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Abstract

A random multivariate polynomial system with
more equations than variables is likely to be un-
solvable. On the other hand if there are more
variables than equations, the system has at least
one solution with high probability. In this paper
we study in detail the phase transition between
these two regimes, which occurs when the number
of equations equals the number of variables. In
particular the limiting probability for no solution
is 1/e at the phase transition, over a prime field.

We also study the probability of having exactly
s solutions, with s ≥ 1. In particular, the prob-
ability of a unique solution is asymptotically 1/e
if the number of equations equals the number of
variables. The probability decreases very rapidly if
the number of equations increases or decreases.

Our motivation is that many cryptographic sys-
tems can be expressed as large multivariate polyno-
mial systems (usually quadratic) over a finite field.
Since decoding is unique, the solution of the sys-
tem must also be unique. Knowing the probability
of having exactly one solution may help us to un-
derstand more about these cryptographic systems.
For example, whether attacks should be evaluated
by trying them against random systems depends
very much on the likelihood of a unique solution.

1 Introduction

A random multivariate quadratic system in n vari-
ables is composed of m equations of the form

a11x
2
1 + a12x1x2 + · · · + b1x1 + · · · + bnxn = c,

where the coefficients are independently and uni-
formly distributed on GF (p) (in the case of p = 2
the square terms are not present). More generally,
a multivariate polynomial system can have terms
up to degree d.

In this paper we study the probability that a
multivariate polynomial system has no solutions.
If the number of equations is much greater than
the number of variables, it is very likely that the
system has no solution. On the other hand if there
are more variables than equations we expect to
have at least one solution. For n+α random equa-
tions in n variables over GF (p) with p prime, we
show that the asymptotic probability that they
have no common solution is e−p−α

. The phase
transition occurs when the number of equations
equals the number of variables. The asymptotic
probability in that case is 1/e.

We also study the probability that a multivari-
ate polynomial system has exactly s solutions,
with s ≥ 1. Asymptotically, this probability
follows the Poisson distribution λse−λ/s!, where
λ = e−α log p. Its highest value is e−1/s!, which is
attained when the number of equations equals the
number of variables. As the number of equations
increases or decreases, the probability decays very
rapidly.

The motivation for studying the probability of
exactly s solutions comes from recent develop-
ments in cryptography. Many attacks on cryp-
tosystems have been based on solving a large
multivariate polynomial system over a finite field
(some of them are [BD03] [CKPS00] [CP02]). The
idea is to express the cryptosystem as a quadratic
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or cubic system, and then to use an ad-hoc method
to solve it. The solution of this system is unique
because it represents the decoded text. One of
the methods used to solve these systems is called
XL and it was first proposed in [CKPS00]. In
[CKPS00] and in subsequent papers, it has been
argued that XL takes advantage of the uniqueness
of the solution. Knowing the probability of hav-
ing exactly one solution, we can understand how
often XL has the claimed advantage, if applied to
random quadratic systems.

The quadratic systems from cryptography are
not perfectly random, but in absence of a better
theory we would like to get some insight by assum-
ing that they are. In particular, the asymptotic
probability that a random quadratic system has
exactly one solution is 1/e, if the number of equa-
tions equals the number of variables, and decays
very rapidly if the number of equations increases
or decreases.

We ran a large set of experiments to confirm the
validity of our results, including some cases that
are not covered by our proofs. We found that the
variance of the distance between our formulas and
the experimental data is small in most of the cases.

In order to apply our formulas to polynomial
systems from cryptanalysis, we consider also par-
ticular configurations that occur in that case.
Polynomial systems from cryptanalysis have two
important properties: their equations are linearly
independent and the systems are sparse. Exper-
imental results confirm that our formulas remain
valid also in this case of linearly independent equa-
tions. We generated different types of sparse sys-
tems and our formulas matched the experimental
results in most of the cases.

