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Abstract
We apply Amdahl’s Law to multicore chips using symmet-

ric cores, asymmetric cores, and dynamic techniques that
allows cores to work together on sequential execution. To
Amdahl’s simple software model, we add a simple hardware
model based on fixed chip resources.

A key result we find is that, even as we enter the multicore
era, researchers should still seek methods of speeding sequen-
tial execution. Moreover, methods that appear locally ineffi-
cient (e.g., tripling sequential performance with a 9x resource
cost) can still be globally efficient as they reduce the sequen-
tial phase when the rest of the chip’s resources are idle.

To reviewers: This paper’s accessible form is between a
research contribution and a perspective. It seeks to stimulate
discussion, controversy, and future work. In addition, it seeks
to temper the current pendulum swing from the past’s under-
emphasis on parallel research to a future with too little
sequential research.

Today we are at an inflection point in the computing land-
scape as we enter the multicore era. All computing vendors
have announced chips with multiple processor cores. More-
over, vendor roadmaps promise to repeatedly double the num-
ber of cores per chip. These future chips are variously called
chip multiprocessors, multicore chips, and many-core chips.

Designers of multicore chips must subdue more degrees of
freedom than single-core designs. Questions include: How
many cores? Should cores use simple pipelines or powerful
multi-issue ones? Should cores use the same or different
micro-architectures? In addition, designers must concurrently
manage power from both dynamic and static sources. 

While answers to these questions are challenges for
today’s multicore chip with 2-8 cores, they will get much more
challenging in the future. Source as varied as Intel and Berke-
ley predict a hundred [6] if not a thousand cores [2]. 

It is our thesis that Amdahl's Law has important conse-
quences for the future of our multicore era. Since most of us
learned Amdahl's Law in school, all of our points are “known”
at some level. Our goal is ensure we remember their implica-
tions and avoid the pitfalls that Puzak fears. 

Table 1 foreshadows the results we develop for applica-
tions that are 99% parallelizable. For varying number of base
cores, the second column gives the upper bounds on speedup
as predicted by Amdahl’s Law. In this paper, we develop a
simple hardware model that reflects potential tradeoffs in
devoting chip resources towards either parallel or sequential

execution.The right-most three columns show the larger upper
bounds on speedup enabled using richer cores deployed in
symmetric, asymmetric, and dynamic multicore designs. 

Implications of our work include:
•Not surprisingly, researchers and architects should

aggressively attack serial bottlenecks in the multicore era. 
• Increasing core performance, even if it appears locally

inefficient, can be globally efficient by reducing the idle
time of the rest of the chip’s resources.

•Chips with more resources tend to encourage designs
with richer cores.

• Asymmetric multicore designs offer greater potential
speedup than symmetric designs, provided challenges
(e.g., scheduling) can be addressed. 

•Dynamic designs—that temporarily harness cores
together to speed sequential execution—have the poten-
tial to achieve the best of both worlds.

Overall, we show that Amdahl’s Law beckons multicore
designers to view performance of the entire chip rather than
zeroing in on core efficiencies. In the following sections, we
first review Amdahl’s Law. We then present simple hardware
models for symmetric, asymmetric, and dynamic multicore
chips. 

Amdahl's Law Background
Most computer scientists learned Amdahl Law's in school

[5]. Let speedup be the original execution time divided by an
enhanced execution time. The modern version of Amdahl's

TABLE 1. Upper Bound on Speedup, f=0.99
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64 39 39 49 < 60

256 72 80 166 < 223
1024 91 161 531 < 782
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Everyone knows Amdahl's Law, but quickly forgets it. 
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Law states that if one enhances a fraction f of a computation by a
speedup S, then the overall speedup is: 

Amdahl's Law applies broadly and has important corollaries
such as:
• Attack the common case: If f is small, your optimizations

will have little effect.
• But the aspects you ignore also limit speedup:

As S goes to infinity, Speedup goes to1/(1-f).
Four decades ago, Amdahl originally defined his law for the

special case of using n processors (cores today) in parallel when
he argued for the Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities [1]. He simplisti-
cally assumed that a fraction f of a program's execution time was
infinitely parallelizable with no overhead, while the remaining
fraction, 1-f, was totally sequential. Without presenting an equa-
tion, he noted that the speedup on n processors is governed by: 

Finally, he argued that typical values of 1-f were large
enough to favor single processors. 

