

Computer
Sciences
Department

WHATSAT: Dynamic Heap Type Inference for Program
Understanding and Debugging

Marina Polishchuk
Ben Liblit
Chloë W. Schulze

Technical Report #1583

December 2006

WHATSAT: Dynamic Heap Type Inference
for Program Understanding and Debugging∗

Marina Polishchuk
Microsoft Corporation†

marinapo@microsoft.com

Ben Liblit
University of Wisconsin–Madison

liblit@cs.wisc.edu

Chloë W. Schulze
Oracle Corporation†

chloe.schulze@oracle.com

December 2006

Abstract

C programs can be difficult to debug due to lax
type enforcement and low-level access to memory.
We present a dynamic analysis for C that checks
heap snapshots for consistency with program types.
Our approach builds on ideas from physical subtyp-
ing and conservative garbage collection. We infer a
program-defined type for each allocated storage lo-
cation or identify “untypable” blocks that reveal heap
corruption or type safety violations. The analysis ex-
ploits symbolic debug information if present, but re-
quires no annotation or recompilation beyond a list
of defined program types and allocated heap blocks.
We have integrated our analysis into the GNU De-
bugger (gdb), and describe our initial experience us-
ing this tool with several small to medium-sized pro-
grams.

1 Introduction

Suppose that a programmer notices an incorrect vari-
able value during the execution of a C program.
While debugging, the programmer may try to ob-

∗Supported in part by NSF under grant CCR-0305387.
†This work performed while at the University of Wisconsin–

Madison.

serve values of the variable at various points during
execution, either by setting a watchpoint in the de-
bugger or by inserting print statements. However,
both of these techniques may be inadequate. Debug-
ger watchpoints can be prohibitively slow. Adding
print statements may be ineffective in cases of mem-
ory corruption, as the affected data structure may
have no apparent relation to the code that corrupts it.
The programmer may also run a static pointer anal-
ysis to check for erroneous memory accesses. How-
ever, typical analyses [1, 24] do not model depen-
dencies between neighboring memory blocks. In C,
many bugs are caused by buffer overruns and pointer
mismanagement, so physical proximity of memory
blocks is an important factor.

We have designed and implemented an automated
tool to help programmers understand and debug pro-
gram behavior at the physical memory level. Our
tool offers the programmer a low-level, but typed,
view of memory. Each allocated chunk is presented
either according to its inferred overall data type or as
“untypable” if no defined program type is compati-
ble with its imposed constraints. A common scenario
where this view is useful is in the case of a buffer
overrun: rather than attempt to deduce what data
structure lies near the corrupted location from raw
memory values or printed variables, the programmer
uses our tool to discover that a nearby memory block

1

mailto:marinapo@microsoft.com
mailto:liblit@cs.wisc.edu
mailto:chloe.schulze@oracle.com

is being used as an array of a particular type. The
mere presence of an array makes “buffer overrun” a
good hypothesis, and the array’s type helps the pro-
grammer identify relevant code to examine for pos-
sible array bounds violations.

When memory has been corrupted, our tool may
detect that values stored in one or more heap blocks
do not match any feasible type for the block. In order
to reason about the cause of the corruption, the pro-
grammer may want to know exactly when the heap
first became corrupted. For this task, we support a bi-
nary search debugging strategy often used to find ill-
behaving code: set a breakpoint at the location where
a variable was last known to be correct, and another
where it has the wrong value, then iteratively narrow
the interval until the bad assignment is exposed. Our
tool gives the programmer the ability to treat the en-
tire heap as a memory value that is either in a good or
bad state, and search for the time at which the heap
was first corrupted using her usual dynamic debug-
ging techniques, such as the binary search described
above.

This paper makes the following contributions:

• We introduce the idea of aconsistent typingfor
the heap at any given point during execution.
Each block of allocated storage is assigned a
type from among those used in the program.
The type assignment satisfies a set of constraints
imposed by the values stored in memory, the
size of each allocated block, and a type confor-
mance relation (�) based on physical subtyp-
ing. Additional constraints may be imposed by
declared program variables when debugging in-
formation is available.

• We give an algorithm that finds a consistent typ-
ing for a snapshot of the heap. When no consis-
tent typing exists, we report the locations and
causes of conflicts to the user.

• We present a memory visualization that focuses
on physical layout and provides a lucid repre-
sentation of how typed data is stored.

The remainder of this paper is organized as fol-
lows. We give an overview of our system and define

basic terms in Section 2. Section 3 defines a subtyp-
ing relation on types used for individual bytes. Sec-
tion 4 specifies the constraints that must be satisfied
for a set of typed memory locations to be considered
consistent, and Section 5 gives an algorithm to find a
consistent typing for the entire heap. Section 6 dis-
cusses visualization and presents several case stud-
ies using our tool. Section 7 places our system in
context with related work. Section 8 outlines future
directions for our technique and concludes.

2 Preliminaries

Here, we describe the scenario under which we solve
the problem of finding a consistent typing for the
heap, outline our solution, and provide key defini-
tions and notation used throughout the paper.

2.1 Definitions

A typing is a mapT : Store→ Typesfrom each stor-
age location (addr∈ Store) to its corresponding type
(τ ∈ Types). Types are all those defined or used by
the program, including structures, unions, pointers,
arrays, and functions. Storage locations include:

• a fixed set of addresses holding global variables

• the set of locations that hold all local variables
and function arguments on the stack at the cur-
rent program point, or on multiple stacks for
multithreaded programs

• all memory blocks dynamically allocated since
the start of the program, which we refer to as
heap storage

Globals, locals, and function arguments may have
associated type information if symbolic debug infor-
mation is present. However, memory blocks from
heap storage never have associated dynamic type in-
formation. Unions are also untagged per standard C.

In the manner of conservative garbage collectors
[3], we define avalid pointeras a block of memory
whose value is inStore(i.e., is a storage location).
A valid pointer may also point immediately after the

2

end of a block of storage; this is a common program-
ming idiom that is explicitly allowed by the C stan-
dard [14].

A type constraintrestricts the types that may re-
side at a given storage location. Our analysis im-
poses constraints on the types of individual bytes of
memory, termedbyte types. Informally, a byte type
indicates that a byte holds the start of some program
type or any subtype thereof. Byte types may also in-
dicate that a byte is part of the interior of a multi-byte
value that starts at an earlier location.

2.2 Overview

After establishing theStoreand Types, our analy-
sis proceeds as follows. First we assign byte types
to all storage locations that hold valid pointers, and
also to their corresponding pointed-to locations. One
of the key problems that our tool tries to address is
the fact that C programs often manipulate memory
values in a way that disregards their declared types,
which complicates debugging. Hence, our analy-
sis treats the values that arise in the program as a
foremost source of byte type constraints. Next, if
symbolic debug information is available, byte types
may also be transitively propagated from variables
declared in the program, for which the exact type is
known. However, even in the presence of this in-
formation, many bytes may remain wholly or partly
unconstrained. After all available constraints are es-
tablished on individual bytes, we systematically con-
sider possible overall types for each block until the
typing map is fully defined, or all typing alterna-
tives for the memory blocks are exhausted. An over-
all type is assigned to a block when it is consistent
with the individual byte types at each offset within
the block as well as the constraints imposed by con-
nections (via pointers) to or from other blocks. In
some cases, constraints suffice to determine a unique
consistent typing. Otherwise, when several consis-
tent typings are possible, we use a search ordering
heuristic to choose the most descriptive type for each
heap block.

Whenever our algorithm applies a byte type to a
location, the new type may conflict with an existing
byte type at the same address. If a conflict arises

when considering memory values and symbolic de-
bug information if present, then we have found spe-
cific instances of pointer or declared variable usage
that do not adhere to our notion of consistency (as
detailed in Section 4). Such conflicts are reported
to the user, and blocks containing them are marked
as “untypable” and omitted during whole-block type
assignment.

