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Abstract
Analysis of recursive programs in the presence of concurrency and
shared memory is undecidable. A common approach is to remove
the recursive nature of the program while dealing with concurrency.
A different approach is to bound the number of context switches,
which has been shown to be very useful for program analysis.
In previous work, Qadeer and Rehof [36] showed that context-
bounded analysis is decidable for recursive programs undera finite-
state abstraction of program data. In this paper, we generalize their
result to infinite-state abstractions, and also provide a new symbolic
algorithm for the finite case.

1. Introduction
In this paper, we consider analysis of concurrent programs with
shared-memory and interleaving semantics. Analysis of such pro-
grams is generally considered hard because of the large number
of interleavings the analysis has to consider. Especially hard is the
analysis of recursive programs, because their control state space
is infinite. In fact, the analysis of recursive programs, even with
a finite-state abstraction of data (such as in Boolean programs), is
undecidable in the presence of concurrency and shared memory.

An analysis for recursive programs has to accurately model the
procedure call and return semantics, i.e., it should only consider
program executions in which a procedure return is matched with
the most recent call. Suchinterproceduralanalyses have proven
to be very useful for sequential programs [3, 39–41]. Considering
the desirability of interprocedural analysis, its undecidability in the
presence of concurrency is unfortunate. As a consequence, to deal
with concurrency soundly, most analyses give up precise handling
of procedures and becomecontext-insensitive. Alternatively, tools
can use inlining to unfold multi-procedure programs into single-
procedure ones. This approach cannot handle recursive programs,
and can cause an exponential blowup in the size for non-recursive
ones.

A different way to sidestep the undecidability issue is to limit
the amount of concurrency by bounding the number ofcontext
switches, where a context switch is defined as the transfer of control
from one thread to another. Such an abstraction has proven tobe
very useful for program analysis because many bugs can be found
in a few context switches [32, 36, 37]. We call an analysis of a
recursive and concurrent program under a context bound, acontext-
bounded analysis(CBA).

CBA does not impose any bound on the execution length be-
tween context switches. Thus, even under a context bound, the anal-
ysis still has to consider the possibility that the next switch takes
place in any one of the (possibly infinite) states that may be reached
after a context switch. Because of this, CBA still considersmany
concurrent behaviors [32].

In previous work, Qadeer and Rehof [36] showed that CBA is
decidable for recursive programs under a finite-state abstraction of
program data. In this paper, we generalize their result to infinite-
state abstractions, and also provide a new symbolic algorithm for
the finite case.

Our goal is to be able to take any abstraction used for inter-
procedural analysis of sequential programs and directly extend it
to handle context-bounded concurrency. Our main result follows
in the spirit ofcoincidence theoremsin dataflow analysis (for se-
quential programs) [20, 22, 43]. We give conditions on the abstrac-
tions under which CBA can be precisely solved, along with an al-
gorithm. In addition to the usual conditions required for precise
interprocedural analysis, we require the existence of atensor prod-
uct (defined in§6). We show that these conditions are satisfied by a
class of abstractions, thus giving precise algorithms for CBA with
those abstractions. These include finite-state abstractions, such as
the ones used for verification of Boolean programs in model check-
ing [3], as well as infinite-state abstractions, such as affine-relation
analysis (ARA) [29]. Note that without a context bound, reasoning
about concurrent programs under these abstractions is undecidable
[28, 38].

For a precise CBA, one needs to start off with a precise inter-
procedural analysis.Weighted pushdown systems(WPDSs) [25, 40]
are a general model for interprocedural analysis. They are agen-
eralization of pushdown systems (PDSs). PDSs can model recur-
sive programs [42], and WPDSs add a general “black-box” ab-
straction for program data (throughweights) to PDSs. WPDSs also
generalize other frameworks for interprocedural analysissuch as
the Sharir-Pnueli functional approach [43] and the Reps-Horwitz-
Sagiv summary-based approach [41]. We show that when a WPDS
is used to model each thread of a concurrent program, CBA can
be precisely carried out for the program, provided tensor products
exist for the weights.

1.1 Motivation

Context-bounded analysis is not sound because it does not capture
all of the behaviors of a program. However, it has been shown to
be very useful for program analysis. KISS, a verification tool that
analyzes programs for up to two context switches, was able tofind a
number of bugs in drivers [37]. Another study, using explicit-state
model checking, also confirms that many bugs can be found in a
few context switches [32]. Moreover, it shows state-space coverage
graphs that indicate that many program behaviors are captured in
the first few context switches, with fewer behaviors being added
with additional context switches. Our goal is to develop analyses
that are sound under a context bound.

Previous work has only considered CBA for a restricted set of
abstractions. Having the ability to do CBA with other abstractions
can be very useful for analyzing concurrent programs. For example,
consider the program snippet in Fig. 1. Here, multiple threads share



the circular bufferq in a producer (enq) consumer (deq) fashion.
Using CBA with ARA with modular arithmetic, one can prove
(under a given context bound) that(hd - tl - cnt) % SIZE =
0 providedSIZE is a prime power [30]. ARA generalizes analyses
like copy-constant propagation, linear-constant propagation, and
induction-variable analysis. It can be used to find invariants, such
as the one shown above, to increase the precision of other analysis.

Elem q[SIZE];

int hd = cnt = tl = 0;

Elem deq() {

while(true) {

atomic {

if(cnt > 0) {

Elem e = q[hd];

hd = (hd+1)%SIZE;

cnt--; 

return e;

}

}}}

void enq(Elem e) {

while(true) {

atomic {

if( cnt < SIZE) {

q[tl] = e;

tl = (tl+1)%SIZE;

cnt ++;

break;

}

}}}

Figure 1. A concurrent program that manages a circular queue.

The context bound can be increased iteratively to consider more
effects of concurrency and to analyze more program behaviors.
This has the added advantage of finding bugs in the fewest context
switches needed to trigger them. It is reasonable to consider a bug
that arises only after a greater number of context switches to be
“harder” than a bug that requires fewer context switches. Thus,
CBA allows additional concurrency to be considered “on-demand”.

1.2 Challenges and Techniques

Between consecutive context switches, a concurrent program acts
like a sequential program because only one thread is executing.
However, a recursive thread can reach an infinite number of states
before the next context switch because it has an unbounded stack.
A CBA has to consider the possibility of a context switch occurring
at any one of these states.

The Qadeer-Rehof (QR) algorithm used (unweighted) PDSs
(which can encode recursive programs with a finite data abstrac-
tion) to encode program threads. An influential result by Büchi [9]
showed that the set of reachable states of a PDS can be represented
using an automaton. The QR algorithm makes use of this resultto
get a handle on all reachable states between context switches. How-
ever, to explore all possible context switches, it crucially relies on
the finiteness of the data abstraction because it enumeratesover all
reachable data states at a context switch.

Our first step is to develop a new algorithm for the case of un-
weighted PDSs. Our motivation is to have an algorithm that ismore
likely to generalize to handle other abstractions. The new algorithm
(§3) represents the effect of executing a thread (a PDS) from any ar-
bitrary state using afinite-state transducer. The transducer accepts
a pair(c1, c2) if a thread, when started in statec1, can reach state
c2. Caucal [10] showed that such transducers can be constructed for
PDSs, a result more general than that of Büchi’s. Next, these trans-
ducers are composed to describe the behavior of the entire program
with multiple threads. One transducer composition is performed for
each context switch.

We then generalize this algorithm for WPDSs (§5 and§6). The
weights (or the data abstraction) add several complications. We de-
fine weighted transducersto capture the reachability relation of
WPDSs. We show that a weighted transducer can always be con-
structed for a WPDS (no such result was known previously). The
next step is to compose these transducers. While weighted au-
tomata and transducers have been considered in the literature be-
fore, the weights are assumed to have much stronger properties (es-
pecially commutativity, which defeats the purpose of CBA bymak-

ing thread interleavings redundant, as we shall see later).For pro-
gram analysis, we only have weaker properties on weights. Tocom-
pose weighted transducers, we require that weight domains provide
a tensor-productoperation (§6). Tensor products have been used
previously in program analysis for combining abstractions[33].
However, we use them in a different context and for a completely
different purpose. In particular, previous work has used them for
combining abstractions that are to be performed inlock-step; in
contrast, we use them to stitch together the data statebeforea con-
text switch with the data stateafter a context switch. This is non-
trivial because the data state is correlated with an (unbounded) pro-
gram stack.

By using WPDSs, not only do we obtain new algorithms for
infinite-state abstractions, but also symbolic algorithmsfor finite-
state abstractions. The latter algorithms avoid the enumeration that
the QR algorithm performs at a context switch.

The contributions of this paper can be summarized as follows:

• We give sufficient conditions under which CBA is decidable,
along with an algorithm. This generalizes previous work on
CBA of PDSs [36]. Our result also proves that CBA can be
decided for affine-relation analysis, i.e., we can precisely find
all affine relationships between program variables that hold at
a particular point in the (concurrent) program. We use WPDSs
as our program model, and the weights encode the program’s
data abstraction. By using WPDSs, we can also answer “stack-
qualified” queries [40], which ask for the set of values that may
arise at a program point in a given calling context, or in a regular
set of calling contexts.

• We show that for WPDSs, the reachability relation can be en-
coded using a weighted transducer (§5), generalizing previous
result for PDSs by Caucal [10]. The use of weighted transducers
(instead of Büchi’s result, or its generalization to weighted sys-
tems [40]) appears to be a necessary step for CBA with infinite-
state data abstractions.

• We give precise algorithms for composing weighted transduc-
ers (§6), when tensor products exist for the weights. This gen-
eralizes previous work on manipulating weighted automata and
transducers [26, 27]. We also show a class of abstractions that
satisfies this property.

• We discuss implementation issues for realizing CBA in§7. We
show that for PDSs, CBA is NP-complete. Our algorithm, based
on transducers, does have a large complexity but it is more
amenable to symbolic techniques such as using BDDs (in the
finite-state case) than the QR algorithm.

The rest of the paper is organized as follows. In§2, we discuss
previous work on CBA under a finite-state data abstraction. In §3,
we present our algorithm based on transducers. In§4, we give
background on WPDSs. In§5, we give an efficient construction for
transducers for WPDSs. In§6, we show how weighted transducers
can be composed. In§7, we discuss implementation issues for
CBA. In §8, we discuss related work.

2. Context Bounded Model Checking
In this section, we consider CBA under a finite-state data abstrac-
tion, which we call context-bounded model checking or CBMC.
Here, each thread of a concurrent program is modeled using a PDS.

First we defineBoolean programs, a popular program abstrac-
tion used in model checking [3]. They serve as a program-modeling
framework that provides finite data and unbounded control. We
show how PDSs can encode them. We then formally define the
CBMC problem, and discuss the QR algorithm.

Notation. A binary relation on a setS is a subset ofS ×
S. If R1 and R2 are binary relations onS, then their relational



composition(R1; R2) is defined as{(s1, s3) | ∃s2 ∈ S, (s1, s2) ∈
R1, (s2, s3) ∈ R2}. If R is a binary relation,Ri is the relational
composition ofR with itself i times, andR0 is the identity relation
onS. R∗ = ∪∞

i=0R
i is the reflexive-transitive closure ofR.

2.1 Boolean Programs

A Boolean program can be thought of as a C program with only the
Boolean datatype. It does not have any pointers or heap-allocated
storage. A Boolean program consists of a finite set of procedures. It
has a finite set of global variables, and a finite set of local variables
for each procedure. Each variable can only hold a value from a
finite domain. We assume that procedures do not have parameters
(they can be passed through the global variables). The variables in
scope inside a procedure are the global variables and its setof local
variables.

A procedure is described by itscontrol-flow graph (CFG),
which has a designated entry and a designated exit node. Nodes
of the graph are program control locations, and each edge is la-
beled with a statement. A statement can be an assignment, reading
from and writing to variables in scope; or an assume statement (for
conditions); or a procedure call. An example is shown in Fig.4(a).

