HE@WEHEEEIE@EEEEWH@H@EE%%@@E@ﬁﬁﬁﬁﬂ&ﬂﬁﬁﬁﬁ%EﬁﬂﬁﬁWEEE@EEEEEEREEEEEEEE

A Comparison of C-Store and Row-Store in a
Common Framework

Alan Halverson
Jennifer Beckmann
Jeffrey Naughton

David DeWitt
Technical Report #1570

June 2006

UNIVERSITY OF

I

A Comparison of C-Store and Row-Store in a Common
Framework

Alan Halverson

Jennifer L. Beckmann Jeffrey F. Naughton David J. DeWitt

University of Wisconsin-Madison
1210 W. Dayton St.
Madison, Wisconsin 53706 USA
{alanh,jbeckmann,naughton,dewitt} @cs.wisc.edu

Abstract

Recently, a “column store” system called C-
Store has shown significant performance ben-
efits by utilizing storage optimizations for a
read-mostly query workload. The authors
of the (C-Store paper compared their opti-
nized column store to a commercial yow store
RDBMS that is optimized for a mixture of
reads and writes, which obscures the relative
benefits of row and column stores. In this pa-
per, we describe two storage optimizations for
a row store architecture given a read-mostly
query workload — “super tuples” and “column
abstraction.” We implement both our opti-
mized row store and C-Store in a common
framework in order to perform an “apples-
to-apples” comparison of the optimizations in
isolation and combination. We also develop
a detailed cost model for sequential scans to
break down time spent into three categories
- disk T/0, iteration cost, and local tuple re-
construction cost. We conclude that, while
the C-Store systemn offers tremendous perfor-
mance benefits for scanning a small fraction
of columus from a table, ouwr optimized row
store provides disk storage savings, reduced
sequential scan times, and low additional CPU
overheads while requiring only evolutionary
changes to a standard row store.

1 Introduction

Recently, a column-oriented storage system called C-
Store [7] has shown provocative performance results
when compared to a comnmercial row-oriented DBMS.
Their comparison of the read-optimized C-Store ideas
to a write-optimized commercial DBMS obscures the
relative benefits of row and column storage for read-
mostly workloads For example, one sequential scan
query in the C-Store evaluation takes 2.54 seconds
for C-Store while the DBMS takes 18.47 seconds —

even with a materialized view that directly answers
the query. In this paper, we show that the row store
can also be optimized for a read-mostly query work-
load, and the query above can be run in as little as 1.42
seconds with our optimized row store. In an attempt
to shed light on the comparison between the two, we
implement both a read-optimized row store and the
C-Store system in a commnon framework.

The C-Store architecture uses several main tech-
niques to improve performance when compared to cur-
rent commercial relational systems. First, C-Store
stores each column of a relation separately on disk. In
this way, scanning a small fraction of the columns from
a relation with many columns saves disk 1/0. Second,
it carefully packs column values into large page-sized
blocks to avoid per-value overheads. Third, C-Store
uses a combination of sorting and value compression
fechniques to further reduce disk storage requirements.
Both the page packing and sorting/compression tech-
niques are an attempt to trade decreased I/O lor in-
creased CPU utilization.

The performance evaluation presented in the C-
Store paper uses a modified TPC-H [4] schema and
query workload to measure the combined eflects ol
their performance improvement techniques. The re-
ported results are very impressive — the C-Store system
provides a significant performance improvement com-
pared with a commercial row store. Although the com-
mercial row store compares poorly, an optimized row
store can benefit from most of the same performance
techinques proposed for the C-Store system. Specifi-
cally, our optimized row store uses both careful page
packing, which we call “super tuples,” and sorting to
enable compression, which we call “column abstrac-
tion.” The remaining technique - columnn storage -
is the primary difference between row- and colunn-
oriented storage. Careful page packing is particularly
low-hanging fruit for a row store. Enforced sorting of
the relation and storing repeating values only once to
save space is slightly more effort, as it breaks the one-
to-one mapping of the logical relational schema to the

physical tuple on disk.
The main contributions of our paper are as follows:

e We provide descriptions of the “super tuple” and
“column abstraction” performance techniques to
optimize for a read-mostly query workload.

o We build a software artifact to evaluate these per-
formance improvements for both the row and col-
umn stores in isolation and in combination, us-
ing a common storage manager. Owr experiments
vary tuple width, number of rows, level of sorting
and column abstraction, and number of columns
scanned to identify performance trends.

o We propose and validate a formal cost model for
secuiential scan for both row and column stor-
age. The model takes into account the storage
improvements and their elfecls on performance
by identilying Lhree faclors which conlribule to
ovelall scan time. We compare the model predic-
tions with our experimental results. We also use
the model to lorecast the behavior of systems and
scenarios to gain further insight into performance
trends.

The rest of the paper proceeds as follows. In Sec-
tion 2, we present the storage optimizations and imple-
mentation details. Section 3 describes our experimen-
tal prototype and evaluates the storage optimizations
in isolation and combination to discover performance
trends. We then develop our formal cost model, with
validation and lorecasting, in Section 4. We describe
related work in Section 5, and offer conclusions and
future directions for research in Section 6.