2.3 Notation

Figure 1 establishes a concise notation for C types,
derived from that used by Siffet al. [22]. An array
of n elements of typeτ is written τ[n], while τ ptr
is a pointer toτ. A tuple of the forms〈m1, . . . ,mk〉
denotes astruct , while u{m1, . . . ,mk} denotes an
untagged union. Eachmj is a triple (τ, l , i) giving
the type, name, and starting offset of one field within
a structure or union. Structure fields are ordered by
offset, with m1 starting at offset zero. Union fields
are unordered and all start at offset zero.

Our subtyping relation is given by≺ and its re-
flexive closure�. We use type notationaddr : τ in
place of the subtyping constraintT(addr) � τ when
the type mappingT is evident from context.

In the discussion that follows, byte offsets within
a memory block are represented in terms of addi-
tion: if block is the start address of some block
of storage,block+ i denotes the address of theith

byte ofblock, starting from zero. We abbreviate the
addressblock+ 0 as simplyblock. The predicate
validPointer(addr) asserts thataddr holds the start
of a valid, non-null pointer value.

3 Byte Type Lattice

Our analysis may yield multiple distinct types for the
same memory location. In some cases this reveals a
conflict and likely misused memory. In other cases
the types may, in fact, be compatible. This section
explains how we construct a lattice from the set of
C program types to model type compatibility in our
analysis.

The data types in Figure 2 form a running example
throughout the paper; hereafter, we omit the explicit

3

τ ::=
atomic // no internal substructure

| τ[n] // array of typeτ of sizen
| s〈m1, . . . ,mk〉 // struct
| u{m1, . . . ,mk} // untaggedunion
| (τ1, . . . ,τk)→ τ0 // function returningτ0

m ::= (τ, l , i)
// field labeledl of typeτ at offseti

atomic ::=
e〈id1, . . . , idk〉 // enum

| τ ptr // pointer toτ

| char | int | double | . . .

Figure 1: Concise C type grammar

struct Point {
double x;
double y;

};

struct Shape {
char * name;
FILE * fptr;

};

struct Part {
struct Point center;
struct Shape * shape;
struct Assembly * owner;

};

struct PartNode {
struct Part * part;
struct PartNode * next;

};

struct Assembly {
struct Point center;
struct PartNode * nodes;
struct Assembly * owner;

};

Figure 2: Example data types for assembly-building
program

 T

referent interior

pointer char ... double

char * ... Part *

Assembly PartPartNode

Point

Shape

Figure 3: Byte type lattice corresponding to the data
types in Figure 2

“struct ” keyword. Given these types, the remain-
der of this section defines the subtyping relation used
to construct the byte type lattice shown in Figure 3.
For clarity, we omit⊥ in Figure 3 and from the sub-
typing definitions below.⊥ should be assumed as
the meetof any two lattice elements for which no
other lower bound is defined; it denotes that the cor-
responding two types may not be consistently stored
at the same address.

3.1 Structures

A structure and its initial (offset 0) field have the
same physical address but distinct types. Therefore
the immediate supertype of a structure is the type of
its initial field:

s〈(τ1, l1,0), . . . ,mk〉 ≺ τ1

For example, the relationshipsPart ≺ Point ≺
double are read as “If an address holds the 0th byte
of aPart , then it also holds the 0th byte of aPoint
and the 0th byte of adouble .” By contrast, a struc-
ture containing threedouble s would not be con-
sidered a subtype ofPoint , even though they have
similar layouts.

This definition is stricter than the physical sub-
typing of Chandra and Reps [5], in which a struc-
tures〈m1, . . . ,mk〉 is a subtype of any of its prefixes

4

s〈m1, . . . ,mi〉, i < k. Our design allows only those
pointer aliases that may arise in a program that does
not use casts to evade the type system. This is merely
a policy choice. More permissive alternatives could
be used with no change to the rest of the analysis, and
may be desired for use with certain programming id-
ioms.

3.2 Special and Atomic Types

The four diamond-shaped nodes at the top of Fig-
ure 3 are always present.> denotes an unconstrained
memory address that may hold any type.refer-
ent describes all types that can be the referent of a
pointer, whileinterior describes the non-initial bytes
of multi-byte atomic values. Pointer targets must be
referent subtypes and can never beinterior . For ex-
ample, if v holds an eight-bytedouble , then byte
v+0 has typedouble but bytesv+1 throughv+7
all have typeinterior and may not be pointed to di-
rectly. Bitfields are also typed asinterior , for their
addresses cannot be taken.

pointer indicates that a storage location holds the
0th byte of a valid pointer, and thus is potentially con-
sistent with any pointer type. Pointers to pointers are
allowed, sopointer ≺ referent. pointer is not the
same asvoid * ; the former represents all pointers,
while the latter is a specific program type.

The oval nodes in the lattice correspond to actual
types that may be used in a C program. Notice that
the primitive atomic types are all sibling immedi-
ate subtypes ofreferent. This stipulates that two or
more atomic types may not be simultaneously stored
at the same address.

As a special case, we treatvoid as a zero-length
type that is identical toreferent. Although no byte
should ever have typevoid in the final result, this
convention allows transparent handling of aliases be-
tweenvoid * and more fully typed pointers: point-
ers toτ andvoid may refer to the same address in
our system as thoughvoid were a zero-length prefix
of everyreferent subtype.

The subtyping relation is not extended across
pointers. That is,τ1 � τ2 6⇒ τ1 ptr � τ2 ptr. This
is the standard restriction for subtyping with updat-
able references, and any program that requires this

form of subtyping to describe its heap must neces-
sarily have used casts or other measures to violate
type safety.

3.3 Arrays

We define the immediate supertype of an array type
as the type of its elements:

τ[n]≺ τ

τ[n] may be viewed ass〈m1, . . . ,mn〉, where allmi

have typeτ, so the reasoning for this relation is anal-
ogous to that for structures.

3.4 Unions

Untagged unions require special treatment, because
a union may be used as any of its fields, but a
consistent typing requires that every address be as-
signed a unique type. For each untagged union type
u{m1, . . . ,mk}, we extend the type grammar to in-
clude one tagged caseu@mr{m1, . . . ,mk} for each
1≤ r ≤ k. Unions and their tagged cases adhere to
the following subtyping relations:

u{m1, . . . ,mk} ≺ referent

u@(τr , lr ,0){m1, . . . ,mk} ≺ u{m1, . . . ,mk}
u@(τr , lr ,0){m1, . . . ,mk} ≺ τr

These relations forbid aliased pointers to differently-
typed union fields. Each union must be used in a sin-
gle consistent manner at any given point during exe-
cution. For example, a tagged union storing aPoint
can be the target of pointers to the untagged union as
well as pointers toPoint anddouble , but could
not be the target of a pointer toPart . When two
or more fields of a union have a common supertype,
additional cases can be introduced that represent a
subset of possible tagged cases rather than a single
case. This preserves uniqueness of the latticemeet
operation.

Note that only tagged unions and⊥ have multiple
immediate supertypes. The byte type lattice without
these becomes a tree.

5

3.5 Functions

Every function may be pointed to:

(τ1, . . . ,τk)→ τ0 ≺ referent

No other proper subtyping relations exist among
function types. We allow neither return type co-
variance nor argument type contravariance, as these
are not part of standard C. Calling a function with
too many arguments, while safe in many C imple-
mentations, is also not endorsed by the standard and
therefore not admitted here. This is merely a policy
choice. More permissive alternatives could be used
with no change to the rest of the analysis.

