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Abstract. In this paper, we present an abstraction for heap-allocated storage,
called the recency-wbstruction, that allows abstract-interpretation algorithms to
recover non-trivial information for heap-allocated data objects. As an application
of the recency-abstraction, we show how it can resolve virtual-function calls in
stripped executables (i.e., executables from which debugging iuformation has been
removed).

1 Introduction

A great deal of work has been done on algorithms for flow-insensitive points-to
analysis [1, 24, 7] (including algorithms that exhibit varying degrees of context-
sensitivity [9,6,10,25]). However, all of the aforementioned work uses a very
simple abstraction of heap-allocated storage, which we call the allocation-site
abstraction [17,4]:

All of the nodes allocated at a given allocation site s are folded together
into a single summary node ng.

In terms of precision, the allocation-site abstraction can often produce poor-
quality information because it, does not allow strong updates to be performed.
A strong update overwrites the contents of an abstract object, and represents a
definite change in value to all concrete objects that the abstract object repre-
sents [4, 22]. Strong updates cannot generally be performed on summary objects
because a (concrete) update usually affects only one of the summarized concrete
objects. If allocation site s is in a loop, or in a function that is called more than
once, then s can allocate multiple nodes with different, addresses. A points-to fact
“p points to ns” means that program variable p may point to one of the nodes
that ng represents. For an assignment of the form p->selectorl = q, points-
to-analysis algorithms are ordinarily forced to perform a weak update: that is,
selector edges emanating from the nodes that p points to are accumulated; the
abstract execution of an assignment to a field of a summary node cannot kill the
effects of a previous assignment because, in general, only one of the nodes that
n, represents is updated on each concrete execution of the assignment statement.
Because imprecisions snowball as additional weak updates are performed (e.g.,
for assignments of the form r->selectorl = p->selector2), the use of weak
updates has adverse effects on what a points-to-analysis algorithm can determine
about the properties of heap-allocated data structures.

To mitigate the effects of weak updates, many pointer-analysis algorithms in
the literature side-step the issue of soundness. For instance, when performing
flow-sensitive pointer analysis, the initial points-to sets for each pointer variable
is assumed to be § (rather than T). For local variables and malloc-site vari-
ables, the assumption that the initial value is §) is not a safe one—it does not
over-approximate all of the program’s behaviors. The program shown in Fig. 1
illustrates this issue. In Fig. 1(a), *pp is not initialized on all paths leading to



void foo() { void foo() {
int **pp, a; int **pp, a;
while(...) { vhile(...) {
PP = PP =
(int*)malloc(sizeof (int*)); (int*)malloc(sizeof (int*));
if(...) if(...)
*pp = &a; *pp = &a;
else { else {
l// No initialization of *pp[
}
i"‘PP = 10; *xpp = 10;
} }
} }
(a) (b)

Fig. 1. Weak update problem for malloc blocks.

I

“xxpp = 10”7, whereas in Fig. 1(b), *pp is initialized on all paths leading to
“kxkpp = 107.

A pointer-analysis algorithm that makes the unsafe assumption mentioned
above will not be able to detect that the malloc-block pointed to by pp is possi-
bly uninitialized at the dereference **pp. For Fig. 1(b), the algorithm concludes
correctly that “«kpp = 10” modifies either a or b. But, for Fig. 1(a), the al-
gorithm concludes incorrectly that “s+*pp = 10” only modifies a, which is not,
sound.

On the other hand, assuming that the malloc-block can point to any variable
immediately after the call to malloc leads to sound but imprecise points-to sets
in both versions of the program in Fig. 1. The problem is as follows. When the
pointer-analysis algorithm interprets statements “*pp = &a” and “spp = &b”,
it performs a weak update. Because *pp is assumed to point to any variable,
doing a weak update does not improve the points-to sets for *pp. Therefore, the
algorithm concludes that “¢*pp = 10” may modify any variable in the program.

Even the use of multiple summary nodes per allocation site, where each
summary node is qualified by some amount of calling context (as in [19,13)),
does not overcome the problem; that is, algorithms such as [19,13] must still
perform weak updates.

At the other extreme is a family of heap abstractions that have been intro-
duced to discover information about the possible shapes of the heap-allocated
data structures to which a program’s pointer variables can point [22]. Those
abstractions generally allow strong updates to be performed, and are capable
of providing very precise characterizations of programs that manipulate linked
data structures; however, the methods are also very costly in space and time.