Let G be the set of global states of the program, consisting of
valuations of global variables. LetL be the set of local states of
the program, consisting of the program counter, a valuationof local
variables, and the program stack (consisting of return addresses and
a valuation of the local variables for each unfinished call).

2.2 Pushdown Systems

The semantics of a Boolean program can be given nicely in terms
of PDSs.

DEFINITION 1. A pushdown systemis a triple P = (P, Γ, ∆),
whereP is a finite set of states or control locations,Γ is a finite set
of stack symbols, and∆ ⊆ P ×Γ× P ×Γ∗ is a finite set of rules.
A configuration of P is a pair 〈p, u〉 wherep ∈ P andu ∈ Γ∗.
A rule r ∈ ∆ is written as〈p, γ〉 →֒ 〈p′, u〉, wherep, p′ ∈ P ,
γ ∈ Γ and u ∈ Γ∗. These rules define a transition relation⇒
on configurations ofP as follows: Ifr = 〈p, γ〉 →֒ 〈p′, u〉 then
〈p, γu′〉 ⇒ 〈p′, uu′〉 for all u′ ∈ Γ∗. The reflexive transitive
closure of⇒ is denoted by⇒∗. For a set of configurationsC, we
definepre∗(C) = {c′ | ∃c ∈ C : c′ ⇒∗ c} and post∗(C) =
{c′ | ∃c ∈ C : c ⇒∗ c′}, which are just backward and forward
reachability under the transition relation⇒.

Without loss of generality, we restrict the pushdown rules to
have at most two stack symbols on the right-hand side [42].

Encoding Boolean programs.The standard approach for mod-
eling the program control flow with a pushdown system is as fol-
lows: P contains a single state{p}, Γ corresponds to the program
locations, and∆ corresponds to edges of the CFG (see Fig. 2).

For encoding Boolean programs with PDSs, the state alphabet
P is expanded to encode the values of global variables, and the
stack alphabet is expanded to encode the values of local variables
[42]. Let G be the set of valuations of global variables, Vali be the
set of valuations of local variables, andNi be the set of control lo-
cations of theith procedure. The effect of executing an assignment
or assume statementst, denoted as[[st]], is a binary relation on
G×Vali that describes how values of variables in scope can change.
We setP to beG, andΓ to be the union ofNi×Vali over all proce-
dures (note that the set of local statesL equalsΓ∗). Rules for theith

procedure are constructed as follows:(i) a CFG edgeu → v with a
statementst is encoded as a set of rules〈g, (u, l)〉 →֒ 〈g′, (v, l′)〉
such that((g, l), (g′, l′)) ∈ [[st]]; (ii) a procedure return at node
u is a set of rules〈g, (u, l)〉 →֒ 〈g, ε〉 for each(g, l) ∈ G × Vali;
(iii) a call edgec → r that calls proceduref , with entry node

Rule Control flow modeled
〈p, u〉 →֒ 〈p, v〉 CFG edgeu → v, which is not a call
〈p, c〉 →֒ 〈p, fenterr〉 CFG edgec → r, which calls

proceduref beginning at nodefenter

〈p, fexit〉 →֒ 〈p, ε〉 Return from proceduref atfexit

Figure 2. The encoding of control flow as PDS rules.

fenter, is a set of rules〈g, (c, l)〉 →֒ 〈g, (fenter, l0) (r, l)〉, for all
(g, l) ∈ G × Vali andl0 ∈ Valf .

Under such an encoding of Boolean programs as PDSs, a con-
figuration〈p, γ1γ2 · · · γn〉 is an element ofG×L that describes the
instantaneous state of a program. The statep encodes the values of
global variables;γ1 encodes the current program location and the
values of local variables in scope; and the rest of the stack encodes
the list of unfinished calls with the values of local variables at the
time the call was made. The PDS transition relation (⇒), which is
essentially a transition relation onG ×L, represents the semantics
of the Boolean program.

The problem of interest, for sequential programs, is to find the
set of all reachable configurations, starting from a given set of
configurations. This can then be used, for example, for assertion
checking (i.e., determining if a given assertion can ever fail) or to
find the set of all data values that may arise at a program point
(for dataflow analysis). Because the number of configurations of a
pushdown system is unbounded, it is useful to use finite automata
to describe regular sets of configurations.

DEFINITION 2. If P = (P, Γ, ∆) is a pushdown system then aP-
automaton is a finite automaton(Q,Γ,→, P, F ), whereQ ⊇ P is
a finite set of states,→⊆ Q×Γ×Q is the transition relation,P is
the set of initial states, andF is the set of final states. We say that a
configuration〈p, u〉 is accepted by aP-automaton if the automaton
can acceptu when it is started in the statep (written asp

u
−→∗ q,

whereq ∈ F ). A set of configurations is calledregular if someP-
automaton accepts it. Without loss of generality,P-automata are
restricted to not have any transitions leading to an initialstate.

An important result is that for a regular set of configurations
C, both post∗(C) and pre∗(C) (the forward and the backward
reachable sets of configurations, respectively) are also regular sets
of configurations [5, 9]. The algorithms for computingpost∗ and
pre

∗, calledpoststarandprestar, respectively, take aP-automaton
A as input, and ifC is the set of configurations accepted byA,
they produceP-automataApost∗ andApre∗ that accept the sets of
configurationspost∗(C) andpre

∗(C), respectively [5, 13, 14].

2.3 Concurrent Boolean Programs and CBMC

A concurrent Boolean programis a set of Boolean programs (one
for each thread) where the global variables are shared between the
threads. Thus, any of the threads can modify the global variables,
but they have their own copy of the local variables. Synchronization
is easily implementable using global variables as locks. Analysis of
such models is undecidable in general [38], i.e., it is not possible
to verify if a given configuration is reachable or not. However,
Qadeer and Rehof have shown that CBMC is decidable. Letn be
the number of threads and lett1, t2, · · · , tn denote the threads. We
do not consider dynamic creation of threads in our model.1

Let G be the set of global states (valuations of global variables)
andLi be the set of local states ofti (as described before). Then
the state space of the entire program consists of the global state

1 Dynamic creation up ton threads can be encoded in the model [36].
Moreover, for CBA that considersk context switches,n can be bounded
by k because other threads would never get a chance to run.



paired with local states of each of the threads, i.e., the setof states
is G × L1 × · · · × Ln. A concurrent program can be represented
by n PDSs, one for each thread, where the PDSs share the same set
of global statesG.

Let the transition relation of threadti be⇒ti
, which is a bi-

nary relation onG × Li as described in the previous section.
If (g, li) ⇒ti

(g′, l′i), the transition(g, l1, · · · , li, · · · , ln) ⇒c
ti

(g′, l1 · · · , l′i, · · · , ln) is a valid transition for the concurrent pro-
gram.

The execution of a concurrent program proceeds in a sequence
of execution contexts. In an execution context, one thread has con-
trol and it executes a finite number of steps. The execution con-
text changes at acontext switchand control is passed to a different
thread. The CBMC problem is to find the set of reachable statesin
the transition relation of the concurrent program under a bound on
the number of context switches. Formally, letk be the bound on
context switches. Then there arek + 1 execution contexts. Let⇒c

1

be(∪n
i=1(⇒

c
ti

)∗), the transition relation that describes the effect of
one execution context. Then we wish to find the reachable states
in the transition relation given by(⇒c

1)
k+1. The reachable states

could be used, for example, to find out the data values whent1 is
at noden1 and the rest of the threads can be anywhere, or whent1
is atn1 andt2 is at noden2 and so on. Note that while a bound is
placed on the number of context switches, no bound is placed on
the length of an individual execution context.

2.4 The Qadeer-Rehof Algorithm for CBMC

The Qadeer-Rehof (QR) algorithm works under the assumptionthat
the setG is finite. Under such an abstraction, the only source of
unboundedness is the program stack.

The algorithm proceeds by iteratively increasing the number of
execution contexts. Within one execution context, the global state
can be considered local to the executing thread because it isthe
only thread that accesses it. At a context switch, the globalstate is
synchronized with other threads so that they have the same view
of the shared memory. The algorithm needsG to be finite to be
able to explore all possibilities at a context switch. We only give an
overview of the QR algorithm in terms of explicit state spaces. Its
implementation using PDSs is described in [36].

If Si ⊆ Li is a set of local states, then let(g, S1, S2, · · · , Sn)
be the set of states{(g, l1, · · · , ln) | li ∈ Si}. We use the symbol
η as a shorthand for such a set of states. The QR algorithm is a
worklist-based algorithm. An item on the worklist is a pair(η, i),
denoting that the set of statesη is reachable in up toi context
switches. Initially, the worklist contains(ηinit , 0), whereηinit is the
starting set of states for the program. Then the algorithm repeats
the following steps until the worklist is empty.

1. Select and remove an item(η, i) from the worklist. If i = k,
then the context bound has been reached, so pick another item.

2. Letη = (g, S1, · · · , Sn). For eachj from 1 to n, repeat steps
3 and4.

3. Using a thread-local analysis ontj , find the set of states that
tj can reach when started from the set of states(g, Sj). Let
this set beRj , i.e., (g, Sj) ⇒∗

tj
Rj . In PDS terms,Rj =

post
∗

tj
((g, Sj)). Write Rj as∪m

p=1(gp, R
p
j ). This implies that

threadtj can change the global state fromg to gp and itself
reach some local state inRp

j .

4. For eachgp produced in the above step, the set of statesηp =
(gp, S1, · · · , Sj−1, R

p
j , Sj+1, · · · , Sn) are reachable in up to

i + 1 context switches. Insert(ηp, i + 1) into the worklist.

Steps3 and 4 take a starting set of statesη and produce all
states that are reachable in one execution context. First, athread

(g00, S0, T0)

(R, T0)

R = post1*(g00, S0)

(g11, S1, T0) (g12, S2, T0) (g1m, Sm, T0)
...

R’ = post2*(g12, T0)

(S2, R’)

(g21, S2, T1) (g22, S2, T2) (g2p, S2, Tp)
...

... ...

Figure 3. The computation of the QR algorithm, for two threads,
shown schematically in the form of a tree. The shaded boxes are
just temporary placeholders and are not inserted into the worklist.
The thick arrows correspond to Step3 and other arrows correspond
to Step4. The set of tuples at leveli of the tree correspond to all
states reached ini context switches.

tj is picked that gets to execute in that context. Then step3 finds
all states that execution oftj can produce. For each of the global
statesgp that can be produced, it is passed to all other threads at
the context switch in step4. The set of tuples(η, i) with i = k
represent the set of all reachable states. The computation performed
by this algorithm is depicted in Fig. 3 in the form of a tree.

An important aspect of the algorithm is the way it manipulates
set of states. An item on the worklist is of the form(g, S1, · · · , Sn),
representing a set of states. The global stateg is kept explicit be-
cause it is required for synchronization across threads at acontext
switch. The local states need not be kept explicit, and they are col-
lected in the setsSi. This is important because the set of local
states can be infinite. The setsSi are kept in symbolic form using
automata (Defn. 2). Thepoststaralgorithm works on these repre-
sentations, mapping automata (capturing starting configurations) to
automata (capturing reachable configurations).

3. New Algorithm for CBMC Using Transducers
The QR algorithm fails to generalize to infinite-state abstractions
because of its requirement to keep the global state explicitin the
worklist items. After each context switch, the algorithm does a
“fan-out” proportional to the size of the global state space|G| (see
Fig. 3) to pass the global state to all other threads. This is also true
for the automaton-based implementation of the QR algorithm. The
algorithm presented in this section avoids such a fan-out (and will
be extended to infinite-state abstractions in§5 and§6).

The QR algorithm makes several calls to the PDS-based algo-
rithm poststarto compute the forward reachable states in a single
thread. This is crucial to be able to work with infinite sets ofconfig-
urations. However, the disadvantage is thatpoststarrequires a start-
ing set of configurations to find all of the reachable configurations.
Creation of this starting set is what forces the fan-out operation to
alternate with calls topoststar.