2 Storage Optimizations

In this section, we describe the “super tuple” and “col-
umn abstraction” optimizations for the row store ar-
chitecture. To illustrate the effects of each storage
option, we will use an instance of a materialized view
defined in the C-Store [7] paper. The view is based
on a simplified version of the schema from the TPC-H
benchmark [4], and is defined using SQL as follows:

CREATE VIEW D4 AS

SELECT L.RETURNFLAG, C.NATIONKEY, L.EXTENDEDPRICE
FROM Customer, Orders, Lineitem

WHERE C.CUSTID = 0.CUSTID

AND 0O_ORDERID = L_ORDERID

ORDBER BY L.RETURNFLAG, C.NATIODNKEY;

The definition is identical to the view called D4 in
the C-Store paper with the exception of the secondary
ORDER BY on the c.NATIONKEY column Table 1 contains
an instance of the D4 view that we use in all examples
for this section Figure 1(a) shows how a standard row
store would layout the first [ew rows ol the D4 view
on a disk page

L.RETURNFLAG ~ C.NATIONKEY L.EXTENDEDPRICE
A 3 23
A 3 34
A 9 64
N 3 88
N 14 49
R 9 16
R 9 53
R 9 7
R 11 63
R 21 72
R 21 72

Table 1: Example instance of materialized view
D4
2.1 Super Tuples

All of the major DBMS products use a variant of the
slotted page for storage of tuples in a table. Slotted
pages use an array of slots that point to the actual
tuples within the page. Typically each tuple is pref-
aced by a header that provides metadata about the
tuple. For example, metadata in the Shore storage
manager (2] includes the type of tuple (small or large),
the size of the user-specified record header, and the
total size of the record if it is larger than one page and
split across disk pages. The tuple header is implemen-
tation specific, but typically is 8-16 bytes in addition
to the tuple’s slot entry.

While the slotted page design provides a generic
platform for a wide range of data storage needs, these
pei-tuple overheads can be problematic. Bven for an
80 byte tuple, a 16 byte overhead is 20%. We reduce
per-tuple overhead by packing many tuples into page-
sized “super tuples.” For fixed-length tuples, the super
tuple is an array of tuple-sized entries which can be
indexed directly. For variable length tuples, the tuple
length must be stored. The super tuple design uses a
nested iteration model, which ultimately reduces CPU
overhead and disk I/O.

An important side effect of using super tuples is that
external addressability of individual tuples is more dif-
ficuli. Both the C-Store design and our optimized
row store trade the storage benefits derived [rom tight
packing of values for additional overhead associated
with utilizing and maintaining value indexes.

2.2 Column Abstraction

Sorting provides an opportunity for disk storage sav-
ings. If the database can guarantee that tuples are
refrieved from storage according to the sort order, we
can store each unique value in the sort colunn once
and then store the remaining unsorted attributes sep-
arately, according to the specific storage architecture.
In this paper, we use the term “column abstraction” to
describe the process ol storing repeating values once.
Disk space savings are higher when the number of
unique values in the sorted column is smaller.

Free space

Slot ufrﬁy:

(a) Standard Row Store

(b) Column Abstraction

Eipmie

Free space

Slot array:[F)

(c) Super Tuples and Column Ab-
straction

Figure 1: Row layout on storage pages for view D4 for (a) the standard row store, (b) row store
with column abstraction, and (c) row store with super tuples and column abstraction

LRETURNFLAG ~ C_NATIONKEY L.EXTENDEDPRICE
[A] 3 23
A 3 34
A g)
[N 3 88
N 14 49
[R g 16
R 9 53
R 9 7
R 11 63
R 21 72
R 21 72
Table 2: Column abstraction encoding of data

from Table 1. Only need to store values in
boxes — other values are implicit.

The columns in a materialized view may come
from different tables and be related to each other by
onc or more join keys. Tor example, consider the
one-to-many relationship between the c.NATIONKEY and
L.EXTENDEDPRICE columns in our example D4 material-
ized view. Even when D4 is sorted by L.RETURNFLAG
firsl, we can save space on disk by storing C.NATIONKEY
once for each related L.EXTENDEDPRICE. We show in Ta-
ble 2 how the sort column(s) for view D4 can be used
to more efficiently encode the same data. We show
which values must be stored on disk by drawing boxes
around them. L.RETURNFLAG and C.NATIONKEY are sort at-
tributes for D4 which allows us to store repeating val-
ues for each attribute only once. Note that c_NATIDNKEY
is sorted only within each unique L.RETURNFLAG value,
s0 we must store values such as 3 and 9 more than
once. Figure 1(b) shows how we layout pages in our
optimized row store using column abstraction for view
D4 Note that storage needs have increased due to
additional row headers [or the abstracted columns. In
Figure 1{c), we show that combining super tuples with
column abstraction creates a more efficient disk page
layout.

In general, a view may not specify an explicit sort.
However, referential inlegrity constraints may specify
an enforced one-to-many relationship between two or
more tables in the view definition. We use the refer-

ential integrity information to insert an implicit sort
on the columns from the one side of the one-fo-many
join(s). It is sufficent to sort on the primary key of
the “one” side of the join. If the view does notl project
the key, we sorl by all columns mentioned on the one
side of the join. As an example, consider our instance
of view D4. With enforced one-to-many relationships
for Customer to Orders and Orders to Lineitem, we
add a secondary sort on the C.NATIONKEY column when
the view is not already sorted by that column. This
implicit sort opens up another opportunity to store
the repeating column(s) only once to save space. Sort-
ing must be perforined only once during population of
the materialized view. At query runtime, scanning the
view produces tuples in the correct sort order without
additional sorting.