"The inability to perform strong updates not only causes less precise points-to
information to be obtained for pointer-valued fields, it also causes less precise
numeric information to be obtained for int-valued fields. For instance, with
interval analysis (an abstract interpretation that determines an interval for each
variable that over-approximates the variable’s set of values) when weak updates
must be applied to int-valued fields, wider intervals are obtained.



In this paper, we present an abstraction for heap-allocated storage, referred to
as the recency-abstraction, that is somewhere in the middle between the extremes
of one summary node per malloc site {1,24,7] and complex shape abstractions
[22]. The recency-abstraction enables strong updates to be performed in many
cases.

The specific technical contributions of the paper are as follows:

— We propose an inexpensive abstraction for heap-allocated data structures
that allows us to obtain some useful results for objects allocated in the
heap.

— We show the effectiveness of the abstraction in a particularly challenging
context: We measure how well it resolves virtual-function calls in x86 exe-
cutables obtained from C++ code. In particular, for allocation sites that arise
because the source code contains a call new C, where C is a class that has vir-
tual methods, the recency-abstraction generally permits our tool to recover
information about virtual-function tables. Using the recency-abstraction, our
tool was able to resolve a large fraction of virtual-function calls accurately.
Existing tools such as IDAPro [15] resolved none of the virtual-function calls
in our set of examples.

The remainder of the paper is organized as follows: §2 provides background
on the issues that arise when resolving virtual-function calls in executables. §3
describes our recency-abstraction for heap-allocated data structures. §4 provides
experimental results evaluating these techniques. §5 discusses related work.

2 Resolving Virtual-Function Calls in Executables

In recent years, there is an increasing need for tools to help programmers and
security analysts understand executables. For instance, commercial companies
and the military increasingly use Commercial Off-The Shelf (COTS) components
to reduce the cost of software development. They are interested in ensuring that
COTS components do not perform malicious actions (or cannot be forced to
perform malicious actions). Therefore, resolving virtual-function calls in exe-
cutables is important: (1) as a code-understanding aid to analysts who examine
executables, and (2) for recovering Intermediate Representations (IR) so that
additional analyses can be performed on the recovered IR (& la Engler et al.
(8], Chen and Wagner [5], etc.). Poor information about virtual-function calls
can lead to portions of the program’s state space not being explored, which is a
source of false positives. In this section, we discuss the issues that arise when
trying to resolve virtual-function calls in executables.

Consider an executable compiled from a C++ program that uses inheritance
and virtual functions. The first 4 bytes of an object contains the address of
the virtual-function table. We will refer to these 4 bytes as the virtual-function
pointer. In an executable, a call to new results in two operations: (1) a call
to malloc to allocate memory, and (2) a call to the constructor to initial-
ize (among other things) the virtual-function pointer. A virtual-function call
in source code gets translated to an indirect call through the virtual-function
pointer (see Fig. 2).
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Fig. 2. Resolving virtual-function calls in executables.

When source code is available, one way of resolving virtual-function calls is to
associate type information with the pointer returned by the call to new and then
propagate that information to other pointers at assignment statements. However,
type information is usually not available in executables. Therefore, to resolve
a virtual-function call, information about the contents of the virtual-function
pointer needs to be available. For a static-analysis algorithm to determine such
information, it has to track the flow of information through the instructions in the
constructor. Fig. 2 illustrates the results if the allocation-site abstraction is used.
Using the allocation-site abstraction alone, it would not be possible to establish
the link between the object and the virtual-function table: because the summary
node represents more than one block, the interpretation of the instruction that
sets the virtual-function pointer can only perform a weak update, i.e., it can
only join the virtual-function table address with the existing addresses, and
not overwrite the virtual-function pointer in the object with the address of the
virtual-function table. After the call to malloc, the fields of the object can have
any value (shown as 7); computing the join of ? with any value results in ?,
which means that the virtual-function pointer can point to anywhere in memory
(shown as dashed arrows). Therefore, a definite link between the object and the
virtual-function table is never established, and a client of the analysis can only
conclude that the virtual-function call may resolve to any possible function.