A similar problem arises in interprocedural analysis of sequen-
tial programs: a procedure can get called from multiple places with
multiple different input values. Instead of reanalyzing the proce-
dure for each input value, it is analyzed independently of the calling
context to create asummary. This summary concisely describes the
effect of executing the procedure in any calling context, interms
of the relation between input to the procedure and its output. Sim-
ilarly, instead of reanalyzing a thread every time it receives control
after a context switch, we create a summary for it. The difficulty
is that the “input” here is a starting set of configurations, and the
“output” is the reachable sets of configurations. Both of these sets



can be infinite, and the summary must have some symbolic repre-
sentation. We construct the summary using a finite-state transducer
(an automaton with input and output tapes).

DEFINITION 3. A finite-state transducer τ is a tuple
(Q, Σi, Σo, λ, I, F ), whereQ is a finite set of states,Σi andΣo are
input and output alphabets,λ ⊆ Q× (Σi ∪{ε})× (Σo ∪{ε})×Q
is the transition relation,I ⊆ Q is the set of initial states, and
F ⊆ Q is the set of final states. If(q1, a, b, q2) ∈ λ, written as
q1

a/b
−−−→ q2, we say that the transducer can go from stateq1 to

q2 on inputa, and outputs the symbolb. Given a stateq ∈ I , we
say that the transducer can accept a stringσi ∈ Σ∗

i with output
σo ∈ Σ∗

o if there is a path from stateq to a final state that takes
input σi and outputsσo. The languageof the transducerL(τ )
is defined as the following subset ofΣ∗

i × Σ∗
o : {(σi, σo) | the

transducer can output stringσo when the input isσi}.

Given a PDSP , one can construct a transducerτP whose lan-
guage equals⇒∗, the transitive closure ofP ’s transition relation.
This result was first given by Caucal [10], but it was not accompa-
nied with a complexity result, except that it was polynomialtime.
Our construction of transducers for WPDSs (strictly more general
than Caucal’s result) makes use of recent advancements in the anal-
ysis of (W)PDSs [5, 13, 40, 42] for an efficient construction.Since
such transducers are of general importance, we give a complexity
result. The following theorem is derived from Thm. 2 given in§5.

THEOREM 1. Given a PDSP = (P, Γ, ∆), a transducerτP can
be constructed such that it accepts input(p1 u1) and outputs
(p2 u2) if and only if〈p1, u1〉 ⇒

∗ 〈p2, u2〉. Moreover, this trans-
ducer can be constructed in timeO(|P ||∆|(|P ||Γ|+ |∆|)) and has
at most|P |2|Γ| + |P ||∆| states.

The advantage of using transducers is that they are closed under
relational composition.

LEMMA 1. Given transducersτ1 and τ2 with input and output
alphabet Σ, one can construct a transducer(τ1; τ2) such that
L(τ1; τ2) = L(τ1);L(τ2). Similarly, if A is an automaton with
alphabetΣ, one can construct an automatonτ1(A) such that its
language is the image ofL(A) underL(τ1), i.e., the set{u ∈ Σ∗ |
∃u′ ∈ L(A), (u′, u) ∈ L(τ1)}.

Both of these constructions are carried out in a manner similar to
automaton intersection [18]. For composing transducers, for each
transitionp

a/b
−−−→ q in τ1 and transitionp′ b/c

−−→ q′ in τ2, add the
transition(p, p′)

a/c
−−−→ (q, q′) to their composition. For transducer-

automaton application, each transitionp
a/b

−−−→ q in τ1 is matched
with transitionp′ a

−→ q′ in A to produce transition(p, p′)
b
−→

(q, q′) in τ1(A). One can also take the union of transducers (union
of their languages) in a manner similar to union of automata.

Coming back to CBMC, each thread is represented using a PDS.
Thus, we can construct a transducerτti

for the transition relation
⇒∗

ti
. By extendingτti

to perform the identity transformation on
stack symbols of threads other thanti (using transitions of the form
p

γ/γ
−−−→ q), we obtain a transducerτ c

ti
for (⇒c

ti
)∗. Next, a union of

these transducers givesτ c
1 , which represents⇒c

1. Performing the
composition ofτ c

1 k times with itself gives us a transducerτ that
represents(⇒c

1)
k+1. If an automatonA captures the set of starting

states of the concurrent program,τ (A) gives a single automaton
for the set of all reachable states in the program (under the context
bound).

Roadmap for the Remainder of the Paper

We believe that the above algorithm provides a better basis for im-
plementing a tool for CBMC than the QR algorithm. In particu-
lar, the new algorithm avoids the fan-out problem, which—aswe

show below—allows it to be extended to infinite-state data abstrac-
tions. To make this extension, we represent (recursive) programs
with infinite-state abstractions using WPDSs (§4). Extending our
algorithm to WPDSs presents two challenges: one is the construc-
tion of a weighted transducer for a WPDS, and the other is their
composition. These issues are addressed in§5 and§6, respectively.

4. Weighted Pushdown Systems
A weighted pushdown system is obtained by augmenting a PDS
with a weight domain that is abounded idempotent semiring[6,
40]. Such semirings are powerful enough to encode finite-state data
abstractions, such as the one required for bitvector dataflow analy-
sis, Boolean program verification, or the IFDS framework of Reps-
Horwitz-Sagiv [39], as well as infinite-state data abstractions, such
as linear-constant propagation and affine-relation analysis [29]. We
recall some of this here, but details on using WPDSs for interpro-
cedural analysis can be found in [40].

Weights encode the effect that each statement (or PDS rule)
has on the data state of the program. They can be thought of as
abstract transformers, that specify how the abstract statechanges
when a statement is executed. WPDSs compute over these weights.
Computing over transformers, instead of the underlying abstract
states, is customary for interprocedural analysis [12, 22,39] where
procedure summaries need to be calculated as transformations on
abstract states.

DEFINITION 4. A bounded idempotent semiring is a tuple
(D,⊕,⊗, 0, 1), where D is a set whose elements are called
weights, 0, 1 ∈ D, and ⊕ (the combine operation) and⊗ (the
extend operation) are binary operators onD such that

1. (D,⊕) is a commutative monoid with0 as its neutral element,
and where⊕ is idempotent.(D,⊗) is a monoid with the neutral
element1.

2. ⊗ distributes over⊕, i.e., for alla, b, c ∈ D we have
a⊗(b⊕c) = (a⊗b)⊕(a⊗c) and(a⊕b)⊗c = (a⊗c)⊕(b⊗c) .

3. 0 is an annihilator with respect to⊗, i.e., for all a ∈ D,
a ⊗ 0 = 0 = 0 ⊗ a.

4. In the partial order⊑ defined by∀a, b ∈ D, a ⊑ b iff a⊕b = a,
there are no infinite descending chains.

DEFINITION 5. A weighted pushdown systemis a triple W =
(P ,S , f) whereP = (P, Γ, ∆) is a pushdown system,S =
(D,⊕,⊗, 0, 1) is a bounded idempotent semiring andf : ∆ → D
is a map that assigns a weight to each rule ofP .

Let σ ∈ ∆∗ be a sequence of rules. Usingf , we can associate a
value toσ, i.e., ifσ = [r1, . . . , rk], then we definev(σ)

def
= f(r1)⊗

. . .⊗f(rk). Moreover, for any two configurationsc andc′ of P , we
usepath(c, c′) to denote the set of all rule sequences that transform
c into c′. If σ ∈ path(c, c′), then we sayc ⇒σ c′. Reachability
problems on PDSs are generalized to WPDSs as follows:

DEFINITION 6. LetW = (P ,S , f) be a weighted pushdown sys-
tem, whereP = (P, Γ, ∆), and letS, T ⊆ P × Γ∗ be regular sets
of configurations. Then themeet-over-all-pathsvalue MOP(S, T )
is defined as

L

{v(σ) | s ⇒σ t, s ∈ S, t ∈ T}.

We call bounded idempotent semiringsweight domains.
A PDS is simply a WPDS with theBoolean weight domain

({0, 1},⊕,⊗, 0, 1) and weight assignmentf(r) = 1 for all rules
r ∈ ∆. In this case, MOP(S, T ) = 1 iff there is a path from a
configuration inS to a configuration inT , i.e.,post∗(S) ∩ T and
S ∩ pre

∗(T ) are non-empty sets.
One way of modeling programs as WPDSs is as follows: the

PDS models the control flow of the program, as in Fig. 2. The



weight domain models abstract transformers for an abstraction of
the program’s data. The next two sections describe two data ab-
stractions that can be encoded using weight domains. For simplic-
ity, we only show the treatment for global variables, and do not
consider local variables. Local variables (under an infinite-state ab-
straction) pose an extra complication for WPDSs [25], and their
treatment can be found in App. B. Finite-state abstraction of local
variables can always be encoded in the stack alphabet, as forPDSs.

4.1 Finite-State Abstractions

An important weight domain for WPDSs is the set of all binary
relations on a finite set.

DEFINITION 7. If G is a finite set, then therelational weight do-
main on G is defined as(2G×G,∪, ; , ∅, id): weights are binary
relations onG, combine is union, extend is relational composition,
0 is the empty relation, and1 is the identity relation onG.

InstantiatingG to be the set of global states of a Boolean
program, we obtain a weight domain for Boolean programs. The
weight associated with a rule is its effect on the global state, which,
as described earlier, is a binary relation onG. (Methods for han-
dling local variables can be found in [25, 42].) An example is
shown in Fig. 4(b). The Boolean program has two variables rang-
ing over the setV , soG = V × V , with the first component be-
ing the value ofx. Weights are shown using a shorthand notation,
e.g., ((v1, v2), (v1, v1)) represents the set{((v1, v2), (v1, v1)) |
v1, v2 ∈ V }.

The set of all data values that reach a noden can be calculated
as follows: letS be the singleton configuration consisting of the
program start node andT be the set{〈p, n u〉 | u ∈ Γ∗}. Let
w = MOP(S, T ). If w = 0, then the node cannot be reached.
Otherwise,w captures the net transformation on the global state
from when the program started. The range ofw, i.e., the set{g ∈
G | ∃g′ ∈ G : (g′, g) ∈ w}), is the set of valuations that reach
noden. For example, in Fig. 4, the MOP weight to noden6 is the
weightw6 shown in the figure. Its range shows thatx = y = 3 or
x = y = 7.

BecauseT can be any regular set, one can also make stack-
qualified queries [40]. For example, the set of values that arise at
noden when its procedure is called from call-sitem can be found
by settingT = {〈p, n m u〉 | u ∈ Γ∗}

A WPDS with a weight domain that has a finite set of weights,
such as the one described above, can be encoded as a PDS. How-
ever, it is often useful to use weights because they can be sym-
bolically encoded. Tools such as MOPED, BEBOP, and BLAST use
BDDs to encode sets of data values, allowing them to scale to a
large number of variables. Using PDSs for Boolean program veri-
fication, without any symbolic encoding, would not be feasible.

4.2 Infinite-State Abstractions

An infinite-state abstraction is one in which the number of abstract
states (or weights) is infinite. We begin with some simple examples
of infinite-weight domains, and then discuss the one used foraffine-
relation analysis.

DEFINITION 8. Theminpath semiringis the weight domainM =
(N ∪ {∞}, min, +,∞, 0): weights are non-negative integers in-
cluding “infinity”, combine is minimum, and extend is addition.

If all rules of a WPDS are given the weight1 from this semiring
(different from the semiring weight1, which is the integer0),
then the MOP weight between two configurations is the length of
the shortest path (shortest rule sequence) between them. Another
infinite-weight domain, based on the minpath semiring, is given in
[24] and was shown to be useful for debugging programs.

n5

n7

n8

x1 := x1 + x2x1 := 0

n1

n2
n6

bar( )

proc barproc foo

n3

bar( )

n4

x2 := 1

x2 := x2 + 1

Figure 5. An affine program that starts execution at noden1. There
are two global variablesx1 andx2.

