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Abstract—It is well known that a packet loss in 802.11 can frequently as aggressive data-rate adaptation algorithms (such
happen either due to collision or an insufficiently strong signal. as SampleRate [2]) attempt to operate a wireless link at the
However, discerning the exact cause of a packet loss, once 'thighest rate possible in order to maximize throughput and

occurs, is known to be quite difficult. In this paper we take I t itv. Attributing th t f
a fresh look at this problem of wireless packet loss diagnosis overall system capacity. nbuting the correct cause tor a

for 802.11-based communication and propose a promising tech- Packet loss is important for wireless media, as they trigger
nique called COLLIE. COLLIE performs loss diagnosis by using different choice for link parameters and thus affect the overall
newly designed metrics that examine error patterns within a performance of the wireless link. We call this problem of

physical-layer symbolin order to expose statistical differences gatarmining the cause of a packet loss to collision versus weak
between collision and weak signal based losses. We implement

COLLIE through custom driver-level modifications in Linux and signal, a;loss d!aQ”OS'S . . .

evaluate its performance experimentally. Our results demonstrate ~ L0sSs diagnosis in 802.11 can be challenging since by design,
that it has an accuracy ranging between 60-95% while allowing the receiver provides binary (i.e. whether the packet was
a false positive rate of upto 2%. We also demonstrate the use correctly received or was lost) feedback on the reception
of COLLIE in subsequent link adaptations in both static and properties of a packet. Suppose, for the purposes of our

mobile wireless usage scenarios through measurements on regular . . . . -
laptops and the Netgear SPH101 Voice-over-WiFi phone. In these study, we had a receiver that could provide detailed diagnostic

experiments,COLLIE led to throughput improvements of 20-60% information on the reception properties of a packet. Then,

and reduced retransmission related costs by 40% depending upon could we do better than the current mechanisms used in

the channel conditions. 802.11? More systematically, we pose the following question
in this paper :By analyzing the bit-level error patterns in

|. INTRODUCTION received data and other physical layer metrics (e.g. at the

Carrier-Sense Multiple Access or CSMA which evolvedymbol-level) can we determine the cause of a packet loss

from the slotted-Aloha protocol in the early 1970s, has becorhetween collision and weak signal? Further, can we do this
the de-facto mechanism for implementing distributed accelsgsed on a single (or a few) packet loss(es) in real-time?

to shared communication medium. It is commonly used licati £l di . . h ¢
the Ethernet class of link technologies for both wired (802 pications of loss |agn05|s.D_eter_m|n|ng the cause of &
“packet loss is significant as this dictates the corresponding

and wireless (802.11) media. An important facet to the proper.. : N -
implementation of the CSMA method is being able to deteé’tEtlon to be taken at the link layer — for collisions, the

concurrent access of the media by two or more entities thr.;(msmitting station would perform an exponential backoff,
o y While for weak signal the rate-adaptation algorithm would be
usually leads to a collision.

In the case of a wired Ethernet, transmitting stations comVOKEd' Figure 1 illustrates what must beeally done in

tinue to listen for incoming signals (collisions) and emit thie event of a packet loss. Depending on the specific reason

. . . . ) . - .?or packet loss, different actions should be taken at the link
jamming signal to notify all other stations if a collision is

detected[1]. This provides accurate and timely feedback to tll'?ger' each correqundmg t_o adjusting d|fferen‘t transmission
CSMA protocol which triggers a backoff in order to resolvé arametgr; of the wireless |nterf§ce as follows:
the concurrent access. For wireless media, such detection is Collision: In case of a collision related loss, the Con-
hard to realize due to the fact that the strongest signal (or 9estion Window (CW) parameter should be double as
the closest source), always dominates the receiver circuity. determined by the Binary-Exponential Backoff (BEB)
Thus, a receiver close to the transmitter (or possibly co-located @lgorithm used in 802.11. _
with ity would not be able to receive any other concurrent * Weak signal: For packet loss due to a weak signal, adap-
transmissions thereby being unable to detect collisions. As a fation of data-rate and transmit power parameters must
result 802.11 implements CSMA with Collision Avoidance : ~ b€ performed as dictated by a specific data-rate/power
the receipt of a data packet is confirmed through an explicit adaptation algorithm.
acknowledgement (ack) from the receiver; the lack of which Unfortunately the inability to determine the cause of a
upon timeout gives an indirect indication of a collision. packet loss in real-time, has forced a rather conservative design
A packet loss could also be due to weak signal — th&dr 802.11 — to start with, the cause is ‘blindly’ attributed to
is, the signal at the receiver was insufficient given the datesllision (thereby invoking exponential backoff) for a certain
rate that the packet was modulated at. This can happered number of re-transmission attempts. Further, continued
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obtained from the receiver.