The key to resolving virtual-function calls in executables is to be able to
establish that the virtual-function pointer definitely points to a certain virtual-
function table. §2.1 describes the abstract domain used in Value-Set Analysis
(VSA) [2], a combined pointer-analysis and numeric-analysis algorithm that can
track the flow of data in an executable. The version of the VSA domain described
in §2.1 (the version used in [2]) has the limitations discussed above (i.e., the need
to perform weak updates); §3 describes an extension of the VSA domain that
uses the recency-abstraction, and shows how it is able to establish a definite link
between an object’s virtual-function pointer and the appropriate virtual-function
table in many circumstances.



2.1 Value-Set Analysis

VSA is a combined numeric-analysis and pointer-analysis algorithm that de-
termines an over-approximation of the set of numeric values or addresses that
each variable holds at each program point. A key feature of VSA is that it
takes into account pointer arithmetic operations and tracks integer-valued and
address-valued quantities simultaneously. This is crucial for analyzing executa-
bles because numeric values and addresses are indistinguishable at runtime and
pointer arithmetic is used extensively in executables. During VSA, a set of ad-
dresses and numeric values is represented by a safe approximation, which we
refer to as a value-set.

Memory-Regions In the runtime address space, there is no separation of the acti-
vation records of various procedures, the heap, and the memory for global data.
However, during the analysis of an executable, we break the address space into
a set of disjoint memory areas, which are referred to as memory-regions. Each
memory-region represents a group of locations that have similar runtime prop-
erties. For example, the runtime locations that belong to the activation record
of the same procedure belong to a memory-region. For a given program, there
are three kinds of regions: (1) the global-region that contains information about
locations that correspond to global data, (2) the AR-regions that contain infor-
mation about locations that corresponds to the activation-record of a particular
procedure, and (3) the malloc-regions that contain information about locations
that are allocated at a particular malloc site. We assume that the structure
of each region is available either from debugging information or the structure-
discovery mechanism described in [3]. We also treat each field of a struct as a
separate variable. That is, a procedure with local variables

int a;

struct {

int b;
int c¢;

} d;
would be treated as having three int-valued variables a, d.b, and d. c. This allows
us to treat fields of malloc-regions that hold a struct-valued quantity in the same
way as variables in AR-regions. (For this reason, we use the term “variable” when
referring to components of a malloc-region, and this is why the component of
an AbsEnv (see below) that holds information about malloc-regions is of type
AllocMemRgn — VarEnv ).

Value-Set A value-set is a safe approximation for a set of addresses and numeric
values. Suppose that n is the number of regions in the executable. A value-
set is an n-tuple of strided intervals of the form s[l,u], with each component
of the tuple representing the set of addresses in the corresponding region. For
a 32-bit machine, a strided-interval s[l,u] represents the set of integers {i €
(281,280 — 1)1 < i < uyi = I(mod s)}.

— s is called the stride.

— [I,u] is called the interval.



— O[,{] represents the singleton set {I}.

VSA is a flow-sensitive, context-sensitive, abstract-interpretation algorithm
(parameterized by call-string length [23]) that is based on an independent-
attribute domain described below. To simplify the presentation, the discussion
in this section uses the allocation-site abstraction for heap-allocated storage.

Let Proc denote the set of memory-regions associated with procedures in
the program, AllocMemRgn denotes the set of memory regions associated with
heap-allocation sites, and Global denote the memory-region associated with the
global data area. We work with the following basic domains:

MemRgn = {Global} U Proc U AllocMemRgn
ValueSet = MemRgn — StridedInterval
VarEnv = Var — ValueSet |
AbsEnv maps each region to its corresponding VarEnv and each register to a

ValueSet:
register — ValueSet)

(
x ({Global} - VarEnv )
x (Proc — VarEnv )
x (AllocMemRgn — VarEnv )
VSA associates each program point with an AbsMemConfig:
AbsMemConfig = (CallString — AbsEnv )

AbsEnv =

Ezample 1. We will illustrate VSA using the C program shown in Fig. 3(a). (In
our implementation, VSA is applied to executables. We use C code for ease of
understanding.) For this example, there would be three regions: Global, AR_main,
and malloc M1.

struct List {
int a;
struct List* next; i — [(Global — 1[0,4])]
}s head — [(malloc M1 +— 0[0,0])]
elem — [(malloc M1 — 0[0,0])]
int main() { elem~>a — T
int i; elem->next — T
List* head = NULL; (b)
for{i = 0; i < 5; ++i) {
Mi: List* elem =
(List*)malloc(sizeof (List));
elem~>a = 1i; head ,,— ““““ :zk
elem~->next = head; RN Y
head = elem; elem',“\"
} a next
return 0;
}
(a) (c)

Fig. 3. Value-Set Analysis (VSA) example: (a) C program, (b) Value-sets at M1, and
(c) Points-to information recovered by VSA (when the allocation-site abstraction is
used) at the end of the loop (i.e., just after “head = elem;”).

