isolated nodes). First, as expected, the number of
good nodes decreases with higher values ofδ1 and is unaf-
fected byδ2. The number of fuzzy nodes drops drastically
with δ2 and becomes insignificant whenδ2 > 0.3. The to-
tal number of roots does not show a clear monotonic trend
as it has a complex dependence on bothδ1 andδ2. On the
other hand, the total number of isolated nodes generally in-
creases withδ1, with the total number atδ1 = 0.9 almost
50% higher than the number atδ1 = 0.7.

Since our goal is to have as few isolated nodes as possible
(to prevent the families from becoming degenerate), while
keeping our parameter choice as conservative as possible (to
eliminate spurious edges), we choseδ1 = 0.7 andδ2 = 0.3.
We note that a few different parameter choices (e.g. (δ1, δ2)
= (0.6, 0.3), (0.7,0.3)) provide roughly similar trade-offs. We
leave a more detailed sensitivity analysis for future work.

We now turn our attention toσ which specifies the min-
imum number of times a phrase should appear in the text
describing the malware in order for the phrase to be consid-
ered useful. We tried various values ofσ to get a sense of
the quality and the number of frequent phrases we obtain.
A higher value ofσ brings out the most important phrases
and characteristics that are common to a lot of malware in-
stances. A low value ofσ, on the other hand, brings out
more selective and precise information, which is common
to a smaller number of malware. At first, a low value ofσ
alone looks promising. But a higher value ofσ may also be
useful because it allows us to relate instances of malware in
situations where not all malware are described to the same
thorough extent. In our approach, we decided to use a bi-
modalσ setting. We took two sets of phrases extracted with
σ = 30 (low setting) andσ = 100 (high setting) and merged
them (after performing manual pruning on each set), where
merging means that two phrases describing the same infor-
mation were considered only once.

3.7 Validation
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δ1 → 0.6 0.7 0.8 0.9
δ2 ↓

0.1 3619 2741 1803 941
0.2 3619 2741 1803 941
0.3 3619 2741 1803 941
0.4 3619 2741 1803 941
0.5 3619 2741 1803 941

δ1 → 0.6 0.7 0.8 0.9
δ2 ↓

0.1 1646 1837 1612 931
0.2 404 348 220 100
0.3 61 58 36 18
0.4 3 3 3 2
0.5 0 0 0 0

δ1 → 0.6 0.7 0.8 0.9
δ2 ↓

0.1 530 949 1481 1638
0.2 735 869 824 573
0.3 617 702 631 458
0.4 581 659 599 435
0.5 582 659 598 433

δ1 → 0.6 0.7 0.8 0.9
δ2 ↓

0.1 2387 2655 3286 4672
0.2 3424 4424 5335 6568
0.3 3885 4681 5712 6765
0.4 3979 4779 5777 6804
0.5 3981 4782 5781 6808

(a) Num. good nodes (b) Num. fuzzy nodes (c) Num. roots (d) Num. isolated nodes

Table 2: The effect ofδ1 and δ2 on the relationship graph.

We note that a complete validation of all our malware fam-
ilies is not possible. Even the lesser task of quantifying the
accuracy of the relationships we infer is not easy. Both of
these limitations arise because we only have access to the
malware meta-data. We focus on the latter issue here be-
cause it is more tractable.

One approach we considered was to check if malware that
we identify as being related also share similar names. The
experts who populate the malware meta-data tend to name
each malware according to the “family” that they believe it
belongs to. For example, most variants of W32/Gaobot are
named W32/Gaobot.*.*. To check if the malware classifica-
tion due to our algorithm aligns with the names provided by
McAfee, we developed an “entropy metric”, described next.

Assume our algorithm generates k family treesT1, .., Tk.
Let there beN families of malware according to names in
the McAfee database. Say a McAfee familyi hasni mem-
bers, and these are distributed across thek family trees out-
put by our algorithm. If, for the McAfee familyi, the frac-
tions of its members across ourk trees aref1, ..,fk, then the
entropy of that family in our classification isei = Σk

j=1(−fj logfj).

The mean entropy of all the McAfee families will beΣ
N

i=1
ni∗ei

ΣN

i=1
ni

.

The entropy value lies between 0 andlog2k. The entropy
value will be smaller if members of the same McAfee family
go into a single family generated by our algorithm. Note
that this metric is based only on the malware which have
been classified into named families by McAfee. Note also
that this metric does not quantify the evolutionary patterns.
Nonetheless, it provides a good sanity check.