Finally we show the results of the application
of our formulas to the quadratic systems of some
real cryptographic systems. Using the dimensions
of those systems we determine the probability of
having exactly one solution. This probability is
extremely small, but on the other hand there is a
huge number of possible quadratic systems of that
size.

This paper is organized as follows. Section 2
gives a brief overview of related work. The prob-
ability formulas are derived in section 3. Section

4 contains the results of some experiments that
confirm the general validity of our formulas. In
section 5, we apply our formulas to some crypto-
graphic systems.

2 Related work

Given a quadratic system there is a well known
procedure to determine the number of solutions.
The outline of the method is the following. A
single quadratic equation can be transformed into
canonical form, as described by Jordan [J72] for p
odd, and Dickson [D99] for p = 2. From this form
it is easy to count the solutions. Then, a system
of quadratic equations can be handled by counting
the solutions to a number of single equations. A
detailed description of this procedure for GF (2) is
given in [W98]. This method requires exponential
time.

This is not surprising, as Valiant proved in [V79]
that it is #P-complete to count the number of
solutions of a multivariate polynomial system of
degree 2 or higher.

The problem we study in this paper is different.
We are not computing the number of solutions of
given quadratic systems, but we are determining
the probability that a random system has no so-
lutions or exactly s solutions.

Recently, much attention has been given to un-
satisfiable systems, as there is a direct connection
between tautologies and unsatisfiable systems (see
for example [BetA96] [CEI96] [BetA97] [P97]).
The focus of those papers is to study proof com-
plexity, in particular to determine under which
conditions a system is unsatisfiable. Here instead
we determine the probability that a random sys-
tem is unsatisfiable given its size.

Woods in [W98] shows that there exists a phase
transition on multivariate polynomial systems, by
showing that a system is unsatisfiable when the
difference between the number of equations and
the number of variables goes to infinity, and that
the system has at least one solution when the dif-
ference between the number of variables and the
number of equations goes to infinity. In this pa-
per we study the phase transition in more detail,
in particular we determine the point in which the
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phase transition occurs and the limiting value of
the probability near the transition point.

To our knowledge this is the first detailed study
of phase transitions in polynomial systems. How-
ever, there is a well known phase transition be-
tween satisfiability and unsatisfiability for boolean
formulas, which has been studied experimentally.
Surveys of this work have been given by Franco,
in [F01] and [F05]. Our results do say something
about boolean formulas, since a boolean formula
in conjunctive normal form can be easily trans-
formed into a quadratic system over GF (2) (see
for example [HPS93]). However, they are more
general, in that we consider polynomial systems
of any degree and for any prime field. We also
have rigorous theorems to support our experimen-
tal observations.

3 Probability of no solutions and

of exactly s solutions

The following theorems comprise our main result.
Theorem 1 is a special case of theorem 2, but we
preferred to state it separately to emphasize the
phase transition.

Theorem 1. Let d ≥ 2 and p be a prime number.
Given a multivariate polynomial system of n + α
random equations of degree-d in n variables over
GF (p), the probability that the system has no so-
lution is e−p−α

, asymptotically in n.

Corollary 1. For a system as in theorem 1, the
probability of no solution is e−1, if the number of
equations equals the number of variables (i.e. α =
0).

Theorem 2. Let d ≥ 2 and p be a prime number
and λ = e−α log p. Given a multivariate polynomial
system of n+α random equations of degree-d in n
variables in GF (p), the probability that the system
has exactly s ≥ 1 solutions follows the Poisson
distribution

λse−λ

s!

asymptotically in n.

Corollary 2. For a system as in theorem 2, the
probability that the system has exactly s ≥ 1 solu-
tions is e−1/s!, if the number of equations equals
the number of variables (i.e. α = 0).

The rest of this section contains the proofs of
these results.

Proof of theorem 1. Let p be a prime, and for an
n-tuple x = (x1, . . . , xn) of elements from GF (p)
let

Rx = (1, · · · , xr, · · · , xrxs, · · · ).

