@
@

B H 8 08 BB @ AR

=1

B EE

® B 8§48

A BB g aan

[

i

o=@ a

Approximating Streaming Window
Joins Under CPU Limitations

Ahmed Ayad
Jeffrey Naughton
Stephen Wright
Utkarsh Srivastava

Technical Report #1542

November 2005

Approximating Streaming Window Joins Under CPU Limitations

Ahmed Ayad

University of Wisconsin-Madison
Computer Sciences Department

Jeffrey Naughton

Stephen Wright

Utkarsh Srivastava

Stanford University
usriv@db.stanford.edu

{ahmed, naughton, swright}@cs.wisc.edu

Abstract

Data streaming systems face the possibility of having to
shed load in the case of CPU or memory resource
limitations. In this paper, we study the CPU limited
scenario in detail. First, we propose a new model for the
CPU cost. Then we formally state the problem of
shedding load for the goal of obtaining the maximum
possible subset of the complete answer, assuming an
offline scenario. We then present an online strategy for
semantic load shedding, assuming a frequency model.
Moving on to random load shedding, we prove that
having an open memory budget does not help the CPU
constrained case. We then present a random load
shedding strategy - Probe-No-Insert — based on
decoupling the window maintenance and tuple production
operations of the symmetric hash join, and prove that it
always dominates the previously proposed coin flipping
strategy. Finally, we investigate the problem in case the
goal is to obtain a random sample of the join.

1. Introduction

In the context of data streaming systems, the system
has no control over the rate of the incoming data. Hence,
the adoption of a push model of computation is
mandatory. In steady state, the system resources must be
greater than what is required by the input otherwise the
system is unstable and the query is infeasible [6]. The
requirement of online answers adds a constraint on the
ability to offload some of the input to disk for later
processing, since this will add considerable lag on the
time of producing an answer. Hence, the system is
required to process the input data in memory, and is
usually granted only one pass over the input. Examples of
system resources that need management are:

1. Computational resources: the system CPU has to
compute the results of the query faster than the
arrival rate of the input. Otherwise, the input queues
and the response time of the system will grow
indefinitely.

2. Memory: the amount of available memory has to be
enough to hold the required state of the query (e.g.

window predicates) plus tuples arriving in the input
queues of the data streams that await processing.

If the system resources are less than the input
requirements, some of the input must be shed to bring the
load down to within the available capacity. We motivate
the problem of load shedding for CPU limited execution
by the following arguments:

1. The work investigating memory limitations looks at
the case when the system can not hold the complete
state of the operators (e.g., the contents of the window
predicate), It does not address the case when input
queues are overflowing which is a result of high CPU
utilization. This means CPU limitation can be a cause
of memory limitations, even if enough memory is
available to store the state of the operators. The
reverse is not true, unless extra processing is required
to spool data to secondary storage, which is usually
not acceptable for streaming systems.

2. A side effect of shedding load to reduce the CPU
utilization can be less state that needs to be stored.
Thus, reducing the CPU load can be solution to the
memory limited problem. The reverse is also true,
reducing the memory consumption leads to a
reduction in the CPU consumption.

3. Itis easier to solve the memory limitations by adding
more memory to the system without changing any of
the available techniques for processing streaming
queries. In the CPU limited case, however, the
technology has to improve or, if more processors are
available, parallel or distributed versions of the
operators have to be used to utilize the additional
Processors.

In this paper, we investigate the problem of load
shedding for the streaming window join operator under
CPU limitations in detail. We start by revising the unit
time model for the CPU cost of executing the join. For
obtaining the maximum subset of the join, we look at
offline and online algorithms for load shedding in case the
data distribution is known and in the case where only the
type of the distribution can be assumed. We also look at
the problem of obtaining a random sample of the result. In

particular, the contributions of the paper are the

following:

e We present an accurate unit-time model for the CPU
cost of executing a streaming window join.

e We formulate the theoretical problem of obtaining the
maximum subset of a streaming window join under a
limited CPU budget in an offline scenario. The work
in [12] has looked at the same problem in the memory
limited case.

e Unlike the memory limited case, we prove that the
offline problem is NP-Hard, and propose a greedy
heuristic for its solution to guide the online strategies.

e We develop an online strategy for semantic load
shedding based on the heuristic solution to the offline
problem.

e We study a different set of strategies for random load
shedding that decouples the decision of inserting and
probing tuples.

e We prove that one such strategy, the Probe-No-Insert,
outperforms previously suggested methods for random
load shedding. In doing so, we show that an
unbounded memory budget does not help in the CPU
limited case.

e If the goal is to have a random sample of the join
result, we present an adaptation of a previously
suggested technique for the memory limited case that
works for the CPU limited case.

The rest of the paper is organized as follows: Section 2
discusses some preliminary definitions and presents the
refined cost model. Section 3 investigates the problem for
the maximum subset goal. Section 4 investigates it for
producing a random sample. Section 5 discusses related
work and Section 6 concludes the paper.

2. Preliminaries

This section lays the necessary foundation for the
discussion. We start by formal definitions of the
streaming model and the precise semantics of the
windowed streaming join. Then we present an accurate
unit time CPU cost model. Finally, the goals of load
shedding are discussed.

2.1 The Data Streaming Model and Streaming
Window Join Semantics

We adopt the definitions of data streams and sliding
windows in [3].
Definition 1: Data Stream.

