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Abstract

A honeynet is a portion of routed but otherwise unused address space that is instrumented for network
traffic monitoring. Over the past several years, honeynets have proven to be an invaluable tool for under-
standing the characteristics of unwanted Internet traffic from misconfigurations and malicious attacks. In this
paper, we address the problem of defending honeynets against systematic mapping by malicious parties to en-
sure that they remain viable in the long term. Our first step is to abstract the problem into a simple two player
game. The objective of the Attacker is to probe a range of address space in order to identify the embedded
honeynet. The objectives of the Defender are (a) to prevent the honeynet from being mapped by periodi-
cally shuffling the honeynet’s location within the address space and (b) to minimize frequency of shuffling.
We establish provably optimal strategies for both the attacker and defender. We also consider progressively
more realistic variants of the game. Next, we evaluate the strategies analytically to understand how they
apply over a range of honeynet configurations. We find that network size, monitor size, presence of unused
address space, and probe rates directly impact shuffling frequency. Finally, we discuss experimental results
from prototype implementation of a network shuffling middlebox that provides insights on expected resource
requirements and performance implications. We show that the system is capable of effectively defending
large networks, with limited impact on normal traffic, and responds well in the face of network attacks and
anomalies.

1 Introduction

Malicious activity in the Internet is a large and growing problem. The spectrum of threats include DoS attacks,
self propagating worms, spam, spyware and botnets. Malicious parties (Black Hats) are constantly looking for
new potential victim systems which are typically identified by scanning across portions of the Internet address
space. Many tools have been developed to facilitate this task, and there are research papers that describe and
evaluate the magnitude of threat posed by novel, highly efficient scanning methods (e.g. [23]).

The network security community has recognized that the process of scanning for victims actually offers a
unique opportunity to track malicious activity in the Internet. Standard network configurations typically drop
packets that are destined for addresses that are not associated with a live system. Changing this configuration
to route packets to a monitoring system enables passive collection of scanning packets. Even more compelling
is the notion of routing these packets to systems with the ability to engage in conversations with the malicious
hosts thereby enabling deep details of attack profiles to be gathered. This configuration is commonly referred to
as a honeynet.

Over the past several years, a large number of honeynet installations have emerged across the globe which
have been used to monitor and identify many important details of malicious activity such as the characterization
studies of Internet Background Radiation [16], large worm outbreaks [8], and botnet activity [11]. Furthermore,
research on honeynet systems is active and focused on enabling scalable and secure measurement at greater
levels of detail.

The successes and the utility of honeynets are not likely to have been lost on the Black Hats. Several recent
studies have shown that well known monitoring entities such as Dshield.org [24] can be identified effectively
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using different probing methods [7, 20]. If these techniques are adopted by Black Hats (one must assume that
they will be adopted if they are not being used already) then blacklists of address space for well known honeynets
could be created, which would seriously reduce their continued effectiveness.

In this paper we address the problem of defending honeynets from being mapped. Our first step in addressing
this problem is to abstract it to a simple two player game between an Attacker and a Defender. The objective of
the Attacker is to identify the contiguous segment of monitored address space (i.e., the honeynet) embedded in
a larger segment of address space. The Attacker sends probes to the address space, receiving responses that can
be eventually distinguished as coming from a honeynet. The Attacker attempts to identify the honeynet with a
minimum number of probes. The Defender has two objectives which must be balanced. The first is to prevent
the honeynet from being mapped, which is done by periodically shuffling its location within the larger address
space. The second objective is to extend the duration of shuffling epochs in order to minimize demands on the
system responsible for shuffling. This is accomplished by delaying shuffling until a maximum probe threshold
has been reached.

An important capability in some kinds of Honeynets is that they respond to probes in a protocol compliant
way (e.g., [27]). However, one must assume that after a certain number of probes, the Attacker can distinguish a
Honeynet from a live host. We model this abstractly by assigning a global lie quota to the Defender. Given this
abstract context, we are able to prove optimal strategies for both the Attacker and Defender. Our Main Theorem
(Theorem 3.4.2), establishes unique optimality of strategies. The proof relies on a key combinatorial lemma, the
proof of which was the most mathematically challenging component of our study.

We extend our basic formulation of the game in several ways to provide a foundation for evaluation and
practical implementation. First, we consider the possibility of breaking the honeynet into multiple address
segments within the larger address space. We show that this adds a small factor per each individual segment to
the time required to identify the honeynet, which could be meaningful in a live deployment. Next, we consider
several different strategies for the shuffling process. While random shuffling at the granularity of individual IP
addresses is optimal, it may not be practical from an implementation perspective. We describe four different
policies for shuffling blocks of IP addresses that trade-off frequency of shuffling with the amount of state that is
maintained and degree of resiliency to mapping.

Our basic game theoretic formulation plus the extensions enable us to analyze the processes of attacking and
defending honeynets analytically. We conduct a series of evaluations over a range of possible configurations to
assess the trade-offs between address space size, honeynet size, probe rates and shuffling frequency. We find
that the duration of game (i.e., the time between shuffles) increases proportionally with the lie budget (¢) and
decreases proportionally with the monitor size (m), as dictated by our theorems.

To assess the practical issues of defending honeynets using our game theoretic formulation, we built a
prototype middiebox system that we call Kaleidoscope. The basic functionality of this system includes counting
probes to unused address space, shuffling honeynet addresses and providing network address translation between
the systems outside of the target network and both live and honeynet systems within. We used Kaleidoscope in
a series of experiments in a laboratory setting that vary traffic rates, honeynet size, address space size and probe
rates. Our prototype implementation demonstrates that the shuffling policies can be implemented efficiently,
with minimal latency (under a millisecond) and zero packet loss under normal and attack traffic conditions.

In summary, the contributions of this paper are the following, () the definition and game theoretic formula-
tion of the problem of defending honeynets, (ii) the proof of the optimal strategies for both the honeynet Attacker
and Defender, (iii) the examination of practical issues in defending honeynets both analytically and through a
prototype implementation.

2 Background and Related Work

The utility of unused address space monitoring as a means for tracking malicious activity in the Internet stems
from several practical issues. First, networks do not typically terminate their entire allotment of IP addresses with
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live systems, and address assignments within networks often change periodically. Second, the effectiveness of
the domain name system insures that virtually all non-malicious traffic gets routed to IP addresses that terminate
at live hosts (misconfigurations do, however, occur from time to time e.g., [26, 19]). Third, the combination of
on-going identification of new vulnerabilities and application of security patches make victim hosts somewhat
ephemeral. As aresult, scans across routed segments network address space are continually used to identify new
victim hosts [28].

Recently, a number of systems have been developed that respond to remote hosts that send traffic to unused
address space enabling details of attacks to be gathered. The most simple of these is the Internet Motion Sensor
which has the ability to respond to TCP connection requests with a SYN/ACK packet [6]. While this capability
is useful, a growing number of attacks require deeper interaction before an exploit is sent. The iSink system de-
scribed in [27] has the ability to emulate protoco! specific interactions in a scalable fashion. The iSink approach
is similar in many respects to honeyd, which also maintains per-flow state at the cost of scalability [17]. From
the perspective of mapping, these systems are perhaps the easiest to identify since their response capability is
limited.

Despite the utility of emulation-based monitors, they are limited in that they may be unable to capture details
of some attacks, and that they cannot be used to observe an attackers behavior once a host has been compromised
(e.g., in the case of a botnet). A solution is to deploy real hosts running real operating systems, but this approach
is obviously impractical for anything other than very small honeynets. Thus, the idea of using virtual machines
as a platform for monitoring has become popular. VM systems such as VMWare, Xen and Virtual PC can be
used to run different versions of different operating systems in a manageable environment thereby enabling a
broad range of attacks to be monitored in a somewhat more scalable fashion. There are a number of examples
of how these virtual honeynets have been used to track attacks and intrusions including [17, 9, 12]. Of particular
note is the recent Potemkin Virtual Honeyfarm work which addresses the scalability limitations of standard
virtual honeynets enabling emulation of over 64K systems on a small number of physical hosts [25]. While
virtual honeynets are somewhat more difficult to identify, it is clear that Black Hats are already aware of their
capability and are developing methods to identify them [2].