Cause
A. Key Contributions
Event

The following are the major contributions of this work.
Fig. 1. What link parameters to adapt and how depends on the cause for @ Mechanism for diagnosing wireless packet lossedn
packet loss. this paper, we present the first empirical study based on failure
bit patterns of received data for loss diagnosis in 802.11,
failure of the re-transmissions is taken as an indication specifically between collision and a weak signal. The key
weak signal thereby triggering rate-adaptation. For exampf@mponent of our design is theollision InferencingEngine
on experiencing a packet loss the transmitting station double€OLLIE 1. COLLIE immediately determines the cause of a
the CW parameter using the BEB algorithm performs a rgacket lossvithout requiring any additional transmission from
transmission of the packet after appropriate backoffs (given Hye wireless client, but by using explicit feedback from the
the new CW). If a certain number of re-transmissions fail, agceiverCOLLIE performs intelligent analysis on received data
determined by the tunab®hort/Long Retry Coumgarameters, through a combination of various metrics such as bit-level
the station then decides to attribute the cause for packet los@uisl symbol-levelerror patterns and received signal strength.
weak signal, thereby triggering a rate/transmit power changir design consists of two components: (i) algorithms which
by using appropriate rate adaptation algorithms such as Auggparate the cases of collision from weak signal through
rate Fallback (ARF) [3] or SampleRate. empirical analysis; (ii) a protocol which capitalizes on the

Such a biased approach of assuming collision as the defdufigement from the algorithms by aptly adjusting the correct
cause for packet loss works well for the dominant |apt0[ynk-level parameters for 802.11 ('baqkoff. for collision versus
based usage scenarios where a user is static most of ti#qéa-rate for signal). This results in significant throughput and
while using the network. However, such usage patterns af@pacity improvements for high mobility usage scenarios.
increasingly changing [4] [5] as certain emerging class of ® Design of ‘'symbol level' metrics to study wireless
applications such Voice or Video over WiFi allow a user t§0rs: ThroughCOLLIE, we explore new metrics that study
be mobile while communicating with network. This create§'TOr properties at the level of a physical layer symbol.
new scenarios where constant adaptation of link parametEf§ example, in Orthogonal Frequency Division Multiplexing
becomes necessary in order to operate the link at the ‘be§¢FDM) employed by 802.11a/g standards, a symbol refers
setting. In such high mobility usage scenarios, packet losd@sthe collection of bits modulated in single unit of time syn-
are more likely to occur due overly optimistic settings for dathronously across 48 sub-carriers which constitute a channel.
rate/transmit power parameters rather than due to collisiof€ find that error patterns appear differently for collision
Therefore, the biased approach used by 802.11 could in¥gFSus weak signal when isolated to within a single symbol.

severe performance penalties by incorrectly attributing initi¥/e explore the design and realization of these new metrics
packet losses to collision. such as Symbol Error Rate (SER), Error Per Symbol (EPS)

ther in Section Il. We believe that these metrics could
employed in other areas such as when estimating link
dwidth, quality or capacity.

As we move to a diverse class of applications and usa
scenarios for 802.11, it is becoming increasingly importal £

to be able to diagnose the cause of a packet loss at the | . . .
_e Demonstrating applications of COLLIE by enhancing

layer and trigger the correct method of adaptation in real- . tina link adaptati hani ‘Mechani q
time. Attempts to address this problem in an indirect mann&f1StNg ik adaptation mechanisms.viechaniSms propose

have been observed in the design of recent approaches'?oFOLLlE can be used tenhanceexisting link adaptation

rate-adaptation such as RRAA [6]. In RRAA, the statio echanisms, enabling them to differentiate between the losses

does not immediately conclude that a packet loss is due ye to collision and weak signal, and thus make more intelli-

collision or weak signal. In particular, the station performs ag]ent selection of the transmission parameters. We demonstrate

‘RTS test’ to identify whether a certain packet loss was ngis by enhancing the Auto Rate Fallback (ARF) [3] rate adap-

to a hidden terminal, and if so, adaptively enables the Rf%ion mechanism with our collision inferencing component.
’ ’ i - 0,
option to guard against future possibility of collisions from e observed throughput gains ranged from 20-60% based on

%e channel conditions, level of contention, etc.

e In-kernel Implementation: Through custom driver-level
odifications, we implemenCOLLIE on a standard Linux
top platform using an Atheros based wireless card and the

such hidden terminals. (CARA [7] also uses this approach
handle a slightly different problem.) However, the philosoph
employed in RRAA and also mimicked in 802.11 is to condu
active tests or experiments (by retransmitting or sending e
RRTS) to estimate collision probabilities. Being indirect, thes penhal port of the Madwifi driver.

approaches require multiple transmissions and observations.t!)t dls |mpotrtan.t o n(t)rt]e that th? |Sﬁu|e of Itoss kdlagﬁp-h
discern the channel conditions, thereby taking a long time Yo does not anse in the case ol cefiiar NEwWorks whic
e a wide-variety otentralizedtechniques such as Time-

converge to the correct transmission parameters. In contrast, . Code-divisi F divisi ltiplexi
we employ adirect approach; we immediately determine vision, -L-ode-dlvision ‘or Frequency-division multiplexing

the cause of a packet |05_5 W|thOUt_ requiring any add't'o_nallApart from refering to helper dogs for shepherds, COLLIE is an Anglo-
transmissions from the wireless client, but by conductingaxon term for “something very useful.”