A streams S is a bag of elements <s, r>, where s is a
tuple belonging to the schema of the stream, 17 is the

timestamp of the element, and 7 is a global, discrete,
ordered time domain a

Table 1. List of variables used and their
definitions

Cp, | Cost to probe an active window for a matching
tuple just arriving

G Cost to insert an arriving tuple into the sliding
window

Cy | Cost to invalidate an expired tuple from the
sliding window

C, | The cost of updating the state of the join window

per tuple

C, | Thecost of producing a single tuple from the
result of a window join

A Rate of arrival of tuples for stream /

Awp | Output rate of a join

T Size of a time-based window

Window predicates are a means to restrict an infinite
stream for operations like stream joins to become feasible
and a means to express interest in a portion of the input
stream. For the sake of this work, we will only consider
time-based windows.

Definition 2: Time-based Window.

At any time instant 1, a time-based window of size T on
a stream S, denoted as S[7], defines a subset of §
containing all elements of S with timestamp ¢’ such that
'S T.]

We precisely define the semantics of the sliding
window streaming join as follows:

Definition 3: The Sliding Window Streaming Join.

The sliding window join, L{T,] > R[T:], is a
symmetric operator that takes two input streams, L and R
with window predicates 7, and T, defined on them. For
every arriving tuple on any of the two input streams, the
operator joins it with the current window contents on the
other input stream. The operator then streams out
resulting tuples that satisfy the join predicate. The
timestamp of a resulting element from the join is the
greater of the two timestamps of its components. The
resulting stream is ordered on the timestamps of its
elements. (]

2.2 Revising the CPU Cost Model

Before developing load shedding methods, we begin
by examining the CPU cost model for performing a join
between two streams. We assume steady state conditions
and use the average rate to characterize the rate of arrivals
of incoming tuples from external sources. This implicitly
assumes a stable arrival rate. We also assume that there is
enough memory to hold the buffering requirements for

any query plan. Table 1 defines the notation used
throughout the paper. All costs are in time units.

The previously proposed model [14] divided the cost
into three distinct parts; insertion, invalidation, and
probing costs. When a tuple arrives at one side of the join,
the operator has to a) insert the tuple in the window, b)
expire tuples whose timestamps fall outside the window
predicate, and c) probe the window on the other side for
matching tuples. Accordingly, the cost of the join between
two streams L and R — assuming symmetric join methods
on both sides — can be expressed by the following:

Cror = (C1 + Cr+ Cp)(AL+ Ar) 1)

One problem with this model is the assumption that the
probing cost is fixed for all tuples regardless of the
parameters of the join. Since the window contents are
memory resident and the cost is dominated by in-memory
CPU operations, it depends on the number of entries an
incoming tuple needs to look at to check the join
condition. Another problem of the model is that it does
not account for the production cost of tuples. This
includes the memory copy cost to form the joined tuple,
and the cost of inserting it in the queue of an upstream
operator or the query result output stream.

To model the CPU cost of the symmetric streaming
hash join we will assume the following implementation:

e Tuples satisfying the window predicate are stored in a
hash table such that each unique value of the join key
maps to a unique hash bucket (this is assumed for ease
of exposition. In practice, any index structure that
provides, in the average case, a constant time access to
all chains of tuples sharing the same join value can be
modeled in a similar fashion).

e Duplicate key values are chained in the bucket
according to the tuple timestamp values, with the
newest tuple at the head of the chain.

Using these assumptions, we can describe the
symmetric hash join algorithm as follows: when a tuple
arrives at the left input stream three actions are taken
(handling arrival from the right side is symmetric):

a) The tuple is hashed into the corresponding bucket in
the window of the left side, and inserted at the head
of the chain.

b) The corresponding hash bucket on the right side of
the join is probed. The chain of tuples in the bucket is
traversed until tuple timestamps fall out of the
window predicate. A reference to the first expired
tuple is kept. For every probe, a join result is
produced.

c) Using the reference kept in (b), the rest of the chain is
traversed expiring tuples from the window.

An important characteristic of the algorithm described
above and the assumptions it is built on is that it
represents an ideal CPU utilization case. In all three
phases of execution (insertion, probing/production, and

expiration) the algorithm has no overhead, this will be
helpful when we later investigate the problem of load
shedding in a CPU limited environment.

Using the above implementation, we can build a more
accurate unit-time cost model of the CPU cost for the
symmetric join. There are four operations performed for
every incoming tuple. Inserting a tuple involves a hashing
operation followed by an insertion at the head of the
chain. Expiring a tuple involves one chain traversal to the
tuple followed by releasing the tuple to memory. For
every output tuple there is a probe operation which
involves traversal to the tuple followed by a produce
operation which involves concatenating the two joined
tuples and producing the result. The four operations can
be categorized into wpdate operations; which include
insertion and expiration, and production related
operations; which include probing and producing the
results. The cost of update operations is proportional to
the tuple arrival rate (in steady state, every tuple inserted
in the window has to expire), and the cost of production
operations is proportional to the output rate of the join.