For (δ1, δ2) = (0.7, 0.3) we obtaink = 702 trees. Thus,
a random algorithm will have an entropy oflog2702 = 9.45.
In comparison, our algorithm results in an entropy of 1.04
(see Table 3). Drawing a simple analogy, the entropy metric
can be interpreted as the mean number of binary questions to
ask in order to decide which tree a malware goes into. Thus,
for the members of a single McAfee-named family, we need
to ask only∼ 1 question (equivalent to deciding between 2
trees) instead of the worst case∼ 9 questions.

We note that the entropy metric is less useful in actually
choosing the parameters. This is mainly because different
choices of the parameter space results in different number of
trees. The smaller the number of trees, the smaller the upper
bound on entropy, and the smaller the value of the entropy
itself. For instance, the setting(δ1, δ2) = (0.6, 0.1) has low

δ1 → 0.6 0.7 0.8 0.9
δ2 ↓

0.1 0.82 1.36 1.7 1.9
0.2 1.07 1.15 1.27 1.47
0.3 1.02 1.04 1.24 1.41
0.4 1.03 0.95 1.14 1.43
0.5 1.05 0.97 1.17 1.43

Table 3: The entropy in the names assigned by McAfee.

entropy value partly because it has a smaller number of trees
overall compared to, for example,(δ1, δ2) = (0.7, 0.3) (see
Table 3).

To further verify if we are inferring relationships erro-
neously, we augmented the above checking of names with
a manual check of the accuracy of some of the relation-
ships. Specifically, for each family tree we obtained, we first
checked if most of the members share a common prefix (e.g.
W32/Gaobot). If this check is not satisfied, we manually
check the meta-data to see if we erroneously inferred a rela-
tionship. In almost all the cases, we observed strong similar-
ities between a “parent” and its “child”. Besides, some well
known malware evolutions were also observed in our family
trees. For example, our trees expose the evolution ofMytob
fromMydoom andSdbot, which is well documented in the
popular and technical press.

Later, in Section 5, we show the entire family trees for
some of the largest families we uncovered. A more complete
list of the families we inferred may be found at our Project
Web site [7].

4. GROSS CHARACTERISTICS OF MAL-
WARE EVOLUTION

As mentioned earlier, only 8182 malware from the en-
tire malware database had a non-trivial amount of textual
description associated with them. Our analysis focuses on
these malware. After employing the parameters described
in Section 3 and applying the tree decomposition process,
we ended up with a collection of 702 malware family trees.
Overall, 4681 malware were not classified into any family
because of our choice of thresholds. In all, we have 2741
good nodes and just 58 fuzzy nodes.

Most of the analysis in this section provides a deeper look
into the key properties of the 702 families, focusing mainly
on the larger ones. We look at several features, such as the
sizes of the families, how deep the families are, how many
successors originate from a given malware in a family, how
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Figure 2: The cdf of the number of nodes in a tree.

long a time must elapse before a new generation of malware
is spawned from a predecessor etc. We hope that this gross
characterization of malware families will be useful in un-
derstanding the evolution and expansion of potent malware
families.

We stress that our analysis is preliminary and is aimed
at providing a first-cut insight into malware evolution. Our
choice of parameters has been very conservative, and we be-
lieve that this causes us to infer fewer relationships than what
actually exist. With better textual descriptions and more in-
formed approaches for setting the thresholds, it may be pos-
sible to infer many more malware relationships with even
higher confidence. We do believe, however, that the gross
characteristics we derive, such as the relative sizes of mal-
ware families etc., will remain qualitatively similar (espe-
cially for the largest families we identify).

4.1 Analysis of size and fanout
Figure 2 shows the cumulative distribution of the number

of malware in each family tree. We note that a large number
of trees are very small:> 90% of the trees have less than
10 nodes and50% of the trees have just two nodes (a single
edge). We do find it very interesting that a handful of the
families among the ones we identify are very large: 5 of the
families have more then 50 malware each and the maximum
number of malware in a family is 118! Later in this section,
we delve deeper into some of the properties of the 5 large
trees. In Section 5, we study the key features that are re-
tained across generations of malware in some of these large
families.
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Figure 3: The height for the top 25 families.