3.6 Finite Type Space

The byte type lattice contains an unbounded num-
ber of types, including arrays of arbitrary length and
pointers of arbitrarily deep nesting. In practice, we
consider only the following finite subset of types that
are likely to be meaningful and useful for a given
program:

• program-declared structures, unions, and enu-
merations

• tagged variants of unions or types containing
unions

• arrays used by the program, e.g.int[3][5]
if and only if at least one field or variable has
exactly this type

• pointers used by the program, e.g.int ****
if and only if at least one field or variable has
exactly this type

• pointers to known types up to two more levels
of indirection

The number of tagged variants of unions and
union-containing types is potentially exponential. In
our experience, multi-union structures and nested
unions are unusual, and therefore the number of
tagged variants is typically linear.

Additional array types are synthesized as needed
during the analysis to satisfy size constraints (Sec-
tion 4.2), but only using element types appearing in

void main() {
...
carAssm = create_assembly();
...

}

Assembly * create_assembly() {
1 Assembly * assm =

malloc(sizeof(Assembly));
2 PartNode * node =

malloc(sizeof(PartNode));

3 node->part = malloc(sizeof(Part));
4 node->next = node;
5 assm->nodes = node;

// build part’s shape and set name
6 init_part(node->part, "door", assm);

...
7 return assm;

}

Figure 4: Program that builds a simple assembly

the original program. For example, a block of 32
bytes may be typed asint[8] if int is a known 4-
byte type. We do not considerint[2][4] unless
the corresponding element type (int[4]) appeared
in the original program.

4 Consistency Constraints

In this section, we specify four kinds of constraints
on storage locations that restrict the possible types
for heap blocks. We then show how these constraints
are combined to derive a consistent heap typing at
one point in an example program. For simplicity, we
assume a 32-bit architecture with 4-byte pointers and
8-bytedouble s. Our ideas generalize to 64-bit or
other architectures as well.

The program excerpt in Figure 4 creates a part for
a simple assembly and initializes it with its shape and
owner assembly. Figure 5 shows the heap after the
call to init_part() on line 6 of Figure 4. Blocks
are labeledA–E arbitrarily, with the line number of
each block’s allocation given next to its label. Valid
pointer values are shown in a C-style syntax, and the
rest of memory is assumed to be set to zero when re-
turned bymalloc() . Bracketed numbers indicate

6

���������	
��
����	�������	�����
��������	������	������������	
��
����	�������	����� ����	��
���	��
����������	
����	�����	��

������
��	������	����
Figure 5: Allocated blocks and values afterinit_-
part() call in Figure 4

byte ranges within each block.

4.1 Value Constraints

Value constraintsarise from concrete data values in
memory at the instant the analysis is applied. They
reflect the fact that some data types have limited do-
mains that are much smaller than the set of all pos-
sible values that can fit in the allotted memory. The
following generic value constraints are useful across
a wide variety of C programs:

• valid pointer constraint

validPointer(addr)⇒ T(addr)� pointer

Valid pointer constraints are used to infer ba-
sic type information: if a value looks like a
valid pointer, we require that it be typed as a
pointer (Section 5.1). This assumes that no non-
pointer ever takes on a valid pointer value by
chance, a strategy widely employed by conser-
vative garbage collectors [3].

• enumeration constraint

A byte of typeenum is consistent only if the
value starting at that byte is equal to one of the
defined constants for the enumerated type. Enu-
meration constants are not uniquely identifying
in general, so this rule cannot be used to infer

basic type information from values alone. How-
ever, this rule can be used as a filter, to reject in-
ferred or hypothesized types that are definitely
inconsistent with observed values.

• function pointer constraint

In the presence of shared libraries without de-
bug information, not all functions’ start ad-
dresses are known. Therefore we treat a func-
tion pointer type as consistent if its value is
any word-aligned address that may contain ex-
ecutable code. The mechanism for identifying
code pages is platform specific. Due to the diffi-
culty of reliably distinguishing code from data,
function pointer constraints are best used as fil-
ters in the manner of enumeration constraints.

• character constraint

In a program that manipulates ASCII text, if
a block is otherwise unconstrained and ASCII
character values are stored at every offset in
the block, then the block should be typed as
char or char[n] rather than any other con-
sistent primitive or primitive array type (e.g.
double[n/8] or short[n/2]). Character
constraints are used to change the type search
order rather than to infer or reject types. When
this constraint is not applied, character arrays
are considered as a last resort after arrays of
other primitive types have been rejected (Sec-
tion 5.3.3).1

Programmers may wish to define additional value
constraints to reflect application-specific types and
invariants. Our heap typing algorithm can accom-
modate arbitrary predicates that approve or reject the
type proposed for a given location and value. For ex-
ample, the data structure consistency specifications
of Demskyet al. [6] could be applied as additional
value constraints for selected types.

Table 1 shows valid pointer value constraints for
the heap snapshot in Figure 5, and the possible types
whose physical layouts are consistent with each con-
straint. An important detail is that, while locations

1Similar constraints can be used in other, non-ASCII locales
when the character repertoire is known in advance.

7

Block Valid Pointers Value-Consistent Types

A A +0 PartNode , Shape
B B+16,B+20 Part , Assembly
C C+16 Part , Assembly
D D+0, D+4 PartNode , Shape

Table 1: Valid pointer value and possible value-
consistent types for heap in Figure 5

Block Size Size-Consistent Types

A 8 PartNode , Shape , char[8] , . . .
B 24 Part , Assembly , Shape[3] ,

PartNode[3] , float[6] , . . .
C 24 Part , Assembly , Shape[3] ,

PartNode[3] , float[6] , . . .
D 8 PartNode , Shape , int[2] , . . .
E 5 char[5]

Table 2: Size constraints and possible size-consistent
types for heap in Figure 5

holding zero are unconstrained, zero is consistent
with either a pointer type or most primitive types.
In this example, bothPartNode and Shape are
value-consistent with blockA if the value atA + 4
is viewed as a null pointer.

4.2 Size Constraints

The overall type for a block must fill exactly the
number of bytes allocated for that block. For any ad-
dressblockwhich is the start of an allocated block,

T(block) = τ ⇒ sizeof(block) = sizeof(τ)

In C, dynamically allocated arrays tile multiple
copies of the element type one after the other. A
block holding a dynamic array withn elements of
typeτ must satisfy

sizeof(block) = n×sizeof(τ)

for some whole number of array elementsn.
Table 2 shows size constraints and a few illustra-

tive size-compatible types for blocks in the example
heap snapshot.

4.3 Type Constraints

Type constraints relate multiple locations, either be-
tween blocks (for pointers) or within a single block
(for multi-byte structures):

(i) If T(addr) � pointer and ∗addr is within an
allocated block (not one past the end), then
T(∗addr)≺ referent.

(ii) If T(addr) � τ for any atomic typeτ as de-
fined in Figure 1, thenT(addr+ i) = interior
for all 1≤ i < sizeof(τ). Combined with rule
(i) and the incompatibility ofinterior andref-
erent, this forbids pointers into the interior of
atomic values.

(iii) For any currently allocated block starting at
block, T(block) ≺ referent. While similar to
rule (i), this rule also affects leaked blocks to
which nothing points.

(iv) If T(addr)� τ ptr thenT(∗addr)� τ. Pointers
and pointed-to types must be compatible mod-
ulo subtyping.

(v) If T(addr) � s〈(τ1, l1, i1), . . . ,(τk, lk, ik)〉, then
T(addr+ in) = τn for all 1 < n≤ k. Structure
fields must be compatible with the structure as
a whole.

(vi) If T(addr) = τ[n], then T(addr + i ×
sizeof(τ)) = τ for all 1 ≤ i < n. Array
elements must be compatible with the array as
a whole.

Implied constraints may imply additional con-
straints. A consistent heap typing must satisfy all
transitively implied type constraints.