To the best of our knowledge the problem of defending honeynets from systematic mapping has not been
addressed in prior studies. The problem of camouflaging honeypots from detection and analysis is outlined
briefly at the end of [25]. The related problem of limiting the utility of hitlists of live systems has been addresses
in several studies. Antonatos ef al. propose address space randomization as a method for defending live systems
from worms that use hitlists [4]. Their objective of accelerating hitlist decay is somewhat similar to ours,
however both their basic approach (in terms of considering hitlists of live systems) and suggested mechanisms for
random address shuffling (primarily DHCP) differ from ours. Similar efforts at changing network configuration
in order to attempt to thwart malicious activity include [5, 13, 15]. None of these projects propose a game-
theoretic formulation for defending live nodes and the methods they develop for address space randomization
differ from ours.

3 Foundations for Address Space Shuffling

3.1 Basic Formulation

We model the adversary/honeynet interaction as a 2-person game between an Attacker and a Defender. To
simplify the analysis we view a given segment of address space as circular. A contiguous segment of monitored
addresses is placed randomly within the address space. We call monitored addresses (i.e., the honeynet) ‘black’
and all other addresses ‘white’. During the game the Attacker queries addresses and receives a reply based on the
color of the address queried. White addresses must reply ‘white’ but black addresses may answer black or ‘lie’
and answer ‘white’. We impose a global limit on the number of lies allowed and for the purpose of establishing



our theoretical result we assume lies can be used flexibly. !
Formally, let m,k and ¢ be positive integers. Let n = mk. Our address space is a circular array of n cells,
identified with the additive group Z,, i.e., each cell is indexed by some i € Z,,. We use the following notation:

DEFINITION 3.1.1. A block is a contiguous subset of Z,, of size m. Denote the j-thblockby Bj={j, j+1,...,j+
m— 1}. As an alternate notation, let B/ = {j—m+1,...,j—1,j}. There is a single block of black addresses:
B ={c-m+1,...,c—1,ch

The game starts with a random spin of B¢, that is, a uniformly distributed ¢ € Z,,. We assume that both
players know the parameters m,k and ¢. The position ¢ is known to the Defender but unknown to the Attacker
whose aim is to find it. In a round of the game (i.e. between shuffling epochs), the Attacker moves first and the
two players alternate their moves until the Attacker knows c. A move of A consists of a query at a cell j. If
J & B€ then D replies with the bit b = 0. If j € B¢ then D has a choice: D can either answer b = 1 or, commit a
lie by answering b = 0. However, D can only lie < £ times in total. In short, » is the size of the circular address
space, m is the length of a monitor block, k = n/m, and £ is the quota of lies.

Denote by A (respectively D) a strategy by the Attacker (respectively the Defender). We will primarily
analyze pure (non-randomized) strategies; but with a slight abuse of notation we will use the same notation
for randomized strategies. Let V = V(A, D) denote the number of queries A makes against D until A learns the
value ¢. Thus V is a variable randomized over the uniform choice of ¢ € Z,, (and possibly over the randomization
of the randomized strategies of the two players). Let v denote the expectation

v=1v(A,D)=E[V(A,D)]. (1)

The objective of the Attacker is to minimize this quantity v. The objective of the Defender is to maximize v
thereby enabling the maximum amount of data to be gathered in the honeynet between shuffles.

3.2 The Strategies: Round-Robin (RR) and Delay-Delay (DD)

Before giving a more detailed analysis of this game, we make some general observations. Suppose, during a
round of the game, A learns a cell j € B¢. If m = 1, then ¢ = j and the game is over. If m > 1, then, because S
occupies a contiguous segment of cells, A can be sure that B¢ is located in one of the following m possible ways
(recall that addition in Z,, is done modulo n):

c=j,j+1,...,j+m—1. 2)

Then A can ‘zero-in’ on the boundaries of B¢ by performing the following binary search. First, A queries the cells
j~=j—|m/2]) and j* = j+ |m/2]. Atleast one of j~ and j* must belong to B¢. This is because the number
of cells located strictly in between these two cells is 2{m/2] — 1 < m. Thus, D must either choose to answer
truthfully b = 1 at least once, or (if possible) commit an additional lie. If A receives both answers with b = 0,
then he knows that a lie has been committed. Since A knows that D can commit only < £ lies, A continues to
query j* and j~ until D answers b = 1. Assume D answers b = 1 to the query j*; the case for j~ is symmetric.
At this point, A knows that ¢ is among the following [/2] locations:

c=jt T+, j+m—1. 3)

So A can effectively consider a ‘shrunken’ version of the problem as follows. Assume j* is in B¢ (the j~ case
is symmetric). Identify the cells between j and j* as a single cell. This identification reduces the length of the
block by |m/2] to [m/2].2 Now we can consider the placement of the shortened block on the condition that it
contains a certain cell (the identified j and j*). This process is a general step in the binary search.

!'The reason for this is that, in practice, it may take multiple probes to distinguish honeynet addresses.
2We are abusing notation here by allowing blocks of different lengths. This paragraph is the only instance where we discuss non-m
length blocks.



It is clear that every step of this ‘binary search’ reduces the length from m' to [m’/2]. When the length has
shrunk to 1, the game is over. If 27~! < m < 2/, then it takes exactly r = [log, m] steps to reduce the length to 1.
If A queries j~ and j* in random order, then on average each step takes 1.5 queries. Let £’ be the number of lies
D is allowed to commit (¢ < £ and may be much less due to lies committed prior to the ‘binary search’). Then
we have an upper bound of 2¢' + 1.5[log, m] queries under this Attacker strategy, valid for any D.

We see that once the Attacker gains the knowledge of one j € B¢, A can zero-in fairly rapidly. Therefore, a
rational Defender will not reveal any j € B® until absolutely necessary. This reasoning leads us to the following
Delay-Delay (DD) strategy for the Defender.

DEFRINITION 3.2.1. The strategy Delay-Delay (DD) is as follows. Lie as long as the quota of lies allows.

DEFINITION 3.2.2. The First-Time, T, is the time (number of queries made) when the Attacker first learns some
J € B

Clearly, against any Attacker strategy, DD maximizes T among all Defender strategies.

DEFINITION 3.2.3. The strategy Round-Robin (RR) is as follows. Pick any cell to start, e.g., j = 0. Query j
consecutively € times. Then set j:= j+m, and repeat. As soon as a reply of b =1 is received switch to a ‘binary
search’ strategy to zero-in.’

Note that with at most k¢ queries, RR will obtain a b = 1 answer, and commence its ‘binary search’. Indeed,
when RR has made k£ queries, these would have been for each j = im for 0 < i < k and each such j is queried
exactly ¢ times. For any c, some query j will be in B¢ (in particular, for i = |¢/m]). For any D, up to £ repeated
queries at this j must yield an answer b = 1. On average, RR will take %Zf'(:: il = (k+1)¢/2 queries against
DD to arrive at its First-Time T. Therefore,

V(RR,DD) < kl+2[log, m| 4)

in the worst case, and

v(RR,DD) < (k+1)¢/2+ 1.5[log, m] %)

on average. This upper bound is quite sharp; if m is a power of 2, then the exact equality holds. For any m, the
following lower bound holds:

v(RR,DD) > (k+1)£/2+ [log, m]. (6)
Against any other D, after First-Time T, each lie can buy at most two queries. Thus,

v(RR,D) <kl/2+1+41.5log,m] +2(£—1). (7)

In view of this we will only consider Delay-Delay as the strategy for the Defender in the following.*

3.3 Delay-Delay against any Attacker

In this section we give a simple lower bound for v(A,DD). The bound here partially justifies our adoption of DD
for the Defender exclusively, namely (1) DD performs well against any A, and (2) for one particular A, namely

31f the game is slightly modified so that Defender picks ¢ in secret, then a modified Round-Robin strategy where the Attacker
randomly picks a starting j will achieve the same performance as below.