2.3 Updates and Indexing

Both C-Store and our optimized row store pose prob-
lems for updates and indexing. This is a result of a
deliberate decision to optimize for scan-mostly read-
mostly workloads. Our goal in this section is not to
prove thai our optimized row store can be efliciently
updated, but rather, to mention that data in row-
stores with our optimizations can be updated and in-
dexed, although the performance of these operations
will not match their counterparts in a standard row-
store.

The super tuple and column abstraction optimiza-
tions create additional inconvenience in processing up-
dates for both C-Store and row stores. Inserting rows
may force super tuples to be rebuilt or split across
two pages Updates to existing rows may force several
rows in the table to be deleted and reinserted else-
where. C-Store takes a “snapshot isolation” approach
to handling updates in batch, and a similar technique
can bhe used in our optimized row store.

Indexing columns in tables optimized for read-
mostly also presents implementation challenges. C-
Store only allows indexes on the primary sorf column
of each “projection”. Their design allows updates to
the index o be bounded to a specific range of values
in the index, as the values and pages containing those
values are correlated by the sort. Indexes on other

columus of the table are possible for both C-Store and
the optimised 10w store, but maintenance is expensive
when table 1ecords move within a super tuple or are
split to a new page due to inserts.

3 Evaluation

To evaluate the performance benefils of specific stor-
age improvements, we created an experimental proto-
type. The prototype is designed to allow each storage
optimization introduced in Section 2 to be applied in
isolation and in combination o1 both the 10w and col-
umn stores. We 1eport results for the column store
only with the “super tuple” optimization, since the
per-value overheads are several times larger than the
data itself without super tuples.

We first, provide a detailed description of the pro-
totype. To calibrate the performance of our C-Store
implementaiion, we then compare our implementa-
tion to the C-Store system [7] using query Q7 [rom
the C-Store paper. Later in this section, we evaluate
the benefits of the “super tuple” optimization for the
row store, sorting and run-length encoding benefits for
both the row and column stores, and finally the effects
of combining the optimizations. We focus on identify-
ing performance trends that emerge rather than trying
to choose the “best” combination.

3.1 Experiments Description

We implemented the row store and column store ar-
chitectures in a single prototype using Shore {2] as the
storage manager. We implemented a sequential scan
operator lor the row and column stores thal can oper-
ate over the super tuple and column abstraction opti-
mizations. We ran the experiments on a dual processor
Pentium 4 2.4GHz Xeon machine with 1GB of main
memory running Fedora Core 3 with a stock 2.6.13
kernel. We created a hardware RAID-0 volume using
six 250GB disk drives to contain the data volumes. A
separate 250GB disk stored the system catalog infor-
mation Shore was configured to use a 32KB page size
and a 512MB buffer pool. All reported 1esults are the
average of five runs

By implementing all storage architeciures and opti-
mizations in a single prototype, our goal is io hold
performance variables constant while changing only
the variable of interest. Our prototype avoids memory
copies from the buffer pool whenever possible. Shore
offers direct read-only access to data which allows us
{o minimize expensive copy-out operations.

In owr C-Store inplementation, we allocate 256 MB
in main wmemory to be divided equally among the
columns scanned for sequential prefetching of pages.
For example, when scanning 8 columns, we sequen-
tially read 32MB [rom each column during the scan.
Without preletching, random 1/0 can easily dominate
scan times for a column store when reading a large

al a2 a3 a4
(1711 1
1 112 2
1 118 &
1271771 1
1 212 2
1 2418% &
1 [877 1
1 418 3
(2171171 1
2 112 2

Table 3: Instance of Gen.2_4._3 table with boxes
around actual values stored. Sorted by column
al and a2

number of columns The necessity for page prefetch-
ing in a column store is further motivated in {5].

We turned off locking and logging to match the set-
tings used in the C-Store evaluation {7]. We believe
this is fair since an underlying assumption of both pa-
pers is a read-mostly query workload and all queries
being evaluated are read-only. We gathered results for
a cold Shore buffer pool and file system cache. We ran
owr experiments with warm buffers as well, but do not
report these results since the contribution of disk I/0
to the total scan times does not change our analysis of
performance trends. To eliminate file system caching
effects, we unmounted and remounted the data volume
just before each cold run

All data sets consist of rows of 4, 8, 16, and 32 in-
teger columns with a varying number of rows per data
set. We synthetically generated the data to enable ex-
ploration of various column abstraction choices. The
data for each column is a simple sequence of integers,
starting at 1. When a new level of column abstraction
starts, the column values at each lower level of ab-
straction reset and begin counting from 1 again. See
Table 3 for an example. The frequency of each value
within a column is important for column abstraction,
but the exact values do not matter.

To evaluate the effects of sorting and encoding tech-
niques on sequential scan performance, we generated
data sets which provide encoding opportunities. Con-
sider the 4-column data set in Table 3. The rows are
sorted first by column al and then by column a2. We
call this data set Gen.2.4.3, and it contains 24 rows in
total. Recall from Section 2.2 that column abstraction
is the process of storing repeating values from sort col-
uinn only once to save disk space. Ifor the data set in
Table 3, we have 2 unique values in column al and 4
unique values in column a2. For each unique a2 value,
we have 3 unique values for columns a3 and ad. We
have drawn boxes around the values in the data set
that must be stored when using column abstraction.

We use the namne of the relation to describe the number
of unique values at each level of column abstraction.
Tut this case, the name Gen_2.4.3 specifies three levels,
and specifies 2 4 % 3 = 24 tuples. Our experimen-
tal data scts follow the same naming convention. The
chosen data sets allowed us Lo measure Lhe effects ol
both constant rows and constant total data size lor all
tuple widths.