Let C, be the cost of inserting and expiring a tuple
from the window, C, be the cost of probing and producing
one result tuple, and 4,, be the output rate. The cost of the
join can then be expressed as

Crom = (A + AgyCyt AopCp @

2.3 Goals of L.oad Shedding

Streaming applications differ in their requirements
when faced with the inability to produce the full answer.
Different applications require different characteristics in
the approximate answer produced by the load shedding
scheme. Depending on such requirements, the goal of
load shedding is set. In some cases, the best course of
action might be to produce as many tuples of the original
answer as possible. This goal is known in the literature as

- the Max-subset [12] or the Max-recall [17]. However, if

the result of the join is fed into an aggregate function for
example, then Max-subset might not represent the best
choice for approximation. In this case, a more
representative sample of the complete answer might be
more desirable in terms of producing a better
approximation of the aggregate with known error bounds.
The goal of load shedding should then be to obtain a
uniform random sample of the result, or if none can be
obtained, to get as close to uniform a sample as possible.

An orthogonal dimension to consider is the availability
of statistical information on the data distribution of the
input stream. Semantic load shedding, in which the
strategy intelligently picks tuples to discard based on their
values, are possible if such information is available.
Otherwise, random load shedding is the only option.

In Section 3, we discuss the load shedding problem
under CPU-limited constraints for the Max-subset

problem. In Section 4 we discuss the problem for the goal
of obtaining a random sample.

3. The Max-subset Goal

We investigate the problem for the goal of obtaining
the maximum possible subset of the answer given the
CPU budget. The problem is formally defined as follows:

Definition 4: Max-Subset Strategy

Given a sliding window join L[T;] b4 R[T,] with the
input rates of A; and A respectively, and given a unit time
CPU cost budget of C, if the cost of the join C}.¢ exceeds
C, the Max-Subset method finds the best load shedding

strategy such that Cpxg is within C while maximizing Ap.

In the following, we tackle the problem assuming
decreasing levels of knowledge about the input stream
characteristics. We first start with examining an offline
strategy assuming perfect knowledge of the join result in
the future. The goal of this exercise is to have a baseline
strategy against which to measure the online strategies —
for which such knowledge does not exist. A similar
approach for memory limited load shedding is taken in
[12]. We then move on to an online semantic shedding
strategy if we are given information about the frequency
distribution of the input data. Finally, we investigate
random shedding strategies.

3.1 The Optimum Offline Strategy

Using the model developed in Section 2.2, we
investigate the optimum load shedding strategy for a
streaming window join in the CPU-limited scenario. Since
the join query is continuous, the sizes of the input streams
are infinite. Hence, modeling of the complete result of
join is infeasible. Instead, we model only a prefix of the
join result that extends until a specific time in the future.

Consider the join L{7,] > R[T,]. Assuming we are
looking T time units into the future, the total CPU cost
budget available for the join operator K is 7*C where C is
the unit time capacity of the CPU. According to equation
(2), there is a cost C, for maintaining each tuple in the
input and a cost C, for producing an output tuple. We can
represent the join result as a bipartite graph in which the
set of nodes on the right (left) hand side represents tuples
of L (R) and an edge joining two input tuples represents
the tuple resulting from their join, with C, attached to the
nodes and G, to the edges. The optimum algorithm should
select a subset of the output tuples such that the cost of
their production is less than X while maximizing the
number of selected edges. We give a more abstract
definition of the problem as follows:

Definition 5: Offline Max-Subset Problem

Input:

e A bipartite graph G = (U, V,E>

e Costs C, and C, attached to the nodes and edges
respectively

e A cost function on the graph F(G) defined as:

F(6)=(ul+p))-c. +lel ¢,
e A total cost budget K

Qumut:
A subgraph G':(U',V’,E’) of G such that F(G')< K
andVG" =U" V", EVcG, F(G)<K=|E"<|E] Q

There are some characteristics to note on the
composition of the input graph. The graph is divided into
separate disjoint components, one for each unique value
of the join key. Unlike an equijoin of relational tables
though, the subcomponents of the graph in this problem
need not be complete bipartite graphs since the window
predicate may prevent two tuples on both sides with the
same join key from joining together.

Notice that an algorithm solving the above problem
has the choice of including and excluding edges in the
answer regardless of whether this choice will involve
adding additional nodes. Another variant of the problem
is to restrict the strategy to consider only induced
subgraphs as the answer. An induced subgraph is a subset
of the vertices of a graph G together with any edges
whose endpoints are both in this subset. This variant can
be defined as follows:

Definition 6: Offline Induced Max-Subset Problem

Input:

e Same as Definition 5, pluis a predicate,
Induced(G’, G), that is true iff G' is an induced
subgraph of G

e A cost function on the graph F(G) defined as:

F(G)=(ul+I)-c. +|el c,
Ouput:
An induced subgraph G'=(U'.V',E') of G such
that F(G' < K)AVG" =(U" V", E"Yc G,
F(G") < K A Induced(G",G) = |E"| <|E] a
This models the case in which the strategy either
accepts an incoming input tuple or drops it completely
from consideration. The intuition behind this is that in
practice, for the symmetric hash join, including part of the
join result produced by an incoming tuple usually means
that a probing procedure has to be performed. If we
assume the implementation in Section 2.2, this means the
list of matching join entries has already been traversed;
including matching tuples that we will not be used to

produce output. The answer produced by this variant is
possibly suboptimal. It might be the case that the cost
budget allows for the inclusion of a node and a subset of
its incident edges. If this is the case, the take-all leave-all
decision forces the strategy to exclude such node from
consideration, hence underutilizing the budget.