The minpath semiring can be combined with a relational weight
domain, for example, to find the shortest (valid) path in a Boolean
program (for finding the shortest trace exhibiting some property).

DEFINITION 9. A weighted relationon a setS, weighted with
semiring(D,⊕,⊗, 0, 1), is a function from(S × S) to D. The
composition of two weighted relationsR1 and R2 is defined
as (R1; R2)(s1, s3) = ⊕{w1 ⊗ w2 | ∃s2 ∈ S : w1 =
R1(s1, s2), w2 = R2(s2, s3)}. The union of the two weighted re-
lations is defined as(R1∪R2)(s1, s2) = R1(s1, s2)⊕R2(s1, s2).
The identity relation is the function that maps each pair(s, s) to 1
and others to0. The reflexive-transitive closure is defined in terms
of these operations, as before. If→ is a weighted relation and
(s1, s2, w) ∈→, then we writes1

w
−−→ s2.

DEFINITION 10. If S is a weight domain with set of weightsD
andG is a finite set, then the relational weight domain on(G,S) is
defined as(2G×G→D,∪, ; , ∅, id): weights are weighted relations
on G and the operations are the corresponding ones for weighted
relations.

If G is the set of global states of a Boolean program, then the
relational weight domain on(G,M) can be used for finding the
shortest trace: for each rule, ifR ⊆ G × G is the effect of execut-
ing the rule on the global state of the Boolean program, then asso-
ciate the following weight with the rule:(λ(g1, g2).if((g1, g2) ∈
R) then1 else∞). Then, ifw = MOP(C1, C2), the length of the
shortest path that starts with global stateg from a configuration in
C1 and ends at global stateg′ in a configuration inC2, is w(g, g′)
(which would be∞ if no path exists). Such a weight domain is a
small extension over the pure relational domain for a Boolean pro-
gram. However, the QR algorithm cannot handle this abstraction,
whereas the algorithm we gave in§3 can be generalized to handle
it (as shown in§5 and§6).

4.2.1 Affine-Relation Analysis

An affine relation is a linear equality constraint between integer-
valued variables. Affine-relation analysis (ARA) tries to find all
affine relationships that hold in the program. An example is shown
in Fig. 5. For this program, ARA would, for example, infer that
x2 = x1 + 1 at program noden4.

ARA for single-procedure programs was first given by Karr
[21]. It took almost30 years to develop an analysis for multi-
procedure programs [29]. Using the results of this paper, wecan
extend ARA to deal with (context-bounded) concurrency. Thead-
vantage of our framework is that we get a CBA automatically from
an interprocedural analysis.

ARA generalizes other analyses, including copy-constant prop-
agation, linear-constant propagation [41], and induction-variable
analysis [21]. We have used ARA (for sequential programs) on
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〈p, n3〉 →֒ 〈p, n7 n5〉 1
〈p, n4〉 →֒ 〈p, n6〉 1
〈p, n5〉 →֒ 〈p, n6〉 1
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n4,w4

n5,w5
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n7,1
n8,w3 n1,w6 n2,w3

n3,w3 n4,1

n5,1 n6,1

w1 ((v1, v2), (3, v2))
w2 ((v1, v2), (7, v2))
w3 ((v1, v2), (v1, v1))
w4 ((v1, v2), (3, 3))
w5 ((v1, v2), (7, 7))
w6 ((v1, v2), (3, 3)) ∪

((v1, v2), (7, 7))

(a) (b) (c) (d)

Figure 4. (a) A Boolean program with two procedures and two global variablesx andy over a finite domainV = {0, 1, · · · , 7}. (b) A
WPDS that models the Boolean program.(c) The result ofpoststar(〈p, n1〉) andprestar(〈p, n6〉). The final state in each of the automata is
acc. (d) An index of the weights used in this figure. The unbound variablesvi are universally quantified overV .

machine code to find induction-variable relationships between ma-
chine registers [2]. These help in increasing the precisionof an
abstract-interpretation based pointer analysis for machine code.

The Analysis

Interprocedural ARA can be performed precisely on affine pro-
grams, and has been the focus of several papers [16, 21, 29, 30].
Affine programs are similar to Boolean programs, but with integer-
valued variables. Again, we restrict our attention to global vari-
ables, and defer treatment of local variables to App. B. All branch
conditions in affine programs are non-deterministic (ARA cannot
interpret conditions). If{x1, x2, · · · , xn} is the set of global vari-
ables of the program, then all assignments have the formxj :=
a0 +

Pn
i=1

aixi, wherea0, · · · , an are integer constants. An as-
signment can also be non-deterministic, denoted byxj := ?, which
may assign any integer toxj . (This is typically used for abstract-
ing assignments that cannot be modeled as a linear function of the
variables.)

ARA Weight Domain

We briefly describe the weight domain based on the matrix-
formulation of ARA from [29]. An affine relationa0+

Pn
i=1

aixi =
0 is represented using column vector of sizen + 1 as ~a =
(a0, a1, · · · , an)t. A valuation of program variablesx is a map
from the set of global variables to the integers. The value ofxi

under this valuation is written asx(i).
A valuationx satisfies an affine relation~a = (a0, a1, · · · , an)t

if a0 +
Pn

i=1
aix(i) = 0. An affine relation~a represents the set of

all valuations that satisfy it, written as PTS(~a). An affine relation~a
holds at a program node if the set of valuations reaching thatnode
(in the collecting semantics) is a subset of PTS(~a).

An important observation about affine programs is that if affine
relations~a1 and ~a2 hold at a program node, then so does any
of their linear combinations. For example, one can verify that
PTS(~a1+~a2) ⊇ PTS(~a1)∩PTS(~a2), i.e., the affine relation~a1+~a2

(componentwise addition) holds at a program node if both~a1 and
~a2 hold at that node. Therefore, the set of affine relations thathold
at a program node form a vector space. This implies that a (possibly
infinite) set of affine relations can be represented by its linearly
independent basis (which is always a finite set).

For reasoning about affine programs, each statement is ab-
stracted by a set of matrices of size(n+1)× (n+1) (this abstrac-
tion turns out to be precise, i.e., it is able to find all affine relation-
ships in the affine program). This set is the weakest-precondition
transformer on affine relations for that statement: if a statement is
abstracted as the set{m1, m2, · · · , mr}, then the affine relation~a

holds after the execution of the statement if and only if the affine
relations(m1~a), (m2~a), · · · , (mr~a) held before the execution of
the statement.

Under such an abstraction of program statements, one can de-
fine the extend operation, which is transformer composition, as el-
ementwise matrix multiplication, and the combine operation as set
union. This is correct semantically, but it does not give an effective
algorithm because the matrix sets can grow unboundedly. However,
the observation that affine relations form a vector space carries over
to a set of matrices as well. One can show that the transformer
{m1, m2, · · · , mr} is semantically equivalent to the transformer
{m1, m2, · · · , mr, m}, wherem is any linear combination of the
mi matrices. Thus, a set of matrices can be abstracted as the (infi-
nite) set of matrices spanned by them. Once we have a vector space,
we can represent it using its basis to get a finite and a boundedrep-
resentation: a vector space over(n + 1) × (n + 1) sized matrices
cannot have more that(n + 1)2 number of matrices in its basis.

If M is a set of matrices, let SPAN(M) be the vector space
spanned by them. Letβ be the basis operation that takes a set of
matrices and returns a basis of their span. We can now define the
weight domain. A weightw is a vector space of matrices, which can
be represented using its basis. Extend of vector spacesw1 andw2

is the vector space{(m1m2) | mi ∈ wi}. Combine ofw1 andw2

is the vector space{(m1 + m2) | mi ∈ wi}, which is the smallest
vector space containing bothw1 andw2. 0 is the empty set, and1 is
the span of the singleton set consisting of the identity matrix. The
extend and combine operations, as defined above are operations
on infinite sets. They can be implemented by the corresponding
operations on the basis of the weights. The following properties
show that it is semantically correct to operate on the elements in
the basis instead of all the elements in the vector space spanned by
them:

β(w1 ⊕ w2) = β(β(w1) ⊕ β(w2))
β(w1 ⊗ w2) = β(β(w1) ⊗ β(w2))

These properties are satisfied because of the linearity of extend
(matrix multiplication distributes over addition) and combine oper-
ations.

Under such a weight domain, MOP(S, T ) is a weight that is the
net weakest-precondition transformer betweenS andT . Suppose
this weight has basis{m1, · · · , mr}. The affine relation represent-
ing that any variable valuation might hold atS is~0 = (0, 0, · · · , 0).
Thus,~0 holds atS, and the affine relation~a holds atT iff m1~a =
m2~a = · · · = mr~a = ~0. The set of all affine relations that hold
atT can be found as the intersection of null spaces of the matrices
m1, m2, · · · , mr.



Extensions to ARA

ARA can also be performed for modular arithmetic to precisely
model machine arithmetic (which is modulo2 to the power of
the word size) [30]. Our result for CBA holds for both integer
arithmetic and modular arithmetic, but we only focus on the former
in this paper.

ARA in the presence of branch conditions is undecidable in
general. However, there are approximation techniques [31], which
we can make use of by giving up the distributivity property inplace
of monotonicity (see§4.3). The approximation techniques are safe
for interprocedural analysis, and also for CBA, as carried out using
the algorithms from this paper.

4.3 Solving for the MOP Value

There are two algorithms for solving for MOP values, called
prestar and poststar(by analogy with the algorithms for PDSs).
They take as input an automaton that accepts the set of initial con-
figurations. As output, they produce aweighted automaton:

DEFINITION 11. Given a weighted pushdown systemW =
(P ,S , f), aW-automatonA is aP-automaton, where each tran-
sition in the automaton is labeled with a weight. The weight of a
path in the automaton is obtained by taking an extend of the weights
on the transitions in the path in either a forward or backwarddi-
rection. The automaton is said to accept a configurationc = 〈p, u〉
with weightw = A(c) if w is the combine of weights of all accept-
ing paths foru starting from statep in A. We call the automaton a
backwardW-automatonif the weight of a path is read backwards,
and aforward W-automatonotherwise.

Let A be an unweighted automaton andL(A) be the set of
configurations accepted by it. Then,prestar(A) produces a for-
ward weighted automatonApre∗ as output, such thatApre∗(c) =
MOP({c},L(A)), whereaspoststar(A) produces a backward
weighted automatonApost∗ as output, such thatApost∗(c) =
MOP(L(A), {c}) [40]. An example is shown in Fig. 4(c). One
thing to note here is how thepoststarautomaton works. The pro-
cedurebar is analyzed independently of its calling context (not
knowing the exact value ofx), resulting in transitions betweenp
andq. Its calling context, having the input values, is represented us-
ing the transitions coming out of stateq. This is how, for instance,
the automaton can tell thatx = y = 3 at noden8 whenbar is
called from the(n3, n4) edge.

Using standard automata-theoretic techniques, one can also
computeAw(C) for (forward or backward) weighted automa-
ton Aw and a regular set of configurationsC, whereAw(C) =
L

{Aw(c) | c ∈ C}. This allows one to solve for the meet-
over-all-paths value MOP(S, T ) for configuration setsS andT , as
poststar(S)(T ) = prestar(T )(S).

We now provide some intuition into why one needs both for-
wards and backwards automata. Consider the automata in Fig.4(c).
For thepoststarautomaton, when one follows a path that accepts
the configuration〈p, n8n4〉, the transition(p, n8, q) comes before
(q, n4, acc). However, the former transition describes the transfor-
mation insidebar, which happensafter the transformation per-
formed in reaching the call site atn4 (stored on(q, n4, acc)). Be-
cause the transformation for the calling context happens earlier in
the program, but its transitions appear later in the automaton, the
weights are read backwards. For theprestarautomaton, the weight
on (p, n4, acc) is the transformation for going fromn4 to n6 (since
it is a backward analysis), which occurs after the transformation
insidebar. Thus, it is a forwards automaton.