Untagged unions induce no additional type con-
straints. Any tagged union typeu@(τ, l ,0){. . .} is
also a subtype ofτ and will pick up any appropriate
constraints per the above rules.

4.4 Debug Constraints

If symbolic debug information is available for in-
scope variables and function arguments, then this in-
formation may be added to the type map in the ob-
vious manner. Equality constraints are appropriate

8

������
����	
�����������������������������������
� !"#$%&'()*+,-./01"#2*+3-4/0567889:;<=
7889:;<=>?@AB@CDEFGHIJKL9>?MNBMODEFKPQI?ABMRDE STUVWXYZ[\UVWXYZ[\]_̂̀abcUVWX]d̂̀ebc
fgVŴ_bcfgVŴebc
hijklmnop
jklmqrstjklmqustjklmqvst

Figure 6: Fully constrained heap and derived typing
for heap in Figure 5

here: if x is known to be an integer variable, then
its type must beint , not someint subtype. Our
main algorithm (Section 5) does not require debug
information to find consistent typings, but takes de-
bug constraints into account if present.

4.5 Example Solution

We now combine value, size, and type constraints to
informally derive the consistent heap typing shown
in Figure 6. Section 5 presents a systematic algo-
rithm for finding consistent typings automatically.
For clarity, we consider user-defined types before
other possible matches (such as arrays of primitives).
Assume that debug constraints are unavailable.

From valid pointer value and size constraints,
block A must have typeShape or PartNode . If
Shape is considered first, we propagate achar
constraint to blockE via rule (iv).

Value and size constraints require that blockE
have typechar[5] . Becausechar[5] � char ,
blockE can have typechar[5] and still be consis-
tent with thechar pointer from blockA. If we had
triedA : PartNode first, then a conflict would have
arisen; we discuss conflicts in detail in Section 5.

From size and value constraints, blockB must
have typeAssembly or Part . If we try B :
Assembly , thenB+16 : PartNode * via rule (v)
and soA : PartNode via rule (iv), but this con-
flicts with A : Shape established earlier. Choosing
B : Part is consistent withA : Shape , and also re-
quiresC : Assembly . This is consistent with value

and size constraints on blockC. Lastly, block D
must have typePartNode due to the pointer field
atC+16.

When there are few initial constraints or many
identically-structured types, a consistent typing is
not necessarily unique. For example, if all bytes in
block D were zero, then the following would also be
a consistent heap typing:

A : char * [2] D : char[8]

B : char ** [6] E : char[5]

C : char * [6]

5 Heap Typing Algorithm

In this section, we present an algorithm for assigning
types to all storage locations, if a consistent typing is
possible. Inputs to the algorithm consist of a snap-
shot of all values in the program’s memory; the start
addresses and sizes of all allocated heap blocks; a list
of defined program types; and optional symbolic de-
bug information giving the locations, sizes, and types
of in-scope variables. The output is a typingT giv-
ing consistent byte types for all allocated bytes. The
byte type for the 0th byte of an allocated block gives
the overall type for that block. In some (but not all)
cases when no globally consistent typing exists, the
algorithm can identify, describe, and eliminate unty-
pable blocks while still producing a partial typing for
the remaining blocks.

The algorithm begins by assigning types to indi-
vidual bytes of storage, using the values that arise in
the program (e.g., valid pointers and their pointed-
to locations) as a foremost source of byte type con-
straints (Section 5.1). Next we transitively propagate
byte types from variables declared in the program
(for which exact types are known), reporting any
type constraint violations to the user (Section 5.2).
Finally, we systematically consider possible overall
types for each memory block until the typing map is
fully defined or all typing alternatives for the blocks
are exhausted (Section 5.3).

9

5.1 Pointer Constraint Gathering

First we establish valid pointer value constraints on
individual bytes as described in Section 4.1. Type
constraint rules (i)–(iii) induce additional constraints
where appropriate. Conflicts betweenreferent and
interior may arise during this stage. For example
if blocks X andY hold valid pointers, butY points
to byteX + 2, thenX + 2 cannot simultaneously be
the referent of the pointer inY and the interior of
the pointer inX. In this situation, it is difficult to
know which block is truly erroneous. We describe
the conflict to the user, then mark both blocks as un-
typable and disregard them for the remainder of the
algorithm.

After this phase, the typing constrains some bytes
to be subtypes ofpointer, interior , or referent, but
many bytes remain unconstrained (>) and no pro-
gram types yet appear.

5.2 Debug Constraint Gathering

If symbolic debug information is available, debug
constraints are applied next, then propagated transi-
tively across pointers and into compound types using
type constraint rules (iv)–(vi). Value and size con-
straints are checked where appropriate. Note, how-
ever, that size constraints are only partially enforced:
a block must be at least large enough to contain the
expected type, but may be larger. For example, the
target of adouble * must be at least eight bytes
long, but may be longer if it is part of a larger struc-
ture, union, or array.

During this stage, conflicts may arise among de-
bug constraints (e.g.int and float in the same
location); between debug and size constraints (e.g.
int in a two-byte block); between debug and value
constraints; or between debug andpointer, refer-
ent, or interior constraints derived in the previous
stage. If any such conflict occurs, we assume that
execution has deviated from type safety and that the
static type system therefore cannot be trusted to pre-
dict run-time types. We report the problem to the
user and then back out all debug constraints. The re-
mainder of the algorithm will operate using observed
memory values only, without considering declared
variable types. A more selective approach, which we

leave as future work, would be to discard only a min-
imal subset of problematic debug constraints while
keeping the remainder.

Barring conflicts, at the conclusion of this phase,
the global typing includes program types for memory
addresses that are (transitively) reached from point-
ers in program variables. However, these types are
merely lattice upper bounds. For example, a pointer
to char may actually point to an array of characters
or to a structure with an initialchar field. Some
bytes within reachable blocks, and all bytes within
unreachable blocks, still carry only thepointer, ref-
erent, andinterior constraints added previously.

5.3 Completing the Heap Typing

Given the initial byte type constraints, we next assign
an overall type to every heap block. Fully enforced
size constraints ensure that the size of a block’s over-
all type is equal to the block size, so all allocated
bytes are constrained when the typing is completed
and the 0th byte of each block determines the block’s
overall type.

5.3.1 Typing Feasibility Check

Typing completion begins by verifying that every
heap block may be assigned at least one program
type, given the initial constraints. A block that can-
not be assigned any known type may be corrupt or
may have been allocated in a library whose internal
types are unavailable. We describe the problematic
block to the user, then mark it as untypable and dis-
regard it in the type search phase that follows.

5.3.2 Search Algorithm

The main search phase considers the possible types
for each block, backtracking in the event of conflicts.
When a type is verified as consistent with all current
value, size, type, and (optional) debug constraints
on a particular block, we update the byte types for
all bytes in this block to reflect the overall type,
as well as propagate constraints one level forward
across pointers in the block, and proceed to the next
block. If no consistent type is found for some block,

10

Induced Constraints
Block Type Considered Outcome on Other Blocks

C FILE size conflict: sizeof(C) < sizeof(FILE)
C Part ✔ D+0 : Shape
D Shape type conflict atD+0: meet(Shape ,FILE) = ⊥
C Assembly ✔ D+0 : PartNode
D PartNode ✔ B+0 : Part
A PartNode size conflict: sizeof(E) < sizeof(PartNode)
A Shape ✔ E+0 : char
E char[5] ✔

Table 3: Heap typing algorithm execution trace

we backtrack to the last block that still has remain-
ing type alternatives, and resume the search from that
point. The algorithm terminates either when the last
considered block is assigned a consistent type, or
when all possible types for all blocks have failed, in
which case no consistent typing exists.