4Curiously, if the Defender knew that the Attacker is RR, then he should not commit any lie during the first stage up to the First-
Time T (the opposite of DD) making E[T] = k£/2 + 1, and save his entire quota of lies for the ‘binary search’ stage where each lie buys
him two query steps against RR. If instead the Defender uses DD against RR, then each lie committed up to First-Time 7 buys him only
one query step.



A = RR, DD performs almost as well as any D (Section 3.2).

DEFINITION 3.3.1. For an Attacker A and Defender D, the Capitulation-Time, L = L(A, D), is the first time (the
number of queries made) when A has made £ queries in B¢ against D.

Against DD the Capitulation-Time is the same as First-Time. For an arbitrary pair (A, D) it is possible that
the game ends (when A learns ¢) before A ever hits £ times in B. In this case we define L = co.

Observe that v(A,DD) > E[L] (because against DD, without £ hits, all the answers A gets are b =0, i.e.,
A gets no information, and therefore the game can not end), and, for any reasonable A, it takes no more than
O(logm) extra queries to locate B¢ after L. As such, we will only be concerned with a lower bound for E[L].

Consider the first p queries of A. We say that a query at j is a hit if j € B°. Let H, be the number of hits
for the first p queries by A against DD. If we think of H, as a sum of 0-1 random variables X; + ...+ X),, where
X; = 1 iff the i-th query is a hit, then it seems reasonable to conclude that Pr[X; = 1] = m/n = 1/k, as a hit is
to pick a cell among the m cells of B¢ which are located randomly within Z,,. Then, by linearity, E[H,] = p/k.
It follows that if p < k€/2, then the expected number of hits is at most £/2. Then, by Markov’s inequality,
Pr[H, > (] < 1/2. Since L is the number of queries A needed to get at least £ hits, by Markov’s inequality again,
foranyi > 1,

E[L] > iPr[L > i] = iPr[H;—; < £]. (8)

Pick i = |k¢/2] + 1, then
PI‘[HLkg/zJ < Z] > 1/2 9

It follows that
THEOREM 3.3.2.
E[L] > ([k€/2]+1)/2 > kt/4.

However, the above argument has a subtle flaw. The problem is with the claim Pr[X; = 1] = 1/k. The i-th
query by A may depend on answers by DD to previous queries, which in turn is influenced by where the secret
¢ is randomly placed. In the following we rigorously establish (9). Then Markov’s inequality from (8) proves
Theorem 3.3.2.

Letr = |k€/2]. Let q1,q2,...,q; be the first 7 cells A queries in a hypothetical round of the game when the
first  — 1 answers the Defender gave are all b = 0. These locations are defined by A alone, and not dependent
on where c is. We say a € Z,, is a heavy point iff a belongs to at least ¢ many blocks By, for 1 < j <t.

LEMMA 3.3.3. The (secret) random c is a heavy point iff in a play of A against DD, H, > (.

Proof. Suppose c is a heavy point. Let j be the minimum in 1 < j <1, such that ¢ is covered ¢ times by
Bg,...,Bg;. Then in a round against DD, the first j— 1 answers A gets from DD are all b = 0. Therefore
q1,92,.-.,q; are in fact the first j queries made by A against DD. It follows that there are £ hits among them, as
B¢ contains g iff ¢ is covered by B,.

Conversely, suppose H; > £ when A plays against DD. Let j be the minimum in 1 < j <¢ such that H; = £.
Then the first j — 1 answers A gets from DD are all b = 0. Therefore the first j queries made by A against DD
are in fact q1,4z, . ..,q;. By Hj = ¢, it follows that ¢ is covered £ times among By, ..., By;. O

We now prove (9). No matter what ¢;,4,...,q, are chosen by A, counting with multiplicity the blocks
Bg,,...,Bg, cover tm < kfm/2 points. Thus, at most km /2 = n/2 points can be covered with multiplicity at least
¢. It follows that the random ¢ is among them with probability < 1/2. Then the Lemma implies Pr[H, > £] < 1/2.
This is (9).

Note that our bound on E[L] is within a factor of 2 of the case when the Attacker uses RR against any De-
fender strategy D. Once the Attacker is at the Capitulation-Time, all that remains is to pinpoint ¢. Doing so takes
Q(logm) time. Thus we arrive at the following corollary.



COROLLARY 3.3.4. v(A,DD) > kil /4+ Q(logm).

3.4 Round-Robin is optimal against Delay-Delay

In this section we establish our main result: Theorem 3.4.2. We want to prove that, for any Attacker A,
E[L(RR,DD)] < E[L(A,DD)]. In fact, we will prove a stronger theorem of unique optimality.

DEFINITION 3.4.1. An Attacker strategy A is essentially Round-Robin (eRR) if it is of the following form. The
strategy A first makes € queries at some cell j. It then updates j to j' where j' = j (mod m) and j' has not been
queried and makes { queries at j'. The strategy repeats this behavior until it finds some j € B, i.e., receives
b = 1, at which point it switches to a ‘binary-search’.
Clearly,
E[L(eRR,DD)] = E[L(RR,DD)]. (10)

THEOREM 3.4.2 (Main Theorem). For any Attacker A that is not eRR,
E|L(RR,DD)] < E[L(A,DD)). (11)

To prove the theorem we will need the following combinatorial lemma.

LEMMA 3.4.3. Let m, k, p and { be positive integers. Let n = mk. Let Z,, be a circular array of n cells. Let $
be a multi-set {S',S?,...,SP}, where each S' C Z, is a contiguous segment of cells, we call it a block, and each
|S| = m. Then, the following upper bound on the number of heavy points holds:

HC €Z, [ cis heavy}] <m- L%J

Mathematically the proof of this Lemma is the most challenging and reveals the most subtle aspect of this
game. It is easy to prove a weaker version of the upper bound, < |m- %’J This follows from a basic volume
argument. But we need the stronger version to prove the Main Theorem.

Let p < k€ and write p = g€+ r, where ¢ = | 5] < k and 0 < r < £. For any strategy, a query at j defines
ablock B; = {j,j+1,...,j+m—1}. It is obvious that j hits B¢ iff ¢ belongs to the block Bj, i.e, j € B iff
¢ € B;. Now it is clear that the upper bound in the Lemma is achieved by RR (and eRR), since each batch of £
repeated queries defines a block, each of which is repeated £ times, and these blocks are spaced exactly m cells
apart from one batch to the next. Thus, the first g - £ queries define ¢ distinct and disjoint blocks each repeated
¢ times, and together they cover m - g heavy points. The point of the lemma is that one cannot possibly use the
left-over ‘capacity’ of rm to cover more heavy points. The proof is presented in the Appendix.