For a system of degree d, Rx contains the mono-
mials up to degree d. Let G be the pn × ν matrix
whose rows are the Rx for distinct x, where ν ≈ nd

is the number of coefficients in each equation.

Consider the indicator variable

Zx =

{

1, if x is a solution to all equations;

0, otherwise

Its expectation is

E[Zx] = p−(n+α),

and the probability that there is no common solu-
tion is

E[
∏

x

(1 − Zx)].

By the inclusion-exclusion principle we have
∏

x

(1 − Zx) ≥ 1 −
∑

x

Zx,

∏

x

(1 − Zx) ≤ 1 −
∑

x

Zx +
∑

x,y

ZxZy,

∏

x

(1 − Zx) ≥ 1 −
∑

x

Zx +
∑

x,y

ZxZy −
∑

x,y,z

ZxZyZz,

and so on. Any partial sum with an even (resp.
odd) number of terms provides a lower (resp. up-
per) bound. Also, in these sums, the indices
x, y, z, etc. refer to distinct n-tuples, so each term
is effectively a sum over subsets.

Now consider a typical term in the above sum,
such as

∑

x(1),...,x(k)

∏

i

Zx(i)
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Its expected value is

∑

x(1),...,x(k)

E

[

∏

i

Zx(i)

]

(1)

A subset for which the corresponding Z ′s
are stochastically independent will contribute
p−k(n+α) to the sum. We need to show that most
of the subsets are of this type. We say that
a subset {x(1), . . . , x(k)} is in general position if
the extended vectors (1, x(1)), . . . , (1, x(k)) are lin-
early independent. Observe that for any general
position subset, the random variables Zx(i) , are
stochastically independent. The number of gen-
eral position subsets is

pn(pn − 1)(pn − p) . . . (pn − pk−2)

k!

Hence, the general position subsets contribute, for
large n, the value

pnk

k!
p−k(n+α) =

p−αk

k!

If all the rows of G were linearly independent then
all subsets would be in general position. Unfortu-
nately this is not true. However, by lemma 1 be-
low, the contribution from subsets not in general
position is insignificant compared to this.

Let k∗ be the largest odd integer not bigger than
ν. For quadratic systems, k∗ is approximatively
n2/2, and in general, k∗ goes to infinity with n.
Then, if

δ = Pr[ no solution ] −

k∗−2
∑

k=0

p−αk

k!
,

we have

−
p−α(k∗−1)

(k∗ − 1)!
(1 + o(1)) ≤ δ ≤

p−αk∗

k∗!
(1 + o(1))

By Stirling’s formula, the upper and lower bounds
go to 0 as n → ∞, and the sum is the Taylor series
for the (entire) exponential function, so the limit
of δ is 0, and we conclude

lim
n→∞

Pr[ no solution ] = e−p−α

Proof of theorem 2. The indicator for exactly s
solutions is

I =
∑

x(1)

Zx(1)

∑

x(2) 6=x(1)

Zx(2) · · ·
∑

x(s) 6=x(1)

···
x(s) 6=x(s−1)

Zx(s)

∏

y 6=x(1)

···
y 6=x(s)

(1−Zy).

If we expand this and collect terms, we get

∑

k≥0

(−1)k
(

s + k

k

)

∑

x(1),...,x(s+k)

Zx(1) · · ·Zx(s+k) .

As before, the k-th inner sum is over the subsets
of GF (p)n of size (s + k).

For each n, this expansion of I is a finite sum.
Furthermore, the Z’s are all non-negative, so tak-
ing its expectation produces an alternating series.
We can therefore evaluate the limit of these expec-
tations by computing limits termwise as we did in
the proof of theorem 1.

So let us consider a particular value of k. The
number of general position subsets of size s + k is
given by

pn(pn − 1) · · · (pn − ps+k−2)

(s + k)!