The following lemma states the complexity for solvingpoststar
by the algorithm of Reps et al. [40]. We use the notationOs(.) to
denote the time bound in terms of semiring operations.

LEMMA 2. [40] Given a WPDS with PDSP = (P, Γ, ∆), if
A = (Q,Γ,→, P, F ) is aP-automaton that accepts an input set of
configurations, poststar produces a backward weighted automaton
with at most|Q| + |∆| states in timeOs(|P ||∆|(|Q0| + |∆|)H +
|P ||λ0|H), whereQ0 = Q\P , λ0 ⊆→ is the set of all transitions
leading from states inQ0, andH is the height of the weight domain.

Theheightof a weight domain is defined to be the length of the
longest descending chain in the domain. In this paper, we assume
the height to be bounded for ease of discussing complexity results,
but WPDSs, and the algorithms in this paper, can also be used in
certain cases when the height is unbounded (as long as there are no
infinite descending chains, as is the case forM in Defn. 8).

Approximate analysis

Among the properties imposed by a weight domain, one impor-
tant property is distributivity (Defn. 4, item 2). This is a common
requirement for a precise analysis, also considered in variousco-
incidence theoremsfor dataflow analysis [20, 22, 43]. Sometimes
this requirement is too strict and may be relaxed to monotonicity,
i.e., for all a, b, c ∈ D, a ⊗ (b ⊕ c) ⊑ (a ⊗ b) ⊕ (a ⊗ c) and
(a⊕ b)⊗ c ⊑ (a⊗ c)⊕ (b⊗ c). In such cases, the MOP computa-
tion may not be precise, but it will besafeunder the partial order⊑.
The same applies for the results in this paper. When distributivity
holds, our CBA is precise, otherwise, if only monotonicity holds, it
will be a safe approximation.

4.4 CBA Problem Definition

The transition relation of a WPDS is a weighted relation (Defn. 9)
over the set of PDS configurations. For configurationsc1 and
c2, if r1, · · · , rm are all the rules such thatc1 ⇒ri c2, then
(c1, c2,⊕if(ri)) is in the weighted relation of the WPDS. In a
slight abuse of notation, we will use⇒ and its variants for the
weighted transition relation of a WPDS. Note that the weighted re-
lation⇒∗ maps the configuration pair(c1, c2) to MOP({c1}, {c2}).

The CBA problem is defined as in§2.3, except that all relations
are weighted. This means that each thread is modeled as a WPDS.
The threads share PDS states of the WPDSs, as well as the weights
(the former can be eliminated, because PDS states can be pushed
inside the weights).

This problem definition allows one to precisely model concur-
rent Boolean programs (with variations such as finding the shortest
trace), as well as concurrent affine programs, where both arede-
fined as having multiple threads and shared global variables.

Given the weighted relation(⇒c
1)

k+1 as R, the set of initial
configurationsS and a set of final configurationsT , we want to
be able to solve forR(S,T ) = ⊕{R(s, t) | s ∈ S, t ∈ T}.
This captures the net transformation on the data state between S
andT : it is the combine over the values of all paths involving at
most k context switches that go from a configuration inS to a
configuration inT . Our results from§5 and§6 allow us to solve
for this value whenS andT are regular sets.

For example, consider two copies of the program in Fig. 4(a)
running in parallel. Let the control locations of the secondcopy
beΓ′ = {n′

1, · · · , n′
8}, to distinguish them from those of the first

copy. Withk = 2, S = {〈p, n1, n
′
1〉} (the starting configuration

of the program),T = {〈p, n6, u
′〉 | u′ ∈ (Γ′)∗} (thread1 is at

n6 and thread2 can have any stack), andR as above, the weight
R(S,T ) would imply that the valuations(3, 3), (3, 7), (7, 3), and
(7, 7) are possible.

5. Weighted Transducers
In this section, we show how to construct a weighted transducer for
the weighted relation⇒∗ of a WPDS. We defer the definition of a
weighted transducer to a little later in this section (Defn.12).



〈p, γ1 γ2 γ3 · · · γn〉 ⇒∗ 〈p1, γ2 γ3 · · · γk+1 γk+2 · · · γn〉
⇒∗ 〈p2, γ3 · · · γk+1 γk+2 · · · γn〉
⇒∗ · · ·
⇒∗ 〈pk, γk+1 γk+2 · · · γn〉
⇒∗ 〈pk+1, u1 u2 · · ·uj γk+2 · · · γn〉

Figure 6. A path in the PDS’s transition relation;ui ∈ Γ, j ≥ 1.

Our solution is based on the following observation about paths
in a PDS’s transition relation. Suppose that〈p, γ1γ2 · · · γn〉 is a
configuration of a PDSP . Then any path in the transition relation
⇒∗ described byP , starting from this configuration, can be written
as shown in Fig. 6. The figure shows that the path starts initially by
popping offsome stack symbols (k symbols in the figure,k < n)
in possibly multiple steps, after which it does not touch therest
of the stack (γk+1 · · · γn), except for the top symbol (γk+1). It is
also possible for the path to pop off all stack symbols (k = n)
and stop because no PDS rule can fire on an empty stack. To make
this observation more formal, we decompose a path into phases as
follows:

1. Pop-phase.The path pops off the top stack symbol without
looking at the rest of the stack, i.e., it follows a sequence of
rules that takes〈p, γu〉 to 〈p′, u〉, for anyu ∈ Γ∗.

2. Growth-phase.The path only looks at the top of the stack, and
possibly rewrites it, but does not pop it off, i.e., it follows a
sequence of rules (possibly empty) that takes a configuration
〈p, γu〉 to 〈p′, u′u〉 with u′ ∈ Γ+, for anyu ∈ Γ∗.

Each path in the PDS’s transition relation has zero or more pop-
phases followed by a single (optional) growth-phase. We construct
the transducer for a WPDS by essentiallypre-computingeach of
these phases. First, we define two procedures:

1. pop : P × Γ × P → D is defined as follows:

pop(p, γ, p′) =
L

{v(σ) | 〈p, γ〉 ⇒σ 〈p′, ε〉}

2. grow : P × Γ → ((P × Γ+) → D) is defined as follows:

grow(p, γ)(p′, u) =
L

{v(σ) | 〈p, γ〉 ⇒σ 〈p′, u〉}

Note thatgrow(p, γ) = post
∗(〈p, γ〉). The following Lem-

mas give efficient algorithms for computing the above procedures.
Proofs are given in App. A.

LEMMA 3. LetA = (P, Γ, ∅, P, P ) be aP-automaton that repre-
sents the set of configurationsC = {〈p, ε〉 | p ∈ P}. LetApop be
the forward weighted-automaton obtained by running prestar on
A. Then pop(p, γ, p′) is the weight on the transition(p, γ, p′) in
Apop. We can generateApop in timeOs(|P |2|∆|H), and it has at
most|P | states.

LEMMA 4. LetAF = (Q,Γ,→, P, F ) be aP-automaton, where
Q = P ∪ {qp,γ | p ∈ P, γ ∈ Γ} and p

γ
−→ qp,γ for each

p ∈ P, γ ∈ Γ. ThenA{qp,γ} represents the configuration〈p, γ〉.
LetA be this automaton where we leave the set of final states un-
defined. LetAgrow be the backward weighted-automaton obtained
from running poststar onA (it does not need to know the final
states). If we restrict the final states inAgrow to be justqp,γ (and
remove all states that do not have an accepting path to the fi-
nal state), we obtain a backward weighted-automatonAp,γ =
poststar(〈p, γ〉) = grow(p, γ). We can computeAgrow in time
Os(|P ||∆|(|P ||Γ|+|∆|)H), and it has at most|P ||Γ|+|∆| states.

The advantage of the construction presented in Lemma 4 is that
it just requires a singlepoststarquery to compute all of theAp,γ ,

instead of one query for eachp ∈ P and γ ∈ Γ. Because the
standardpoststaralgorithm builds an automaton that is larger than
the input automaton (Lemma 2),Agrow has many fewer states than
those in all theAp,γ put together.

Fig. 7(b) and(c) show theAgrow andApop automata for a simple
WPDS constructed over the minpath semiring (Defn. 8).

The idea behind our approach is to useApop to simulate the
first phase where the PDS pops off stack symbols. With reference
to Fig. 6, the transducer consumesγ1 · · · γk from the input tape.
When the transducer (non-deterministically) decides to switch over
to the growth phase, and is in statepk in Apop with γk+1 being
the next symbol in the input, it passes control toApk,γk+1

to start
generating the outputu1 · · ·uj . Then it moves into an accept phase
where it copies the untouched part of the input stack (γk+2 · · · γn)
to the output.

This can be optimized by avoiding a separate copy ofAp,γ for
eachγ. LetAp be the same asAgrow, but with final states restricted
to {qp,γ | γ ∈ Γ}, and unreachable states appropriately pruned
(see Fig. 7(d) and (e)). The transducer we construct will non-
deterministically guess the stack symbolγ from which the growth
phase starts, pass control toAp, and then verify that the guess was
correct when it reaches the final stateqp,γ in Ap. As a result, we
just need|P | copies ofAgrow.

Note thatApop is a forward-weighted automaton, whereasAgrow

is a backward-weighted automaton. Therefore, when we mix them
together to build a transducer, we must allow it to switch directions
for computing the weight of a path. This seems necessary, because
going back to Fig. 6, a PDS rule sequence consumes the input
configuration from left to right (in the pop phase), but produces the
output stack configurationu from right to left (as it pushes symbols
on the stack). Because we need the transducer to outputu1 · · · uj

from left to right, we need to switch directions for computing the
weight of a path. For this, we definepartitionedtransducers.

DEFINITION 12. A partitioned weighted finite-state transducerτ
is a tuple(Q, {Qi}

2
i=1,S , Σi, Σo, λ, I, F ) whereQ is a finite set

of states,{Q1, Q2} is a partition of Q, S = (D,⊕,⊗, 0, 1) is
a bounded idempotent semiring,Σi and Σo are input and output
alphabets,λ ⊆ Q×D×(Σi∪{ε})×(Σo∪{ε})×Q is the transition
relation, I ⊆ Q1 is the set of initial states, andF ⊆ Q2 is the set
of final states. We impose a restriction on the transitions crossing
the state partition: if(q, w, a, b, q′) ∈ λ andq ∈ Ql, q

′ ∈ Qk and
l 6= k, thenl = 1, k = 2 and w = 1. Given a stateq ∈ I , we
say that the transducer can accept a stringσi ∈ Σ∗

i with output
σo ∈ Σ∗

o if there is a path from stateq to a final state that takes
inputσi and outputsσo.

Computing the weight of a path requires more care. For a path
η that goes through statesq1, · · · , qm, such that the weight of the
ith transition iswi, and all statesqi are in Qj for somej, then
the weight of this pathv(η) is w1 ⊗ w2 ⊗ · · · ⊗ wm if j = 1 and
wm⊗wm−1⊗· · ·⊗w1 if j = 2, i.e., the state partition determines
the direction in which we perform extend. For a pathη that crosses
partitions, i.e.,η = η1η2 such that eachηj is a path entirely inside
Qj , thenv(η) = v(η1) ⊗ v(η2).

In this paper, we refer to partitioned weighted transducersas
weighted transducers, or simply transducers when there is no pos-
sibility of confusion. Note that when the extend operator iscom-
mutative, as in the case of the Boolean semiring used for encoding
PDSs as WPDSs, the partitioning is unnecessary.

Let St(A) denote the set of states of an automatonA. Because
each ofApop andAp haveP as a subset of their set of states, we
distinguish them by referring to a stateq ∈ St(Apop) by qpop and
q ∈ St(Ap) by qp.