Proof of Theorem 3.4.2. We are concerned with

EL]=Y PrL>i=1+) PrlL>1i]. (12)
i=1 i=1
‘Our goal is to show that RR minimizes E[L]. Let E4[L] = E[L(A,DD)], the expectation of the Capitulation-

Time for Attacker A against Defender DD. Similarly, Pr4 indicates the probability for Attacker A against De-
fender DD. Our first goal is to prove the (non-strict) dominance of RR:

E4[L] > Egg[L]. (13)

We establish E4[L] > Eggr|[L] by proving term by term Pr4[L > i] > Prggr[L > i]. Observe that if i > k¢, then
Prrr[L > i] = 0. Thus, we only need to consider i < k{. The above inequality is equivalent to Pry[L <] <
Prrr[L < i]. Recall H; is the number of hits B¢ received among the first i queries. Then the event [L < i is
equivalent to [H; > £]. Thus, we seek to show for all i,



Pl‘[Hi Z E] S PI‘[H,‘ Z Z] (14) i
A RR

Imagine that we are given the first i (not necessarily distinct) query points. Each query point j defines a
block B;. As we remarked after Lemma 3.4.3, j hits B9 iff d belongs to the block B;. Let S; be the configuration
consisting of i blocks corresponding to the queries the Attacker would make assuming the Defender answers
b=0 to the first i — 1 queries. We claim

C(5i>.

n

(15)

The equality is clear so long as only b = 0 answers are received. We prove the result for any interaction by
induction. For i = 1 all previous (0) queries are vacuously b = 0 so the result holds. Assume the result holds up
to < i. The probability Pr4[H; > ¢] is 1/n times the number of d such that B? was hit at least £ times during the
first i queries. Either B¢ was hit at least £ times during the first i — 1 queries, or it was only hit £ times counting
the i-th query. Thus,

Pl’{H,' Z E] =
A

IZI'[H,' > E] == I;I”[H,‘_l > (] +f/’1l'{Hi =f/ANH_1 < €] (16)

By induction Pry[H;—) > {] = g—(—S-,’l-‘Jl Now, for the second term, the condition H;_; < ¢ implies that DD
answers the first i — 1 queries with » = 0. Thus, the probability Pry [Hi = £ AH;—) < £] counts the number of
heavy points d € Z,, which are heavy in S; but not heavy in ;1. It follows that the sum of these two probabilities
is exactly C—(,f—"l, completing the induction.

By Lemma 3.4.3, the probability Prs[H; > £] is maximized by RR. Therefore, by the dominance of RR, term
by term, we obtain Exg [L] < Ea[L].

To prove the strict dominance of RR (and eRR) over any other A against DD, we reason as follows. If the
first £ queries are not at the same cell, then at the £-th query, RR produces exactly m heavy points while A has
strictly less. Thus, at the £-th term in the above infinite sum for E4[L], the inequality Pr4[Hy > £] < Prrr[H; > £]
is strict. As we have the (non-strict) dominance of RR for every term we arrive at Exg[L] < E4[L].

We now assume that the first £ queries are at a single cell and apply the same argument. Let ji be the
location of the first £ queries. If the next £ queries are not at some cell j, then consider the time step 2£. At 2¢
we have a strict inequality and a (non-strict) dominance of RR elsewhere, which again gives Err[L] < Ea[L].
This argument proves that to be optimal, the locations of the queries ji, jz,... must be repeated £ times each in
succession.

Finally, consider the possibility of two query locations j and j' with j # ;' (mod m). Then at time step
i = k¢, RR produces a perfect cover of all Z,, with multiplicity £. Meanwhile, A has an imperfect cover of all Z,
which produces a strict inequality in favor of RR. So again, we find that Erg[L] < E4[L)].

This proves the strict optimality of RR (and eRR). O

4 Extension to Multiple Monitoring Blocks

We now briefly discuss the situation when there are multiple monitoring blocks present in the address space. We
assume for simplicity that the monitor blocks are pairwise disjoint and each has length m. Assume there are b
monitor blocks, b < k, and n = km is the total size of the circular address space identified with Z, as before.

The Attacker can still start with a Round Robin. Randomly pick a cell jy € Z,, to start. If the current query
cell is j, then query it until receiving an answer b = 1, or have queried it £ times. Then replace j by j+m. We
repeat this until j = jo again. At this point, we will have queried k = n/m locations. At each such location j we
record the final bit &;. Notice that these bits are all correct answers.

We will show that, in the presence of multiple monitoring blocks, this Round Robin strategy followed by a
certain ‘one-sided binary search’ (we denote it by OSBS) can achieve essentially as good an upper bound, as

8



set'x' €D -~
B=0
N
S requery x'
B=1 \
)
'

. b !
, /
Tt 4
requery X'} B=0 set'x'*
.
-
.
requery " tines | B} set ')

presumptive "¢

Figure 1: Example OSBS traversal

compared to the case when there is only one block of length m, regardless of Defender’s strategy. This justifies
our consideration of only this Round Robin strategy for A. At the same time, a suitable Defender’s strategy can
achieve essentially the same quantity as a lower bound for the Defender, and therefore we have characterized
the game.

Consider those bits b; = 1. These indicate the presence of the monitoring blocks. We observe that no two
bits can refer to the same block and each block must make its presence known through one of these bits. The bits
bj = 1 partition the k queried locations into continguous runs of 1’s separated by 0’s in a circular array of k bits.
We will concentrate on one such run of 1’s. There is no inteference between different runs of blocks indicated
by the corresponding runs of 1’s.

Now consider one particular run of 1’s, and without loss of generality let O be the right-most location where
we have a bit by = 1. This bit indicates the presence of a block, B¢, where ¢ € {0,1,...,m—1}. OSBS will try to
determine the location of ¢. After that, it can remove this (right-most) block B¢ (in the run). If the run has more
blocks left, we repeat OSBS on the new right-most block BY, with the slight modification that the right-most
location for ¢’ is c—m, i.e., ¢’ € {—m,...,c—m}. Asc <m—1, the range is c+ 1 < m. Therefore the bound we
prove for OSBS on B¢ applies to every block in the run.

Now consider OSBS on B°. First we assume [ does not commit any lies during this search. This is just
ordinary binary search. If m > 2, our first query is at i = [m/2]. The answer maybe 0 or 1, indicating ¢ < i or
¢ > i, and we continue until finding c. It is well known that this takes [log, m] steps.

Now we have to consider the complication that D can lie a total of < ¢ times. However, it can only lie in one
direction, namely if the query i is such that ¢ < 7, the answer must be » = 0. Only when ¢ > i, does the Defender
D have the option of lying with b = 0, while the true answer is b = 1.

OSBS algorithm: In view of this, we carry out our OSBS as follows. We select our next new query point
just as in ordinary binary search, as if there were no lies. Record the answer bits as BiB ..., where for each
B; = 0 or 1 we branch left or right respectively. If any ; = 0 at a cell x, however, we modify ordinary binary
search as follows. We will come back to do a ‘repeated querying’ at this location x, one query per each step, as
we descend in the binary search to its left, until either:

* (a) we reach bottom (finding a presumptive c¢). If so, confirm 3; = 0 by querying ¢ times, else goto (b).

(b) we discover B; = 0 at x was a lie. If so, abandon work to the left of x, resume at x branching to the
right.

* (¢) have made £ queries at x, confirming B; = 0 is true. If so, resume OSBS with no more queries at x.

* (d) got a new bit B; = 0 at a cell y, further down in the binary search (i.e., j > i). If so, replace y with x

and proceed recursively.

Note that in case (b), it is possible that there is a ‘higher’ X in the binary search tree where the corresponding
bit B = 0, and the ‘repeated querying’ at x’ was suspended due to x by case (d) for x’. At this point we resume
the ‘repeated querying’ at x’. The search ends by finding c and the confirmation that the smallest cell to its right
for which the bit B; = 0 is not a lie (by having made a total of £ queries there). If all f; = 1, then we must end
in ¢ = m~— 1. This must be correct and there were no lies committed. In Figure 1, we illustrate OSBS traversal
with an example.

We claim that we make at most O(€ + logm) queries in total. It is clear that this bound holds if there is no
lies committed. The O(logm) pays for the ‘binary search’ and O(¢) pays for the final confirmation.
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Suppose at some step during OSBS a lie was committed at x. We make the following observation: in the
descent in the binary search to the left of x, all subsequent answers with a § = 0 are lies. In this case, every step
of the ‘repeated querying’ at x, as well as recursively all ‘repeated querying’ at locations to the left of x with
a B =0 in OSBS is charged to a total quota of ¢ lies. Each of £ lies pays for O(1) queries. This pays for the
ordinary binary search queries at new locations descending from x as well. We also note that in case (c) above,
a confirmation at x for a B; = 0 also confirms all ‘higher’ ¥’ in the binary search tree where the bit By = 0.