Naïvely implemented, this search is geometric in
the number of blocks and exponential in the number
of types. However, since an entire block’s type must
be a subtype of its 0th byte’s type, the search can be
restricted to the sublattice below this bound. This
optimization is especially effective with debug con-
straints enabled, as most pointers refer to the initial
byte of an allocated block.

5.3.3 Heuristic Type Ordering

As discussed in Section 4.5, a heap may have several
consistent typings. We prefer a typing that is most
informative for the user, so we consider the possible
types for each block in a particular order:

1. struct s, large to small

2. taggedunion s, large to small

3. atomic types, large to small

– non-enums beforeenums of the
same size

4. arrays, recursively sorted by element
type

5. pointers, recursively sorted by refer-
ent type

Ties in the above ordering are broken arbitrarily.
Note that untagged unions are omitted from the or-
der. We treat untagged unions as akin to abstract base
types in object oriented languages. No block ever
has an untagged union as its actual type; only spe-
cific tagged cases of a union may be “instantiated”
as allocated blocks.

Intuitively, if a block can have a program-defined
type, then showing that type rather than an array of
primitives may be more informative. The size or-
dering addresses the same issue: we try to assign a
large struct type to a block before considering an ar-
ray of small structures. We place primitives before
pointers because we find that an unconstrained block
containing all zeroes is presented more naturally as
an array of primitives than an array of null point-
ers. Recursive sorting of pointer types places type-
specific pointers likeint * before genericvoid * ,
and shallowly nested pointers likevoid * before
deeply nested pointers likevoid *** .

The order is designed to heuristically direct our so-
lution toward more useful typings. We do not guar-
antee that the final heap typing is globally minimal
or optimal with respect to this order, but we find that
it yields good results in practice.

5.4 Example: Computing the Solution

We now illustrate the algorithm as applied to our run-
ning example, again considering the heap snapshot
after theinit_part() call on line 6 of Figure 4.
To illustrate conflict handling, we modify the val-

11

ues shown in Figure 5 as follows: assume that bytes
B+16. . .B+19 have been corrupted, and no longer
hold a valid pointer value. All other value constraints
remain as shown in Table 1.

During debug constraint collection, an inconsis-
tency arises when aB : Part constraint is propa-
gated from variablenode , becausePart requires a
valid pointer or null at bytesB+16. . .B+19. Since
a conflict is found, debug constraints are discarded.
The search continues using only value constraints.
Block B does not pass the typing feasibility check,
so it is omitted from the search. Table 3 summarizes
steps taken during the backtracking search for com-
plete types. The remaining blocks are considered in
their allocation order, and the types are ordered ac-
cording to our sorting heuristic. The algorithm is
able to recover the types of the four remaining blocks
using value and size constraints only, backtracking
several times throughout the search. The final heap
typing for the four remaining blocks is as shown in
Figure 6.

5.5 Propagation Correctness

After assigning a type to a block, we update con-
straints for the block itself and also propagate all
pointer constraints forward across one dereference.
We claim that this is sufficient to ensure that no in-
consistency between typed blocks is overlooked.

Proof. Without loss of generality, assume there is an
inconsistency between blocksR and S, which are
two levels of pointer indirection apart. LetX be the
intermediate block, and letxR (resp.bX) denote the
the byte ofX (resp.S) that is constrained byR (resp.
X). To prove the claim, it is enough to show that
the inconsistency betweenR andS is detected with-
out crossing pointers twice, regardless of the order in
which our algorithm considers the blocks.

If blocks are ordered〈R, X, S〉 or 〈S, R, X〉, then
the constraint onxR is taken into account whenX is
assigned an overall type, and is propagated directly
to S at that time. In both orderings, our algorithm
will be unable to assign a consistent type to the last
block, and will eventually backtrack to consider a
different type forR.

For the remaining four orderings, the order of con-
straint propagation does not directly correspond to
block order. Consider the ordering〈X, S, R〉. The
algorithm advances to a new block only if all pre-
vious ones have been consistently typed, so consis-
tency betweenX andS is guaranteed whenR is con-
sidered. At this time, two cases arise when assigning
an overall type toR. If the type assignment requires
modifying xR, then the type is rejected, since after
an overall type forX is determined, all of its byte
types are “frozen” to henceforth reflect the overall
type. Otherwise, the overall type ofX is consistent
with R, but, sinceX andSare already consistent, this
violates our initial assumption thatR andS conflict.
The argument for the three remaining orderings (〈X,
R, S〉, 〈S, X, R〉, 〈R, S, X〉) is similar.

An alternative scenario to consider is two discon-
nected blocks,I and J, that both refer to the same
third block, Q. Here, the constraints imposed byJ
onQ will never invalidate the consistency ofI andQ,
because ifI induces a constraintQ+ i : τ, andJ later
modifies this constraint without conflict toQ+ i : τ ′,
thenτ ′ � τ.

6 Evaluation

We have implemented the above algorithm within the
GNU Debugger (gdb), a popular symbolic debugger
for C [11]. When the program is stopped at a break-
point, the user may type “whatsat <expr> ” to
perform heap type inference and then display type-
annotated memory beginning at the address com-
puted by<expr> .

Implementing thevalidPointerpredicate requires
that the debugger probe the debuggee’s current heap
allocation state. We modify the debuggee’s memory
management routines to maintain a list of currently
allocated blocks in a reserved global location known
to the debugger; the debugger reads this list directly
from the debuggee’s address space as needed. We
record the start address and size of each block, plus
the address of the instruction that allocated the block.
whatsat uses the latter in diagnostic messages to
report the source file, line number, and function at
which each untypable block was allocated.

12

This extra allocation tracking uses standard hooks
exposed by the GNUlibc implementation [10]
and is contained within a shared library that may
be preloaded into any program one wishes to debug
without recompilation or relinking. Our allocation
hooks also zero-initialize newly allocated blocks.
This is done to avoid spurious typing errors due to
random data values in uninitialized heap memory.
However, it can be useful to disable this feature in
order to verify that the program under study fully
initializes all of its own heap storage under normal
running conditions (Section 6.5).

6.1 Visualization of Typed Memory

Following heap type inference,whatsat displays
memory contents augmented with derived type in-
formation. Visualization begins at any address of
the user’s choosing (e.g. “whatsat 0x9275008 ”
or “whatsat &foo[3] ”) and continues forward
through raw memory under user control.

Figure 7 shows part of a type-annotated heap for
the assembly-building program used earlier. Each
line shows a capitalized hexadecimal memory ad-
dress (e.g. “0X9275008: ”), up to one word of raw
memory content at that address (“0x00000000 ”),
and an interpretation of that memory typed according
to our algorithm (“x = (double) 0 ”). Multi-
word atomic types, such asdouble , extend over
multiple lines in the memory visualization. Indenta-
tion and field labels (“x = ”) reflect nesting and com-
pound types. Figure 7 shows five distinct but prox-
imate memory blocks containing four structures and
one character array.

The “| ” and “?” labels to the left of each address
mark locations that are currently allocated and have
never been allocated, respectively. Table 4 shows the
complete list of memory category codes.