We now briefly look at the number of “generations” in

each malware family. It is likely that the new generation
malware were released in response to specific counter-measures
that were developed by AV companies to contain the pre-
vious generation. Thus, this analysis provides us a brief
glimpse into the arms race between malware authors and AV
experts. In Figure 3, we show the distribution of the depths
of the 25 largest families. On average, these families span 7
generations! In Section 4.2, we study the time-span of these
generations, and find that some of them span a few years.

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0  5  10  15  20  25

C
df

Fanout of tree

Cdf of maximum fanout of trees.
Cdf of root fanout of trees.

Figure 4: Cdf of maximum and root fan-outs in a tree.
Figure 4 shows the cdf of the maximum fanout in a tree, as

well as the fan-out of the root of the tree. In several families,
each malware spawns few other malware over time: 89% of
the trees have a maximum fanout less than 5; and 93.7% of
the roots have a fanout less than 5. However, we do observe
two trees with a maximum fan-out> 20.

Since the root and maximum fan-out distributions are dif-
ferent, we immediately infer that the root may not necessar-
ily have the largest fan-out. This happens whenever some
intermediate malware bundles together a lot more exploits
than any of its predecessors and in turn becomes the source
for multiple future strains. In fact, we observed this phe-
nomenon in our in-depth analysis of theMytob family tree
(more in Section 5).

Although not shown here, we found that the five largest
families have maximum fan-outs of 16, 24, 12, 8 and 10,
and root fan-outs of 1, 24, 12, 1 and 5, respectively. These
families have 118, 95, 58, 51 and 50 malware respectively.
We note that in two of the five cases, the root has a single de-
scendant; and in two other cases, the root has the maximum
number descendants among all nodes in a tree. In general,
we note that the large families are characterized by malware
(root or intermediate) that spawn numerous other strains.

4.2 Time-span of Evolution
Each edge in the graph we obtain has an associatedlength.

We define the length of an edge as the difference in the
“time of discovery” field in the two malware; we measure
the length in days. Edge lengths help us understand the time
duration over which the the successors of potent malware
instances are developed and released. Since the “time of dis-
covery” is entered when the malware was first analyzed by
McAfee, our estimate of the length of an edge may be off
from the true time lag between the first appearances of the
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two malware. Nevertheless, it provides an interesting view
into the evolutionary trends.
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Figure 5: The cdf of the the lengths of all the edges.
Figure 5 shows a cdf of the lengths of all edges in our

relationship graph. We see that 90% of the edge lengths are
less than 730 days long. Thus, it appears that most malware
are spawned from their predecessors in under two years.

We note that 0.5% of the edges – or 35 edges – are longer
than 7yrs. These edges are spread across 23 families, of
which 20 families have fewer than 10 malware. Thus, the
long edges do not affect our observations regarding the largest
families. Long edges usually appear when a malware in-
stance that has an early timestamp (say in the early nineties)
is also accompanied by a rich text description. Newer mal-
ware which have poor textual descriptions end up sharing
quite a few features in common with this earlier instance.
The newer malware, however, mostly appear as terminal nodes
in the family tree.

Note that it is highly unlikely there is any evolution or
code copying going on between the two malware connected
by a long edge. Nevertheless we include the long edges in
our analysis because they bring to focus important character-
istics that even the malware which are separated by several
years share with each other.4

Figures 6 and 7 show scatter-plots of the fanout of a mal-
ware versus the mean and the minimum length of its outgo-
ing edges, respectively. These plots helps us understand the
correlation between the popularity of a malware - defined
in terms of how many immediate successors are spawned
from it - and the time to the evolution of its successors. We
note an interesting trend: malware with a high fanout do not
have any long outgoing edges. In other words, it seems that
malware which spawn a lot of children (perhaps because the
malware’s source code was reused very frequently), do so
relatively quickly! Focusing on malware which spawn few
successors, we note that a much longer time may elapse be-
fore they spawn their first successors. For example, in Fig 7,
there are several cases where the minimum edge length is
> 1000 days for malware with a fan-out< 5.

4.3 Evolution Dynamics of Malware Families
4We believe that it is possible to modify our algorithm to prune
such edges (by imposing a threshold on the maximum allowed
length of an edge). This is one direction we plan to explore in
future work.
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Figure 6: The correlation between the fanout of a node
and the mean length of its outgoing edges.
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Figure 7: The correlation between the fanout of a node
and the minimum length of its outgoing edges.