In short, OSBS makes O(¢ +logm) queries in total. Corresponding to an ordinary binary search, it does
the ‘repeated querying’ which costs at most two queries per each ordinary binary search step. In addition,
when OSBS discovers a lie at x, it abandons the portion of the work done after x. But that amount of work is
proportional to the number of queries made at a location with a lie, and therefore costs O(f). Every lie =0
is eventually discovered. The total amount of work consists of (1) at most double the work in ordinary binary
search, and (2) the abandoned work (due to the discovery of lies) which is at most O(¢). Finally it costs O(£) to
confirm the answer. This proves the upper bound O(¢ + logm).

It is also clear that O(£ -+ logm) is optimal up to a constant factor. The Defender can use O({) to delay, and
information theoretically it takes O(logm) to find the ¢ € {0,...,m —1}.

Overall, for b blocks, as b < k, we get a simultaneous upper and lower bound ©(k€ 4 b(¢ + logm)) =
@ (k¢ + blogm). The lower bound means that the Defender can achieve this on the average. If k¢ > blogm, then
clearly it requires this much with DD (even with only one block). If k¢ < blogm, we can imagine all b blocks
are separated, then information theoretically we have the bound Q(blogm) = Q(k€+ blogm).

5 System Design and Implementation

The theorems in the prior sections provide a foundation for developing a system for protecting honeynets from
being mapped. In this section, we describe various shuffling strategies and the prototype implementation of a
honeynet defense system.

5.1 Shuffling Strategies

We describe four possible strategies for shuffling honeynets within a larger address space after a specified number
of probes to that address space have been counted (i.e., a shuffling epoch). We assume shuffling will be done by
a system that is interposed between the Attackers and the address space with honeynets and live systems.

e Restricted Swap Shuffling (RSS). In this strategy, we shuffle only over a portion of the entire address
space. The parameters to the shuffler include the internal address space and the black segments in the local
network. The shuffling algorithm randomly modifies the starting address of each black segment so it maps to
another equally sized segment (which could be purely black, purely white or span boundary of black and white
segments). This strategy allows two black segments to overlap. The advantage of this strategy is that at any
point in time only a portion of the address space is affected. Thus, we need to maintain connection state only
for segments affected in the current epoch and adjacent epochs. Restricted No-Overlap Shuffling (RNOS) is a
straightforward extenstion to RSS where we do not allow black segments to overlap. If the random locations of
two black segments happen to overlap, we simply re-shuffle until there is no overlap.

e Discrete Random Map Shuffling (DRMS). In this strategy, we divde the internal address space into discrete
equally sized segments. The parameters for instantiation of the DRMS element include the internal address
space, the discrete segment size and the starting points of black segments in the local network. At the beginning
of each epoch, the shuffling algorithm generates a random permutation to remap all segments and randomly
shifts all segments by a small offset (less than length of a segment). Under this strategy, white segments could
get remapped to other white segments, thus requiring us to maintain continuous connection state across all
segments. A perfectly randomly shuffling strategy could be acheived by simply setting the segment size to 1.
However, the overhead of such a design choice would be significant for large network blocks.
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e Per Source Shuffling (PSS). This strategy is similar to RSS except that it maintains a different view of the
network for each external host that sends packets. It assumes that sources act independently, and thus we need
to shuffle only when a single source has reached the probing threshold. At that point, we shuffle the network
simply for that external source. The obvious overhead for this strategy is the amount of resources allocated to
maintain the network maps for each external host. However, this potentially enables the system to shuffle less
frequently, and thus may devote fewer resources to connection entries. Perhaps more significantly, connections
from benign hosts (hosts that target only one or a small number of internal hosts) would never get shuffled. This
might be a feasible design choice for networks with a small number of black segments.

e Source Group Shuffling (SGS). This strategy balances the benefits of RSS and PSS strategies, by maintain-
ing network maps for "groups" of sources. In our prototype implementation, we group sources by their target
port numbers. The intuition here is that sources that are coordinated (distributed, but controlled by a single
agent) typically probe the network looking to exploit a specific set of vulnerabilities. Hence they target the same
set of services. For each group of sources, we shuffle their view of the network if the group has exceeded the
specified scanning threshold. This approach is more resilient against distributed network mapping and provides
some of the benefits of PSS.

5.2 The Kaleidoscope Prototype

We developed a prototype shuffling middlebox as a collection of network elements on top of the Click modular
router platform [14]. We call this system Kaleidoscope. Our decision to use Click is based on its proven
scalability and the flexibility provided by its network configuration langnage. Our enhancements to Click involve
the development of two classes of network elements.

» Address modification element. This element handles (7) packet input (including probe counting), (ii)
invokes the address shuffling elements to obtain address mappings, (iii) and rewrites addresses in the IP
header.

 Shuffling elements. These elements maintain state and implement shuffling policies. They are pro-
grammed as Click ‘information elements’ and do not have inputs or outputs. The elements maintain the
mapping tables and do not directly modify network packets. This design makes it easy to specify new
shuffling components and also swap between shuffling strategies. We implemented information elements
for each of the shuffling policies discussed above (RSS, RNOS, DRMS, PSS and SGS).

The design choice between shuffling strategies involves a tradeoff between the amount of state maintained
and frequency of shuffiing. Our system maintains two types of state: current address-mapping tables and con-
nection pool (of live connections). Strategies that maintain global state (RSS and DRMS) devote fewer resources
to maintaining address mappings. However, they end up shuffling more frequently, and thus are likely to devote
more resources in maintaining ongoing connection state across shuffling epochs i.e. larger connection pools.
In contrast, strategies that maintain per-source state (PSS and SGS) suffer from the overhead of maintaining
multiple address-mapping tables, but they shuffle less frequently compared to the former strategies, and thus
require smaller connection pools.

Connection pools. We implement connection pools using the HashBelt data structure that we designed,
which approximates the LRU eviction policy and periodically expires stale connections. The HashBelt maintains
a list of N hash tables and supports three operations £ind, insert, delete and rotate. Onevery find
operation, connection entries are automatically moved to the head (first hash table) in the HashBelt. On every
rotate, we insert a new hash table to the head of the HashBelt and delete its tail (expiring all the entries in the
bottom). In our experiments, we maintain HashBelts with five hash tables and rotate when average chain length
exceeds three lookups.

For every connection we maintain the following tuple of mapping information: <external_ip, external_port,
advertised_ip, local_ip, local_port>. The advertised_ip is simply the internal address as seen by the exter-
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Figure 2: Expected shuffle frequency as we vary £ and m.

nal host, and the local_port is identical to the port that is advertised. We use the combination of external_ip,
external_port and local_port as a unique identifier for each connection.

Address maps. Address maps keep track of black and white segments and translation between local and
advertised IP address. For per-source shuffling, we re-use the HashBelt data structure to periodically expire
address-maps for stale sources. For the other strategies, we simply use a hash table or collection of hash tables
to maintain the address maps. Each hash table maintains an entry per black segment, except for the case of
DRMS which incurs an entry per segment.

6 Experimental Evaluation

6.1 Analytic Results

We use the equations developed in Sections 3 and 4 to analytically evaluate the implications of the monitor size,
the lie threhold parameter and presence of segmented monitor blocks on required shuffling frequency. These
analyses provide insight into feasibility and practicality of our game theoretic method for protecting honeynets.

¢ Impact of lie budget and monitor size on shuffling frequency. In Figure 2 we consider the impact of lie
budget (£) and monitor size (m) on expected shuffling frequency. We plot the expected length of the game for
network sizes (n) = /8 (16M IP addresses) and /16 (64K IP addresses). In the left set of graphs, if the value of ¢
is independent of size of m, then we see that the expected duration of the game decreases roughly proportionally
with monitor size. This refiects the fact that once the lie budget is exhausted, RR results in efficient identification
of the honeynet. While interesting from the perspective of analysis, we argue that in practice it is more likely
that ¢ is proportional to monitor size i.e., it will take on average O({) probes per node to determine if it is ‘black’
or ‘white’. The second pair of graphs reflects this case showing that the expected duration of the game increases
with monitor size. For e.g., a /16 honeynet in a /8 address space would require over 80M probes to identify (for
£ = 10M) which would require significant resources for an attacker or a long time.