While Amdahl's arguments were simple, they held and
mainframes with one or a few processors dominated the comput-
ing landscape. They also largely held in minicomputer and per-
sonal computer eras that followed. As recent technology trends
usher us into the multicore era, we investigate whether Amdahl’s
Law is still relevant. 

A Simple Cost Model for Multicore Chips
To apply Amdahl's Law to a multicore chip, we need a cost

model for the number and performance of cores that the chip can
support. Herein we develop a simple hardware model in the
spirit of Amdahl's simple software model. 

We first assume that a multicore chip of given size and tech-
nology generation can contain at most n base core equivalents
(BCEs), where a single BCE implements the baseline core. This
limit comes from the resources a chip designer is willing to
devote to processor cores (with L1 caches). It does not include
chip resources expended on shared caches, interconnections,
memory controllers, etc. Rather we simplistically assume that
these non-processor resources are roughly constant in the multi-
core variations we consider. 

We are agnostic on what limits a chip to n BCEs. It may be
power; it may be area; it may be some combination of power,
area, and other factors.

We second assume that (micro-) architects have techniques
for using the resources of multiple BCEs to create a richer core
with greater sequential performance. Let the performance of a
single-BCE core be 1. We specifically assume that architects can
expend the resources of r BCEs to create a rich core with
sequential performance perf(r).

Architects should always increase core resources when
perf(r) > r, because doing so speeds up both sequential and par-
allel execution. When perf(r) < r, however, the tradeoff begins:
increasing core performance aids sequential execution, but hurts
parallel execution.

Our equations allow perf(r) to be an arbitrary function, but
all the graphs below assume perf(r) = . In other words, we
assume efforts that devote r BCE resources will result in perfor-
mance . Thus, architectures can double performance at a cost
of 4 BCEs, triple it for 9 BCEs, etc. We tried other similar func-
tions, e.g., , but found no important changes to our results.

Symmetric Multicore Chips
A symmetric multicore chip requires that all its cores have

the same cost. A symmetric multicore chip with a resource bud-
get of n = 64 BCEs, for example, can support 64 cores of 1 BCE
each, 16 cores of 4 BCEs each, or, in general, n/r cores of r
BCEs each (rounded down to an integer number of cores). Fig-
ures 1 and 2 show cartoons of two possible symmetric multicore
chips for n = 16. The figures illustrate area, not power, as the
chip’s limiting resource and omit important structures such as
memory interfaces, shared caches, and interconnects.

Under Amdahl's Law, the speedup of a symmetric multicore
chip (relative to using one single-BCE core) depends on the soft-
ware fraction that is parallelizable (f), total chip resources in
BCEs (n), and the BCE resources (r) devoted to increase the per-
formance of each core. The chip uses one core to execute
sequentially at performance perf(r). It uses all n/r cores to exe-
cute in parallel at performance perf(r)*n/r. Overall, we get: 

To understand this equation, let’s begin with the upper-left
graph of Figure 4. It assumes a symmetric multicore chip of n =
16 BCEs and perf(r) = . The x-axis gives resources used to
increase performance of each core: a value 1 says the chip has 16
base cores, while 16 uses all resources for a single core. Lines
assume different values for the fraction parallel (f=0.5, 0.9, ...,
0.999). The y-axis gives the speedup of the symmetric multicore
chip (relative to running on one single-BCE base core). The
maximum speedup for f=0.9, for example, is 6.7 using 8 cores of
cost 2 BCEs each. The remaining left-hand graphs give speedups
for symmetric multicore chips with chip resources of n = 64,
256, and 1024 BCEs. 
Result 1: Amdahl’s Law applies to multicore chips, as achieving
good speedups requires f’s that are very near 1. Thus, finding
parallelism is critical.
Implication 1: Researchers should target increasing f via archi-
tectural support, compiler techniques, programming model
improvements, etc.