We now study the temporal patterns in the “birth”, life-
span, and “death” of malware families. Our focus is on un-
derstanding how these evolutionary dynamics changed over
the past decade or so. We note that this analysis sheds more
light on the effect that two concurrent phenomena have on
the overall prevalence of malware: (1) the ongoing race be-
tween malware code writers, and the anti-virus companies,
which could cause some families to have a very long life
time; and (2) the improvements in operating system and ap-
plication software security, which could cause early deathof
some families.
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Figure 8: The number of malware spawned each year.

Figure 8 shows the time line of the distribution of “time
of discovery” fields in the malware, binned by the year. This
graph cover all the 8182 pieces of malware which have text
descriptions. Thus, this plot includes even the isolated nodes
in our relationship graph. We ignore all other malware in the
database. The key point to note is that there is a definite

9



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

C
df

Lifetime of tree (days)

Cdf of lifetime of trees.
Cdf of 25 largest trees.

Figure 9: The cdf of the tree lifetimes for all families as
well as the top 25 families.
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Figure 10: The cumulative count of the number of fami-
lies born and the number of extinct trees.

slump in the number of new malware between 1994-1996
and also in 1998.

We now look at individual malware families and study
their evolutionary trends. Figure 9 shows the cdf of the to-
tal lifetime of the 25 largest malware families as well as the
cdf of the lifetime of all families. The lifetime of a family
is defined as the difference in the timestamp of the root and
the timestamp of the most recent member of the family. We
note that 80% of all families have a lifetime less than 900
days (around 2.5yrs) years). However, a small fraction of
the families, roughly 10%, last more than 2000 days (around
5 years!). Among the top 25 families, we see that∼ 50% of
the families have a lifetime greater than 1000 days (around
2.5 years), and 20% of them have a lifetime more than 2300
days (around 6 years). Thus, it appears that the large families
have very long lifetimes.

We consider families which were last seen in 2006 to be
“active”. These families have not been included in the above
distributions. There are 74 “active” families, of which 45
have more than 2 nodes. Furthermore, we found that 10 of
the 25 largest families are still active. The 45 active families
with > 2 nodes have been around for a mean time of 527
days.

Figure 10 delves deeper into the evolution dynamics. Here,
we compare the cumulative counts over time of the total
number of trees born and the total number of trees that died
since the first family originated in 1987. The gap between
the two cumulative counts indicates the number of families
alive in a given year. Note that there is a huge gap between
the two plots in the early 1990s, indicating that a lot of trees
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Figure 11: The timeline of the five largest families.

were active. By 1998, the two curves almost meet indicat-
ing (perhaps) that most of the vulnerabilities of the early
nineties were patched. Along the same lines, we can infer
that the early 2000’s saw a revival of sorts in malware ex-
ploits (the two plots are almost parallel). These observations
are supported by the anecdotal evidence on the prevalence of
malware in recent years.

The right half of Figure 10 is even more interesting: the
slope of the “birth of trees” curve becomes very steep, yet
the gap between the two curves remains roughly fixed. This
is representative of the ongoing tussle between malware au-
thors and AV companies. For every malware family the AV
companies eliminate, malware authors are able to come up
with newer families which (possibly) exploit newer vulner-
abilities. Thus, AV companies have their task cut out - they
need to be extremely pro-active in identifying and eliminat-
ing new malware families in a timely fashion.

We now focus on the 5 largest families and dig a bit deeper
into their life-spans (a more in-depth analysis is presented
in the next section). Figure 11 shows the timelines of the
five largest families. The largest family was chiefly active in
1997 and 1998. The members of this family do not have any
specific McAfee family name. Most of the members of this
family are viruses which infect files. These viruses mostly
spread via floppy diskettes and online downloads. The sec-
ond largest family is an Adware family and was widely ac-
tive in 2005 (80 malware in 2005). It continues to be active
and must be monitored closely. The third and fifth largest
families are Word Macro families and were mainly active in
1997. The fourth largest family (a Joke family) has had a
very long lifespan. It was first seen in 1995, and was last
seen in 2004. It was mainly active in 2002 and 2003.