It is important to consider the tradeoff between larger monitor size and benefit in terms of perspective they
provide for monitoring. We consider a simple measure of the u#ility of a monitor segment — the number of source
IP addresses observed. For this analysis, we assume that the distribution of sources with respect the volume of
scans they generate follows a Zipf distribution [28] and that sources choose destinations randomly. We fix the
network size to be a /16, the number of scans to be 5M and the number of sources to be 20K. > In Figure 3, we
plot the utility as we vary the monitor size m from /24 to /19 for different values of s (the exponent value for the
Zipf distribution). For smaller values of s, monitors of size /18 or /19 seem to capture most sources and for more
heavy tailed distributions (s = 1.3), the utility increases roughly linearly with monitor size.

¢ Impact of segmentation. Next we consider, the impact of segmenting monitors into multiple blocks on
the expected length of the game. In Figure 4 (left) we plot the change in shuffle frequency as we increase the
number of segments for three different monitor sizes (/18, /20 and /22). The value of n was set to be /16. We
fix £ to be 100. We find that the length of the game increases linearly with the number of blocks. But the slope
of the curve increases as we decrease monitor size (im). Next, in Figure 4 (right), we plot the change in shuffle

3These numbers are based on typical daily volumes seen at actual honeynet deployments.
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frequency as we increase the number of segments for three different lie budgets. The value of n was set to be
/16. We fix m to be /20. Again, we find that the length of the game increases linearly with the number of blocks
and the slope of the curve increases as we decrease the lie budget (¢).

6.2 Experimental results with Kaleidoscope

We evaluate the performance of our Kaleidoscope system under a number of different traffic configurations to
assess feasibility of deployment. The key evaluation metrics are packet loss and delay introduced by the system.
Our design goal is for the system to sustain traffic rates upto 200Mbps which is typical for our large campus
network. In these experiments we pessimistically set the lie budget £ to be 0. ® Figure 5 provides a sample
configuration of the network topology used to evaluate our system. Three key components of this setup include:

1. Harpoon - a synthetic traffic generator that generates a wide range of realistic network packet traffic [21].
Our setup includes four Harpoon clients and two Harpoon servers. We configured the client and server
IP address pools to be 256K and 128K addresses, with the number of active client and server addresses
being 1024 and 512 respectively. We used the default setting for file size distribution i.e., Pareto with
(location parameter) x,, = 10 KB and (shape parameter) k = 1.2. The interconnection times were set to be
exponentially distributed with a mean value of 0.5 seconds.

2. NetPath - a Click based network delay emulator. We configured NetPath to produce a constant delay of
15 ms in each direction between the client and server [1].

3. Kaleidoscope - our address shuffling prototype that is implemented as collection of elements in the Click
modular router and described in Section 5.

To evaluate the performance of the shuffling system, we use high performance Endace DAG cards [10] to
capture packets as they enter and exit the Kaleidoscope system. These cards provide high precision timestamps
on all packets. Next, we describe the specific experimental results that iilustrate the performance limits of our
prototype.

e Impact of shuffling on performance. First, we consider the impact of the Kaleidoscope middlebox on
network performance. Specifically, we evaluate packet loss, packet delay and connection disruptions that might
be introduced by our prototype under load. We configured Harpoon to generate average traffic load from 50-
200Mbps. Our Kaleidoscope system generated zero packet loss and zero connection disruptions. In Figure 6, we
report the delays introduced by the system for different shuffling policies. We find that delays are quite minimal,
typically under 300us which is likely to be acceptable in most environments and far less than the response time
for some middleboxes [3]. As might be expected, delays introduced by per source shuffling (PSS) are slightly
higher than discrete random map shuffling (DRMS), restricted swap shuffling (RSS) or source group shuffling
(SGS) since the former policies maintain more state. To measure the maximum performance of the system, we
also conducted additional measurements at 400Mbps. In Table 1, we summarize the packet loss introduced by

61f our "shuffling" system scales when the lie budget is 0, clearly it will scale for larger values where we shuffle less frequently.
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the shuffling middlebox at 200Mbps and 400Mbps. While this rate of traffic introduces a noticeable 0.1% loss
rate on the PSS shuffler, the other shufflers continue to be resilient.

¢ Robustness to resource attacks. An important consideration in the design of Kaleidoscope is its re-
siliency to resource consumption attacks. In particular, there are two classes of attacks that a knowledgable
adversary might employ to degrade the quality of service provided by the system. First, there are attacks that
overwhelm the system by filling the connection pool (the list of live connections that are tracked by the system).
Second, there are attacks that overwhelm the source and destination address pools that are monitored by system.
We expect the latter set of attacks to be more of an issue for per-source (PSS) and source-group (SGS) shuffling
strategies.

In Figure 7 (left) we provide results of system resiliency (average delay introduced) as we subject Kalei-
doscope to connection-pool overload attacks. We use MACE [22] to initiate SYN-flood attacks of increasing
severity (from 300-2400 connection attempts per second). Harpoon was configured to generate background
traffic at an average rate of 200Mbps. We find that the system is able to handle these attacks without service
disruption — no lost packets or stale connections. The HashBelt implementation of the connection pool enables
timely eviction of the malicious connections without impact on normal traffic. The average delays across the
shuffling strategies remain minimal (under 300us). As expected DRMS, RSS and SGS outperform PSS.

In Figure 7 (right) we provide results of system resiliency (average delay introduced) as we subject it to
address-pool overload attacks. We use MACE to initiate a scanning attacks of increasing severity (from 300 -
2400 connection attempts per second with source addresses and destination addresses picked randomly). Har-
poon was configured to generate background traffic at an average rate of 200Mbps. We find that our system is
able to handle these attacks without service disruption — zero percent packet loss and no stale connections. The
average delays across the shuffling strategies remain minimal (under 1ms). As expected DRMS, RSS and SGS
outperform PSS. We expect the impact of the system under other attack scenarios such as worm outbreaks and
flash crowds to be similar. However, we leave those tests to future work.

7 Deployment Issues

Our Kaleidoscope experiments demonstrate the feasibility of the use of an address shuffling middlebox for
protecting honeynets. However, there are other important design considerations involving the placement and
protocol for the shuffling logic.

Network Address Translation (NAT). The address translation logic built into shuffler is analogous to func-
tionality implemented in commodity NAT devices. A key difference is the requirement to support inbound
connection requests in an environment where the local (internal) network changes dynamically. Much like a
NAT, legitimate server addresses are statically routed, however connection requests to dynamic hosts are arbi-
trarily routed based on the shuffling epoch. We build our network address shuffler on the premise that most
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| Shuffler | 200Mbps | 400mbps |
DRMS | 0% 0%
Sl RSS 0% 0%
z SGS 0% 0%
) PSS 0% 0.11%
T T e Table 1: Summary of shuffler-induced
Figure 7: Delays under SYN-flood and scanning attacks. packet loss.

addresses are client-based and do not require to be statically routed. We expect our system can be overlayed
seamlessly over existing NAT deployments.

Dynamic Host Configuration Protocol (DHCP). The network procotol commonly used to automate the
allocation of IP addresses to dynamic participants in a network is DHCP [18]. The transient nature of clients
makes such environments particularly hospitable for our shuffling architecture. We expect that our system will
readily coexist with existing DHCP networks and we plan to explore opportunities for more active integration of
DHCP management with network address shuffling, for e.g., support for adaptive management of address pools.

Integration with routers. One alternative to our middlebox deployment is to use existing intra-AS routing
protocols such as OSPF or RIP as the basis for honeynet protection. The advantage of such an approach is the
ability to utilize high-performance routing architectures. In such an environment the network address shuffler
would send periodic link state updates to route affected address blocks through this system, while the remaining
traffic would simply bypass the shuffler. Alternatively, one could build the route shuffling request as a new OSPF
message type.