(TDMA/CDMA/FDMA) to allow sharing among multiple
users. This avoids the problem of collisions altogether, thus
eliminating the need for any link-level inferencing and at-

tributing any bit-level errors to weak signal (thereby taking (g9 (i)
the correct action). | AP Module| A AP Module

The rest of this paper is organized as follows. First, we Qb e
present a detailed overview @OLLIE, with an emphasis on Sofb"_,-r__f——-—_ﬁ‘__‘
the design choices made and various components involved in qu@/' ;

COLLIE Server
{optional)

the system. In Section I, we identify an appropriate set of

metrics used for loss diagnosis through targeted experiments

designed to understand collisions and a subsequent empirical COLLIE Client

analysis. Based on these metrics, we design a basic collision ( Collision : Link
I

Adaptation

inferencing scheme and evaluate its accuracy through rigorous Inference |
MAC |

experimentation. Further in Section II-B, we propose enhance-
ments to our basic approach using feedback from multiple
APs. In Section Ill, we modify an existing link adaptation
mechanism using theOLLIE framework and evaluate its per-

f th ?] . i . tati d P Fg 2. Design of outCOLLIE system which consists of three modules —
orman_ce roug e_Xpe”men S ‘_JVer various static an mObﬂlll client which implements a majority of the logic, the AP which performs
scenarios. In Section IV we discuss the related work amthimal packet relaying and an optional backend server (for some specific
finally conclude in Section V. multi-AP extensions).

to correctly decode the source MAC address of the packet in
B. An Overview ofCOLLIE error, which is actually quite typical.) Even though it appears

The ideas inCOLLIE are motivated from the collision yvasteful, this unique and somewhat simple, type of feedback,

detection mechanism employed by the Ethernet. An Etherrfdtcombination with the collision inferencing logic at the
station easily detects a collision by comparing the transmitt€#ent. provides surprisingly good performance as shown by
data with the simultaneously received data. We show that, eV €xperiments in section lll.
in 802.11 systems, given a copy of the originally transmitted The collision inferencing algorithm analyzes the data packet
packet and the received error packet, it is possible to maik@t was received in error and makes an educated inference as
an educated inference about the cause of transmission failfftdhe cause of the packet loss. It uses a set of metrics such
based on the error bit-patterns of this single packet. A numigt eceived signal strength (communicated as a part of the
of different metrics are used to discern this cause, the méggdback process), patterns in bit-errors and their distribution,
unique among them are the ones derived out of the constituB@fterns insymbol errorsand their distribution, etc. One
PHY-layer symbols of the packet. Once the cause of a packdresting observation in our work is theymbol-level errors
loss is identified, this information is fed into link adaptatiofVere quite useful in discerning cause of packet losSestion
algorithms (such as transmit power, data rate adaptation ett§tudies this in detail through an empirical analysis.
enabling them to more intelligently select the right set of AP module: As shown in Figure 2, the AP-side imple-
transmission parameters for all subsequent communicationentation ofCOLLIE includes a module, that implements the
Our design (Figure 2) involves three components: a cliefpMmPonent to provide the kind of client feedback described
module which resides on a handheld or a wireless laptop, above (and in further detail in Section I1). Finally, it optionally
AP module which resides on an access point, andgional implements constructs that allow a cent@GOLLIE server to
backendCOLLIE server which implements some additionaiore accurately detgrmmg the cause of a packet loss.
algorithms.COLLIE places most of the optimization logic on COLLIE server (optional): This is an optional component in

the client device, and requires only a minimal support frofUr design. The:QLLIE server _ir_nplements a simple collisi_on
the APs. inferencing algorithm that utilizes feedback from multiple

Client module: The client-sideCOLLIE module resides at 26C€SS points in the network. We show (in Section I1-B) that

the link-layer and interacts with the link adaptation algorithm&€ accuracy of our basic collision detection mechanisms can

It has access to the physical layer and MAC layer paramet&f§ 9reatly improved by using @OLLIE server in additional

and metrics such as signal strength, packet receptions, &cthe above two modules.

Our implementation ofCOLLIE client module was done in

a standard Linux 2.6 kernel that resides within the wireless !l FEEDBACK-BASED COLLISION INFERENCE

driver as a separate kernel module. This module implementsA critical component irCOLLIE is the client side component
logic to discern the cause of a packet loss to either a collisiarhich takes advantage of feedback from the receiver such as
or a weak signal. This process in the client is facilitatedn AP in WLAN (or a peer if in ad-hoc mode) in order to
through specific feedback from the receiver, i.e., the AP, wharfer the cause of a packet loss (weak signal versus collision).
the latter receives a packet in error. In particular, the AP relag®LLIE implements most of the logic on the client device
the entire packet, received in error, back to the client feequiring minimal support from the receivers. We describe
analysis. (Of course, this is only possible if the AP manag&so versions of this inferencing algorithm. (i) A basic version



&71 T2 distance apart. Receiver®; and R, are co-located with

Collision . . . .
Dy W’( respective transmitters. Receiv& was placed in common
{
Capture Effect

4 E range of both transmitters and was modified to capture and
Capture Effect - dR = log all packets received (whether correctly or in error). The

chances of collision is greatly increased by disabling the MAC-
Fig. 3. Experiment setup designed to study various metrics for inferrirlsvel b?'CkOﬁS at bothr’ and T2'. The S'gnal between the
collisions. transmittersTy, 7> and the receiverR was strong enough