The value-sets that are obtained from VSA at the bottom of the loop body
are shown in Fig. 3(b).



- “i — [(Global — 1[0,41)]” indicates that i has a value (or a global
address) in the range [0,4].

— “elem — [(mallocM1l ~ 0[0,0])]” indicates that elem contains offset 0
in the malloc-region associated with malloc-site M1.

— ‘head — [(malloc M1 ~ 0[0,0])]” indicates that head contains offset 0
in the malloc-region associated with malloc-site M1.

— “elem->a — 1”7 and “elem->next — T” indicate that elem->a and
elem—>next may contain any possible value. VSA could not determine better
value-sets for these variables because of the weak-update problem mentioned
earlier. Because malloc does not initialize the block of memory it returns,
VSA assumes (safely) that elem->a and elem->next may contain any possi-
ble value after the call to malloc. Because malloc M1 is a summary memory-
region, only weak updates can be performed at the instructions that initialize
the fields of elem. Therefore, the value-sets associated with the fields of elem
remain T.

Fig. 3(c) shows the information pictorially. The double box denotes a sum-
mary object. Dashed edges denote may-points-to information. In our example,
VSA has recovered the following: (1) head and elem may point to at least one
of the objects represented by the summary object, (2) “elem->next” may point
to any possible location, and (3) “elem->a” may contain any possible value. [J

3 An Abstraction for Heap-Allocated Storage

This section describes the recency-abstraction. The recency-abstraction is similar
in some respects to the allocation-site abstraction, in that each abstract node
is associated with a particular allocation site; however, the recency-abstraction
uses two memory-regions per allocation site s:

AllocMemRgn = {MRAB(s], NMRABs] | s an allocation site}

— MRAB|s] represents the most-recently-allocated block that was allocated
at s. Because there is at most one such block in any concrete configuration,
MRAB[s] is never a summary memory-region.

— NMRAB]s] represents the non-most-recently-allocated blocks that were al-
located at s. Because there can be many such blocks in a given concrete
configuration, NMRAB/s] is generally a summary memory-region.

In addition, each MRAB[s], NMRAB([s] € AllocMemRgn is associated with a
“count” value, denoted by MRAB([s].count and NMRAB[s].count, respectively,
which is a value of type SmallRange = {[0,0], [0,1], [1,1], [0, 00], [1, 0], [2, 00]}.
The count value records a range for how many concrete blocks the memory-
region represents. While NMRAB(s].count can have any SmallRange value,
MRAB/s].count will be restricted to take on only values in {{0,0],[0,1},{1,1]},
which represent counts for non-summary regions. Consequently, an abstract
transformer can perform a strong update on a field of MRABJs].

In addition to the count, each MRABJs], NMRAB[s] € AllocMemRgn is also
associated with a “size” value, denoted by MRAB(s].size and NMRAB]s].size,
respectively, which is a value of type StridedInterval. The size value represents an
over-approximation of the set of sizes of the concrete blocks that the memory-



region represents. This information can be used to report potential memory-
access violations that involve heap-allocated data.
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Fig. 4. A trace of the evolution of parts of the AbsEnvs for three instructions in a loop.

Ezample 2. Fig. 4 shows a trace of the evolution of parts of the AbsEnvs for three
instructions in a loop during VSA. It is assumed that there are three fields in
the memory-regions MRAB and NMRAB (shown as the three rectangles within
MRAB and NMRAB). Double boxes around NMRAB objects in Fig. 4(c) and
(d) are used to indicate that they are summary memory-regions.

For brevity, in Fig. 4 the effect of each instruction is denoted using C syntax;
the original source code in the loop body contains a C++ statement “p = new
C”, where C is a class that has virtual methods f and g. The symbols £ and g
that appear in Fig. 4 represent, the addresses of methods £ and g. The symbol p
and the two fields of VT represent variables of the Global region. The dotted lines
in Fig. 4(b)—(d) indicate how the value of NMRAB after the malloc statement
depends on the value of MRAB and NMRAB before the malloc statement.