8 Summary and Conclusion

In this paper we develop a methodology for safeguarding honeynet monitors from being identified and mapped
by malicious entities. Our approach is based on abstracting the honeynet protection problem into a two person
game between an Attacker and a Defender. The Attacker’s objective is to identify a honeynet embedded within
a larger address space with a minimal number of probes, while the Defender’s objective is to measure the
maximum number of probes before shuffling the honeynet’s location within the address space.

We formulate strategies for both the Attacker and Defender that we prove to be optimal. The Attacker’s
strategy is based on round robin probing to identify a point within the honeynet followed by a binary search to
establish the boundaries. The Defender’s strategy is to delay revealing the location of points within the honeynet
as long as possible. We extend this foundational result to accommodate the possibility of multiple embedded
honeynets, which we show will only add a constant factor to the Attacker’s probe requirement. These theoretical
results form the basis for an analytical investigation of the practical issues in developing a system that can be
used to protect honeynets. Our analysis shows that for honeynet configurations commonly found in the Internet,
substantial resources may be required of the Attacker in order to quickly identify a honeynet.

We designed and built a prototype middle-box system that we call Kaleidoscope which counts probes to
a network and shuffles embedded honeynets when probe thresholds are reached. This system was developed
to understand the demands and requirements for four different methods of address space shuffling. We tested
Kaleidoscope in a lab environment configured to approximate the traffic conditions in our own campus network
where we operate a large honeynet. First, we tested the per packet delays introduced by Kaleidoscope, and found
that the worst case delays were on the order of hundreds of microseconds which would be quite acceptable for
most networks. Second, we tested the state required within the middle-box for the different shuffling strategies
and found that all are easily accommodated by our design. Finally, we tested resource requirements when Kalei-
doscope itself is under attack, and found that our implementation approach is sufficient to continue operation
without packet loss or significant increase in delay.
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9 Appendix
The Main Theorem 3.4.2 states that for any Attacker strategy A other than eRR,
E[L(RR,DD)] < E[L(A,DD)].
The following combinatorial lemma, which we prove below, is the key to the proof of the Main Theorem.

LEMMA 3.4.3. Let m, k, p and ¢ be positive integers. Let n = mk. Let Z,, be a circular array of n cells. Let §
be a multi-set {S!,52,...,57}, where each §' C Z, is a contiguous segment of cells, we call it a block, and each
|S7| = m. We say ¢ € Z, is heavy with respect to S if ¢ is covered by at least £ blocks §' € 5. Then, the following
upper bound on the number of heavy points holds:

H{c€Z,|cisheavy}| <m- L%J

Remark: We call § a configuration. Denote by C = C($) the number of heavy points covered by .§, namely
C(s) = |{c € Z, | cis heavy}|. The upper bound C(S) < |m- 5] is trivial by a volume argument: the total
number of elements in the union US is at most mp, counting multiplicity. Each heavy point ¢ costs at least ¢
elements to cover. So there could be at most [m - %j heavy points. The trickier part is to prove that the stronger
bound in the lemma. This stronger bound is crucial in establishing our Main Theorem 3.4.2; the weaker bound
will not be useful.

The bound in the Lemma is trivial if p > k-£. So we assume p < k-£. Write p = q-{+r, where ¢ = L%J <k
and 0 <r<d.

Consider RR (or eRR). Each query at j defines a block B; = {j,j+1,...,j+m— 1} which is a contiguous
segment of m cells, starting at j. It is obvious that j hits B¢ iff ¢ belongs to the block B;, i.e. j € B®iff ¢ € B;.
Now it is clear that the upper bound in the Lemma is achieved by RR (and eRR), since each batch of £ repeated
queries defines a block, each of which is repeated £ times, and these blocks are spaced exactly m cells apart from
one batch to the next. Thus, the first ¢ - £ queries define ¢ distinct and disjoint blocks each repeated £ times,
and together they cover m - ¢ heavy points. The point of the lemma is that one can not possibly use the left-over
‘capacity’ of rm to cover more heavy points. Note that if one is to use the first ¢ - £ queries to cover m - g heavy
points (as we did above with RR), then it is certainly impossible to use the left-over ‘capacity’ of rm to cover
more heavy points. The Lemma says much more. It asserts that, no matter how one does it, it can never cover
more heavy points.

We note that if p =0 (mod m), then the lemma is trivial. However, this is not sufficient for the proof of the
Main Theorem. Now we prove the lemma.

Proof. Fix p. Let s be a configuration of p blocks which maximizes the number of heavy points, denoted by
C(5). The proof of the lemma consists of two major steps. In the first step we will show that we may always
modify the configuration 5 to another S’ with the same number of blocks, such that C(s) < C(S’), and in §’ no
point ¢ is covered by more than £ blocks. The second step of the proof shows that for such configurations §’,
C(s")y <m-|5].

Step 1: Given 5. Define a k x m matrix N as follows: The entries of N will be indexed by (i, j), where 0 <i < k
and 0 < j < m, and N; ; is the number of blocks in § covering the cell ¢ = im+ j. For later purposes we will
also denote N; = Ny, ; = N; ;. Note that each cell ¢ € Z,, has a unique expression ¢ = im+ j, where 0 <i <k
and 0 < j < m. On each column j of N, the blocks counted in N; ;, for 0 < i < k, all come from distinct blocks
in . This is because each block has length m, and therefore can not appear in more than one count in a column.

Also each block in § contributes a total of m to the sum }; ; N; ; so that

ZN"-J' =mp.
i’j
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In fact on each column, each block contributes exactly 1, therefore for every 0 < j < m,

k—1
Z N,"j =P.
i=0

In particular, since p < k£, there must be at least one ; ; < £ for every column 0 < j < m.

If all entries N; ; < £, then Step 1 is done. Assume otherwise. We now perform what we call a sequence
of ‘wipe-the-cream’ operations: Start at any co = ipm + jo with Ny, ;, < £. Cyclically increase ¢y by 1, until
we find the first ¢ = im+ j such that N; ; > €. If ¢ = c—1 =i'm+ j' is the previous cell, then it is clear that
Njj>{> Ny y, and that the increase must be due to some blocks starting at the location c¢. Let f be the number
of blocks starting at the location ¢, then f > N; j —£. Let f' = N; ; — £, then f > f' > 0. Now move f’ of the f
starting blocks one cell to the next, to start at ¢ + 1 instead. Note that for the new configuration the new value at
C1is N,; j= £

We then start at ¢ and repeat this. This step of ‘wipe-the-cream’ operation is continued until there is no more
N,',j > /£,

Consider the effect of one step of this ‘wipe-the-cream’ operation on the matrix N. There are exactly two
entries of this matrix N that are changed by this one step: the entry N; ;, which is changed from > £ to = ¢, and
the entry Ni4 j, which is increased by f’. Hence the number of heavy points C is not decreased. Moreover, if we
perform the above sequence of ‘wipe-the-cream’ operations in row major order, but we focus on its effect on each
column of the matrix exclusively, the entire cyclic sequence of ‘wipe-the-cream’ operations can be viewed as if
it were to be performed on each column individually, in a parallel fashion. (At this point, the reader probably can
see why we call it a ‘wipe-the-cream’ operation.) One can think of the effect on any column j as a virtual ‘wipe-
the-cream’ operation which merely shifts the numbers V; ; in excess of £ to the next entry on the same column,
as described above: If N ; > ¢, then the new N; ; = ¢ and the new N,ur],j =Niy1,j+ f =N, j+ (N j = 0).