6.2 Schedule

Schedule is small C application from the Siemens
buggy program suite [13]. Given a list of jobs
and their priorities as input, the application com-
putes and prints a schedule for running the jobs.
We seeded schedule with an argument-transposition

Code Category

| heap, allocated and typed
* heap, allocated but untypable
X heap, freed
? heap, never allocated
S stack
D static data
P static code
. static miscellaneous

Table 4: Memory category codes

bug, and temporarily disable debug constraints. Run-
ning schedule on one of its test inputs (6 1 6
inputs/lu12) leads to a crash at:

if (prio_queue[i]->mem_count > 0)

prio_queue is a global array ofList point-
ers, thei ’th element of which has become null. A
heap consistency check usingwhatsat finds no un-
typable blocks, suggesting that outright heap cor-
ruption is unlikely. By rerunning the program in
the debugger, we backtrack to the last point where
prio_queue[i] had a non-null value.whatsat
finds types for all blocks, and in particular infers
that prio_queue[i] points to a block of type
Ele . Yetprio_queue should be an array ofList
pointers, notEle pointers. We continue rerunning
the program, stopping at earlier and earlier points.
Each time we usewhatsat to test whetherprio_-
queue[i] has become aEle pointer instead of a
properList pointer. This brings us to the buggy
call, where anEle pointer argument and aList
pointer argument were passed in the wrong order.
(The compiler’s type checker failed to catch the swap
due to inadequate function prototyping, an unfortu-
nate but not uncommon problem.) Execution actu-
ally continues well beyond the bad call, in part be-
cause the physical layouts ofEle andList are suf-
ficiently similar that code intended for one can (in-
correctly but non-fatally) manipulate the other. Heap
type inference, however, can distinguish the two and
correctly determines thatprio_queue[i] is not
what it seems. Eachwhatsat query ran in under
0.03 seconds.

13

(struct Assembly)
center = (struct Point)

| 0X9275008: 0x00000000 x = (double) 0
| 0X927500C: 0x00000000
| 0X9275010: 0x00000000 y = (double) 0
| 0X9275014: 0x00000000
| 0X9275018: 0x09275040 nodes = (struct PartNode *) 0x9275040
| 0X927501C: 0x00000000 owner = (struct Assembly *) 0x0
? 0X9275020: 0x00000000
? 0X9275024: 0x00000019
? 0X9275028: 0x09275008
? 0X927502C: 0x00000018
? 0X9275030: 0x0074922e
? 0X9275034: 0x00000000
? 0X9275038: 0x00000000
? 0X927503C: 0x00000011

(struct PartNode)
| 0X9275040: 0x09275068 part = (struct Part *) 0x9275068
| 0X9275044: 0x09275040 next = (struct PartNode *) 0x9275040
? 0X9275048: 0x00000000
? 0X927504C: 0x00000019
? 0X9275050: 0x09275040
? 0X9275054: 0x00000008
? 0X9275058: 0x08048757
? 0X927505C: 0x09275028
? 0X9275060: 0x00000000
? 0X9275064: 0x00000021

(struct Part)
center = (struct Point)

| 0X9275068: 0x00000000 x = (double) 0
| 0X927506C: 0x00000000
| 0X9275070: 0x00000000 y = (double) 0
| 0X9275074: 0x00000000
| 0X9275078: 0x092750a0 shape = (struct Shape *) 0x92750a0
| 0X927507C: 0x09275008 owner = (struct Assembly *) 0x9275008
? 0X9275080: 0x00000000
? 0X9275084: 0x00000019
? 0X9275088: 0x09275068
? 0X927508C: 0x00000018
? 0X9275090: 0x080486f7
? 0X9275094: 0x09275050
? 0X9275098: 0x00000000
? 0X927509C: 0x00000011

(struct Shape)
| 0X92750A0: 0x092750c8 name = (char *) 0x92750c8 "door"
| 0X92750A4: 0x00000000 file = (struct _IO_FILE *) 0x0
? 0X92750A8: 0x00000000
? 0X92750AC: 0x00000019
? 0X92750B0: 0x092750a0
? 0X92750B4: 0x00000008
? 0X92750B8: 0x08048709
? 0X92750BC: 0x09275088
? 0X92750C0: 0x00000000
? 0X92750C4: 0x00000011

(char [5])
| 0X92750C8: 0x 64 [0] = 100 ’d’
| 0X92750C9: 0x 6f [1] = 111 ’o’
| 0X92750CA: 0x 6f [2] = 111 ’o’
| 0X92750CB: 0x 72 [3] = 114 ’r’
| 0X92750CC: 0x 00 [4] = 0 ’\0’

Figure 7: Type-annotated heap excerpt for assembly-building program

14

? 0X804ABB8: 0x00000000
? 0X804ABBC: 0x00000000

(struct queue [4])
[0] = (struct queue)

D 0X804ABC0: 0x00000001 length = (int) 1
D 0X804ABC4: 0x0804b0d0 head = (struct process *) 0x804b0d0

[1] = (struct queue)
D 0X804ABC8: 0x00000001 length = (int) 1
D 0X804ABCC: 0x0804b0a8 head = (struct process *) 0x804b0a8

[2] = (struct queue)
D 0X804ABD0: 0x00000000 length = (int) 0
D 0X804ABD4: 0x00000000 head = (struct process *) 0x0

[3] = (struct queue)
D 0X804ABD8: 0x00000000 length = (int) 0
D 0X804ABDC: 0x00000000 head = (struct process *) 0x0
? 0X804ABE0: 0x00000002
D 0X804ABE4: 0x0804b008 (void * (*)(size_t, const void *)) 0x804b008
D 0X804ABE8: 0x00000000 (void (*)(void * , const void *)) 0
D 0X804ABEC: 0x00749380 (void * (*)(void * , size_t, const void *)) 0x749380 <realloc_hook_ini>
D 0X804ABF0: 0x007493d0 (void * (*)(size_t, size_t, const void *)) 0x7493d0 <memalign_hook_ini>
? 0X804ABF4: 0x0804b018
? 0X804ABF8: 0x00000000

Figure 8: Schedule2 global variables visualization

The preceding analysis was conducted without de-
bug constraints, and therefore withoutwhatsat
having prior knowledge thatprio_queue should
contain onlyList pointers. If debug constraints are
included, then the known type ofprio_queue re-
quires that all pointed-to elements have typeList .
For the badprio_queue[i] pointer, this is in-
compatible with theEle type required by value and
size constraints.whatsat detects and reports the
conflict. Thus, debug constraints can be especially
useful when pointer misuse has broken type correct-
ness without trashing the heap in the manner of a
wild pointer bug or buffer overrun.

6.3 Schedule2

Schedule2 is a different implementation of a job
scheduler, also part of the Siemens suite [13]. Ver-
sion 8 of schedule2 contains a bug that causes the
program to crash insidemalloc() . A stack trace
reveals that the crash is due to a bad pointer deref-
erence: a function pointer,__malloc_hook , does
not point to a function.whatsat confirms that the
claimed type for__malloc_hook is inconsistent
with its value, and therefore that debug constraints
are not satisfiable. After debug constraints are dis-
carded,whatsat infers that this block actually con-
tains aprocess structure.

__malloc_hook is assigned fromold_-
malloc_hook , which holds the same bad
process pointer instead of a function pointer.
Using whatsat to explore the physical memory
neighborhood aroundold_malloc_hook re-
veals that a four-element structure array precedes
old_malloc_hook . Figure 8 showswhatsat ’s
visualization of this area. old_malloc_hook
appears at address0X804ABE4; the preceding array
is clearly visible starting at address0X804ABC0.
Observe thatold_malloc_hook is perfectly
positioned to receive an errantprocess pointer
should the neighboring array overrun its bounds.
Thus informed, we identify the array, the code that
writes to it, and the missing bounds check that
constitutes the true bug. Allwhatsat queries used
in this case study completed within 0.03 seconds.

While a hardware watchpoint might also have
been used to trap the bad write toold_malloc_-
hook , this would require rerunning the program and
reproducing the bug. Many memory corruption bugs
are difficult to reproduce on demand; not all bugs are
amenable to the sort of iterative backtracking used
in Section 6.2. We see here thatwhatsat can also
provide useful postmortem information on the first
instance of a bug.