3.2 C-Store Query 7

To ensure that our implementation of C-Store had per-
formance representative of the system presented in [7],
we acquired their code (8] and compared the perfor-
mance of their implementation of a column store with
ows on our hardware. The result was that our iinple-
mentation of a coluinn store was comparable to theirs.

We present one representative query as an example of

the comparison We ran query Q7 from their evalua-
tion on onwr benchmark hardware to establish a base-
line We also implemented query Q7 in our Shore-
based protolype, which is represented in SQL:

SELECT c.nationkey, sum(l.extendedprice)
FROM lineitem, orders, customer

WHERE l_orderkey=o.orderkey AND
o.custkey=c.custkey AND
l.returnflag=’'R’

GROUP BY c.nationkey;

We loaded their D4 projection (materialized view)
and implemented the query plan according to the
method used by the C-Store system. We executed
the query in our system and theirs using our hard-
ware. 'The hardcoded query plan for Q7 in the C-
Store prototype system assumes that the view is sorted
by the L.RETURNFLAG column, and that the L.RETURNFLAG
column is run-length encoded. We ran the query in the
C-Store prototype on our benchmark hardware, and
it took 4.67s. By contract, our Shore-based C-Store
implementation took 3.95s for the same query plan,
which provides evidence that our C-Store inplemen-
tation does not introduce overheads that would render
the rest of our experiments suspect. For comparison,
the C-Store paper [7] veported a time of 2.54s for their
system for query Q7 on their 3.0 GHz benchmark ma-
chine

3.3 Super Tuple Effects

To show the benefits of the super tuple storage op-
timization, we performed two experiments. First, we
measured the effects of varying the number of columns
per tuple scanned when combined with the super tuple
optimization. We then compared standard and super
tuple row storage by holding rows scanned and fields
scanned constant.

3.3.1 Vary Columns Scanned

The primary benefit ol the column store design is its
ability to read only the data for columns requested by

a query. We show the effects of varying the number
of scanned columus in Figure 2. For both graphs, we
scanned 8 million rows.

In Figure 2(a), we used 4-column tuples and varied
the number of colunns scanned. The standard row
store takes more than twice the time of the super tuple
row and coluinn stores. Wlhen scanning one column,
we see the column store is faster than the super tuple
row store, but is slower for all other cases. Turning
to Figure 2(b), we used a 32-column tuple and scanned
1, 8, 16, 24, and 32 columns. In this case, the column
store enjoys a sizable performance edge over both the
standard and super tuple row stores.

It is clear that C-Store perlorms exiremely well
when it scans a small [raction of the total number of
columns in the table. This result puts us in a quandry
as to how to show results for the remainder of the
paper; scanning a small fraction of the columns will
show the column store as relatively better performing
for all cases, while scanning all columns will show the
row store in a more favorable light. For our paper,
we have opted to keep the optimizations separate and
focus on performance trends for each storage choice in-
dividually. We therefore will scan all coluinns for each
tuple width in all remaining graphs. The intent is to
focus on the performance within each storage choice
for a given storage optimization, rather than the rela-
tive performance of row and column stores.

3.3.2 Constant Rows and Constant Fields

To demonstrate the benefit of using “super tuples” for
a row store, we present two graphs in Figure 3. We
varied the number of columns per tuple in both graphs,
but held the number of rows constant in Figure 3(a)
and the total number of fields constant in Figure 3(b).

When the number of rows is held constant, as in
Figure 3(a), the amount of data being scanned dou-
bles as the tuple width doubles. We see that the scan
times for all storage choices are increasing as the tuple
width increases. Interestingly, the standard row store
takes 13 seconds to scan 8 million 4-column tuples, but
only 21.6 seconds to scan 8 million 32-column tuples.
Although we have increase the amount of data by a
factor of eight, the scan time has not even doubled.
Part of the reason the scan time does not increase as
expected is that disk requirements are augmented by
per-tuple overheads. Shore’s per-tuple overhead is 16
bytes, which is 100% of our 4-columu tuple and 25%
of the 32-column tuple. Disk I/O costs alone are not
enough to explain this behavior, however. We will re-
visif, this issue later in the paper.

Figure 3(b) deals with varying the tuple width while
the number of total fields remains constant. Holding
the number of fields constant as the tuple width in-
creases implies that the number of rows must decrease.
We scanned 8 million 4-column tuples, but only 1 mil-
lion 32-column tuples. We held the total number of

Scan 8M 4-Col Tuples [[Std Row
@ Super Col
C1Super Row

Execution Time (secs)

Columns Scanned

(a) 4-Column Tuples

60
— @ Std Row
§ 50 1@ super Cot
2, CISuper Row
Py 40
E
=
=1
2
]
=
=3
@
x
i}

Scan BM 32-Col Tuples

Columns Scanned

(b) 32-Column Tuples

Figure 2: Execution times for varying number of columns scanned for an 8M row table without
abstractions for (a) 4-Column and (b) 32-Column tuples.

Scan 8M rows (Colid)

av
Q
5

[Eastd Row
B3 Super Col
|kiSuper Row]

ul
=]

S
o
H
i

N
o
:
{

"
=]

Execution Time (secs)
w
o
i
H
i

(=}

8 16
Tuple Width {(cofumns)

(a) Constant Row Cardinality

Scan 32M Fields (Cold)

14 .
- [Std Row .
o) 12 +
9 B Super Col
£ 10 [cSuper Row |-
E s
£
s °©
]
g 4
3
2
)

Figure 3: Super tuple effects when holding (a) rows and
store, small tuple sizes in both cases hurt performance.