. . . - SO as to not cause any bit-level errors due to attenuation.
(S'ngle'AP)’. Wh'.Ch requires m|n|ma! suppgrt from the AP %his was verified through rigorous testing. Both transmitters
which the gl|ent IS assoma_ted to. .Th|s applies to environments, 4 proadcast packets at a fixed data-rate, thus eliminating
where. a single AP prgwdes wireless access to the entirg acknowledgments. All three receivers are opportunistically
estab_l_|shment, such as in .hOtSpOts__ coffee_ shops, apartmeg} thronized usingommontransmissions received thereby
etc. (ii) An_enhan_ced version (Ml_JItl-AP) which builds on to%aintaining a clock skew of less than 18.
of the basic version, by leveraging mput from. two Or MOr€ 14 construct “ground truth,” we determined the actual set of
APs to provide very high accuracy in detecting COIIISIon%ollision events by analyzing the synchronized packet logs at

This approach applies to enterprise WLANs where multlplﬁz]e receivers, the data rates used for the packets, and the packet

APS. belong to the same a_dmmlstratlve domalr_L_As with t_rg:fze information and identifying packets that overlapped in
basic case, APs here also implement a very minimal relaylﬂpn

; : S A ; e.
of information that assists in collision inferencing.

We evaluate our algorithm guantitatively by considering the Given that we know a certain collision occurrgdipbserves
9 4 y by 9 M8he of the following: (1) A packet is received correctly, (2) a

chlszoe\glr\]/\?hé?eﬂ;ﬁrF;rlozzii?g&yocljjft filtieapc%slllitls\i/gi v;htireair::;;e ?Cket 's received in error, and (3) no packet is received, Case
9 bt . LE’loccurs when signal from one of the transmitter dominates the
cause was weak signal, and (ii) the accuracy — that is, t 8 - .

other resulting in a correct reception due to capture effect. Case

number of cases our algorithm identifies as collision ov . . . .
9 S occurs when the respective signals interfere causing one of

the tgtal _numbe_r of cases. Ou_r design of metrics, d.|scus B packets to be received but with errors. Case 3 occurs when
later in this section, allows the link management algorithms [g

specifya certain false positive rate, making the exact accura%({)th the transmissions were perfectly synchronized, which
a function of this rate. This choice is by design, thereh sulted in corruption at the physical-layer header/preamble

é({]d resulting in a complete frame loss.

leaving a significant control to the actual link managemen We performed various runs of this experiment with different
algorithms in the client. However, to provide a sense of théa

strong performance of our algorithms we observe that, give ata-rates and packet sizes of 1400 and 200 bytes representing

a . X
. o . : - long/short packets. The distance between the transmitters was
desired false positive rate of 2%, our basic algorithms achieve ; .

: : t S0 as to sustain a certain data-rate for the broadcast packets.
an accuracy of about 60% on average, while the multi-

) his ensured that no packets were received in errdt due
enhacements achieve an accuracy of 95% on average. :
to weak signal.
A. Basic Approach (Single AP) . Packets in-error due tq Weak.5|gnal were gollec'.[ed using a
: i o ) simple process. An AP-client pair was used with unicast traffic
The basic algorithm for collision inferencing presented hergen: from the client to the AP. Rate adaptation was enabled.
uses a simple relaying back of a data packet received dfient mobility created a dynamically varying channel thereby
error. This relaying is done by the intended recipient of ey erring link adaptation at a packet loss. These packet losses
packet which is the AP to which the client is associated 10 ({Jere recorded at the AP along with additional information
the infrastructure mode of 802.11). Our observations indicaggch as the Received Signal Strength (RSS), data-rate, etc.
that due to receiver—synchropization using the physical—laygﬁd used in our analysis. During the experiment, care was
preamble, data that immediately follows the preamble {§yen to ensure no interfering transmitters were present, thus

seldom found in error — this includes critical fields in the,giging the possibility of packet losses due to collisions.
header such as the source and destination MAC addresses.

Thus, practically for all cases of packets received in error at .
the AP, it was possible to relay it back to the correct associatefnpirical Analysis

client. By analyzing these packets, we design a necessary angle present an empirical analysis of a set of metrics over
sufficient set of metrics comprising of bit-error rates (BER}he data collected through targeted experiments designed in
symbol-error rates (SER), error-per-symbol (EPS), and joifHe previous subsection.

distributions of these, which can act as strong indicators f@r Received signal strength (RSS)The received signal
packets suffering collision versus signal attenuation. We nattength (RSS) refers to the aggregate signal plus interference
describe the experiments designed to understand collisions gd; 1) measured irdBm This is reported by most device

identify the set of metrics used for loss diagnosis. drivers including theMadwifi driver that we used for our ex-
) ) ) o periments. The intuition behind using RSS is the following: for
Experiment Design for Detecting Collisions packets suffering a collision, their RSS is usually higher than

Figure 3 shows the experiment setup designed to indutet of packets suffering signal attenuation for the same data-
collisions. 77 and T, are two transmitters placed a certaimate. This observation directly follows from the observation
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that packets suffering signal attenuation should have a ldhe packet. We have studied SER for packets in error due to
RSS. collision and weak signal and we found significant overlap in