15

6.4 Space

Space is an interpreter for an antenna array defini-
tion language (ADL) written for the European Space
Agency [21, 26]. As distributed by the Galileo
Subject Infrastructure Repository [7] it consists of
a correct version in 9,564 lines of C code along
with buggy variants and an extensive test suite. We
ran the correct version on one of its test inputs
(inputs/gr120) with a debugger breakpoint set
at the very end ofmain() . At this point, 174 mem-
ory blocks are allocated in the heap. Awhatsat
query completes in 0.8 seconds and finds that the
“correct” variant of space contains an untypable
block:

untypable block of 168 bytes
at 0x805c088, allocated in
elemdef() at space.c:1880

Just after this block is allocated,whatsat finds
no problems and types the block asElem . An infor-
mal binary search as suggested in Section 1 reveals
that the block is later corrupted by an assignment of
an uninitialized local variable into one of its fields.
The field is anint but the uninitialized value it re-
ceives happens to be a valid pointer left behind on
the stack by earlier calls. No other type looks like an
Elem with a pointer in place of thisint field, so the
block is untypable. This “correct” version of space
runs correctly only because this improperly initial-
ized field is not actually used by any other code. The
bug described here was previously unknown to us
and, to our knowledge, not previously reported in any
published literature concerning the space test suite.

6.5 Exif

Exif is an open source utility for manipulating JPEG
image metadata [9]. It consists of 10,375 lines
of C code split into a shared library and a main
driver program. We ran exif with a breakpoint set
afterexif_loader_get_data() , which builds
an in-memory representation of a JPEG input file.
We disabled zero-initialization of heap blocks to test
whether exif performs its own initializations prop-
erly. whatsat identifies two untypable blocks
allocated inexif_content_add_entry() at

exif-content.c:110 . The code in question
performs a reallocation to grow an array of pointers
to entry blocks:

entries = realloc(entries,
sizeof(ExifEntry) * (count + 1));

The size calculation is incorrect. It reserves
space for an array ofExifEntry structures,
but entries is actually an array ofpointers to
ExifEntry structures. Because eachExifEntry
is larger than a pointer, the program does not overrun
this buffer. However, the extra space at the end of the
array is wasted and, because it contains uninitialized
random data that may not look like valid pointers,
whatsat determines that arrays allocated here are
untypable.

We initially identified this previously unreported
bug in release 0.6.9 and 0.6.10 of the exif driver
and library. We have confirmed that it persists in
the latest development snapshot as of April 15, 2006
(12,410 lines of C code). Exif developers have since
confirmed the bug and applied our suggested fix.

After whatsat identifies these untypable blocks,
it ignores them for the remainder of the analysis.
That analysis, however, does not find a valid heap
typing for exif in a timely manner. It is possible
that no valid typing exists even though all individual
blocks match at least one known type. It is also pos-
sible that a valid typing exists, but is pathologically
mismatched with our heuristic search order. Improv-
ing the diagnostic capabilities of our analysis when
unresolvable conflicts arise late in the search is an
important area for future study.

7 Related Work

Chandra and Reps [5] and Siffet al. [22] intro-
duce an alternate type system for C that allows sub-
typing based on the physical layouts of data struc-
tures. They describe static type checking and infer-
ence rules that test program conformance with this
alternate type system. In contrast, our approach is
dynamic: we examine a frozen snapshot of a running
program’s heap, rather than the space of all possi-
ble program heaps. This allows us to use concrete

16

memory values and allocated block sizes to refine our
analysis. As is typical for dynamic analyses, we fo-
cus on specific bugs triggered during a run without
guaranteeing that all possible bugs will be detected.

The subtyping relation induced by our byte type
lattice is more restrictive than the Chandra/Siff phys-
ical subtyping relation. Both allow subtyping be-
tween a structure and its first field, but we disallow
more general structure prefixing or the use ofchar
arrays as storage placeholders. These are merely
policy choices. Our approach can use permissive
Chandra/Siff subtyping or a variety of other rela-
tions with no changes to constraint collection or the
core heap typing algorithm. However, not all sub-
typing relations are sensible in this context. For ex-
ample, Cardelli’s structural record subtyping relation
[4], disregards field order and is therefore needlessly
permissive for our scenario, where field orders are
fixed.

As a dynamic heap-walking tool, our system
shares some qualities with a garbage collector or leak
detector, and a list of unreachable (leaked) memory
blocks could easily be extracted from our analysis.
Traditional garbage collectors require data structure
layout information for the root set and possibly for
allocated blocks as well. Conservative garbage col-
lectors [3] relax this requirement by assuming that
any location holding a valid pointer value is indeed a
pointer. Our approach moves flexibly between these
extremes. We use type information for global and
stack storage if available, but can operate without
it by making pointer/value assumptions in the man-
ner of a conservative collector. Ultimately, the in-
formation we recover is richer than that produced
by garbage collectors: we find not only the size and
embedded pointers of each allocated block, but also
complete program types that are globally consistent
both within and between all blocks.

Zimmermann and Zeller present strategies for ex-
tracting C heaps and displaying them to highlight
key relationships [27]. Their system depends on
debugger-provided type information augmented with
a few C-specific heuristics also used bywhatsat ,
such as pointer validity testing and dynamic array
size computation. These heuristics consider only iso-
lated blocks, though, and have no notion of global

consistency. Zimmermann and Zeller comment that
“While such heuristics mostly make good guesses,
it is safer to provide explicit disambiguation rules–
either hand-crafted or inferred from the program.”
Dynamic heap type inference generalizes and im-
proves upon these heuristics by defining a notion of
global heap typing that considers not just local val-
ues within isolated blocks, but also the relationships
between interlinked blocks. This letswhatsat
find globally consistent heap typings and reduces or
eliminates the need for hand-crafted disambiguation
rules. We also note that the visualization of Zimmer-
mann and Zeller abstracts away physical block loca-
tions in favor of box-and-arrow diagrams, whereas
whatsat ’s visualization focuses on physical layout
and proximity. Both representations may be of inter-
est, depending on the debugging task at hand.

The problem of heap corruption due to pointer and
cast abuse is longstanding, and has inspired solutions
ranging from static analysis [8, 19] to run-time in-
strumentation [12, 16, 17, 18, 20, 25] and the design
of safer language dialects [2, 15, 23]. Our approach
performs programmer-directed heap validity checks
in an interactive debugging context, and does not at-
tempt to prevent or trap errors as they occur. This
allows us to be significantly less invasive: we require
no changes to the C language; no recompilation or
source annotation beyond a compiler-provided list of
program types; no run-time instrumentation beyond
a list of allocated blocks; and no dynamic type tag-
ging or other changes to data structure layouts. Ad-
ditionally, our analysis depends only on the instanta-
neous state of the program heap at a given moment in
time: other than maintaining a list of currently allo-
cated blocks, we do not record any trace information
while the program runs.

In this sensewhatsat can be seen as an experi-
ment in minimalism. Rather than monitor every po-
tentially interesting action, we ask how much infor-
mation can be recovered with only the bare mini-
mum imposition at run-time. We believe that both
highly invasive and minimally invasive approaches
have benefits. Exploring the extremes helps illumi-
nate potential strategies to improve debugging tools
all along the instrumentation and analysis spectrum.

17

8 Future Work and Conclusion

Extensions to our work are possible both for im-
proved efficiency as well as enhanced user expe-
rience. Backtracking can be reduced by treating
blocks and pointers as graph nodes and edges, and
traversing strongly connected components of the
heap graph in topological order. Richer error report-
ing could include a detailed trace of the constraint
conflicts surrounding untypable blocks; we expect
this would be a valuable diagnostic aid. Static pro-
gram information, such as the types of casts that
immediately follow mostmalloc() calls, can be
treated as an additional source of constraints or as
an independent “second opinion” with which dynam-
ically observed types should (but may not) agree.
The general algorithm can accommodate a variety
of subtyping policy choices and application-specific
consistency constraints; provisions for end-user cus-
tomization and extension of the analysis should al-
low the tool to be more helpful for a wider variety of
programs and programming styles.