Therefore, their contribution to the expectation is
asymptotically

pn(s+k)p−(s+k)(n+α)

(s + k)!
=

p−(s+k)α

(s + k)!

Using lemma 1 below with k replaced by s+k, we
see that including subsets not in general position
will not change the value of this limit.

Arguing as before, the expectation of I has the
limit

∑

k≥0

(−1)k
(

s + k

k

)

p−(s+k)α

(s + k)!
=

p−sα

s!

∑

k≥0

(−1)k
p−kα

k!

The value of the last sum is e−p−α

= e−λ, and this
gives the desired result.

The following lemma is used in the proof of the-
orems 1 and 2. It is the key device for our analysis,
as it allows us to compute limiting probabilities as
if we had full independence.
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Lemma 1. Let p be a prime, and for an n-tuple
x = (x1, . . . , xn) of elements from GF (p) let

Rx = (1, · · · , xr, · · · , xrxs, · · · ).

Let G be the pn × ν matrix whose rows are the Rx

for distinct x.
For fixed k and n → ∞, the contribution to (1)

from subsets not in general position goes to 0.

Proof of lemma 1. The points x(0), . . . , x(ℓ) in
GF (p)n are affinely independent if the differences
x(1)−x(0), . . . , x(ℓ)−x(0) are linearly independent.
For distinct points, this happens iff the corre-
sponding subset is in general position.

Let S be a particular k-subset of the rows of G,
corresponding to a set of k points.

Let ℓ + 1 be the maximum number of points in
S that are affinely independent. We may choose
coordinates so that the rows for these points are

x1 xℓ xℓ+1 xn x2
1 x2

n xixj

1 0 · · · 0 0 · · · 0 0 · · · 0 · · · 0 · · ·
1 1 · · · 0 0 · · · 0 1 · · · 0 · · · 0 · · ·

...
1 0 · · · 1 0 · · · 0 0 · · · 1 · · · 0 · · ·

(2)
for a quadratic system. In general, for a degree-d
system the coordinate would follow a similar pat-
tern.

Assume that ℓ + 1 < k, that is, the subset S is
degenerate. We claim that the rank of S cannot
be ℓ + 1. (It is obviously at least this large.) If it
were, then any other row would be of the form

1 w1 · · · wℓ 0 · · · 0 w2
1 · · · w2

n · · · wiwj · · ·

Since it is a linear combination of rows from (2),
we must have all wiwj = 0. This means that at
most one wi, say w1, is nonzero. Then we would
have (from inspection of the x1 and x2

1 columns)

w1 · 1 = w2
1

So w1 ∈ {0, 1}, but this is impossible since the
rows came from distinct points. Hence, the rank
is at least ℓ + 2.

For a fixed value of ℓ, there will be at most

pn(pn − 1)(pn − p) · · · (pn − pℓ−1) × pk2

such degenerate subsets of rows. The first factor is
an upper bound for the number of ways to choose
ℓ + 1 affinely independent points, and the second
factor follows from ℓ ≤ k and affine independence.
(Once we have chosen coordinates, only wi with
i ≤ ℓ are eligible to be nonzero.) As n → ∞, we
have

pn(pn − 1) · · · (pn − pℓ−1) × pk2
∼ p(ℓ+1)n+k2

Now, if a collection of rows has rank r, the prob-
ability of choosing coefficients so that a degree-d
function vanishes at the points corresponding to
those rows is p−r. Similarly, the probability of
choosing m sets of coefficients independently with
the same property is p−mr. So, for any fixed ℓ,
the contribution of degenerate subsets to (1) is at
most

p(ℓ+1)n+k2

pmr
≤

p(ℓ+1)n+k2

pm(ℓ+2)

This is because of our rank estimate. If we substi-
tute m = n + α, this becomes

pk2−(ℓ+2)α

pn

which has the limit 0 as n goes to infinity.