The AbsEnvs stabilize after four iterations. Note that in each of Fig. 4(a)-
(d), it can be established that the instruction “p->vt = &VT” modifies exactly
one field in a non-summary memory-region, and hence a strong update can be
performed on p->vt. This establishes a definite link between MRAB and V1I—
and hence between NMRAB and VT. O

Ezample 3. Fig. 5 shows the improved VSA information recovered for the pro-
gram from Fig. 3 at the end of the loop when the recency-abstraction is used.
In particular, we have the following information:
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Fig. 5. Iinproved VSA information for the program from Fig. 3 at the end of the loop
(i.e., just after “head = elem;”) when the recency-abstraction is used. (The double box
denote a sumnmary region. Dashed edges denote may-points-to information.)

—~ elem and head definitely point to the beginning of the MRAB region.

— elem—>a contains the values (or global addresses) {0,1,2,3,4}.

— elem->next may be 0 (NULL) or may point to the beginning of the NMRAB
region.

— NMRAB.a contains the values (or global addresses) {0,1,2,3,4}.

— NMRAB .next may be 0 (NULL) or may point to the beginning of the NM-
RAB region.

This idea is formalized with the following basic domains (where underlining
indicates differences from the domains given in §2):
MemRgn = {Global} U Proc U AllocMemRgn
ValueSet = MemRgn — StridedInterval |
VarEnv = Var — ValueSet, ;.
SmallRange = {[0,0],[0,1],[1, 1], [0, 0], [1, 0], [2, 0]}
AllocAbsEnv = (SmallRange x StridedInterval x VarEnv)
The analysis associates each program point with an AbsMemConfig:
(register — ValueSet)
x ({Global} — VarEnv )
x (Proc — VarEnv )
x (AllocMemRgn — AllocAbsEnv)
AbsMemConfig = (CallString — AbsEnv )

Let count, size, and varEnv, respectively, denote the SmallRange,
StridedInterval, and VarEnv associated with a given AllocMemRgn. A given
absEnv € AbsEnv maps allocation memory-regions, such as MRABIs] or
NMRAB]Js], to (count, size, varEnv) triples.

The transformers for various operations are defined as follows:

— At the entry point of the program, the AbsMemConfig that describes the
initial state records that, for each allocation site s, the VarEnvs for both
MRABIs] and NMRAB]s] are 1.

~ The transformer for allocation site s transforms absEnv to absEnv’, where
absEnv' is identical to absEnv, except that all ValueSets of absEnv that con-
tain [..., MRAB[s] — si;, NMRAB([s] > si2,...] become [...,0, NMRAB]Js] +»
561 Usig,...] in absEnv'. In x86 code, return values are passed back in register
eax. Let size denote the size of the block allocated at the allocation site. The
value of size is obtained from the value-set associated with the parameter
of the allocation method. In addition, absEnv’ is updated on the following
arguments:

AbsEnv =



absEnv' (MRABs]) = ([0, 1], size, Avar. T valueSet)

. __ absEnv(NMRABI[s]).count
abskinv'(NMRAB(s}).count = + absEnv(MRAB/s]).count

. . absEnv(NMRABs)).size
absEnv' (NMRAB[s]).size = Ll absEnv(MRAB[s]) size
.y i ~_ absEnv(NMRAB[s]).varEnv
abskinv' (NMRABs]). varEnv = U absEnv(MRAB(s]).varEnv

absEnv'(eax) = [(MRAB[s] = 0[0,0]), (Global = 0[0, 0])]

In the present implementation, we assume that an allocation always succeeds;
hence, in place of the first and last lines above, we use

absEnv' (MRAB[s]) = ([1, 1], size, Avar. T valueset)-
) =

absEnv'(eax) = [(MRAB[s]  0[0,0])]
Consequently, the analysis only explores the behavior of the system on exe-
cutions in which allocations always succeed.
— The join absEnv; LI absEnvs of absEnvy,absEnvy € AbsEnv is performed
pointwise; in particular,
o _ absEnvy (MRAB]s])
absEnv'(MRAB(s]) = Ll absEnva(MRAB[s])
_ absEnvy (NMRABs])
" U absEnv,(NMRAB(s])

In all other abstract transformers (e.g., assignments, data movements, interpre-
tation of conditions, etc.), MRAB[s] and NMRAB(s] are treated just like other
memory regions—i.e., Global and the AR-regions—with one exception:

— During VSA, all abstract transformers are passed a memory-region stotus
map that indicates which memory-regions, in the context of a given call-
string suffix c¢s, are summary memory-regions. Whereas the Global region is
always non-summary, to decide whether a procedure P’s memory-region is
a summary memory-region, first call-string cs is traversed, and then the call
graph is traversed, to see whether the runtime stack could contain multiple
pending activation records for P.