Figure 4 plots a cumulative distribution function (CDF) foiits distributions. An analysis of this metric and its distributions
the distribution of RSS values for packets lost due to collisidfad us to the design of other interesting metrics which show
and weak signal. The RSS distributions are further sort&rong results in inferring collision, described next.
based on their data-rates; for purposes of clarity we only show(i) Error-per symbol (EPS):This metric refers to the
data-rates of 24, 36 and 48 Mbps. In all the following plot@verage number of bits in error among all the symbols which
the legend 'C’ indicates packets in error due to collision ar@€ in error. This is indicative of the ‘amount’ of error per
'S’ indicates the packets in error due to weak signal. Frogymbol — unlike bits which have only one possible way of
the plot in Figure 4 one can observe a clear distinction in ting in error, a 48-bit symbol received in error could have
distribution of RSS for the two categories given the same dai@rying ‘amounts’ of error represented by the number of bits
rate. For example, in this experiment, 98% of packets in errigrerror. We observe that packets in error due to collision have
due to weak signal have an RSS of about -73 dBm or legslarger amount of error per symbol. This is shown in Figure
while only 10% of packets suffering collision have RSS of -78 which plots the CDF of EPS for both collision and weak
dBm or less. Thus, by using a ‘cutoff’ value of -73 dBm, angignal. For example, 98% of packets in error due to weak
it would be possible to capture about 90 % of collision casé#nal have an EPS of 28% or less, while 45% packets in
while incurring a false-positive rate of 2%. Thus, RSS can agfror due to collision have the same EPS of 28% or less.
as a good metric for inferring the cause of packet loss. (iii) Symbol error score (S-Scoreffrom our study of the
2. Bit-error rate (BER): Much like RSS, bit-error rates _distributions of the symbols in error, we found that packets

(BER) for weak signal versus collision can act as a metric {8 collision had larger bursts of contiguous symbols in error.

distinguish with. Figure 5 plots the CDF of BERs for packet¥/e designed a metric which uses ‘symbol burst lengths’ and

in error. As before, the data is sorted depending on the da2MmPutes a ‘score’ which we call thg-Scorethat amplifies

rates of 24, 36 and 48 Mbps. It follows from this plot thafuch ambient patternsnin syrgbol error burst lengths. We
packets received in error due to collision have much wid§PmMPute S-Score as 5_;_, |Bi[", where|B,| represents the
distribution of BER values. For example much like RSS, 98dgngth of the symbol-error bursts for burst numbeFigure 7

of packets in error due to signal have a BER of 12% or |esglpts the CDF of the S-Score values for packets in error due to

while only 24% of packets in error due to collision have BEREC!lision versus weak signal. We find that, for example, 98%
of 12% or less. of the packets in error due to weak signal have an S-Score of

. 0 . e
3. Metrics for capturing ‘symbol-level’ errors: A ‘symbol’ 500 or less, while 26% packets in error due to collision have

refers to a sequence of bits which are transmitted concurren\?\% S-Score of 500 or less. Thus, by using a cutoff of 500, we

o 7 L .
through a joint encoding and modulation method at the phyg'f;:gebsoasilisgor:gi?2702A) of collision cases while incurring

ical layer. For example, at 6 Mbps, the Orthogonal Frequency(iv) Joint distribution of SER and EPSBy considering

Division Multiplexing scheme (OFDM) uses a set of 48 Supthe joint distribution of these two metrics it is possible to

carriers each modulating 1 bit of information. This reslts Iaistinguish error packets in collision. The intuition follows

the encoding of a sequence of 48 bits in a single time-un : . .
N 9 g ffom the observation that error packets in collision suffer

which defines a symbol. Studying the pattems of symbols H(i;gher symbol-error rates and correspondingly higher errors-

error as opposed to just bits received in error can provid .

. . er symbol as a function of the symbol-error rates. From the
valuable information about the cause of a packet loss. Wg - .
scCatter plot shown in Figure 8, we can observe that for higher

define a symbol to be in error if any of the bits received a{/‘Qiallues of SER, the values of EPS get streamlined into a high

a part of that symbol are in error. We studied three differen . i
et narrow range allowing for a more accurate prediction of

metrics which exhibit certain interesting properties which - :
: L . (holllsmn versus signal as to the cause of a packet loss.
leverage in our collision inference algorithm. Note that eac

of these metrics are computed over every single error packet:

(i) Symbol-error rate (SER)Like the BER, this is the Collision Inferencing Algorithm — Metric-Vote Scheme
ratio of the total number of symbols received in error to Our basic collision inferencing algorithm is fairly simple.
the total number of symbols in the data packet. The symhblcomputes the metrics discussed above on the single data
error rate indicates the actual ‘amount’ if error present ipacket that was received in error (relayed back by the AP). If
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TABLE | . . . .
COLLISION DETECTION ACCURACY AND FALSE POSITIVE RATES eXp_Iam Fhese ISsues In det_a"- '
(i) Using RSS as a metricAlthough in general RSS acted
. C?E?O OE;’; Séi‘ilf’lre Meg';g;f’te as a good indicator of the cause of a frame loss, in some of the
ccuracy . . . . . .. .
False Posiives ! 0.0057 1 0.022 T 00136 0024 cases it was not abl_e to dlStI!’]ngh well b_etween_ the cases of
collision and weak signal. This can be mainly attributed to the
TABLE Il observed temporal variation in RSS [8]. Estimating a 'cut-off’
CORRELATION BETWEEN THEMETRICS value also becomes harder because the delivery probability