3.1 Extension of the results to Z/(pq)

In this section we derive the probability formulas
for Z/(pq) where p and q are distinct primes.

Theorem 3. Given a multivariate polynomial
system of n+α random equations of degree-d in n
variables in Z/(pq) with p and q distinct primes,
the probability that the system has no solution is
e−p−α

+ e−q−α

− e−(p−α+q−α), asymptotically in n.

Corollary 3. For a system as in theorem 3, the
limiting probability of no solution is 2e−1 − e−2,
if the number of equations equals the number of
variables (i.e. α = 0).
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Theorem 4. Let λ = e−α log p and µ = e−α log q.
Given a multivariate polynomial system of n + α
random equations of degree-d in n variables in
Z/(pq) with p and q distinct primes, the limiting
probability that the system has exactly s ≥ 1 solu-
tions is

e−λ−µ
∑

uv=s
u,v≥1

λu µv

u! v!

asymptotically in n.

Corollary 4. For a system as in theorem 4, the
limiting probability that the system has exactly
s ≥ 1 solutions is e−2

∑

uv=s
u,v≥1

1
u! v! , if the number of

equations equals the number variables (i.e. α = 0).

Proof of theorem 3. A solution does not satisfy
the system modulo pq if it does not satisfy it mod-
ulo p or it does not satisfy it modulo q. But this
way, we are double counting the probability that
it does not satisfy it both modulo p and modulo
q.

The probability that there are no solutions
modulo p and no solutions modulo q is the product
of these two probabilities:

e−p−α

· e−q−α

= e−(p−α+q−α)

The probability that there are no solutions
modulo pq is the sum of the probability of having
no solutions modulo p and no solutions modulo
q, minus the probability of no solutions modulo p
and modulo q together.

e−p−α

+ e−q−α

− e−(p−α+q−α)

Note that the previous result can be further ex-
tended to products of many distinct primes, by
using the inclusion-exclusion principle.

Proof of theorem 4. To have exactly s solutions
modulo pq, we must have u solutions mod p and v
solutions mod q, where uv = s. For different fac-
torizations of s, these events are disjoint. There-
fore the probability is

e−λ−µ
∑

uv=s
u,v≥1

λu µv

u! v!

for n going to infinity.
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Figure 1: Fraction of quadratic systems with no
solutions in GF (2)

4 Experimental results

We ran a large set of experiments, which con-
firm the validity of our results also in the cases
that are not covered by our proofs. We gener-
ated 10,000 random polynomial systems for each
configuration and we counted the number of solu-
tions in each case. Figure 1 shows the fraction of
quadratic systems with no solutions in Z2. Figure
2 shows the fraction of quadratic systems with ex-
actly one solution in Z2. The continuous line rep-
resents the value of the functions described in the
previous section, while the discrete symbols give
results from the experiments. We can see that the
experimental results are consistent with the for-
mulas even in the case of a small number of vari-
ables. This is better than what we were expecting,
because the formulas were derived for n going to
infinity. Figures 3 and 4 show similar results for
Z6. Figures 5 and 6 show that similar results hold
for cubic systems.

The following table shows the variance of the
experimental values with respect to the formulas
for the quadratic systems. The data of this table
is obtained varying n from 4 to 16 and m from 1
to 28.

no solutions 1 solution

Z2 1.66 · 10−5 1.95 · 10−5

Z3 7.30 · 10−6 7.56 · 10−6

Z5 2.48 · 10−6 1.74 · 10−6

Z6 1.54 · 10−5 1.60 · 10−6

Z7 2.00 · 10−6 2.78 · 10−6
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These experiments were designed to investigate
a range of applicability wider than the one consid-
ered in our theorems. The fact that the variance is
small makes us believe that our theorems are valid
more generally than our proofs would indicate.

4.1 Linearly independent equations

We considered the case of non-linear systems with
linearly independent equations. This is motivated
by the fact that the quadratic systems used in
cryptanalysis have only linearly independent equa-
tions.