Given a WPDSW, we construct the desired weighted trans-
ducerτW using the steps given below.τW has states{qi, qf} ∪



(a)

〈p1, a〉 →֒ 〈p1, a b〉 1
〈p1, a〉 →֒ 〈p2, b〉 1
〈p2, b〉 →֒ 〈p2, ε〉 1
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Figure 7. Weighted transducer construction:(a) A simple WPDS with the minpath semiring.(b) TheAgrow automaton. Edges are labeled
with their stack symbol and weight.(c) TheApop automaton.(d) TheAp1

automaton obtained fromAgrow. (e) TheAp2
automaton obtained

fromAgrow. The unnamed state in(c) and(d) is an extra state added by thepoststaralgorithm used in Lemma 4.(f) The weighted transducer.
The boxes represent “copies” ofApop, Ap1

andAp2
as required by steps2 and3 of the construction. The transducer paths that accept input

(p1 a) and output(p2 bn), for n ≥ 2, with weightn are highlighted in bold.

St(Apop) ∪ (
S

p∈P St(Ap)), input alphabetP ∪ Γ, output alpha-
bet P ∪ Γ, weight domain the same asW, initial stateqi, and
final stateqf . Its state partition isQ1 = {qi} ∪ St(Apop) and
Q2 = {qf} ∪ (

S

p∈P St(Ap)). The part of the transducer con-
tained inQ1 simulates the pop phase, and the part contained inQ2

simulates the growth phase, including the part where the untouched
part of the stack is copied to the output tape. Transitions toτW are
added as follows (an example is given in Fig. 7):

1. For each statep ∈ P , add the transition(qi, p/ε, ppop) with
weight1 to τW .

2. For each transition(p1
pop, γ, p2

pop) with weightw in Apop add the
transition(p1

pop, (γ/ε), p2
pop) with the same weight toτW , i.e.,

copy overApop.

3. For each transition(qp, γ′, q′p) in each automatonAp add the
transition (qp, (ε/γ′), q′p) with the same weight toτW , i.e.,
copy over each of theAp.

4. For eachq, q′ ∈ P , add the transition(qpop, (ε/q′), q′p) with
weight1 to τW . This transition permits a switch from the pop
phase to the growth phase. At this point, we just know that the
growth phase begins in stateq and ends in stateq′. This step
guesses the stack symbol from which the growth phase starts.
The next step verifies that our guess was correct.

5. For each final stateqp,γ ∈ St(Ap), add the transition
(qp,γ , (γ/ε), qf ) with weight 1 to τW . This transition verifies
thatγ was on the input tape, and we just completed the growth
phase starting fromγ.

6. For eachp, q ∈ P , add the transition(qp, (ε/ε), qf ) with
weight 1 to τW . This transition allows us to skip the growth
phase by going directly to the final state.

7. For eachγ ∈ Γ, add the transition(qf , (γ/γ), qf ) with weight
1 to τW . This part of the transducer copies over the untouched
part of the input tape to the output tape.

THEOREM2. When the transducerτW , as constructed above, is
given input(p u), p ∈ P, u ∈ Γ∗, then the combine over the
values of all paths inτW that output the string(p′ u′) is pre-
cisely MOP({〈p, u〉}, {〈p′, u′〉}). Moreover, this transducer can
be constructed in timeOs(|P ||∆|(|P ||Γ| + |∆|)H), has at most
|P |2|Γ| + |P ||∆| states and at most|P |2|∆|2 transitions.

Usually the WPDSs used for modeling programs have|P | = 1
and |Γ| < |∆|. In that case, constructing a transducer has similar
complexity and size as running a singlepoststarquery. A proof of
Thm. 2 is given in App. A.

6. Composing Weighted Transducers
Composition of unweighted transducers is straightforward, but this
is not the case with weighted transducers. The requirement here
is to take two weighted transducers and create another one whose
(weighted) language is a relational composition of the (weighted)
language of the two transducers (see Lemma 1 and Defn. 9). In
particular, the composition is to be performed by extend (⊗) which
is the requirement that presents difficulties.

We begin with a slightly simpler problem on weighted au-
tomata. The machinery that we develop for this problem will be
used for composing weighted transducers.

6.1 The Sequential Product of Two Weighted Automata

Given forward-weighted automataA1 andA2, we wish to con-
struct another weighted automatonA3 such that for any configura-
tion c,A3(c) = A1(c)⊗A2(c). Assume that configurations consist
of just the stack (and|P | = 1, which fixes the starting states of the
automata). This is a special case of transducer composition: when
a transducer only has transitions of the form(γ/γ), it is essentially
an automaton, and composition of such transducers reduces to the
above problem. For the Boolean weight domain, this reduces to un-
weighted automaton intersection (with words accepted withweight
0 being considered as words not accepted by the automaton).

Because the extend operation intuitively corresponds to con-
catenation of paths, a first attempt at solving this problem is to con-
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Figure 8. Forward-weighted automata. Their final states areq1, q2

and(q1, q2), respectively.

catenate the two automata by connecting the final states ofA1 to
the initial state ofA2 via an epsilon transition with weight1. How-
ever, this concatenated structure is not satisfactory if interpreted
as an automaton: reading off the desired weight for configuration
c requires quantification over all paths that accept the word(cc).
For a (regular) set of configurationsC, one would need quantifica-
tion over the language{(cc) | c ∈ C}. This language is not even
context-free. We overcome this by transferring some of the com-
plexity into the weights, and retaining the regular structure of the
automaton.

To take the sequential product of weighted automata, we start
with the algorithm for intersecting unweighted automata (see§3).
This is done by matching corresponding transitions in the two au-
tomata to produce a transition in the new automaton. We wouldlike
to do the same with weighted transitions. For this, given weights of
the matching transitions, we want to compute a weight to put on the
transition in the new automaton. Consider the automata shown in
Fig. 8. IntersectingA1 andA2 without weights producesA3 (ig-
nore the weights for now). The weight with which we wantA3 to
accept(a b) isA1(a b) ⊗A2(a b) = w1 ⊗ w2 ⊗ w4 ⊗ w5.

One way of achieving this is to pair the weights while inter-
secting (as shown forA3 in Fig. 8). Matching the transitions with
weightsw1 and w4 produces a transition with weight(w1, w4).
For reading off weights, we need to define operations on paired
weights. Define extend on pairs (⊗p) to be componentwise extend
(⊗). ThenA3(a b) = (w1, w4) ⊗p (w2, w5) = (w1 ⊗ w2, w4 ⊗
w5). Then by taking an extend of the two components, we get the
desired answer. Essentially, the paired weights keep trackof the
weight from the first automaton in the first component, and the
weight from the second automaton in the second component. Tak-
ing extend of the components in the paired weight of a path, pro-
duces the desired result for the (ordinary) weight of the path.

Because the number of accepting paths in an automaton may
be infinite, one also needs a combine (⊕p) on paired weights.
Defining it componentwise is not precise. For example, ifC =
{c1, c2} is a set that contains two configurations, then we want the
value ofA3(C) to be(A1(c1) ⊗ A2(c1)) ⊕ (A1(c2) ⊗ A2(c2)).
However, using componentwise combine, we would getA3(C) =
A3(c1)⊕pA3(c2) = (A1(c1)⊕A1(c2),A2(c1)⊕A2(c2)) and the
extend of the components gives four terms(A1(c1) ⊗ A2(c1)) ⊕
(A1(c2)⊗A2(c2))⊕ (A1(c1)⊗A2(c2))⊕ (A1(c2)⊗A2(c1)),
which includes cross terms likeA1(c1)⊗A2(c2). (Componentwise
combine does give a safe approximation.)

We now show that, under certain circumstances, it is possible to
use a different weight domain instead of weight-pairs, to precisely
compute the desired value for the sequential product of weighted
automata. The following defines the required weight domain.

DEFINITION 13. Thenth sequentializable tensor product(n-STP)
of a weight domainS = (D,⊕,⊗, 0, 1) is defined as another
weight domainSt = (Dt,⊕t,⊗t, 0t, 1t) with operations⊙ :
Dn → Dt (called the tensor operation) and DeTensor: Dt → D
such that for allwj , w

′
j ∈ D andt1, t2 ∈ Dt,

1. ⊙(w1, w2, · · · , wn)⊗t⊙(w′
1, w

′
2, · · · , w′

n) = ⊙(w1⊗w′
1, w2⊗

w′
2, · · · , wn ⊗ w′

n)
2. DeTensor(⊙(w1, w2, · · · , wn)) = (w1 ⊗w2 ⊗ · · · ⊗wn) and
3. DeTensor(t1 ⊕t t2) = DeTensor(t1) ⊕ DeTensor(t2).

Whenn = 2, we write the tensor operator as an infix operator.
Note that because of the first condition in the above definition,
1t = ⊙(1, · · · , 1) and 0t = ⊙(0, · · · , 0). Intuitively, one may
think of the tensor product ofi weights as a kind of generalized
i-tuple of those weights. The first condition above implies that
extend of weight-tuples must be carried out componentwise.The
DeTensoroperation is the “read-out” operation that puts together
the weight-tuple by taking their extend. The third condition is
the key. It distinguishes the tensor product from a simple tupling
operation. It enforces that theDeTensoroperation distribute over
the combine of the tensored domain. A componentwise combine
on tuples does not satisfy this condition.

If a 2-STP exists for a weight domain, then we can take the
product of weighted automata for that domain: ifA1 andA2 are
the two input automata, then for each transition(p1, γ, q1) with
weight w1 in A1, and transition(p2, γ, q2) with weight w2, add
the transition((p1, p2), γ, (q1, q2)) with weight (w1 ⊙ w2). Then
the value ofA3(c) for a configurationc, or the valueA3(C) for a
set of configurations can be computed as before, but then followed
by theDeTensoroperation.

The proof follows from the definitions. LetaccPath(Ai, σu, w)
be a predicate that denotes thatσu is a path inAi from its initial
state to a final state that accepts the wordu, andw is the weight of
the path (computed by performing extends of weights on transitions
in the path, in order). The way the automata-intersection algorithm
is carried out, we know that paths that accept a wordu in A3 are in
one-to-one correspondence with paths that acceptu inA1 and paths
that acceptu in A2. If σi

u is an accepting path foru in Ai (i = 1, 2),
then we can uniquely determine an accepting path〈σ1

u, σ2
u〉 for u

in A3, and vice versa. These properties can be used to prove that
if accPath(A3, 〈σ

1
u, σ2

u〉, w) holds, thenw = w1 ⊙ w2 such that
accPath(Ai, σ

i
u, wi) hold for i = 1, 2. This gives us:

DeTensor(A3(C))
= DeTensor(⊕t{w | accPath(A3, σc, w), c ∈ C})
= ⊕{DeTensor(w) | accPath(A3, σc, w), c ∈ C}
= ⊕{DeTensor(w1 ⊙ w2) | accPath(Ai, σ

i
c, wi), c ∈ C,

i = 1, 2, σc = 〈σ1
c , σ2

c 〉}
= ⊕{w1 ⊗ w2 | accPath(Ai, σ

i
c, wi), c ∈ C, i = 1, 2}

= ⊕{A1(c) ⊗A2(c) | c ∈ C}
With the application of theDeTensoroperation at the end,A3

behaves like the desired automaton for the product ofA1 andA2.
A similar construction and proof hold for taking the productof n
automata at the same time, when ann-STP exists.

Before generalizing to composition of transducers, we showthat
n-STP exists, for alln, for the weight domains presented in this
paper (§4.1 and§4.2).

6.2 Sequentializable Tensor Product

Let S = (D,⊕,⊗, 0, 1) whose STP we wish to construct. The
first thing to note is that if the extend operation is commutative
(in this case, we sayS is commutative),S is its own STP for
all n. The tensor operation can be defined as the extend of all
its arguments, andDeTensoroperation as identity. This result is
somewhat expected: the difficulty in taking the sequential product
of weighted automataA1 andA2 is that while the input word (or
configuration) is read synchronously by them, their weightshave to
be read off in sequence (firstA1(c), thenA2(c))). When extend is
commutative, the weights can be read off synchronously as well.
In this case, when weighted transitions are matched during the
intersection operation, the weight on the new transition can be the
extend of the weights on the matching transitions.