Implication 1 is both most obvious and most important.
Recall, however, that speedups much less than n can still be cost
effective.1

Result 2: Using more BCEs per core, r > 1, can be optimal, even
when performance grows by only . For a given f, the maxi-
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mum speedup can occur at 1 big core, n base cores, or with an
intermediate number of middle-sized cores. Consider, n=16.
With f=0.5, one core (of cost 16 BCEs) gives the best speedup of
4. With f=0.975, 16 single-BCE cores provide a speedup of 11.6.
With n=64, f=0.9, 9 cores of 7.1 BCEs each provides an overall
speedup of 13.3.
Implication 2: Researchers should seek methods of increasing
core performance even at a high cost.
Result 3: Moving to denser chips increases the likelihood that
cores should be non-minimal. Even at f=0.99, minimal base
cores are optimal at chip sizes n=16 and 64, but more powerful
cores help at n=256 and 1024.
Implication 3: Even as Moore’s Law allows larger chips,
researchers should look for ways to design more powerful cores.

Asymmetric Multicore Chips
An alternative to a symmetric multicore chip is an asymmet-

ric multicore chip where one or more cores are more powerful
than the others [3, 8, 9, 12]. With the simplistic assumptions of
Amdahl's Law, it makes most sense to devote extra resources to
increase the capability of only one core, as shown in Figure 3.
With a resource budget of n=64 BCEs, for example, an asym-
metric multicore chip can have one 4-BCE core and 60 1-BCE
cores, one 9-BCE core and 55 1-BCE cores, etc. In general, the
chip can have 1+n-r cores since the single larger core uses r
resources and leaves n-r resources for the 1-BCE cores. 

Amdahl's Law has a different effect on an asymmetric multi-
core chip. This chip uses the one core with more resources to
execute sequentially at performance perf(r). In the parallel frac-
tion, however, it gets performance perf(r) from the large core
and performance 1 from each of the n-r base cores. Overall, we
get: 

The asymmetric speedup curves are shown in Figure 4.
These curves are markedly different from the corresponding

symmetric speedups. The symmetric curves typically show
either immediate performance improvement or performance loss
as the chip uses more powerful cores, depending on the level of
parallelism. In contrast, asymmetric chips reach a maximum
speedup in the middle of the extremes. 
Result 4: Asymmetric multicore chips can offer maximum
speedups that are much greater than symmetric multicore chips
(and never worse). For f=0.975 and n=256, for example, the best
asymmetric speedup is 125.0 whereas the best symmetric
speedup 51.2. For n=1024 and the same f, the difference
increases to 364.5 versus 102.5. This result follows from
Amdahl’s idealized software assumptions, wherein software is
either completely sequential or completely parallel. 
Implication 4: Researchers should continue to investigate
asymmetric multicore chips. However, real chips must deal with
many challenges, such as scheduling different phases of parallel-
ism with real overheads. Furthermore, chips may need multiple
larger cores for multiprogramming and workloads that exhibit
overheads not captured by Amdahl’s model.
Result 5: Denser multicore chips increase both the speedup ben-
efit of going asymmetric (see above) and the optimal perfor-
mance of the single large core. For f=0.975 and n=1024, for
example, best speedup is obtained with one core of 345 BCEs
and 679 single-BCE cores.
Implication 5: Researchers should investigate methods of
speeding sequential performance even if they appear locally
inefficient, e.g., perf(r) = . This is because these methods can
be globally efficient as they reduce the sequential phase when
the chip’s other n-r cores are idle.

1.  A system is cost-effective if its speedup exceeds its costup
[13]. Multicore costup is the multicore system cost divided by
the single-core system cost. Since this costup is often much less
than n, speedups less than n can be cost effective.

Figure 1. Symmetric
Sixteen 1-BCE cores

Figure 2. Symmetric
Four 4-BCE cores

Figure 3. Asymmetric
One 4-BCE core, 12 1-BCE cores

Note: These cartoons omit important structures and assume area, not power, is a chip’s limiting resource.

Speedupasymmetric f n r, ,( ) 1
1 f–

perf r( )
------------------ f

perf r( ) n r–+------------------------------------+
-------------------------------------------------------------=