Low-level programming languages sometimes re-
quire low-level debugging. However, one need
not completely abandon the type system even when
working with non-type-safe languages. A low-level
but type-annotated view of the heap can help in de-
bugging and more general program understanding
tasks. We have presented an algorithm that infers
program-defined types for memory locations. So-
lution consistency is defined in terms of constraints
that use a novel blend of ideas from physical sub-
typing and conservative garbage collection. When
no consistent typing exists due to heap corruption
or pointer abuse, we offer focused diagnostic infor-
mation to help identify the cause. Our implementa-
tion works for general C programs and requires no
source annotation, no recompilation, no run-time in-
strumentation beyond heap allocation tracking, and
no changes to physical data structure layouts. Expe-
riences with the tool, while limited in scope, suggest
that dynamic heap type inference may be a useful ad-
dition to the programmer’s toolkit.

References

[1] Lars Ole Andersen.Program Analysis and Special-
ization for the C Programming Language. PhD the-
sis, DIKU, University of Copenhagen, May 1994.

[2] Todd M. Austin, Scott E. Breach, and Gurindar S.
Sohi. Efficient detection of all pointer and array ac-
cess errors. InPLDI ’94: Proceedings of the ACM
SIGPLAN 1994 conference on Programming lan-
guage design and implementation, pages 290–301,
New York, NY, USA, 1994. ACM Press.

[3] Hans-Juergen Boehm and Mark Weiser. Garbage col-
lection in an uncooperative environment.Software:
Practice & Experience, 18(9):807–820, 1988.

[4] Luca Cardelli. Structural subtyping and the notion
of power type. InPOPL ’88: Proceedings of the
15th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 70–79, New
York, NY, USA, 1988. ACM Press.

[5] Satish Chandra and Thomas W. Reps. Physical type
checking for C. InWorkshop on Program Analysis
For Software Tools and Engineering, pages 66–75,
1999.

[6] Brian Demsky, Michael D. Ernst, Philip J. Guo,
Stephen McCamant, Jeff H. Perkins, and Martin Ri-
nard. Inference and enforcement of data structure
consistency specifications. InISSTA 2006, Proceed-
ings of the 2006 International Symposium on Soft-
ware Testing and Analysis, Portland, ME, USA, July
18–20 2006.

[7] Hyunsook Do, Sebastian G. Elbaum, and Gregg
Rothermel. Supporting controlled experimentation
with testing techniques: An infrastructure and its po-
tential impact.Empirical Software Engineering: An
International Journal, 10(4):405–435, 2005.

[8] David Evans. Static detection of dynamic memory
errors. InPLDI ’96: Proceedings of the ACM SIG-
PLAN 1996 conference on Programming language
design and implementation, pages 44–53, New York,
NY, USA, 1996. ACM Press.

[9] EXIF tag parsing library.http://libexif.sf.
net/ .

[10] Free Software Foundation, Inc., Boston, MA, USA.
The GNU C Library, 0.10 edition, July 6 2001.

[11] John Gilmore and Stan Shebs.GDB Internals, Febru-
ary 2004.

18

http://libexif.sf.net/
http://libexif.sf.net/

[12] Reed Hastings and Bob Joyce. Purify: Fast detection
of memory leaks and access errors. InProceedings of
the USENIX Winter Conference, pages 125–138, San
Francisco, CA, USA, 1992. USENIX Association.

[13] Monica Hutchins, Herb Foster, Tarak Goradia, and
Thomas Ostrand. Experiments on the effectiveness of
dataflow- and control-flow-based test adequacy crite-
ria. In Proceedings of the 16th International Confer-
ence on Software Engineering, pages 191–200. IEEE
Computer Society Press, May 1994.

[14] International Organization for Standardization.ISO/
IEC 9899:1999: Programming Languages —
C. International Organization for Standardization,
Geneva, Switzerland, December 1999.

[15] Trevor Jim, J. Greg Morrisett, Dan Grossman,
Michael W. Hicks, James Cheney, and Yanling Wang.
Cyclone: A safe dialect of C. InProceedings of
the General Track: 2002 USENIX Annual Techni-
cal Conference, pages 275–288, Berkeley, CA, USA,
2002. USENIX Association.

[16] Richard W. M. Jones and Paul H. J. Kelly.
Backwards-compatible bounds checking for arrays
and pointers in C programs. InAADEBUG, pages
13–26, 1997.

[17] Stephen Kaufer, Russell Lopez, and Sesha Pratap.
Saber-C: An interpreter-based programming environ-
ment for the C language. InProceedings of the
USENIX Summer Conference, pages 161–171, San
Francisco, CA, USA, June 1988. USENIX Associa-
tion.

[18] Alexey Loginov, Suan Hsi Yong, Susan Horwitz,
and Thomas W. Reps. Debugging via run-time type
checking. InFASE ’01: Proceedings of the 4th Inter-
national Conference on Fundamental Approaches to
Software Engineering, pages 217–232, London, UK,
2001. Springer-Verlag.

[19] George C. Necula, Jeremy Condit, Matthew Harren,
Scott McPeak, and Westley Weimer. CCured: Type-

safe retrofitting of legacy software.ACM Trans-
actions on Programming Languages and Systems,
27(3):477–526, 2005.

[20] Nicholas Nethercote and Julian Seward. Valgrind: A
program supervision framework.Electronic Notes in
Theoretical Computer Science, 89(2), 2003.

[21] Gregg Rothermel, Roland J. Untch, and Chengyun
Chu. Prioritizing test cases for regression test-
ing. IEEE Transactions on Software Engineering,
27(10):929–948, 2001.

[22] Michael Siff, Satish Chandra, Thomas Ball, Krishna
Kunchithapadam, and Thomas W. Reps. Coping with
type casts in C. In Oscar Nierstrasz and M. Lemoine,
editors,ESEC / SIGSOFT FSE, volume 1687 ofLec-
ture Notes in Computer Science, pages 180–198.
Springer, 1999.

[23] Geoffrey Smith and Dennis Volpano. A sound poly-
morphic type system for a dialect of C.Science of
Computer Programming, 32(1-3):49–72, 1998.

[24] Bjarne Steensgaard. Points-to analysis in almost lin-
ear time. InSymposium on Principles of Program-
ming Languages, pages 32–41, 1996.

[25] Joseph L. Steffen. Adding run-time checking to the
portable C compiler.Software: Practice & Experi-
ence, 22(4):305–316, 1992.

[26] Filippos I. Vokolos and Phyllis G. Frankl. Empiri-
cal evaluation of the textual differencing regression
testing technique. InICSM ’98: Proceedings of the
International Conference on Software Maintenance,
page 44, Washington, DC, USA, 1998. IEEE Com-
puter Society.

[27] Thomas Zimmermann and Andreas Zeller. Visual-
izing memory graphs. InSoftware Visualization, In-
ternational Seminar Dagstuhl Castle, Germany, May
20–25, 2001, Revised Lectures, volume 2269 ofLec-
ture Notes in Computer Science, pages 191–204.
Springer, May 2001.

19

	Introduction
	Preliminaries
	Definitions
	Overview
	Notation

	Byte Type Lattice
	Structures
	Special and Atomic Types
	Arrays
	Unions
	Functions
	Finite Type Space

	Consistency Constraints
	Value Constraints
	Size Constraints
	Type Constraints
	Debug Constraints
	Example Solution

	Heap Typing Algorithm
	Pointer Constraint Gathering
	Debug Constraint Gathering
	Completing the Heap Typing
	Typing Feasibility Check
	Search Algorithm
	Heuristic Type Ordering

	Example: Computing the Solution
	Propagation Correctness

	Evaluation
	Visualization of Typed Memory
	Schedule
	Schedule2
	Space
	Exif

	Related Work
	Future Work and Conclusion