Scan 8M Rows With Abstraction

_|@std Row
B Super Col
DOSuper Row|[™

Execution Time (secs)

Table Scanned

(a) 8M 4-Column 'luples

Execution Time (secs)

~i°°°D22n*5°°°°”‘°§{’én 10450000

am/ac 4M/8C 2Mm/16C iM/32C
Rows/Tuple Width

(b) Constant Data Size

(b) fields constant. For the standard row

Scan 2M Rows With Abstraction

EStd Row
@& Super Col
ClSuper Row

Table Scanned

(b) 2M 16-Column Tuples

Figure 4: Execution times for varying column abstractions for 32M fields using (a) 8M 4-Column

and (b) 2M 16-Column tuples.

fields (rows * columns) scanned constant at 32 mil-
lion. Again we saw that the super tuple row store
is the fastest in all cases. In fairness to the column
store, these experiments were the worst case for that
storage choice. We expected that scan times for all
storage choices would stay roughly constant [or a con-
stant dala size While we saw constanl scan times [or
the column store and the super tuple row store, the
scan times for the standard row store dramatically de-
creased as the tuple width increased. Again, disk I/O
is part of the story due to the elimination of 7 million
per-tuple overheads. We saw a crossover point between
the standard row store and the column store just below
the 16-column tuple mark due to the marked decrease
in standard row store scan costs.

For all of these experiments, we see that adding su-
per tuples to standard row storage makes a significant
difference in execution time for sequential scan.

3.4 Column Abstraction Effects

We now twrn owr attention to the effects of column
abstraction We generated synthetic data sets specif-
ically to demonstrale how varying the amount of re-
peating data affects scan perforimance. We expect scan
times to decrease as we increase the number of columns
and the amount of data to be stored by using the col-
umn abstraction technique o verify this hypothesis,
we present two graphs in Figure 4 We hold the num-
ber of fields scanned constant at 32 million in both
graphs.

Figure 4(a) shows three column abstraction choices
for an 8 million row table with 4-column tuples.
(Gen_8000000 uses no abstraction to provide a base-
Jine for comparison. Gen.200000.10.4 stores three ab-
straction levels with one columm in the first level with
200000 unique values, one cohunu in the second level
with 10 values per first level tuple, and two columns
in the leaf level with 4 values per second level tuple.
This table is similar to the join cardinalities of Cus-
tomer, Orders, and Lineitem [rom the TPC-H schema,
respeclively Gen.10.4.200000 also has three abstrac-
tion levels, but has ten unique values at the first level,
4 second level tuples per first level, and 200000 leaf
tuples per second level tuple. This table is more like
the D4 view we used in Section 2 as an example, with
L.RETURNFLAG at the first level, C_.NATIONKEY
at then second level, and L.EXTENDEDPRICE at
the third level. As the amount of abstracted data in-
creases, we see a geneval trend for the scan times of the
coluinn store and the super tuple row store to decrease.
Interestingly, the scan thne for the standard row store
increases from Gen 8000000 to Gen.200000.10.4. We
recall that column abstraction increases the total num-
ber of physical tuples for a row store. When combined
with per-luple storage overhead in the standard row
store, it becomes clear why scan time might increase
for certain data sets and abstraction levels.

The benefit of column abstraction with a standard
row store depends on the number of additional tuples
created by the process more than the savings in disk
I/0. If disk 1/0 is the primary bottleneck, the stan-
dard row store should always be faster with column
abstraclion, nol slower in some cases as seen in Fig-
ure 4. We break down the tolal scan time in Section 4
to identify the contributing factors.

4 Cost Model and Analysis

In Section 2, we presented the basic storage optimiza-
tions along with implementation-specific details for
row and column stores. In Section 3, we identified
several performance trends for the storage optimiza-
tions in isolation and combination. In this section,
we develop a cost model for sequential scans for sev-
eral reasons. Fiust, it will verify owr understanding of
the costs that determine the relative performance of a
standard row store and the super tuple row and col-
umn stores. Second, having an accurate cost model
allows us o vary system parameters and/or proper-
ties of test data to [orecast relative perlormance with-
out actually building additional systems or loading the
data.

At the most basic level, sequential scan is the most
important factor in determining query performance.
This is especially true when considering materialized
views that have been created to exactly wnatch the
needs of a given query.

4.1 Cost Model Details

QOur cost formulae depend on several variables, which
we present in Table 4. The units for SEQIO,
RDMIQ, FC, and IC are “cost” units, which pro-
vide a basis for comparing scan costs relative to one
another.

Figure 5 details the cost model for sequential scan
of the traditional row store. We break each model
down into three major contributing factors - disk I/0,
iteration cost for the storage manager, and local per-
tuple reconstruction cost. Tuple reconstruction, when
necessary, consists of copying either a reference to the
field value or the field value itsell if it is small. We scale
disk I/O costs by the fraction of pages expected to be
in the DBMS buffer pool already. At the extremes,
F = 1 when all pages must be read from disk and
F = 0 when all pages can be found in the buffer pool.
A traditional row store must make a call to the storage
manager layer for each row in the table. If the per-
iteration overhead is high, these costs may even be
significant when the buffer pool is cold.