S — is actually a function of (i) signal-to-noise rati§/(I + N)
-SCOore -Score : : :

collision 5840 5563 5854 rather_ than(S +1) wh_|(_:h_ is reported by most wireless card_s

Weak Signal 0.981 0.993 0.975 and (ii) receiver sensitivity [8]. However, we feel that RSS is

a promising metric and could act very well when used with

additional information such as RF profile of the receivers.

any of the metrics indicate (vote for) a collision, the algorithm (1) Impact of physical-layer capturéVe found that there

outputs collision as its inference. Even with such an aggressiygre cases of collision where the average BER for the error

approach, over the experiments performed in this section, mcket was very low due to whats known as tagture effect

find that for a false positive rate of 2% (a tunable paramete&‘:ture effect. refers to the phenqmenon .that du.ring a collision
our basic approach yields a reasonable accuracy. Table | sh packet with gtro_nger S|gnal_ 1S rece_lved with almost no
the results for the metrics BER, EPS, S-Score and Metrig'0rS Or @ few bits in error. This experiment set up used to
Vote. For the cases of collision, we see that Metric-Vote h&i€asure the impact of capture effect was very similar to that

an accuracy of about 60% on an average. Later in Section fillOWn in Figure 3 except that now the receiffeis very close

we show that even a 60% accuracy in collision prediction ¢ (e transmittef7y which resulted in a strong capture. By
refully searching for the packets received in error frbm

translate to significant gains in terms of throughput and ener?g o .
Next in section 11-B, we also study further enhancements {Ju€ to @ collision from a concurrent transmission fraf),
this basic scheme using support from multiple APs that cive found that about 80%.of pac_kets in collision experiencing
improve the accuracy to about 95% on average. For eachgPure gffect, were received with a'?"“t 12% or less p!ts n
the metrics and the Metric-Vote scheme, Table | also shows tHeO" Th!s falls within our target margin of 2% false positives
false positive rate — the percentage of error packets (caug%the _S|gnal case thereby impacting accuracy. The accuracy
due to weak signal) which the algorithms incorrectly identiEﬁ;;l'v'etr'c'vo'[e scheme for strong capture effect cases was
as the cases of collision. We see that Metric-Vote sche _r_],d to be around 28% . . .

also has a low false positive rate of 2.4%. It is important, (iii) Effect of colliding packet S|Z§U3|ng the se_t up in

to understand that the collision detection algorithms sho daure 3, we a_lso measureql the b!t error rates in collision
maintain a low false positive rate. While it is beneficial to b§35€S for varying packet sizes. Figure _9 shows_a scatter
able to decide if the packet was in error due to weak signal Bert (_)f RSS and BER for the cases of (i) weak signal (i)
collision, it would be rather costly in terms of retransmissiorf’ll's'On between a 1400-byte packet and a 200-byte packet

if we incorrectly identify a packet to be in error because i) coll?sion betvyeen.two 1400-byte ha c.kets'. While itis clear
collision, when in reality it was due to a weak signal. Tabl at using RSS in this case clearly distinguishes between the

Il shows the correlation between the metrics — the percenta>®> of collision and weak signal, using BER does not provide

of cases where the metrics agree on their decision about same level of accuracy. In particular, we see that it becomes
féicult to distinguish between cases (i) and (ii) using BER

cause of the packet loss. For the cases of weak signal, | - ) ,

correlation between the metrics is extremely high (arou cause a smaller ,COH_'d'ng packet (200-byte in this case)

98%) evident from the fact thatll the metrics have a very would cause fewer bits in error. On the other hand, as shown
'W? Figure 8, the joint distribution of SER and EPS is useful in

low false positive ratio. For the cases of collision, we sd@ mlgure o
that the correlation drops down a little to around 85%, whic jstinguishing these cases.
improves the accuracy of Metric-Vote scheme.

Some observationsFrom our empirical study in the previ- B- Multi-AP assisted enhancements
ous subsection, we found that there were a certain set of caseBhe accuracy of our basic approach can be greatly improved
where inferring collision was becoming a challenge. We noilr feedback from multiple APs on the packet loss could



COLLIE Module Summary of tasks
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g Client Collision inference, selective re-tx based Diff
§ AP Return packet in error, re-construct packetiff
i Server Facilitate multi-AP collision detection
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§ TABLE Il

COLLIE -BASED LINK ADAPTATION TASKS IN DIFFERENT MODULES

Oge WY s h B 88 Y

High Capture Effect Low Capture Effect . . L
(Multi-AP approach improves accuracy) (Basic approach works well) multi-AP approach improves the accuracy of collision de-
) ) sion d ) ot " tection to about 95%. These two scenarios correspond to
z;%rggéh'mpm"emems i collision detection accuracy using the Mult-AR o rations where packet transmission dominate from one

of the two clients respectively. For the two scenarios where
taken into consideration. This is feasible in an enterpriG@Pture effect is weak, both approaches provide good levels