Recall that PDSs are the special case of WPDSs with the
Boolean weight domain. The above result shows that our algo-
rithm for WPDSs, when dealing with the Boolean weight domain,
reduces exactly to the one we gave for PDSs (§3).



For commutative domains, it is easy to construct their STP,
but they are not very useful for encoding abstractions for CBA.
Under a commutative extend, interference from other threads can
have no effect on the execution of a thread. This is unreasonable
to assume for models of programs (i.e., for CBA). However, such
domains still play an important role in constructing STPs. We show
that STPs can be constructed formatrix domainsbuilt on top of a
commutative domain.

DEFINITION 14. LetSc = (Dc,⊕c,⊗c, 0c, 1c) be a commutative
weight domain. Then amatrix weight domainonSc of ordern is
a weight domainS = (D,⊕,⊗, 0, 1) such thatD is the set of all
matrices of sizen × n with elements fromDc; ⊕ on matrices is
element-wise⊕c; ⊗ of matrices is matrix multiplication;0 is the
matrix in which all elements are0c; 1 is the identity matrix (1c on
the primary diagonal and0c everywhere else).

The reader can verify thatS , as defined above, is indeed a
bounded idempotent semiring (even ifSc is not commutative). Let
B be the Boolean weight domain with elements1B and0B. The re-
lational weight domain (Defn. 7) on a setG = {g1, g2, · · · , g|G|},
is a matrix weight domain onB of order|G|: a binary relation onG
can be represented as a matrix such that the(i, j) entry of the matrix
is1B if and only if (gi, gj) is in the relation. Relational composition
then corresponds to matrix multiplication. Similarly, therelational
weight domain on(G,Sc) (Defn. 10) is a matrix weight domain on
Sc of order|G|, providedSc is commutative.

The advantage of looking at weights as matrices is that it gives
us essential structure to manipulate for constructing the STP. We
need the following operation on matrices: theKronecker product
[44] of two matricesA andB, of sizesn1×n2 andn3×n4, respec-
tively, is a matrixC of size(n1 n3)× (n2 n4) such thatC(i, j) =
A(i div n3, j div n4) ⊗ B(i mod n3, j mod n4), where matrix
indices start from zero. It is much easier to understand thisdefini-
tion pictorially (writingA(i, j) asaij ):

C =

0

B

@

a11B · · · a1n2
B

...
. . .

...
an11B · · · an1n2

B

1

C

A

The Kronecker product is an associative operation, and also
written as the tensor product⊙. Moreover, it is well known that
for matricesA, B, C, D with elements that have commutative mul-
tiplication,(A ⊙ B) ⊗ (C ⊙ D) = (A ⊗ C) ⊙ (B ⊗ D).

Note that the Kronecker product has all pairwise products ofele-
ments from the original matrices. One can come up withprojection
matricespi (with just1 and0 entries) such thatpi ⊗m⊗pj selects
the (i, j) entry of m (zeros out other entries). Using these matri-
ces in conjunction withpermutationmatrices, one can compute the
product of two matrices from their Kronecker product: thereare
fixed matricesei, ej and an expressionθm =

L

i,j(ei ⊗ m ⊗ ej),
such thatθm1⊙m2

= m1 ⊗ m2. This can be generalized to mul-
tiple matrices to get an expressionθm of the same form as above,
such thatθm1⊙···⊙mn = m1 ⊗· · ·⊗mn. The advantage of having
an expression of this form is thatθm1⊕m2

= θm1
⊕ θm2

(because
matrix multiplication distributes over their addition, orcombine).

THEOREM 3. A n-STP exists on matrix domains for alln. If S is
a matrix domain of orderr, then itsn-STP is a matrix domain
of order rn with the following operations: the tensor product of
weights is defined as their Kronecker product, and the DeTensor
operation is defined asλm.θm.

The necessary properties for the tensor operation follow from
those for Kronecker product (this is where we need commutativ-
ity of the underlying semiring) and the expressionθm. This also
implies that the tensor operation is associative and one canbuild

weights in thenth STP from a weight in the(n− 1)th STP and the
original matrix weight domain by taking the Kronecker product.
This, in turn, implies that the sequential product ofn automata can
be built from that of the first(n− 1) automata and the last automa-
ton. The same holds for composingn transducers. Therefore, the
context-bound can be increased incrementally, and the transducer
constructed for(⇒c

1)
k can be used to construct one for(⇒c

1)
k+1.

The weight domain for ARA (§4.2.1) is not quite a matrix
weight domain, but it is similar. The weights are matrices over
integers, which have a commutative multiplication. Extendis ele-
mentwise matrix multiplication and combine is elementwisematrix
addition. Therefore, defining the tensor andDeTensoroperations
as for matrix domains (but elementwise), we obtain most of the
desired properties. However, just as for interprocedural ARA one
needed to prove two properties to show that combine and extend
can be carried out on the basis instead of the whole vector space,
one needs to prove the same for tensor andDeTensor: for weights
w1, w2,

β(w1 ⊙ w2) = β(β(w1) ⊙ β(w2))
β(DeTensor(w1)) = β(DeTensor(β(w1)))

These properties follow quite trivially from the linearityof
Kronecker product and theDeTensoroperator (both distribute over
addition).

6.3 Composing Transducers

If our weighted transducers were unidirectional (completely for-
wards or completely backwards) then composing them would be
the same as taking the product of weighted automata: the weights
on matching transitions would get tensored together. However, our
transducers are partitioned, and have both a forwards component
and a backwards component. To handle the partitioning, we need
two more operations on weights.

DEFINITION 15. Let S = (D,⊕,⊗, 0, 1) be a weight domain.
Then atransposeoperation on this domain is defined as(.)T :
D → D such that for allw1, w2 ∈ D, wT

1 ⊗ wT
2 = (w2 ⊗

w1)
T and it is its self inverse:(wT

1 )T = w1. A n transpos-
able STP(TSTP) onS is defined as ann-STP along with an-
other de-tensor operation: TDeTensor: Dn → D such that
TDeTensor(⊙(w1, w2, · · · , wn)) = w1⊗wT

2 ⊗w3⊗wT
4 ⊗· · ·w′

n,
wherew′

n = wn if n is odd andwT
n if n is even.

TSTPs always exist for matrix domains: the transpose operation
is just the matrix-transpose operation, and theTDeTensoroperation
can be defined using an expression similar to that forDeTensor. We
can use TSTPs to remove the partitioning. Letτ be a partitioned
weighted transducer onS , for which a transpose exists, as well as
a 2-TSTP. The partitioning on the states ofτ naturally defines a
partitioning on its transitions as well (a transition is said to belong
to the partition of its source state). Replace weightsw1 in the first
(forwards) partition with(w1 ⊙ 1), and weightsw2 in the second
(backwards) partition with(1 ⊙ wT

2 ). This gives a completely
forwards transducerτ ′ (without any partitioning). The invariant
is that for any sets of configurationsS andT , τ (S,T ), which is
the combine over all weights with which the transducer accepts
(s, t), s ∈ S, t ∈ T , equalsTDeTensor(τ ′(S, T )).

This can be extended to compose partitioned weighted trans-
ducers. Composingn transducers requires a2n-TSTP. First, each
transducer is converted to a non-partitioned one over the2-TSTP
domain. Then input/output labels are matched just as for un-
weighted transducers, and the weights are tensored together, just as
for the sequential product of automata.



THEOREM 4. Given n weighted transducersτ1, · · · , τn on a
weight domain with2n-TSTP, the above construction produces
a weighted transducerτ such that for any sets of configurationsS
andT , TDeTensor(τ (S,T )) = R(S,T ), whereR is the weighted
composition ofL(τ1), · · · ,L(τn).

7. Implementability of CBA
This paper develops novel machinery that shows how precise CBA
can be carried out for various abstractions, including infinite-state
abstractions. Our algorithms may have practical value, as well. The
QR algorithm requires an explicit fan-out proportional to|G| for
each context switch, which can be very large. To some extent,this
huge complexity is unavoidable, as shown by the following result
(a proof is in App. A).

THEOREM 5. The language{〈M, 0k, c1, c2〉 | M is a set of
PDSs with shared state,c1 and c2 are configurations ofM , and
c1(⇒

c
1)

k+1c2} is NP-complete.

However, the analysis of sequential Boolean programs is also
NP-complete (in the size of the Boolean program; the above re-
sult is in terms of the size of the PDS) but tools [4, 17, 42] are
able to handle them efficiently, essentially, by using BDDs to en-
code weights (or binary relations). The fan-out operation of the QR
algorithm requires explicit enumeration of global states,which de-
stroys sharing inside BDDs. Our algorithm, based on transducers,
requires no fan-out, and BDD-encoded valuations never needto be
enumerated.

We used matrix domains only to prove the existence of STPs.
Weights need not be represented using matrices. If binary relations
are represented using BDDs, then taking their tensor product re-
duces to concatenating them (and doubling the number of BDD
variables), which is a linear-time operation. Composingn trans-
ducers would produce BDDs withn times the variables (a linear
increase). The disadvantage of our algorithm is that the transducers
we create have|Γ| number of states (whereΓ is the set of program
control locations) and, consequently, the final transducermay have
|Γ|k number of states. However, considering the fact that solving
CBA just requires one query on this large transducer, we can use
techniques such as building it lazily [26] or exploiting thesym-
metric structure of compositions (the same transducer is composed
each time). We plan to explore these issues in future work. More-
over, different abstractions can be used for increasing theprecision
of CBA.

8. Related Work
Some of the related work has already been covered in§1 and§2. In
this section we discuss some of the more technically relatedwork.

A CBA of bounded-heap-manipulating Boolean programs is
given in [7]. It encodes such Boolean programs using PDSs, and
then uses the QR algorithm. Reachability analysis of concurrent
recursive programs has also been considered in [6, 11, 34]. These
works tackle the problem by computing overapproximations of the
execution paths of the program, whereas here we compute under-
approximations (bounded context) of the reachable configurations.
Analysis under restricted communication policies (in contrast to
shared memory) has also been considered [8, 19].

Constructing transducers.As mentioned in the introduction, a
transducer construction for solving reachability in PDSs was given
earlier by Caucal [10]. However, the construction was givenfor
prefix-rewriting systems in general and is not accompanied by a
complexity result, except for the fact that it runs in polynomial
time. Our construction for PDSs, obtained as a special case of the
construction given in§5, is quite efficient. The technique, however,
seems to be related. Caucal constructed the transducer by exploiting

the fact that the language of the transducer is a union of the relations
(pre∗(〈p, γ〉),post∗(〈p, γ〉)) for all p ∈ P andγ ∈ Γ, with an
identity relation appended onto them to accept the untouched part
of the stack. This is similar to our decomposition of PDS paths
(see Fig. 6). Construction of a transducer for WPDSs has not been
considered before. This was crucial for developing an algorithm for
a general CBA.

The pop-function used in§5 represents summary information
about paths, and is similar to the use of composed transformer
functions from [12], summary functions from [43], summary edges
from [39], and summary micro-functions from [41]. In all of these
cases, information is tabulated that summarizes the net effect of
following all possible paths from certain kinds of sources to certain
kinds of targets. The path information is pre-computed and added
to a structure that is used for answering queries.

One difference between our work and the afore mentioned work
is that in all of the latter the paths summarized are same-level valid
paths (paths in which pushes and pops match as in a language of
balanced parentheses), whereas thepop-function summarizes paths
that result in the net loss of a stack symbol. In this respect,thepop-
function is more like the “unbalanced-by-1” summarizationinfor-
mation used in the simulation technique for testing membership
of a string in the language accepted by a 2NDPDA (2-way non-
deterministic PDA) [1]. Note that the “unbalanced-by-1” nature of
thepop-function is what makes it useful in an automaton construc-
tion (i.e., the popped symbol corresponds to a letter consumed by
the automaton).