The formulas derived in section 3 hold in the
case of linearly independent equations also. This
is because the equations of a random polynomial
system are linearly independent with very high
probability. In fact a system of degree q with n
variables has more than nq coefficients, which im-
plies that the matrix of the coefficients is rectan-
gular even when we consider m > n. As shown in
[G86], it is very likely that a random rectangular
matrix has maximal rank.

This is confirmed by the experimental data. We
ran the same experiment as the one described at
the beginning of section 4, but enforcing that the
equations must be linearly independent, by elim-
inating the linearly dependent equations. As we
can see from the following table the variance is
very small in this case also.
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one solution in Z3

no solutions 1 solution

Z2 1.79 · 10−5 2.09 · 10−5

Z3 7.30 · 10−6 7.56 · 10−6

Z5 2.58 · 10−6 1.82 · 10−6

Z6 1.65 · 10−5 1.72 · 10−6

Z7 2.89 · 10−6 4.02 · 10−6

4.2 Sparse systems

In this section we check our formulas on sparse
systems. Again the motivation comes from crypt-
analysis, where the quadratic systems are usually
sparse. In order to simulate the sparseness, we
consider three kind of sparse systems:

1. Each coefficient can be 0 with probability z
and non zero with probability 1−z. Note that
the known term can still assume any value
with equal probability.

2. Each equation contains exactly a fraction f
of the variables, i.e. the coefficients of the
remaining variables are 0.

3. Bi-affine equations. These are the type of
equations used in the cryptanalysis of Rijn-
dael (see for example [CP02]).

Case 1: the coefficients have higher proba-

bility to be 0. This is the most generic type of
sparseness that we are considering. The variance

between the formulas from section 3 and the ex-
perimental results is very small for values of z up
to 0.7. The following table shows how the variance
varies using different values of z with random sys-
tem in Z3. A similar situation is obtained in other
prime fields.

z no solutions 1 solution

0.5 3.66 · 10−6 6.30 · 10−6

0.6 1.62 · 10−5 9.04 · 10−6

0.7 7.14 · 10−5 3.21 · 10−5

0.8 1.82 · 10−3 6.81 · 10−4

0.9 1.32 · 10−2 3.31 · 10−3

The following table shows the value of the vari-
ance of random systems in different fields where
the coefficients are zero with probability z = 2/3.

no solutions 1 solution

Z2 3.74 · 10−5 3.27 · 10−5

Z3 8.05 · 10−5 3.62 · 10−5

Z5 1.54 · 10−4 7.81 · 10−5

Z6 1.19 · 10−3 7.17 · 10−5

Z7 1.27 · 10−4 4.00 · 10−5

If z is smaller than 0.7, the results are very sim-
ilar to figures 1 and 2. Figures 7 and 8 show the
result obtained with random systems in Z2 where
the coefficients are zero with probability z = 0.8.
As we can see in the plot, the formula does not
approximate well a system with n = 4 variables,
but it still works for bigger values of n.

Case 2: each equation contains exactly a

fraction f of the variables. In this case the
variance from the experiments is much higher.
The following table shows the values of the vari-
ance of random system in Z3 generated varying f
from 0.1 to 0.5.

f no solutions 1 solution

0.1 4.16 · 10−1 1.74 · 10−2

0.2 2.58 · 10−1 1.65 · 10−2

0.3 8.78 · 10−2 1.45 · 10−2

0.4 3.65 · 10−3 9.54 · 10−3

0.5 5.21 · 10−3 2.87 · 10−3
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Figure 7: Fraction of quadratic systems with no
solutions in Z2 with coefficients set to 0 with prob-
ability z = 2/3.
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Figure 8: Fraction of quadratic systems with ex-
actly one solution in Z2 with coefficients set to 0
with probability z = 2/3.
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Figure 9: Fraction of quadratic systems with no
solutions in Z2 with exactly 50% variables per
equation.