The summary-status information for MRAB[s] and NMRAB[s] is ob-
tained differently—from the values of AbsMemConfig(cs)(MRAB[s]).count
and AbsMemConfig(ecs)(NMRAB{s]).count, respectively.

The memory-region status map provides one of two pieces of information used
to identify when a strong update can be performed. In particular, an abstract
transformer can perform a strong update if the operation modifies (a) exactly
one register, or (b) exactly one variable in a non-summary memory-region.

absEnv' (NMRAB][s])

4 Experiments

This section describes the results of our preliminary experiments. Tab. 1 shows
the characteristics of the set of examples that we used in our evaluation. These
programs were originally used by Pande and Ryder in [20] to evaluate their
algorithm for resolving virtual-function calls in C++ programs. The programs
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in C++ were compiled without optimization® using the Microsoft Visual Studio
6.0 compiler and the .obj files obtained from the compiler were analyzed. The
column labeled “Coverage” is discussed below.

x86 lusts|Procs|Indirect Calls|Coverage (%)|Tine (s)
NP 252 5 6 98.99 1
pritnes 294 9 2 75.79 <1
famnily 351 9 3 98.71 1
veire 407 14 5 78.23 <1
fsm 502 13 1 87.57 5
office 592 22 4 60.34 <1
trees 1299 29 3 68.08 9
derivl 1369, 38 18 56.11 4
chess 1662 41 1 84.21 16
objects|  1739| 47 23 37.12 2
sitnul 1920 60 3 22.84 6
greed 1945, 47 17 72.87 10
shapes 1955 39 12 64.38 10
ocean 2552 61 5 44.65 17
deriv2 2639 41 56 32.26 2

Table 1. Characteristics of the example programs. “Coverage” denotes the part of the
prograw that is reachable during analysis (see §4).

Tab. 2 shows the results of applying VSA to resolve virtual-function calls.
The column labeled L shows the number of unreachable indirect call-sites. The
column labeled T denotes the number of reachable indirect call-sites at which
VSA could not determine the targets. The other columns show the distribution of
the number of targets at the indirect call-sites. For example, the column labelled
1 denotes the number of indirect-call sites that had a single target.

A non-zero value in the T-column means that at some indirect calls VSA
could only determine that the virtual-function call could resolve to any proce-
dure. VSA reports such call-sites to the user, but does not explore any procedures
from that call-site. The coverage column in Tab. 1 shows the fraction of the ex-
ecutable code that was analyzed during VSA. Note that for programs for which
the T-column is 0, the coverage reported in Tab. 1 is an over-approximation of
the actual runtime coverage for all possible runs of the executable. However, for
programs with non-zero values in the T-column, some parts of the program may
not have been explored. For programs with a 0 value in the T-column, the num-
ber of calls reported as unreachable are ones that are definitely unreachable. For
instance, the eight calls that are flagged as unreachable in deriv1 are definitely
unreachable (see the L-column).

We see that our algorithm resolves virtual-function calls for most of the call-
sites. It is important to realize that all these virtual-function calls are resolved
solely by tracking the flow of data through memory (including the heap). The

! Note that unoptimized programs geuerally have more memory accesses than opti-
mized prograius; optimized programs make more use of registers, which are easier
to analyze than memory accesses. Thus, for static analysis of stripped executables,
unoptimized programs represent a greater challenge than optimized programs.

11
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analysis algorithm does not rely on symbol-table or debugging information; in-
stead it uses the structure-discovery mechanism described in [3]. Existing tools
for analyzing executables, such as IDAPro, resolve none of the virtual-function
calls.

VSA could not resolve other indirect call-sites mostly because it could not
establish that all the elements of an array are definitely initialized in a loop. The
problem is, as follows. In some of the example programs, an array of pointers to
objects is initialized via a loop. These pointers are later used to invoke a virtual-
function call. Even if VSA were successful in establishing the link between the
virtual-function pointer and virtual-function table, VSA could not establish that
all elements of the array are definitely initialized by the instruction in the loop.
Hence, the values of the pointers in the array remain T. Note that this issue is
orthogonal to the problem at hand. Even if one were to use other mechanisms
(such as the one described in [12]) to establish that all the elements of an array
are initialized, the problem of establishing the link between the virtual-function
pointer and the virtual-function table still requires mechanisms similar to the
recency-abstraction.