5. A DEEPER LOOK AT SOME MALWARE
FAMILIES

In this section we drill down on the details of some of
the largest families we identified in our analysis. We pro-
vide further details on these families and also highlight the
unexpected characteristics exposed by our graph generation
technique. We name each family according to the most com-
monly appearing McAfee-assigned name across all malware
in the family. In some cases where we show graphical rep-
resentations of the families, we also use the McAfee names
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to identify individual malware in the family. As we will see,
this allows us to better explain the results of our in-depth
analysis.

In the interest of space, we analyze the key properties of
four large family trees: the first contains “Mytob” malware
instances predominantly, the second contains “Downloader”
instances, the third contains instance of “Loveletter”, and the
fourth contains “Bagle” instances.

5.1 A Mytob Family
The “Mytob” malware instances are spread across several

families in our classification. We show the largest Mytob
family in Fig. 12. This family is quite interesting: it does
not just contain the members of the Mytob family, but it also
shows the “Sdbot” family evolving into the Mytob family.5

The tree shown in Figure 12 has 46 nodes, a height of 16 (the
maximum among all the Mytob families), and a maximum
fanout of 10.

Most of the Mytobs in this tree spread via email. We ex-
amined some of the phrases which were common across the
different generations of the malware in this tree. We noticed
phrases such as “sender address”, “mass mailing worm”,
“mail propagation”, “arrives in an email message”, “via SMTP”,
“via SMTP constructing messages using its own SMTP en-
gine the worm guesses the recipient email server prepend-
ing the target domain”, and “worm contains strings which it
uses to randomly generate or guess email addresses these are
prepended as user names”.

Another interesting aspect of this tree is that it starts out
with Sdbots but these eventually spawn Mytobs at a depth
of 4. Actually, it is a well known fact that the Mytob fam-
ily derives from the Sdbot and Mydoom families [5]. It is
interesting to note that our classification algorithm is able
to unearth such evolutionary trends without the direct aid of
specific text describing the evolution.

Another interesting aspect of this tree is its structure. The
tree is a linear chain in the initial part (i.e. all nodes have
fanout 1), but it starts branching out once the Sdbots evolve
into Mytobs. In particular, theW32/Mytob.cv@MM mal-
ware instance has a maximum fanout of 10. Three of its suc-
cessors,W32/Mytob.eu@MM, W32/Mytob.do@MM, and
W32/Mytob.dl@MM spawn further descendants. When we
looked closely at the “time of discovery” of these malware
instances, we realized that the family in Figure 12 seems to
be evolving along the above three main sub-families. More
interestingly, one of these sub-families (rooted atW32/Mytob.eu@MM)
also has a couple of instances ofW32/Zotobmalware. This
is a possible indication that Mytobs may be evolving into
Zotobs.

5.2 A Downloader Family
Next, we consider a family tree consisting of “Downloader”

instances. This tree is shown in Fig. 13 and has 44 nodes, a

5There is also a second small tree which shows “Mydoom” evolv-
ing into Mytob. This is not shown here

depth of 8, and a maximum fanout of 7. This tree started
with 2 malware instances in 2004, had 27 instances appear
in 2005, and 15 appeared in the first few months of 2006.
Thus, it appears that this family is spreading fairly quickly.

The phrases that are most common among malware in this
tree include “website hosting a scripted exploit which in-
stalls the downloader onto the user s system with no user
interaction”, “visiting a malicious web page either by click-
ing on a link or by the website hosting a scripted exploit”,
“downloaders are not viruses and as such do not themselves
contain any method to replicate however they may them-
selves”, “downloaders are designed to pull files from a re-
mote website and execute the files that have been down-
loaded”, “ website being communicated is normally con-
trolled by the malware author any files being downloaded
can be remotely modified”, and “adware is installed via a
downloader it may install it cleanly with the relevant unin-
staller included for the user”. As expected, these phrases
given a clear indication of the most common and potentially
significant properties (from the point-of-view of developing
counter-measures) of the Downloader malware.

This tree also illustrates the advantage of using conserva-
tive parameters in our algorithm: Note that this tree seems
to have few “spurious” edges; In fact,all the 44 members
of this particular family are classified as Downloaders by
McAfee.

Among other interesting artifacts, the root node of this
family tree,Downloader-QO, has the maximum fanout of
7. Downloader-UT,Downloader-ABA,Downloaded-ABS,
andDownloader-ASE seem to be other important mem-
bers of the tree spawning numerous other descendants. This
tree seems to be evolving in several directions. It is also
evolving fairly quickly: a major fraction of the members of
this family appeared very recently (in 2005 and 2006).