Similar results are obtained in other field as
shown in the following table, where f is fixed to
0.5.

no solutions 1 solution

Z2 3.34 · 10−3 2.56 · 10−3

Z3 5.33 · 10−3 2.94 · 10−3

Z5 9.17 · 10−2 4.11 · 10−3

Z6 1.87 · 10−2 1.02 · 10−3

Z7 1.91 · 10−2 7.90 · 10−3

An explanation of these results is that this
model reduces the freedom of the random equa-
tions, which in fact are no longer perfectly uniform
at random. For this reason the formulas no longer
exactly describe the phenomenon and the variance
from the experiment is much higher. This is also
evident from figures 9 and 10.

Case 3: bi-affine equations. Bi-affine equa-
tions are used only for quadratic systems. The
variables are partitioned into two sets of equal
size. Each quadratic term is composed of a vari-
able from the first set and one from the second
(i.e. two variables from the same set never appear
multiplied together). The variance in this case is
small as we can see from the following table.

no solutions 1 solution

Z2 9.17 · 10−6 2.00 · 10−5

Z3 2.63 · 10−5 3.99 · 10−5

Z5 1.24 · 10−6 9.04 · 10−6

Z6 4.14 · 10−5 1.23 · 10−5

Z7 4.10 · 10−6 5.10 · 10−6

The results for Z2 are plotted in figures 11 and 12.

5 Equations from cryptographic

systems

In this section we apply the formula for exactly
one solution to the sizes of quadratic systems for
some well known cryptographic systems. The re-
sults obtained with the experimental data (see sec-
tion 4) give us confidence in using the formula in
this case, even if this is not a case covered by our
proofs. The data in the following table is from
[BD03]. All the equations are in Z2.
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Figure 10: Fraction of quadratic systems with ex-
actly one solution in Z2 with exactly 50% variables
per equation.
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Figure 11: Fraction of quadratic systems with no
solutions in Z2 with bi-affine equations.
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Figure 12: Fraction of quadratic systems with ex-
actly one solution in Z2 with bi-affine equations.

Cryptosystem n m α

Khazad 6464 7664 1200
Misty1 3856 3856 0
Kasumi 4264 4264 0
Camellia-128 3584 6224 2640
Rijndael-128 3296 6296 3000
Serpent-128 16640 17680 1040

For the quadratic systems of Misty1 and Kasumi,
the parameters m and n are in the range of appli-
cability of our formulas.

In the following table we can see that for many
systems the probability of having exactly one so-
lution is extremely small. However the number
of systems with exactly one solution is not that
small, if we consider that the total number of pos-
sible systems is huge.

Cryptosystem Total # of systems Pr[1 solution]

Khazad 6.86 · 106249185 5.81 · 10−362

Misty1 1.68 · 102239709 1/e
Kasumi 4.20 · 102738543 1/e
Camellia-128 1.64 · 101934992 1.91 · 10−795

Rijndael-128 5.40 · 101636625 8.13 · 10−904

Serpent-128 3.58 · 1041683551 8.49 · 10−314

One inference that can be drawn from this study
is that quadratic systems with unique solutions are
relatively rare, so rare that in most cases, studying
the performance of solution algorithms for random
systems might not tell us much about their efficacy
in attacking specific cryptosystems.

6 Conclusions and Open Prob-

lems

We showed that the probability that a random
polynomial system has no solution has a phase
transition when the number of equations equals
the number of variables. The value of the proba-
bility at the phase transition is 1/e if the compu-
tation is over a prime field.

We showed that probability of having exactly s
solution, s ≥ 1, follows a Poisson distribution with
parameter λ = e−α log p, for prime fields.
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We extended the result to Z/(pq), with p and q
distinct primes. It is an open problem to extend
the result to the case of Z/(pr), with p prime.

It is an open problem to adapt the formulas in
the case of sparse systems where each equation
contains exactly a fixed number of variables.
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