Composing transducers. There is a large body of work
on weighted automata and weighted transducers in the speech-
recognition community [26, 27]. However, the weights in their
applications usually satisfy many more properties than those of a
semiring, including the existence of an inverse and commutativity
of extend. We refrain from making such assumptions.

The sequential product of weighted automata on semirings was
also considered in [23]. However, it was presented for the special
case of taking one product of a forwards automaton with a back-
wards one. It cannot take the product of three or more automata.
The techniques in this paper are for taking the product any number
of times (provided STPs exist).
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A. Proofs
Lemma 3.A formal proof for this lemma would follow from a char-
acterization of the rule sequences that each automaton transition
represents, based on theabstract grammarformulation ofprestar
[40]. We give a slightly informal, but intuitive, proof here. We use
the fact that the saturation-based implementation ofprestaris cor-
rect [40].

The lemma runsprestaron the empty automaton (which rep-
resents the configuration setC = {〈p, ε〉 | p ∈ P}). Let β be a
stack symbol not inΓ, andAp

β be an automaton with two states
{p, q}, q 6∈ P and a single transition(p, β, q). Let q be the final
state of this automaton. Becauseβ 6∈ Γ, runningprestaronAp

β will
return the same automaton as the one returned by runningprestar
on the empty automaton, except for the extra transition(p, β, q)
(because no rule can matchβ). Ap

β represents the configuration
set{〈p, β〉}, and therefore,Ap

β(〈p′, γ β〉) = pop(p′, γ, p) accord-
ing to the definition ofpop. However,Ap

β(〈p′, γ β〉) is exactly the
weight on the transition(p′, γ, p) because the only path inAp

β that
accepts(γ β) starting in statep′ is the one that follows transitions
(p′, γ, p) and(p, β, q). The results follows by repeating the argu-
ment for allp ∈ P .

Lemma 4.The proof is similar to the one given for Lemma 3. Let
β 6∈ Γ be a new stack symbol. LetAp,γ

β be the automatonA with
an extra stateqf and an extra transition(qp,γ , β, qf ). Let qf be
the final state of this automaton.Ap,γ

β represents the configuration
set{〈p, γ β〉}. The automaton returned bypoststar(Ap,γ

β ) would
then represent the configuration setgrow(p, γ) with β appended at
the end of the stack. The proof follows from the fact that running
poststaron Ap,γ

β is the same as running it onA (for all p andγ)
with the exception of the extraβ-transition.



〈p, γ1γ2 · · · γn〉 ⇒∗ 〈p1, γ2 · · · γn〉 w1

⇒∗ 〈p2, γ3 · · · γn〉 w2

⇒∗ · · ·
⇒∗ 〈pk, γk+1 · · · γn〉 wk

⇒∗ 〈pk+1, uγk+2 · · · γn〉 wk+1

Figure 9. A path in the PDS’s transition relation with correspond-
ing weights of each step.

Theorem 2.The proof is based on the observation made in Fig. 6.
Suppose we have a path in the PDS transition relation from
〈p, γ1γ2 · · · γn〉 to 〈pk+1, uγk+2 · · · γn〉 that can be broken down
as shown in Fig. 9.

Then in the transducer, we can take the path starting
at qi that first takes the transition(qi, (p/ε), ppop) (Step
1 of the construction) and moves into statep of Apop.
Then it successively takes the transitions(p1, (γ2/ε), p2),
(p2, (γ3/ε), p3), · · · , (pk−1, (γk/ε), pk) (Step 2), all the time
staying insideApop. If the weight of theith such transition is
wi, then wi ⊑ wi (where a ⊑ b iff a ⊕ b = a). This fol-
lows from Lemma 3. Next, the transducer can take transition
(pk, (ε/pk+1), pk+1) (Step4) and move intoApk

. Then it can
take a path that outputsu and move into stateqpk,γk+1

. There is
one such path becauseApk

can acceptu starting in statepk+1

(representing the configuration〈pk+1, u〉) when the final state is
qpk,γk+1

(Lemma 4). Moreover, the combine of weights of all such
paths in the transducer is⊑ wk+1. After this, the transducer can
take transition(qpk+1,γk+1

, (γk+1/ε), qf ) (Step5) and copy the
stack(γk+2 · · · γn) on to the output tape in the final stateqf (Step
7). The path we just described took input(p γ1γ2 · · · γn) and out-
put (pk+1 uγk+2 · · · γn) as required, and the combine of weights
of all such paths is⊑ the weight of the path shown in Fig. 9
(w1 ⊗ w2 ⊗ · · · ⊗ wk+1). Note that there is a corresponding path
in the transducer (that uses transitions inserted in Step6) when the
path shown in Fig. 9 has no growth phase.

To argue the other direction, the reasoning is similar. A path in
the transducer must start in stateqi, then move intoApop, then into
Ap (for somep ∈ P ) and then move to stateqf . Keeping track of
the input and output required for this path, we can build the WPDS
path as in Fig. 9. Using Lemmas 3 and 4, the weight of such a path
in the transducer would be⊒ the combine of weights of all paths
between the configurations in the PDS’s transition relation.

Theorem 5.[SKETCH] The proof follows from two earlier pieces of
work. Ramalingam [38] showed that reachability in multi-threaded
programs with synchronization primitives is undecidable by giv-
ing a reduction from the Post’s correspondence problem (PCP)
[35]. We also know that bounded-PCP is NP-complete [15, Prob-
lem SR11]. It is easy to see that shared memory with a bounded
number of context switches can simulate a similar number of syn-
chronization steps. Thus, Ramalingam’s reduction can be used to
give a reduction from bounded-PCP to CBMC.

B. Local Variables
Local variables pose a complication for WPDSs. An extensionof
WPDSs to handle abstractions with local variables (for sequential
programs) is given in [25]. We will only summarize the essential
details of that paper here. Also, because it is hard to characterize
abstractions with local variables using matrix domains, weonly
focus on CBA of Boolean programs (with variations such as finding
the shortest trace) and affine programs.

B.1 Boolean Programs

Sequential analysis

For encoding Boolean programs with local variables, assume, with-
out loss of generality, that each procedure has the same number of
local variables. LetG be the set of valuations of the global variables
andL be the set of valuations of local variables. Weights, abstract-
ing program statements, are now binary relations onG × L. The
weight domain is a relational weight domain on the setG × L but
with an extramergefunction defined on weights. Because different
weights can talk about local variables from different procedures,
one cannot take relational composition of weights from different
procedures. Themergefunction is used to change the scope of a
weight. It existentially quantifies out the current transformation on
local variables and replaces it with an identity relation. Formally, it
can be defined as follows:

merge(w) = {(g1, l1, g2, l1) | (g1, l1, g2, l2) ∈ w}

Once the summary of a procedure is calculated as a weightw
involving local variables of the procedure, themergefunction is
applied to it, and the resultmerge(w) is passed to the callers of that
procedure. This makes sure that local variables of one procedure
do not interfere with those of another procedure. The property
required ofmerge is that it should distribute over combine, i.e.,
merge(w1 ⊕w2) = merge(w1)⊕ merge(w2). More details can be
found in [25].

For encoding Boolean programs with other abstractions, such as
finding the shortest trace, one can use the relational weightdomain
on (G × L,S), whereS is a weight domain such as the minpath
semiring (transparent to the presence or absence of local variables).
Themergefunction on weights from this domain can be defined as
follows:

merge(w) = λ(g1, l1, g2, l2). if (l1 6= l2) then0S

else
L

l∈L w(g1, l1, g2, l)

Context-Bounded Analysis

For CBA, the two main steps are transducer construction and their
composition. The transducer construction does not change,except
for the fact that theprestar query (Lemma 3) and thepoststar
query (Lemma 4) are carried out using the algorithms from [25].
Transducer composition requires more care.

First, reconsider the composition algorithm from§6. To com-
pose transducersτ1 andτ2, one carries out the following: the tran-
sition (q1, γ1/γ2, q2) with weightw1 in τ1 is matched with transi-
tion (q′1, γ2/γ3, q

′
2) with weightw2 in τ2 to produce the transition

((q1, q
′
1), γ1/γ3, (q2, q

′
2)) with weightw1 ⊙ w2. The tensor oper-

ation on binary relations on a setG results in a binary relation on
the setG × G as follows:

w1 ⊙ w2 = {((g1, g3), (g2, g4)) | (g1, g2) ∈ w1, (g3, g4) ∈ w2}

If the values of local variables were encoded in the stack sym-
bols (as for PDSs), then the matching of the stack symbolγ2 in
the two transitions essentially matches the local-variable valuation
from τ1 with that fromτ2 and quantifies it out (γ2 does not appear
on the transition produced for the composed transducer).

When local variables are encoded in the weights, the tensor
operation is changed as follows:

w1 ⊙ w2 =
{((g1, l1, g3, l4), (g2, l1, g4, l4)) | (g1, l1, g2, l2) ∈ w1,

(g3, l3, g4, l4) ∈ w2,
l2 = l3}



The third conditionl2 = l3 performs matching on the local
variables, which are then quantified out, and replaced with an
identity transformation on the local variables. This can beseen
as extending themergefunction on simple weights to ones in the
tensored domain.

For the relational weight domain on(G × L,S), the tensor
operation is as follows:

w1 ⊙ w2 = λ((g1, l1, g3, l3), (g2, l2, g4, l4)).
if (l1 6= l2 or l3 6= l4) then0S

else
L

l∈L(w1(g1, l1, g2, l) ⊙S w2(g3, l, g4, l4))

B.2 Affine Programs

Context-bounded analysis of affine programs with local variables
follows much on the same line as for Boolean programs. The details
for sequential analysis of such programs can be found in [29].

Sequential Analysis

If an affine program hasn global variables and no local variables,
then the matrices have size(n+1)×(n+1) (as explained in§4.2.1).
Assume, without loss of generality, that each procedure hasl local
variables. Then the matrices have size(n+ l+1)× (n+ l+1). In
such a case, a matrix can be divided into four quadrants, as shown
below, along with their sizes.

I II
(n + 1) × (n + 1) (n + 1) × l

III IV
l × (n + 1) l × l

A matrix encodes a transformation on variables, i.e., a map on
variable valuations. For example, the matrix forx1 := x2+1 would
encode the map that takes the valuationx before the execution of
the statement and maps it tox[x1 7→ x(2) + 1]. The four quadrants
of a matrix describe four pieces of this transformation: thefirst
quadrant encodes the contribution of old values of global variables
to new values of global variables; the second quadrant encodes
the contribution of old globals to new locals; the third quadrant
encodes the contribution of old locals to new globals; and the fourth
quadrant encodes the contribution of old locals to new locals.

Themergefunction should quantify out the local variable map,
and replace it with an identity map. For the quantification, the first,
second, and third quadrants are zeroed out, and the identitymap is
installed by changing the fourth quadrant to the identity matrix. If
M is a set of matrices,merge(M) is defined as the application of
the following operation on all matrices ofM [29]:

m1 m2

m3 m4
7→

m1 0
0 gIl×l

Hereg is the topmost-leftmost element ofm1. It is used to make
the above operation linear (which, in turn, makesmergedistribute
over combine of sets of matrices). The matrixIl×l is the identity
matrix of sizel × l.

Context-Bounded Analysis

As for Boolean programs, themergefunction is incorporated into
the tensor operation:

m1 m2

m3 m4
⊙

m5 m6

m7 m8
=

m1 ⊙ m5 m2 ⊙ m7

0 g1g5Il2×l2

Heregi is the topmost-leftmost element of matrixmi. The main
idea is thatm2 andm7 get stitched together, which corresponds to
putting together the values of local variables before a context switch
to the values after the thread gets control back.