Although column abstraction reduces or eliminates
data duplication, the abstract columns must be stored.
For example, if we are storing columns from Customers
and Orders using column abstraction, we need to store
a tuple for each Customer in addition to the tuple for

Var Description
SEQIO Cost of a single sequential I/0
RDMIQ Ciost of a single random I/0
|R| Size of storage (pages)
|P| Size of “super tuple” storage (pages)
l|R]] Cardinality of table (Luples)
C Width of 1ow (columns)
F Iraction of cold pages
S Number of columns being retrieved
FC Cosl, of funclion call
e Cost of storage manager iteralion
n Abstraction levels
(1 means all cols in leaf)
C(n) Columns in abstraction level n
L (n)|| Average cardinality of
abstraction level n (tuples)
| B P Size of buffer pool (pages)
PGSZ Usable size of disk page (bytes)
Sz Column size (bytes)
OH Tuple overhead (bytes)

Table 4: Cost Model Variables

SeqScan(StdRowSlore) = |R| « SEQIO + F (1)

+ | > TN | «1c

iml j=1
(2)
+ ||R]| « FC (3)

Figure 5: Cost of sequential scan for standard
relational storage with contributions from (1)
Disk I/0, (2) Storage manager calls, and (3)
Local per-tuple overhead

cach Order. However, using colwmnn abstraction may
reduce the total number of disk pages (|R]), which will
reduce disk I/O costs. With no column abstraction, we
will have n = 1, C'(1) = C and ||L(1)]] = ||R|], which
simplifies the iteration cost to ||R}| x IC

We provide a cost model for the “super tuple” row
store in Figure 6. We base disk I/O and storage man-
ager calls on the number of packed pages. The im-
provement in storage manager calls is the primary ben-
efit of the super tuple row store, especially for small
tuples.

Finally, we provide the cost model for our “super
tuple” colummn store in Figure 7. We inake several
asswnptions in this cost model. First, we assume
that disk storage is uniformly distributed among the
cohunns, which is certainly not true when a column is
run-length encoded. We also assume a uniform distri-
bution of per-column contribution to the cost of local
tuple reconstruction. Finally, we model preletching ol
column data pages in accordance with our prototype
implementation, as described in Section 3.1,

SeqScan(Super RowStore) = |P|+ SEQIO « F (4)

+|P|+IC (5)
+ [|Rl} = FC (6)

Figure 8: Cost of sequential scan for “super tu-
ple” relational storage with contributions from
(4) Disk I/0, (8) Storage manager calls, and
(6) Local per-tuple overhead

n—1

ABSAV =3 | C(i)+CSZ+ | IRI - [T IEG)I
j=1 j=1

(13)

R = Bl (OH + C + CSZ) - ABSAV

- PGSZ
(14)
R||*C % CSZ -~ ABSAV
pp = LA (15)

PGSZ

Figure 8: Calculations of (13) expected reduc-
tion in storage pages from abstraction, and re-
sulting storage requirements for (14) regular
and (15) “super tuple” storage.

In Figure 8, we present a model for estimating the
number of pages required to store a table based on the
number of rows, columns, and average coluinn size.
These formulae could easily be inverted to estimate
row cardinality based on a measured (or sampled)
count of storage pages. ABSAV is a calculation of
the reduction in size given information about column
abstraction. Note that the sum is from 1 to n ~ 1, so
ABSAYV is zero without at least one level of column
abstraction.

4.2 Model Validation and Prototype Perfor-
mance Analysis

Our cost models attempt to capture performance
trends as any set of variables change given constant
values for the remaining variables. Before we begin the
validation of our models, we must determine constant
values for our prototype. Table 5 shows the values
we hold constant and the measured values we use for
SEQIO, RDMIO, FC, and IC. Their relative val-
ues were calculated from measurements taken during
a scan using the prototype system on our test hard-
ware. The values would change given other hardware
- for example, SEQI() would increase relative to IC
and FC if we had a single disk spindle instead of the
large RAID-0 array.

In Figures 9 and 10, we show the predicted relative
and actual prototype performance ol scanning 4 and 16
columns, respectively, of the Gen_8000000 relation for

(S| = 2 «|P|

_ |BP|/2
_|PS|
IRPI= 1 Q
SegScan(SuperColumnStore) = (|RP{* RDMIO + (|PS| — |[RP}) « SEQIO) + F (10)
+ |PS|# IC (11)

s 25 (e TG | « Fe
i =1

i=]1

(12)

j=

Figure 7: Cost of sequential scan for “super tuple” column storage with contributions from (7)
Actual pages to scan, (8) Prefetch size per column, (9) Total random I/0s, (10) Disk I/0, (11)
Storage manager calls, and (12) Local per-tuple overhead

Var Value
SEQIO 15000
RDMIO 450000
rC 8
Ic 80
|BP| 16384 pages
PGSZ | 32000 bytes
cSsSZ 4 bytes
OH 16 bytes

Table 5 Prototype constant values for cost
model variables

our thice page layouts. We see that the colunn store
time increases as the munber of column being scanned
goes up. The increase is duc mostly to the per-tuple
local reconstruction cost. We also note that the cost of
disk 1/0 decreases as the number of scanned columns
decreases, as expecied. Finally, we note the extremely
high cost of tuple iteration for the standard row store.
In contrast, tuple iteration is less than 1% of the total
running time for both the column store and the “super
tuple” row store. The cost model seems to track the
three parts of total cost for both scans.