The following statement about the complexity of these
two variants is true:

Theorem 1

Both Offline Max-Subset and Offline Induced
Max-Subset are NP-Hard.

Proof

The proof is by reduction from the balanced bipartite
clique problem, which is NP-Hard [13]. The reduction is
as follows:

Given a bipartite graph G = <U WV, E> , it is required to
know whether a K-balanced bipartite clique (a bipartite
clique with K nodes on each side.

We call Offline Max-Subset with G as the input graph,
C,=1, C,=0, and a cost budget of 2K. Note that in this
case, the cost of the graph is the number of nodes it has.

Examine the answer subgraph returned. If the number
of edges is K%, then the answer to the problem is yes.
Otherwise, the answer is no.

This is true since for a budget of 2K nodes, a balanced
bipartite clique of size 2K will contain K* edges, and it is
easy to show that this is the maximum number of edges in
a bipartite graph with 2K nodes. So, if one exists it will be
within the budget, and it must be returned as the answer to
Offline Max-Subset.

Since the reduction is done in polynomial time, we
conclude that Offline Max-Subset is NP-Hard.

Offline Induced Max-Subset has an identical
reduction. g

32 An Online Semantic Load Shedding Strategy

We now shift the focus to developing shedding
strategies for the Max-Subset goal that executes online.
Since the offline problem itself is hard, we explore simple
heuristics that approximates the offline solution first then
use them to inspire the online shedding strategies.

3.2.1 Offline Heuristics

We can envision the procedure of producing the
optimum offline answer as an oracle that selects the edges
of the optimum graph one by one, including them in the
answer — along with the nodes they are induced on, if they
are not already included — and then stopping when all the
edges in the answer are included. This way, we can try to
approximate this procedure by a deterministic algorithm
that selects edges for inclusion in the answer according to
a specific criterion. Two such criterion come to mind:

Algorithm: Greedy Max-Subset
Input:

Bipartite graph G =(U,V, E}, C,, C,and K
Output:

Bipartite graph G' = (U",V",E") s.t. F(G')<K
Procedure:

1. Divide the graph into its connected
subcomponents.

2. For each subcomponent G'=(U',V"",E") compute
the value C(G").

3. Order all subcomponents descendingly by C(G").

4. While the budget allows, pick the component
with the highest C value and include it in the
answer decreasing the remaining budget by its
cost F(G").

5. For the last component that could not be
completely included, sort its edges descendingly
by C(e) . Include edges from the component in
the answer until the budget is exceeded.

Figure 1. The Greedy Max-Subset Heuristic

1. At any point in the inclusion procedure, add the edge
to the answer that costs the least to produce.

2. Tt makes sense to include completely connected
components in the answer before moving to new ones.
Note that to add an edge; the nodes it connects must be
first included in the answer. It costs less to add an
edge with at least one of its nodes already there.

To use the first technique, there must be a cost
attached to the edges of the graph. According to the cost
model, every edge has a cost for its production which
should be part of the cost of including the edge in the
answer. We then need a method to also account for the
cost of maintaining nodes in the answer. A simple way to
account for the cost of a node is to amortize it on all its
incident edges. More formally, we define the cost of
including an edge e = <u, v> as follows:

Cle)=c,+cC, -(—1— +-1-] 3)
u v
where u, and v, are the degrees of u and v respectively.

To use the second idea, we need a similar metric to
measure the utility of a connected component so that we
can prioritize the decision to include them in the answer.
Notice that the above cost orders the edges descendingly
on the quantity u,-v,/(4,+v,). We can look at this as
approximating the gain from including all edges incident
on u and v divided by the cost of this inclusion. We can
do the same thing for a connected component
G'=(U",V',E') of the original graph by defining the cost
of including it as follows:

c(@)=|e|/F(c) @)

which is the benefit to cost ratio of including G’
completely in the answer.

Using the above we can define a greedy heuristic for
the offline case as in Figure 1. It can be easily verified
that the above algorithm runs in O(|E}).

3.2.2 Online Strategy

In this section, we suggest a semantic load shedding
strategy for the CPU limited case inspired by the greedy
heuristic proposed for the optimal offline algorithm.

There can be no online strategy that is competitive
with an offline algorithm if we are dealing with arbitrary
streams [17]. So, to devise an online strategy, we need to
at least have some information on the type of data
distribution of the input. For the sake of this work, we
assume the frequency-based model [12][17]. Consider the

sliding window join L[T,] > R[T>] on an atiribute 4 &
domain . The frequency-based model can be defined as
follows [17]:

Definition 7: The Frequency-Based Model

For all v € o, a fixed fraction f(v) arrives on stream L,
and a fixed fraction fx(v) arrive on stream R with the value
vin attribute 4. a

The work in [6][21][14] has assumed a simpler version
of this mode! in which the frequency distribution is
uniform for all values and on both sides of the join. Such
value is usually modeled as a single selectivity value f.