5.3 A Loveletter Family
Next, we consider a family tree that captures instances of

“VBS/Loveletter” malware. These malware are considered
extremely potent as they are known to cause serious damage
to infected hosts. We focus on one Loveletter family that
our algorithm derived. This family contains 23 malware in-
stances (see Figure 14). All 23 are named Loveletter/* by
McAfee. The tree has a depth of 5, and a maximum fanout
of 10.

A key aspect of this family is that it is very short-lived:
it had a total life-span of 131 days! When we perused the
online technical press to learn more about these malware in-
stances, we found that the malware in this family got a lot
of media attention at the time. This led to an aggressive re-
sponse from the AV companies and OS vendors, leading to
quick patches. This may explain the short lifespan that we
observed for the family.

The phrases which are most common to malware in this
tree include “arrive in an email message”, “MSKERNEL32.VBS”,
“VBS Loveletter”, “Win32DLL.vbs in order to run the worm
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W32/Sdbot.worm!70250

W32/Sdbot.worm!78803

W32/Sdbot.worm!305152

W32/Mytob.be@MM

W32/Mytob.bh@MM

W32/Mytob.bi@MM W32/Mytob.bw@MM

W32/Mytob.bj@MM

W32/Mytob.bl@MM W32/Mytob.bk@MM

W32/Mytob.bm@MM W32/Mytob.bo@MM

W32/Mytob.br@MM W32/Mytob.bn@MM!zip W32/Mytob.bv@MM W32/Mytob.bx@MM

W32/Mytob.ca@MM

W32/Mytob.cv@MM

W32/Mytob.dm@MM W32/Mytob.do@MM W32/Mytob.dl@MM W32/Mytob.gen@MM!289d W32/Mytob.gen@MM!14e3 W32/Mytob.gen@MM!1bf W32/Mytob.ej@MM W32/Mytob.el@MM W32/Mytob.eu@MM W32/Mytob.worm!1068

W32/Mytob.er@MM

W32/Mytob.et@MM W32/Mytob.fb@MM

W32/Mytob.ek@MM

W32/Mytob.em@MM

W32/Mytob.eq@MM

W32/Mytob.worm!1e W32/Mytob.worm!212f W32/Zotob.worm.c W32/Mytob.he@MM W32/Mytob.ii@MM

W32/Zotob.worm.d

W32/Mytob.gq@MM

W32/Mytob.cc@MM

W32/Mytob.cg@MM W32/Mytob.ch@MM

W32/Mytob.da@MM W32/Mytob.db@MM

Figure 12: A Mytob family tree.
Downloader-QO

Downloader-QN Downloader-TH Downloader-TQ Downloader-VR Downloader-AAO Downloader-AEU Downloader-AWP

Downloader-UT

Downloader-VG Downloader-VA Downloader-WN Downloader-WY

Downloader-VJ Downloader-ZL Downloader-AAM Downloader-AAK Downloader-AWH

Downloader-AUL

Downloader-TP Downloader-UP.dll Downloader-ATO Downloader-ABA

Downloader-ABS Downloader-ABW Downloader-ARD Downloader-ARG Downloader-AVT

Downloader-ACC Downloader-ACG Downloader-AGR

Downloader-AQW Downloader-AWI

Downloader-AWU Downloader-AWX

Downloader-AWW

Downloader-ATU

Downloader-AFO Downloader-AXE

Downloader-ASE

Downloader-AVV Downloader-AWE Downloader-AWV

Downloader-AXD

Figure 13: A Downloader malware family tree.
VBS/Loveletter@MM 

VBS/Loveletter.e VBS/Loveletter.f VBS/Loveletter.h VBS/Loveletter.i VBS/Loveletter.L VBS/Loveletter.o VBS/Loveletter.p VBS/Loveletter.q VBS/Loveletter.t VBS/Loveletter.aj 

VBS/Loveletter.n VBS/Loveletter.w VBS/Newlove@MM VBS/Loveletter.j VBS/Loveletter.k 

VBS/Loveletter.m VBS/Loveletter.r 

VBS/Loveletter.u VBS/Loveletter.x VBS/Loveletter.z 

VBS/Funny.a@MM VBS/Gorum.c 

Figure 14: A Loveletter malware family tree.

at system startup”. These phrases tell us crucial details about
the family: The malware instances arrive in email messages;
MSKERNEL32.VBS is one of the files the malware instances
all attempt to edit; and Win32DLL.vbs is part of the key
added to the Windows registry in order to make the worm
run at system startup. Different generations in this family
differ mainly in the contents of the particular email that ends
up becoming the vector for the malware.