We do not directly compare against the results from [20], because it would not,
be a fair comparison: [20] makes an unsafe assumption that elements in a array
of pointers (say, locally allocated or heap allocated) initially point to nothing
(0), rather than to anything (T). Suppose that p[] is such an array of pointers
and that a loop initializes every other element with &a. A sound result would
be that p’s elements can point to anything. However, because in the algorithm
used in [20} the points-to set of p is initially @, [20] would determine that p’s
elements point to a, which is unsound.

5 Related Work

Other work on pointer analyses The recency-abstraction is similar in flavor
to the allocation-site abstraction [17,4], in that each abstract node is associated

12



with a particular allocation site; however, the recency-abstraction is designed
to take advantage of the fact that VSA is a flow-sensitive, context-sensitive al-
gorithm. Note that if the recency-abstraction were used with a flow-insensitive
algorithm, it would provide little additional precision over the allocation-site
abstraction: because a flow-insensitive algorithm has just one abstract memory
configuration that expresses a program-wide invariant, the algorithm would have
to perform weak updates for assignments to MRAB nodes (as well as for assign-
ments to NMRAB nodes); that is, edges emanating from an MRAB node would
also have to be accumulated.

With a flow-sensitive algorithm, the recency-abstraction uses twice as many
abstract nodes as the allocation-site abstraction, but under certain conditions it
is sound for the algorithm to perform strong updates for assignments to MRAB
nodes, which is crucial to being able to establish a definite link between the set
of objects allocated at a certain site and a particular virtual-function table.

If one ignores actual addresses of allocated objects and adopts the fiction that
each allocation site generates objects that are independent of those produced at
any other allocation site, another difference between the recency-abstraction and
the allocation-site abstraction comes to light:

— The allocation-site abstraction imposes a fized partition on the set of allo-
cated nodes.

— The recency-abstraction shares the “multiple-partition” property that one
sees in the shape-analysis abstractions of [22]. An MRAB node represents a
unique node in any given concrete memory configuration—namely, the most
recently allocated node at the allocation site. In general, however, an abstract
memory configuration represents multiple concrete memory configurations,
and a given MRAB node generally represents different concrete nodes in the
different concrete memory configurations.

Hackett and Rugina [14] describe a method that uses local reasoning about in-
dividual heap locations, rather than global reasoning about entire heap abstrac-
tions. In essence, they use an independent-attribute abstraction: each “tracked
location” is tracked independently of other locations in concrete memory configu-
rations. The recency-abstraction is a different independent-attribute abstraction.

The use of count information on (N)MRAB nodes was inspired by the heap
abstraction of Yavuz-Kahveci and Bultan [26], which also attaches numeric in-
formation to summary nodes to characterize the number of concrete nodes rep-
resented. The information on summary node u of abstract memory configuration
S describes the number of concrete nodes that are mapped to u in any concrete
memory configuration that S represents. Gopan et al. [11] also attach numeric
information to summary nodes; however, such information does not provide a
characterization of the number of concrete nodes represented: in both the present
paper and [26], each concrete node that is combined into a summary node con-
tributes 1 to a sum that labels the summary node; in contrast, when concrete
nodes are combined together in the approach presented in [11], the effect is to
create a set of values (to which an additional numeric abstraction may then be
applied).

13



"The size information on (N)MRAB nodes can be thought of as an abstraction
of auxiliary size information attached to each concrete node, where the concrete
size information is abstracted in the style of [11].

Strictly speaking, the use of counts on abstract heap nodes lies outside the
framework of [22] for program analysis using 3-valued logic (unless the framework
were to be extended with counting quantifiers [16, Sect. 12.3]). However, the use
of counts is also related to the notion of active/inactive individuals in logical
structures [21], which has been used in the 3-valued logic framework to give a
more compact representation of logical structures [18, Chap. 7]. In general, the
use of an independent-attribute method in the heap abstraction described in
§3 provides a way to avoid the combinatorial explosion that the 3-valued logic
framework suffers from: the 3-valued logic framework retains the use of separate
logical structures for different combinations of present/absent nodes, whereas
counts permit them to be combined.
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