We note that when we perform one step of this ‘wipe-the-cream’ operation at ¢, the sum of two consecutive
terms on a column at ¢ and ¢ +m is unchanged. If we actually shifted some blocks for r consecutive terms in
one column, this creates a plateau of r consecutive terms with the respective N; ; = £. These terms effectively no
longer participate in any future ‘wipe-the-cream’ operations; in any future rounds they simply pass any left-over
‘cream’ (if there is any) from the previous cell to the next cell on the same column. If we focus on an individual
column, and consider the virtual ‘wipe-the-cream’ operation, this effectively reduces the length of the column
on which we perform this virtual ‘wipe-the-cream’ operation. If we disregard the cells already having N; ; = ¢
(and thus removed for the virtual ‘wipe-the-cream’ operation), every actual step which shifts a positive amount
from one cell to the next strictly reduces the length of the column. However each column sum is p < k¢ and is
preserved throughout, some entry < £ on each column must remain at all time. Therefore, this virtual length of
the column can not be reduced to 0. This proves that the sequence of ‘wipe-the-cream’ operation must terminate
on each column, and therefore must terminate overall. Step 1 is proved.

Step 2: Assume S is a configuration with all N. < ¢, and achieves maximum count C(S) of heavy points.

We have already remarked that we may assume p < k€ and p # 0 (mod £), for otherwise the Lemma is easy
to prove. Note that these two conditions imply ¢ < kand 1 <r < £in p = g€+ r. In particular, we may assume
¢ > 1. We may consider the Lemma already proved inductively for any smaller values of £. The base case ¢ = 1
is trivially true. We may also consider the Lemma already proved inductively for any smaller values of p; again
the base case is trivial.

Now we define two notions: a gap and a train.

A gap G is a contiguous set of points {a,a+1,...,b—1} C Z,, where a # b (thought of as a < b < a+n),
such that N,—| = N, = £ and Ny, Ngy1,...,Np—) are all < £. We say the length of the gap is b —a. (Strictly
speaking we take the positive modulus of b —a (mod n) in {1,...,n—1}.)

A (w,t)-train T is a collection of w - many blocks, such that there exists a ¢ € Z,,, for all 0 < i <7 — 1, there
are exactly w blocks in T which start at the cell ¢+ im. Thus, a (w,1)-train T covers tm contiguous cells starting
at ¢, each with multiplicity w. We say T has width w and length ¢tm.
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For any w > 0, a (w,k)-train T is called a complete train. A complete train wraps around the whole circular
array Z,. If we have a complete train, we can remove all the blocks in a (1,k)-complete train, and obtain a
configuration $* which covers the same number of heavy points for the parameters # = £—1 and p' = p—k.
ie,C(s)=C(s*). By inductive hypothesis, this C(s*) < |p/'/¢'| -m. Butby k > ¢,

Pl=gl+r—k<gltr—(qg+1)=ql—1)+(r—1),
where 0 <r—1<¢—1=/{".Thus |p'/¢'] <g. It follows that
C(s)<q-m.

Thus, any complete train finishes the proof.

The strategy in Step 2 will be the following. We will consider a gap with minimum length, and define an
appropriate train and a movement of the train. Assume there are at least two gaps in 5. The movement of the
train will not change C(), and will either (a) reduce the number of gaps in .§, or (b) reduce the length of the
minimum length gap without increasing the total number of gaps in $, or (c) move the minimum length gap
one cell closer to another gap while not affecting any gap other than the minimum length gap. In case (c), if
repeated, a sequence of such train movements will eventually merge the minimum length gap with a nearby gap
and thus reducing the total number of gaps. It is clear by p < k£ that there must be at least one gap. The above
sequence of train movements will eventually reduce the situation to a configuration with only one gap, which
will be directly handled.

Now we carry out this plan. Let G = {a,a+1,...,b— 1} be a gap with minimum length. If s is the number
of blocks starting at b and e is the number of blocks ending at b— 1, then s—e =N, —N,_; > 0. Letw = s —e.
We will define a (w,?)-train for some ¢. As w < s there are at least w blocks starting at b. Choose any such w
starting blocks. Consider cell b+4-m — 1. If Npy,—1 < £, then we may move these w blocks one cell to the left,
whereby producing a new configuration with N,_; = ¢, ]Vb+,,,_1 = Npym-1—w, and with no other changes to
N. As b+m—1 was already not a heavy point, this movement would have increased C(s) by 1. Since § was
assumed to be optimal, this is impossible. Therefore we may assume Ny, = £.

Next, consider cell b+ m. Either Nyi, < £, or Npyy = £. If Ny, = £, then since there are at least w blocks
ending at b+m — 1, there must be at least that many blocks starting at b + m. We pick any w of these starting
blocks and together with the w blocks starting at b form a (w,2)-train. On the other hand, if Ny, < ¢, then
b+ m must be the starting cell of a gap G'.

In the case with Nyy.,, = £, we will, by the same argument, continue at b+ 2m, b+ 3m, ..., and keep ‘hooking
up’ the train until we have defined a (w,?)-train which borders on a gap G’ which starts at the next cell b+ tm.
Note that if the (w,)-train is extended all the way by wrapping around to b — 1, we would have a complete
(w,k)-train. As noted earlier, this completes the proof of the Lemma. Thus we assume ¢ < k.

Now there are two cases: Either G' = G or G’ # G. If G’ # G, then by moving the (w,?)-train one cell to its
left, we change Ny from < £ to Nj,_; = £ and Njyy—; from = £ to Npyim—1 < €. No other changes occur to N.
This keeps C(.s) unchanged, thus still optimum, while removing one cell out of the gap G and adding one cell
to the gap G, which was to start at b+ tm. No changes occur to any other gap. Of course it is possible that the
gap G disappears (if its length was 1), or at least its length is reduced by 1. The gap G’ may stay as a single gap,
with size increased by 1, or it may be merged with another gap to its left. In any case, either the number of gaps
is reduced or the number of gaps stays the same with the length of the minimum gap reduced (or both).

Let’s consider the case G’ = G. This means the (w,t)-train wraps around all the way to end in a — 1; in
particular a = b (mod m). If we also move the (w,?)-train one cell to its left, we would have effectively moved
the cell locations of the minimum length gap G one cell to its left. No changes occur to any other gap. This
may of course merge G with a gap to its left, or it simply moves the locations of G one cell to its left without
changing the status of any other gap. In the latter case, both the total number of gaps and the minimum length of
a gap are unchanged. We can then proceed to define another (w',#')-train starting at » — 1 and repeat the above
process. (Note that it is possible that w’ # w and ' #1.)
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We have proved that the goals (a), (b) or (c) are accomplishable as stated earlier. It follows that eventually
we can arrive at a configuration which has the same p, still has maximum C($), and has only one gap.

If we start at this unique gap G and repeat the above definition of a (w,)-train, it must end in the same gap
G'=G. Thusa=b (mod m). Thus, the gap G has a length a positive multiple of m.

If all Ny = Ngpp = ... = N1 = 0 within the gap G, then p =0 (mod ¢), and we are done. Now suppose
some N; # 0, where a < i < b, and let B be a block which contributes to N; > 0. If B is completely contained
in the gap G, then we may drop this B and obtain a configuration ', which has p’ = p— 1 and covers the same
number of heavy points as §. Then, by induction,

Cs)=C(sY<|p /e -m<|p/t]-m.

Suppose now every block contributing to some N; > 0 in the gap is not completely contained in G. Thus
B straddles the end points. Without loss of generality suppose b € B. Let B = B,, i.e., it starts at ¢, and thus
0 < b—c¢ < m. By the same argument earlier we can define a (1,7)-train starting with the block B. The ending
cell of this (1,7)-train is ¢ +#m — 1. We claim it must be to the right of a — 1. This is because, if it were to end at
a cell to the left of a — 1, then we could have extended the train further; it could not end at a — | either, because
both the train length and the gap length are =0 (mod m), and 0 < b — ¢ < m. In fact this (1,¢)-train must end
exactly m — (b — c) cells to the right of a — 1. (It could not extend any further, or else there would have been a
block completely contained in G.) Now if we move this (1,#)-train b — ¢ cells to the right, we will have produced
a single block, namely the last block of this (1,7)-train, completely contained in G, and maintain the same C(5).

This completes our proof of the Lemma.

]
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