Figures 11 and 12 show the model prediction for
scanning 32 million fields of data stored as 8 million
4-column rows and 1 million 32-column rows, respec-
tively. In Figwe 11 we again see the high iteration
cost for the standard 10w store. In addition, the cost
for disk I/0 is very high for the standard row store
compared to the “super tuple” colunn and row stores.
Figure 12 tells a much different story. The model pre-
dicts that disk I/0 is now roughly the same for each
of the page layoul choices. Iteration costs [or the stan-
dard row store are much lower, while tuple reconstruc-
tion has increased for the column store.

C1Tuple Reconstruct
3 iterator Cost
= Disk 1/0

Model

Relative Cost

Std Row

Super Col
Page Layout

Super Row

Figure 13: Forecasted relative performance of
scanning all columns of an 8M row, 4 column
table without abstractions with IC = 8.

4.3 Model Forecasting

In Section 4.2, we validated our cost model against
the Shore-based prototype system we created for ex-
perimental evaluation. In this section, we will change
variables in the cost model to predict how systems with
other characteristics would perform sequential scans.

4.3.1 Sensitivity to Iteration Cost

Our experimental evaluation and cost model analysis
demonstrates that using the Shore tuple iterator to
scan a standard row store is CPU-bound. In fact, for
our benchmark machine, iterating 1000 tuples on a
page takes 5 times as long as reading the page [rom
disk into the buflfer pool! If possible, reducing per-
tuple iteration cost for read-mostly workloads would
provide a significant benefit even if no actual storage
improvements are made.

Figure 13 shows the time for scanning 8 million 4-
column tuples when the IC variable is 8 instead of the
Shore value of 80. The cost model predicts thal a se-
quential scan of all columns for the standard row store
is now less than the column store scan time. Com-

1 Tuple Reconstruct 18 1 G Tuple Reconstruct
] T
et et e s] Eg]e:(at;orOCost — 16 ' " Prototypa Iterator Cost
D Disk 1/ § 14 i Disk 1/0
a - = 12
S P
o ~ e E o0
Z =
5 R g
3 5 6 -
! 9 a
- - i ‘ﬁ
2
T T o] T
Std Row Super Col Super Row Std Row Super Col Super Row
Page Layout Page Layout
(a) Cost Model (L) Prototype

Pigure U: Comparison of scanning an 8M row, 16 column table without abstractions scanning 4
columns using (a) Cost model and (b) Prototype.

U Tuple Reconstruct 25 -
D3 Tupl
& Iterator Cost Prototype ple Reconstruct
1 opisk 170 — ® Iterator Cost
g0 @ Disk /O
'gi,, . et e K :
(e ©
o § 15
- o =
g R
ol et
=
3
5
- R
T v [0 v ¥
Std Row Super Col Super Row Std Row Super Col Super Row
Page Layout Page Layout
(a) Cost Model (b) Prototype

Figure 10: Comparison of scanning an 8M row, 16 column table without abstractions scanning 16
columns using (a) Cost model and (b) Prototype.

DO Tuple Reconstruct 14 -
s cmmeem] @ [terator Cost Prototype Tuple Reconstruct
C1Disk 1/0 ~—~12 @ Iterator Cost
- i g @ Disk /0
% S | 10
o
(] @
[E 8
2 -
=
3 s °
[-4 - b
S 4
et e e et 9
& 2
, | 0 , A e
Std Row Super Col Super Row Std Row Super Col Super Row
Page Layout Page Layout
(a) Cost Model (b) Prototype

Figure 11: Comparison of scanning all columns of an 8M row, 4 column table without abstractions
using (a) Cost model and (b) Prototype.

1 Tuple Reconstruct
i Iterator Cost
‘Lebisk 1/0

Model

Relative Cost

Std Row

Super Col
Page Layout

Super Row

(a) Cost Model

:

O Tuple Reconstruct
B Iterator Cost
B Disk 1/0

Prototype

Execution Time (secs)
0 = N W hH N ®

Std Row Super Col

Page Layout

Super Row

(b) Prototype

Figwe 12: Comparison of scanning all columns of an 1M row, 32 column table without abstractions

using (a) Cost model and (b) Prototype.

Scan 8M rows 25% columns

103 Std Row -
-|@ Super Col e e e o
Isuper ROW| e oo w0

_Re!ative Cost

Tuple Width (columns)

Figmie 14: Forecasted relative performance of
scanning 25% of the columns of an 8M row ta-
ble without abstractions as tuple width varies
from 64 to 512 columns.

pare this graph to Figure 11(a) to see how dramatic
the difference is. Reducing the iteration cost does not
provide much performance improvement for the super
tuple column and row stores — their iteralions occur
only once per disk page, not once per tuple. In [act,
choosing the super tuple layout is a superior solution
to reducing per-row iterator costs, since the iteration
cost is paid once per page regardless of the number of
tuples on the page.

4.3.2 Sensitivity to Tuple Width

Our experiments vary tuple width from 4 to 32
columns. Using the model, we can forecast relative
performance for the three storage formats for wider tu-
ples. Figure 14 shows the cost model forecast for scan-
ning 25% of the columns in 8 nillion tuples for tuple
widths of 64, 128, 256, and 512 columns. Our model
predicts that the overhead of tuple reconstruction for
the column store increases until it is less expensive fo
scan using the standard row store with no improve-
ments somewhere between 256 and 512 columns. As
the tuple width increases, the number of tuples per
page decreases and asymptotically approaches 1.