We start here by assuming the complete frequency
distribution is known. Consider a streaming join with
input rates A; and Az, a tuple with a value v arriving on
stream L is expected to join with fz(v)-AxTr tuples
residing in the window of stream R, with f;(v)-4, such
tuples arriving per unit time. Similarly, a tuple with the
same join value on stream R joins with f;(v)-4,-T; tuples
in stream L’s window, with fz(v)-Ag such tuples arriving
per unit time. Therefore the total rate of output tuples
produced for the join attribute value v is:

Ao/p(v)zfL(V)'fR(")'AL“’lk"(TL"'TR) (5)
with the total output rate of the join is:
X’a/p = ‘;)ﬂ'o/p(v) 6)
and, the cost of production for this component is:
C)=(f0) A4 + fx00) 4)- G+ A, 000 C, (1)

Summing over all values v gives the total join cost of
equation (2).

For each distinct value v of the join attribute, the
quantity

Plv)=4,,(v)c() ®)

Algorithm: Online Max-Subset
Input.
Aty Ag, T}, T, the frequency distribution, C,, and C,
Procedure:
Compute P(v) for all v € ».
Insert all P(v)’s in a priority queue.
Initialize total cost
while (true)
pick u, the component with highest P(u)
if (total cost + C(u) £ 100%)
Add the u component and update total cost
Assign a probability 1 to »
else
10. Store the value of u
11. for (all rernaining components)
12. Assign prob. 0 to corresponding values
13. break
14. Optimize the component corresponding to the
value stored in step 10 using random load
shedding (section 3.3) with a cost constraint equal
to the remaining cost budget.
15. while (join executing)
16. v=join attribute of incoming tuple
17. switch (probability(v))

O RN RN

18. case 1: process normally
19. case 0: drop tuple
20. default: apply strategy from line 14

Figure 2. Online Max-Subset Strategy

represents the benefit for cost ratio for this portion of the
join.

We propose the strategy Online Max-Subset as in
Figure 2. The strategy uses the metric of equation (8) for
prioritizing the distinct values of the domain of the join
attribute. As long as the cost permits, higher priority
components are assigned probability 1. For the
component that cannot be included completely, the
randomized strategies of section 3.3 are used to shed a
portion of the load of this component until the cost is
within the total budget. Notice that since the selectivity is
fixed for all tuples in the same component, the
assumptions made in previous work are true and the
randomized method will be the optimum strategy. For
tuples belonging to the rest of the components, the tuples
are completely dropped.

The PROB heuristic, proposed in [12] for memory
limited load shedding prioritizes tuples according the
frequency of its join value on the other joining stream. In
case of positive correlation of the distribution on both
input streams, the Online Max-Subset strategy reduces to
this one. However, the Online Max-Subset strategy
should perform better in case of negatively correlated
distributions, since it looks at the contribution of the
complete component to which a tuple belongs to instead

of just the contribution of the tuple to the join. We believe
this is a better heuristic even for the memory limited case.
The work in [18] has a similar loss/gain function for
semantic load shedding based on frequency distributions
and loss tolerance graph supplied by the application. It is
not clear from this work however, how their technique
works in case of a streaming join.

33 Random Load Shedding for the Max-Subset
Goal

We finally examine the case in which the details of the
distribution of the input are unknown. However, we can
assume the input follows the frequency model. In this
case, looking at the join attribute gives no additional info
and only random shedding techniques can be applied.

We realize that if we can assume a frequency
distribution, one can argue that the actual details can be
obtained just by monitoring the input data. However,
since we are dealing with a limited CPU case, storing and
maintaining frequency information can waste precious
cycles. In some cases, the extra benefit of producing more
cannot justify the cost of maintaining the frequency data.
These cases include, for example, if the distribution is
close to a uniform one, in which the difference in
behavior between the tuples because of the value of their
join attribute is insignificant. Also, if the distribution
changes rapidly and needs constant monitory and frequent
updates.

For the pumpose of this section, we will use the
simplified frequency model with a single selectivity f for
the whole join for ease of exposition. We note that all the
results presented are identical for the generalized model.

The approach previously taken for random load
shedding was to find the best setting of random sampling
operators applied to the input stream so that the maximum
subset is obtained while keeping the load within CPU
limits. We shall call this the coin flipping strategy (or CF)
[10]. Our contribution is to investigate whether more can
be gained by decoupling the update and the production
procedures of an incoming tuple in the shedding process.
Recall that to execute the join, every incoming tuple has
to be inserted in the window of its stream for later
matching and it has to probe the window of the opposite
stream for matching with tuples that arrived earlier to
produce results. The coin flipping approach couples these
two procedures by insisting that either the whole
contribution of the tuple to the join be taken completely or
none is. This is not necessary, since the two procedures
are independent. Realizing this, two other approaches
arise; namely the Insert-No-Probe (or INP) and the Probe-
No-Insert (or PNI) strategies.

Consider the join L[7)] b4 R[T,] with 4, and A as the
rates of the input streams, with selectivity 1. If the join is
feasible, the output rate is [6]:

Ao/p=f”/1L”ﬁ'R'(n+TR))]

In the following we describe each shedding strategy
for this join in some detail.