WLAN where APs operate in a coordinated fashion as ¢ accuracy.
part of a single network. First, we present an algorithm that
uses feedback from multiple APs to improve the accuracy of [1l. USING COLLIE FORLINK ADAPTATION

collision inferencing. Next, through experiments, we show that |n this section we present a simple, yet effective protocol
such an approach can yield good results in a practical settipgged to enhance link adaptation mechanisms based on the
By leveraging feedback from two or more APs, we presemoLLIE framework. The algorithm implemented in this simple
an algorithm that can detect such cases and improve fh®tocol is only to serve as a reference implementation of
accuracy of collision inferencing. Our algorithm works byCOLLIE and is by no means is an optimal algorithm. The
aggregating such feedback at a cen@alLLIE server, shown goal of this description is to demonstrate ho®LLIE can be
earlier in Figure 2. The APs implement two functionalities effective in making more intelligent link adaptation decisions
(i) they synchronize among each other much like the receivéegaiding to improvements in throughput.
R, and R, did for our experiments earlier in this section. Thi€OLLIE-based link adaptation protocol: The goal of this
synchronization is done using opportunistic common packeiisk adaptation protocol is to utilize the collision inference
received by the two APs on either the wired or the wirelesesults available fronCOLLIE in deciding how to best react
segment. (ii) for any packet received in error, or for physicale a packet loss and its consequent recovery. Consider a client
layer error indications, the APs send a message tcCthie-  which transmits a packet to an AP, but the latter receives the
LIE server with the time the packet (or error indication) wagacket in error. Using feedback mechanisms, as outlined in
received, the source/destination MAC addresses and data-@éetion Il and shown in Figure 2, the client can infer the
information for the packet received in error. It is possible thatuse of the packet error. This knowledge is, then, fed into
in certain cases only a subset of this information is availablge link adaptation decision at the client. If the packet loss is
and we evaluate such possibilities through experiments latkre to a collision, then the correct adaptation mechanism is to
in this section. perform exponential backoff. On the other hand, if the packet
The COLLIE server implements a simple collision infer{oss is determined to be due to a weak signal, then we allow an
encing algorithm that uses time-of-receipt information aboekisting rate adaptation algorithm to explore and find a better
packets received in error at the APs, and combines this widlta rate to transmit future packets. In general, any existing
information about the data-rate of the packet received tate adaptation algorithm, e.g., RRAA, SampleRate, AARF,
make an inference as to whether the packets did experiea¢gl ARF, can be used here to leverage such feedback from
a collision. As a part of this algorithm th€OLLIE server COLLIE. We explain this in the context of one of the simplest
compares input from pairs (or a set) of APs that are known #gorithm — Auto Rate Fallback (ARF). ARF uses the history
be within range of each other. Detection of APs that are withaf previous transmission error rates to adaptively select the
range of each other is implemented through passive monitoritigta rates used for future transmissions. That is, after a number
of beacons. Scenarios where APs are within each other’s ramfeconsecutive successful transmissions, the sender attempts
are becoming fairly common in todays WLANS. In fact, dens® transmit at a higher rate and if the delivery of this frame
deployment of APs is promoted as an architecture for nex¢ unsuccessful, it immediately falls back to the previously
generation WLANS [9]. supported mode. In our implementation, we augment the ARF
We have implemented this approach over standard Linaigorithm with COLLIE to make it collision-aware.
based APs and clients. The collision inference algorithm In addition, the feedback on the erroneous packet provides
was implemented over a centr@lOLLIE server. Through another opportunity of optimization during re-transmission
experiments over a simple testbed consisting of two APs aofla incorrectly received packet at the AP — selective re-
two clients we study the accuracy of our approach of usingansmission of packet segments in error. By examining the
feedback from multiple APs. erroneous packet, the client knows exactly the set of bits that
Figure 10 shows the accuracy in collision inference usingere in error. If the number of bits in error is low (say, not
our multi-AP implementation. For the two scenarios whenmore than 20% of the entire packet), then it is advantageous
capture effect is dominant which were computed througb create &Diff bitmap of these bits in error and to send only
experimentation within our indoor network environment, ththis Diff bitmap to the AP piggybacked with the next packet
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transmission. If theDiff bitmap is correctly received, thenvoice call using the Netgear SPH101 VoWiFi phone over
the AP can re-construct the original packet thereby reducifgype. For the duration of the call, we collected the set of
the retransmission related costs associated with the cligmckets that were sent, the time instants when they were sent,
Table Il summarizes the different implementation aspectse packet sizes etc. and then replayed the exact sequence
of this protocol. Note that our implementation has all thef transmissions between the wireless laptop and the access
overheads due to the AP’s transmission of the erroneous pagieint. We conducted this experiment for low, medium and
feedback, which is therefore, reflected in our performantggh mobility scenarios. The ‘Slow’ speed represents a sta-

evaluation presented next. tionary user with sporadic movement while the ‘High’ speed
corresponds to a walking user continuously moving with a
Experimental Results speed of about 0.5 ft/sec inside a building. Figure 16 shows the