5 Related Work

Optimizing storage of one-to-many joins to avoid re-
dundancy has been explored in the context of Non-
First Normal Form databases. NFNF architectures al-
low nesting relations by permitting relation atiributes
to be defined as a set of tuples conforming to an arbi-
trary schema. In [6], Scholl et al. proposed a method
for providing a logical relational view of data to the
user while transparently storing a hierarchical cluster-
ing of related tuples as nested relations using a sub-
set of the NFNF model for query optimization. Their
proposal achieves a result similar to column abstrac-
tion and super tuples. However, their proposal is for
base-table storage and not optimizing storage of ma-
terialized views. Further, their evaluation does not
provide a direct comparison to an optimized column
store system.

In [1], Ailamaki et al. evaluate CPU and cache-
related overheads of various data page layouts, in-
cluding row- and column-oriented choices. Their main
contribution is a third choice called PAX, which com-
bines the two by storing each column of a relation on
a “minipage” within each physical disk page. PAX is
effectively a column store within a row store. Choos-
ing a. PAX architecture would allow additional column
encoding opportunities as it clusters values for each
column domain together. The PAX concept is com-
plementary to the row store optimizations presented
in this paper, but its primary benefit is to increase
cache locality in the presence of query predicates. Qur
evaluation considers ounly sequential scan benefits to
focus on materialized views designed to be scanned
for matching and answering queries.

Fractured mirrots [5] store two copies of relations -
one row-oriented and one colwinn-oriented - to provide
better query performance than either storage choice
can provide independently. The mirroring also pro-
vides protection against data loss in the event ol disk
failure. The evaluation of the [ractured mirrors work
does not consider the column abstraction or super tu-

ple optimizations of either the row or column stores.
The Bubba system (3] used a novel combination of
inverted files and a “remainder” relation comprised of
non-inverted attributes to store a relation. The in-
verted files are used as a data compression technique
for attributes which contain redundant values. The in-
verted files are similar to a true column-oriented stor-
age system, and capture the benefits of reducing disk
1/0 lo improve sequential scan time. This work pro-
vides early motivation for the C-Store system for both
column-at-a-time storage and data compression.

6 Conclusion

While prior work on coluinn storage has clearly demon-
strated the performance improvements it can deliver
over row stores, the relative benefits of colwnn stores
and row stores have been obscured becanse there was
no comparison in a common implementation frame-
work TIarther. seveial of the optimizations exploited
by the C-Store proposal have analogues in row stores,
but these row store oplimizations were not considered.
In this paper. we have attempted to shed light on the
comparison between the two by implementing both in
the same code base, and by defining and implementing
the “super tuple” and “column abstraction” optimiza-
tions in the row store.

We noted several performance trends in our exper-
imental evaluation. First, we verified the tremendous
advantages of a column store system over a row store
for workloads that access only a fraction of the columns
of a table. Second, the “super tuple” optimization for
the row store architecture appears to provide a signif-
icant perforance benefit. Third, column abstraction
can be used effectively to reduce storage needs for all
storage choices, although its benefit is limited for a row
store when used in isolation without super tuples. Fi-
nally, we showed that the contribution of CPU cost to
total scan {ime can be a sizable component, for scans
of tables in a standard row store given a reasonably
balanced hardware configuration with good sequential
disk I/O performance, and that the super tuple opti-
mization reduces CPU utilization in this case. We
used our cost model to forecast the performance with
a lightweight iterator and found that the row store ar-
chitecture could be improved significantly without any
changes to the undeilying storage

Many areas for future research are apparent. The
crossovers in scan performance between super tuple-
based row and column stores suggests that automatic
storage selection for a given query workload would be
beneficial for a system optimized for read-mostly query
workloads. The cost model we devleoped in this paper
can provide the hasis for creating a storage selection
“wizard.” Note that selecting which views to mate-
rialize is an orthogonal issue — once the correct sef
ol views is selected, one must still decide among the
physical storage options.

We also note that column abstraction of one-to-
many joins combined with super tuple-based row stor-
age seems an ideal solution for efficient reconstruction
of shredded XML documents or other complex enti-
ties. For normalized schemas which must frequently
be re-joined bul do not change [requently, choosing
a super tuple-based materialized view as the primary
storage for several tables in the schema may provide
better performance.

References

[1} A. Ailamaki et al. Data page layouts for relational
databases on deep memory hierarchies. VLDB J.,
11(3), 2002.

[2] M. J. Carey et al. Shoring up persistent applica-
tions. In R. T Snodgrass and M. Winsletl, editors,
SIGMOD Conference. ACM Press, 1994.

[3] G. Copeland et al. Data placement in Bubba. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, Chicago, IL,
June 1988. ACM Press.

4] T. P. P. Council Bench-
mark H (Decision Support).
http://www.tpc.org/tpch/default.asp, Au-
gust 2003.

TPC

[5] R. Ramamurthy et al. A case for fractured mirrors.
In Proceedings of the 28th Internation Conference
on Very Large Data Bases, Hong Kong, China; Au-
gust 20-23, 2002.

[6] M. H. Scholl et al. Supporting flat relations by a
nested relational kernel. In Proceedings of 13th In-
ternational Conference on Very Large Dato Bases,
September 1-4, 1987, Brighton, England.

=

M. Stonebraker et al. C-store: A column-oriented
dbms. In Proceedings of the 31st International
Conference on Very Large Data Bases, Trondheim,
Norway, August 50 - September 2, 2005

8

M. Stonebraker et al. C-Store
System Source Code Version 0.1.
http://db.csail .mit.edu/projects/cstore/,
November 2005.