Coin Flipping (CF)

In the CF strategy a sampling operator is placed in
front of each of the two streams, with x; and xz being the
sampling probability of the one on stream L and R
respectively. The coin flipping strategy can be formalized
as the following optimization problem [6]:

Max

/1o/p=./'/1L'xL"/1R'xR'(TL+TR) (10)
Subject to
(A -x,+ 25 %,)-C, 4 4,,,-C, <1 an
0<x,,x, $1

Insert-No-Probe (INP)

In the INP strategy, instead of dropping some of the
tuples completely, all incoming tuples are admitted into
the window. Then a coin is flipped with probability of
probing x; and xx for L and R respectively. If the flip is a
success, the tuple probes the opposite window, otherwise
the tuple is dropped. The strategy calls for the best setting
of x; and x; while maximizing the output rate. It can be
formalized as the following optimization problem:

Max

’10/,;=f"AL'AR'(TL'xR+TR'xL) 12)
Subject to
(A +4) C+4,,-C, <1 (13)
0<x,,x, <1

The intuition behind this strategy is that since we are
not constrained in terms of memory, why not keep all the
state we can in the hope that the extra kept state produces
more tuples. This strategy appears at first sight to be the
candidate for delivering the maximum possible subset,
since it capitalizes on the asset which is not constrained;
in this case memory.

Probe-No-Insert (PNI)

The PNI strategy is the inverse of the previous one. All
incoming tuples are allowed to probe the opposite
window, and then a coin is flipped on inserting them in
the window for later matching. It can be formalized as
follows:

Max (14)
Z’o/p =,f"1L'/1R'(TL‘xL+TR'xR)

Subject to
(ﬂ‘Lhxl,+thxR).Cu+/10/p'CpSl (15)

0<x;,x, <1

3.3.1 Analysis of the Random Strategies

The comparison between the three strategies is done by
investigating their corresponding optimization problems.

We denote the optimal objective by 1, »and the optimal

solutionby x; and xj,.

The first constraint in each problem insures that the
result of load shedding is within the CPU limitations by
making sure the system utilization is below 100%. The
second set of constraints confine the values of the
shedding variables to a fraction between 0 and 1. The
following statement is true:

Lemma 1

If the join is infeasible, at least one of x, or x, is
strictly less than 1 for all three problems.

Proof

Substituting x;, =xg=1 in all three problems reduces
the first constraint to the cost of the join. If the join is
infeasible, then this substitution does not satisfy the
constraint and at least one of them has to be reduced to
satisfy it. O

We start the analysis with the following statement
about the INP strategy:

Theorem 2

For the same input parameters, the optimal objective of
the INP strategy is less than or equal to the optimal output
rate provided by the other two strategies, with the equality
only in case the join is feasible.

Proof

If the join is infeasible, then from the proof of Lemma
1, the first constraint must be tight at the optimal solution.
Hence, we can re-write it as follows for INP:

Zop ==, +24)-C)C, (16)
and for CF and PNI:
%, =l-(a, 5 + 2 x3)-), an

By Lemma 1, we are guaranteed that the value of
equation (16) is strictly greater than (17).

If the join is feasible, it is easy to verify that the
optimum objective for all three is equal to the join output
rate,

The above statement proves that, in the CPU limited
case, having an extra amount of memory does not help if
the objective is to maximize the output rate. This seems
counter intuitive at first. However, note that the cost of
outputting a single tuple of the join result is divided into
production cost, which cannot be reduced, and an
amortized cost of maintaining the input tuples in the
window. In the INP strategy, the tuples that do not probe

the opposite window actually pays the price of
maintenance while missing on producing tuples, hence the
amortized cost of maintenance is high compared to the
other strategies.

Theorem 3

The optimum objective of the PNI strategy is greater
than or equal to that of the CF strategy, with the equality
only in case the join is feasible. m

The proof is provided in Appendix A. The theorem
effectively states that the PNI is the best random load
shedding strategy. A similar intuitive argument to the one
above can explain why this is true. If the cost of
producing a tuple can not be reduced, then the only saving
in cost can be through producing as many tuples as
possible for the amount of maintenance cost to the
windows already incurred. The PNI strategy effectively
does that by allowing tuples already inserted in the
window to be probed by all the possible tuples it later
matches with. The CF strategy misses on some of that by
dropping some of the incoming tuples.

4. The Random Sample Goal

We now shift focus to another goal of load shedding,
which is to get a uniform random sample of the join
result. As could be seen from the online strategies of
semantic load shedding in the previous section, the
strategies are heavily biased towards components of the
join that provide more output tuples. If the application
requires a more representative sample, then these
techniques are inadequate. Computing an aggregate on
top of the join is one such scenario.

A uniform random sample with sampling factor p has
two properties: 1) every element of the population has a
probability p or inclusion in the sample, and 2) samples
are pair-wise independent. A naive algorithm is to sample
the result of the join, which requires computing the full
answer first. It was shown in [10] that obtaining a random
sample of a relational join from a sample of the input is
not possible for general many-to-many joins if the
distribution of the data is unknown. The result extends to
streaming joins [17].

4.1 Uniform Random Sampling

If the input streams follow the frequency model, and
the distribution is known, the UNIFORM algorithm [17]
produces a uniform random sample for the streaming join
for memory limited execution. UNIFORM takes as input
an incoming tuple and the number of tuples it should later
join with until it expires. The algorithm then simply
simulates a number of coin flips equal to this number and
stores the result along with the tuple in the window. When
a matching tuple arrives it is checked against the stored
result of the simulation. An output is produced only if the

corresponding coin flip is successful. After the last-

successful match is produced for a tuple, it can be
discarded ahead of its expiration time. Savings in memory
is realized through this early expiration.