5.4 A Bagle Family
The W32/Bagle.* collection of malware is one of the most

prolific set of malware in our entire dataset. In our classifica-
tion, we found that the Bagle malware instances were spread
across four large family trees and seven smaller trees. The
biggest among the large families is shown in Figure 15. This
family has 34 nodes, a depth of 7 and a fanout of 5. Some
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W32/Bagle.n@MM

W32/Bagle.z@MM W32/Bagle.p@MM

W32/Bagle.aa@MM W32/Bagle.af@MM W32/Bagle.ag@MM W32/Bagle.ad@MM

W32/Bagle.ab@MM

W32/Bagle.bf@MM

W32/Bagle.ai@MM W32/Bagle.cb@MM W32/Bagle.dq@MM
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Figure 15: A Bagle family tree.

of the phrases which were common to the malware in this
tree include “spoofed”, “worm opens”, “mail propagation”,
“copies itself to folders”, “contains its own smtp engine”,
“contains a remote access component”, “peer to peer appli-
cations”, “kazaa bearshare limewire”, “email addresses are
harvested”, “spam”, and “mass mailing worm”. As is well
known (and as the phrases seem to indicate), the Bagle vari-
ants copy themselves to the shared folders of popular peer-
to-peer applications.

The malware instances belonging to this tree were most
active in the year 2004, with 22 variants being discovered
in that year. Only six new variants were discovered in 2005
and 2006. This may suggest that the malware may have lost
some of its prevalence, but there are a few unpatched vul-
nerabilities that continue to be exploited by the new variants
of Bagle. We speculate that the high number of variants in
2004 may be due to the rise and popularity of peer to peer
applications around that time, and that the drop in 2005 and
2006 may have come about due to the community’s growing
awareness of the security problems associated with popular
peer-to-peer applications.6

6. CONCLUSIONS
Users throughout the Internet are plagued by malicious

attacks on an on-going basis. The task of defending against
these attacks is complicated by many factors, including com-
plexity, scale, and the increasing sophistication of malware
authors. The premise of our work is that an expanded per-
spective on malware behavior and in particular the relation-
ships between malware variants will eventually lead to the
development of more effective countermeasures.

In this paper we present an analysis of malcode meta-data
compiled by McAfee, one of the largest AV companies in
the world. The meta-data describes malware that was col-
lected by McAfee and other AV companies over a period of
19 years. The objective of our work is to identify and eval-
uate relationships between malware instances based on the
details of their descriptions. We do this through a process
that begins by decomposing the descriptions into frequent
phrases, and then pruning the resulting set to eliminate the
superfluous phrases. Next, we establish relationships be-
tween instances of malware using a tunable graph pruning
6However, we have no data to back this up!

algorithm that is based on the similarity of frequent phrases
between all instances of malware in our data set. In our anal-
ysis, we show the trade offs in graph structure using different
parameter settings and select a configuration that results in a
graph that we validate as being “most likely” using the mal-
ware names applied by McAfee.

The resulting family trees have rich structure. We identify
702 distinct malware families. Some of the families are very
large, containing in excess of 50 members. We found that
some of the families were active for a few years at a stretch,
while others last no more than a few days. Detailed exam-
ination of the trees reveals many instances where specific
traits (as identified by a specific phrase) are inherited after
many months and that one instance of malware may spawn
many others. Several of the trees are available at our project
web-site ([7] - under construction) for general perusal.

We plan to pursue several extensions to this work. First,
we hope to expand the corpus of malware meta-data in or-
der to flesh out the evolutionary characteristics of malware
in greater detail. Second, we believe that adding the behav-
ioral characteristics such as those identified in [16] and oth-
ers will further enrich our analysis. Finally, we will work
more closely with AV companies and others concerned with
malware analysis, to develop methods for anticipating future
trends in malware development. We hope that this will en-
able AV companies to generate malware counter-measures
in a more proactive fashion.
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