r



2 4 8 16
2

4

6

8

10

12

14

16
f=0.999

r BCEs

S
pe

ed
up

sy
m

m
et

ric

Symmetric, n = 16

f=0.99

f=0.975

f=0.9

f=0.5

2 4 8 16
2

4

6

8

10

12

14

16
f=0.999

r BCEs

S
pe

ed
up

as
ym

m
et

ric

Asymmetric, n = 16

f=0.99

f=0.975

f=0.9

f=0.5

2 4 8 16 32 64

10

20

30

40

50

60 f=0.999

r BCEs

S
pe

ed
up

sy
m

m
et

ric

Symmetric, n = 64

f=0.99

f=0.975

f=0.9

f=0.5
2 4 8 16 32 64

10

20

30

40

50

60 f=0.999

r BCEs

S
pe

ed
up

as
ym

m
et

ric

Asymmetric, n = 64

f=0.99

f=0.975

f=0.9

f=0.5

2 4 8 16 32 64 128 256

50

100

150

200

250

f=0.999

r BCEs

S
pe

ed
up

sy
m

m
et

ric

Symmetric, n = 256

f=0.99

f=0.975

f=0.9
f=0.5

2 4 8 16 32 64 128 256

50

100

150

200

250

f=0.999

r BCEs

S
pe

ed
up

as
ym

m
et

ric

Asymmetric, n = 256

f=0.99

f=0.975

f=0.9
f=0.5

2 4 8 16 32 64 128 256 512 1024

100

200

300

400

500

600

700

800

900

1000

f=0.999

r BCEs

S
pe

ed
up

sy
m

m
et

ric

Symmetric, n = 1024

f=0.99

f=0.975

f=0.9
f=0.5

2 4 8 16 32 64 128 256 512 1024

100

200

300

400

500

600

700

800

900

1000

f=0.999

r BCEs

S
pe

ed
up

as
ym

m
et

ric

Asymmetric, n = 1024

f=0.99

f=0.975

f=0.9
f=0.5

Figure 4. Speedup of Symmetric and Asymmetric Multicore chips. 



Dynamic Multicore Chips
What if architects could have their cake and eat it too? Con-

sider dynamically combining up to r cores together to boost per-
formance of only the sequential component, as shown in
Figure 5. This could be possible with thread-level speculation,
helper threads, etc. [4, 7, 10, 11]. In sequential mode, this
dynamic multicore chip can execute with performance perf(r)
when the dynamic techniques can use r BCEs. In parallel mode,
a dynamic multicore gets performance n using all base cores in
parallel. Overall, we get: 

Of course dynamic techniques may have some additional
resource overhead (e.g., area) not reflected in the equation as
well as additional runtime overhead when combining and split-
ting cores. Figure 6 displays dynamic speedups when using r
cores in sequential mode for perf(r) = . Light grey lines give
the corresponding values for asymmetric speedup. The graphs
show that performance always gets better as more BCE
resources can be exploited to improve the sequential component.
Practical considerations, however, may keep r much smaller
than its maximum of n.
Result 6: Dynamic multicore chips can offer speedups that can
be greater, and are never worse, than asymmetric chips. With
Amdahl’s sequential-parallel assumption, however, achieving
much greater speedup than asymmetric chips requires that
dynamic techniques harness large numbers of BCEs in sequen-
tial mode. For f=0.999 and n=256, for example, the dynamic
speedup attained when 256 BCEs can be utilized in sequential
mode is 963. However the comparable asymmetric speedup is
748. This result follows because we assume that dynamic chips
can both gang together all resources for sequential execution and
free them for parallel execution.
Implication 6: Researchers should continue to investigate meth-
ods that approximate a dynamic multicore chip, such as thread
level speculation, and helper threads. Even if the methods appear

locally inefficient, as with asymmetric chips, the methods can be
globally efficient. While these methods may be difficult to apply
under Amdahl’s extreme assumptions, they could flourish for
software with substantial phases of intermediate-level parallel-
ism.

Conclusions
To Amdahl’s simple software model, we add a simple hard-

ware model and compute speedups for symmetric, asymmetric,
and dynamic multicore chips:

Results first reaffirm that seeking greater parallelism is criti-
cal to obtaining good speedups. We then show how core designs
that are locally inefficient can be globally efficient.

Of course, our model seeks insight by making many simpli-
fying assumptions. The real world is much more complex.
Amdahl’s simple software model may not hold reasonably for
future software. Future mainstream parallel software may also
behave differently from today’s highly tuned parallel scientific
and database codes. Our simple hardware model does not
account for the complex tradeoffs between cores, cache capacity,
interconnect resources, and off-chip bandwidth. Nevertheless,
we find value in the controversy and discussion that drafts of this
paper have already stimulated.

We thank Shailender Chaudhry, Robert Cypher, Anders Lan-
din, José F. Martínez, Kevin Moore, Andy Phelps, Thomas
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Figure 6. Speedup of Dynamic Multicore Chips
(light lines show asymmetric speedup)
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