UNIFORM can be used to provide a random sample in
the CPU limited case. In this case, the savings in CPU
cost come from a) the savings in update cost, if the
algorithm decides that a tuple will not join with any later
ones, so it is not admitted, and b) the savings in
production time since a probing tuple will probe less
tuples and output only a fraction of the ones probed. To
calculate the sampling frequency p, we need to compute
the cost of the join if the sampling frequency is p.

Consider the join L[T,] < R[T,] with A; and Ay as the
rates of the input streams that follows the frequency
model. A tuple arriving on stream L with a join attribute
value v will be probed by an expected f,(v)4,T, tuples

from stream R. If the sampling fraction is p, the
probability that the tuple will not be admitted into the
window is:

Pyy(v)= g (18)

i

where g = 1-p. This is the probability of failure for all
coin flips corresponding to the probing tuples. The
expected probability of dropping a tuple is:
IAEDWAY A (19)
veD
Hence, the expected number of tuples admitted into the
window on stream L is

’1’L = AL(- R/is) (20)

The corresponding value for stream R can be computed in
a similar manner.

To compute production cost, we need to caiculate for a
tuple with value v, the average number of tuples it will
have to probe on the other side. From [17], the expected
lifetime of a tuple with value v inside the window of
stream R is

— q LT, TR
t, = v, T, —=\1-g’* —ft— (21
du_n(") (fL() 14R p(q)) fL(V)’lLTR (21
with a similar value 74 ;(v) for stream L.
Hence, the average number of probes for the whole join
is:

JP =4, Ay Z.fL (V)fk (V)(fdz.:_ L (")"“ Tas_r (V)) (22)

veD
From (20) and (22), the total cost of the sampled join is:
Cost = (A, + 4)C, +JP-C, (23)

Using the above, we can compute the sampling fraction p.

Note that the above analysis is conservative, since it
counts the cost of probing a tuple but not producing a join
result as the cost of a complete probe/production. If we
can assume that the cost of producing the join tuple

dominates the cost of probing, then the production cost
will only be proportional to the output rate. Since we are
producing a random sample with parameter p, the output
rate is p-Agp, Where Ay, is the un-sampled rate obtained
by:

Joip = 2.)fa()- A2 (T, +T,) 4)
We can then calculate the cost as:
Cost = (A, + 24)C,+ P2y, C, (25)

5. Related Work

There are a number of systems recently developed for
managing data streams, examples are Niagara [11],
STREAM [20], Aurora [1], and Telegraph [19]. The
survey in [7] contains a good documentation of earlier
models and systems that are also targeted at such
applications, together with a number of issues related to
building a data stream management system.

The problem of load shedding for data streams has
been discussed on a number of different levels. [16] talks
about general approximation issues regarding streaming
systems. For the memory limited case, the work in [4][5]
discuss approximating aggregate queries. For join
approximation, the work in [14] introduces the problem
for both the CPU and memory limited settings, and
suggests coin flipping strategies to solve it. The work in
[12] discusses memory limited join approximation and
provides an offline algorithm and online strategies for
semantic Joad shedding for the Max-Subset goal. In this
work, we do a similar analysis for the CPU limited case.
The work in [17] defines two models for the stream
inputs; the frequency and the age based models, and
discusses semantic load shedding for streaming joins for
the Max-Subset goal.

For the CPU limited case, the work in [6] discusses
random load shedding techniques based on the coin
flipping semantics and for join queries involving more
than two input streams. The work in [8] is dealing with
load shedding methods for aggregate queries and also
uses random techniques. The only reference that explicitly
deals with semantic load shedding methods for the CPU
limited case is [18] in which a progressive strategy for
adaptively shedding load with the increase of utilization is
developed. In that work, they use a similar gain/loss
utility metric to what we develop in this paper. However,
it is not clear how their technique is applied for the join
operator.

Random sampling is discussed in the context of
relational database systems in [10]. [17] discusses random
sampling for the streaming window join with memory
limitations. This paper adapts the sampling techniques
there to the CPU limited case.

6. Conclusions

In this work, we examined the problem of load
shedding for streaming window joins wunder CPU
limitations. We start by refining the CPU cost model
previously proposed in the literature. Using the model, we
formulated the load shedding problem in the static offline
case, assuming the full result of the join is known and
proved it is an NP-Hard problem. We proposed a greedy
heuristic for the solving the offline problem and used it to
guide the development of an online semantic load
shedding strategy for the CPU limited scenario. For
random load shedding, we proposed a number of
strategies that decouples the decision of inserting and
probing tuples for the symmetric hash join. We analyzed
the new strategies and proved that one of them - the
Insert-No-Probe alternative ~ is superior to the previously
proposed random strategies. Finally, we adapted the
UNIFORM algorithm proposed in [17] to produce a
random sample of the join under CPU limitations.

Further experimental analysis of the proposed
strategies is underway, in which we compare the
effectiveness of the proposed semantic load shedding
techniques and experimentally verify the utility of the
Probe-No-Insert strategy. Also, we are investigating the
tradeoffs between semantic and random load shedding to
asses the point at which the extra load of maintaining the
statistical information about the input outweighs its utility
and develop methods to automatically account for it.

References

[1] D. Abadi, D. Carney, et al. Aurora: a new model and
architecture for data stream management. The VLDB
Joumal, Vol.12(2), pp. 120 ~ 139, 2003.

[2] A. Arasu, B. Babcock, et al. Characterizing Memory
Requirements for Queries over Continuous Data Streams.
ACM PODS, June 2002.