. . number of wasted 802.11 transmissions — transmissions that
We now present an evaluation @OLLIE-enhanced link . .
. . . : were not successfully received at the Access Point (AP). Under
adaptations through experiments conducted in various stati¢__: . I .
. . refatively high mobility conditions the percentage of wasted
and mobile scenarios: transmissions for 802.11 exceeded 80%. However, under the
Experiment #1: Static scenario —Figure 11 shows the ) o '

throughput of a static wireless client (with and with@@®L- Szr:semr?sos?glrz %attzrrfgguf_(lj 2(:;'?;5 t?];e?nuocgliﬁp 'r;(\:’\éisatﬁgs
LIE ) for increasing distance between the client and the AP. y 0 y ’

e i s e itance betueen th cient and A ncreagbs 1000 1L b e e el e e
there is a corresponding drop in the throughput for both the '
cases. However, usin@OLLIE results in throughput gains
of as high as 52%. On an average, we observed throughput IV. RELATED WORK
gains of around 30%. Note that, these results account for theThe problem of loss diagnosis is a fairly difficult one, and
transmission overhead involved in the receiver feedback. \Weere has been a few prior efforts in the wireless domain that
see that after an initial increase, the throughput gains drbpve tried to address this problem. For example, Whitehouse
with the increase in distance. This is because as the charetelal. [10] showed that if two frames arrive at a receiver with
becomes error-prone, it also becomes difficult for the A€ertain timing characteristics (the second message arrives after
to successfully transmit the feedback. Figure 11 shows tlihe preamble and start bytes of the first message) and with
increase in throughput gains are almost negligible (2%) foertain power levels (the second message has significantly
these cases. Figure 12 plots the throughput of the clienthagher power level when compared to the first) then it was
a particular distance over time. As before, we see that usipgssible for the receiver to conclude that collision had, indeed,
COLLIE improves the throughput by around 30%. occurred. This mechanism was implemented on the Mica2
Experiment #2: Additional collision sources —We re- sensor mote platform using a 433 MHz Chipcon CC1000 radio
peated the above experiment in presence of additional collisivansceiver, and required low-level access to timing and signal
sources (Figure 13). Figure 14 shows the throughput improwrength measurements that were available on that platform. In
ments with and withouCOLLIE . We see that usin@OLLIE comparisonCOLLIE is implemented for off-the-shelf 802.11
results in throughput gains of as high as 60%. wireless transceivers that do not provide such low-level access
Experiment #3: Mobile scenario —For this experiment, to communication parameters. Hence, the mechanisms in [10]
the client position was continuously varied thereby inducingpuld not be applied in this environment. In other work, Yun
dynamic channel conditions. Figure 15 plots the throughpabd Seo [11] propose another related mechanism for collision
over time for both with and withoutOLLIE . We observe that detection in 802.11 links by measuring the RF energy and its
throughput improvements usinQOLLIE range from around changes during such an event. This work was done through
15% to as high as 65% for the mobile scenarios. This $mulations alone, and based on our experimental evaluation
becauseCOLLIE provides the rate adaptation mechanism witthay not work well in practice.
the information about the cause of the packet loss, therebyRate adaptation mechanisms like RRAA [6] and CARA [7]
helping it choose the correct transmission parameters. have, also, tried to address the problem of collision detection
Experiment #4: Emulating a voice call —In this exper- in an indirect manner. CARA tries to detect collisions by using
iment, we wanted to emulate the behavior of voice traffihie RTS-CTS mechanism, but the proposed mechanism fails
on the wireless medium. To do this, we made a 4 minute the presence of hidden terminals. CARA also suffers from
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Fig. 14. Throughput gains of COLLIE in presence Fig 15 Observed throughput for mobile scendrig. 16. Wasted (re)-transmission as a function of
of collision sources channel variability induced through node mobility.

RTS oscillation [6] which RRAA solves using an adaptive RT$ collision while allowing a configurable false positive rate
filter. Unlike both RRAA and CARA which try to estimateof 2% and lead to throughput improvements between 20-
the collision probabilities by active probing (using an RTSH0%. Through an emulation of voice call (made using the
COLLIE employs adirectapproach by conducting an empiricaNetgear SPH101 Voice-over-WiFi phone), we also showed
post-factum analysis based on the feedback from the receitbat COLLIE reduces retransmission related costs by 40% for

There is a growing interest in the wireless networkindifferent mobility scenarios. Since all analysis performed in
community to integrate hints from the physical layer, e.gthis paper was based on actual experiments and implementa-
symbol level information, to solve certain MAC level probtion over contemporary 802.11 hardware, we expect that the
lems. One recent example is work by Jamieson et. al. [liBjplications of our results and the various insights gained from
for partial packet recovery and throughput improvement ihis study will be very useful in other problem domains such as
wireless networks. In this pape@OLLIE also uses information link adaptation, channel management, transmit power control
derived from the physical layer symbols for diagnosing thetc., where understanding the link behavior is critical.
causeof a packet loss.
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