[3] A. Arasu, S. Babu, J. Widom. The CQL Continuous Query
Language: Semantic Foundations and Query Execution.
Technical Report, Department of Computer Sciences,
Stanford University, October 2003.

[4] A. Arasu, G. Manku. Approximate Counts and Quantiles
over Sliding Windows. PODS, June 2004,

[5] A. Arasu,J. Widom. Resource Sharing in Continuous
Sliding-Window Aggregates. VLDB September 2004,

[6] A. Ayad, J. Naughton, Static Optimization of Conjunctive
Queries with Sliding Windows Over Infinite Stream.
SIGMOD, June 2004,

[7]1 B.Babcock, S. Babu, et al. Models and Issues in Data
Stream Systems. PODS, June 2002,

{8] B.Babcock, M. Datar, R. Motwani. Load Shedding for
Aggregation Queries over Data Streams. ICDE 2004.

[9] S. Chandrasekaran, A. Deshpande, et al. TelegraphCQ:
Continuous Dataflow Processing for an Uncertain World.
CIDR, January 2003.

[10] S. Chaudri, R. Motwani, V. Narasaya. On random sampling
over joins, SIGMOD, June 1999.

[11]J. Chen, D. J. DeWitt, F. Tian, Y. Wang. NiagaraCQ: A

Scalable Continuous Query System for Internet Databases,
SIGMOD, May 2000.

[12] A. Das, J. Gehrke, M. Riedewald, Approximate Join
Processing Over Data Streams. SIGMOD, June 2003.

[13] M. Jaweed. Scalable Algorithms for Association Mining.
TKDE Vol. 12, No. 3, June 2000

[14] J. Kang, J. F. Naughton, S. D. Viglas. Evaluating Window
Joins over Unbounded Streams. ICDE 2003.

[15] S. Madden, M. Shah, et al. Continuously Adaptive
Continuous Queries over Streams. SIGMOD, June 2002.

[16] R. Motwani, J. Widom, et al. Query Processing,
Approximation, and Resource Management, in a Data
Stream Management System. CIDR, January 2003.

[17] U. Srivastava, J. Widom. Memory-Limited Execution of
Windowed Stream Joins. VLDB September 2004,

[18] N. Tatbul, U. Cetintemel, et al. Load Shedding in a Data
Stream Manager. VLDB 2003.

[19] The Telegraph Project. http:/telegraph.cs.berkeley.edu

[20] The Stan ford Stream Data Manager.
http://www-db.stanford.edu/stream.

[21] S. D. Viglas, I. F. Naughton. Rate-Based Query
Optimization for Streaming Information Sources,
SIGMOD, June 2002.

Appendix A

This appendix provides the proof for the statement in
section 3.3.1 that the PNI strategy is the best choice for
random online load shedding. We start by some helpful
observations.

Note that, for all (x;,xz)e[0,1]x[0,1] we have

(7, +1;)xl.xR =Ty x 5+ Tpx xp STyx, + Tpxy (26)
with the inequality strict unless both variables are 1.

Now, define

er, xg) = (1 = (Apxp + Apxg) -C)/C, (27

o)bkl
T (Axy + Axg)C, + A A (T, + T ey, C, = 1] (28)

o - (x,, %,) [0,1]x[0,1]]
e (A’be + Ay)Cu + A, 4 (TL"xL + Toxy)Cp =1] (29)

Lemma 2

Let (x;,xg) € Qcr such that at least one of x; and xz is
strictly less than 1. Then there are (x;'xz")e[0,1]x[0,1]
with x;" < x; and xp' < xz, with at least one of the
inequalities strict, such that (x;"xz") € Qpnr.

Proof

Start by setting x,"= x; and xz"= xz, and allow one or
both of x;" and xz' to decrease until the equality

(A’Lx'L + Apxy)Cu + A, (TLx;, + Ty)Cp =1 (30)

Xr

1

0
Figure 3. Pictorial depiction of Lemma 2

is satisfied. We know such decrease is always possible
since by assumption that (xz,xz) € Qcp and using
equation (26), we know that the left hand side of the
above equality is strictly greater than 1 for (x;,xz). a

Figure 3 pictorially depicts the result of the above
lemma. We are now ready to prove the theorem.

Proof of Theorem 3

In case the join is feasible, we can easily verify that the
optimum objective of the two techniques is the same as
the output rate of the join and is obtained at both variables
being 1.

The interesting case is when the join is infeasible. In
this case, with an argument similar to the proof of
Theorem 2, the first constraint is tight and at least one
variable is less than 1. Hence, we can rewrite both
problems as follows:

CF:
Max /(x;, xz) st (v, xz) € Qcr 3BhH
PNI:
Max I(x;', xg") s.t. (x/, xz) € Qppy (32)

Consider the optimum solution (x;, xg) of CF in this
case, (x;, xg) € Qcr and I(x;, xz) is the objective. By
Lemma 2, there is (x;'xz") € Qpyy such that x;' < x; and
xg' < xg with at least one of the inequalities strict. From
(32), (x1'xg") is a feasible solution for PNL Hence,
l(x;'xg") is a lower bound on the optimum solution of
PNIL But from (27), /(x;'xz") > I(x1, xz). Therefore, the
optimum solution of PNI is strictly greater than I(x;, xz),
which proves the theorem.

11

