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Abstract

We have implemented and improved an entropy-based
clustering algorithm. In addition to utilizing entropy as
a clustering mechanism, our algorithm, Badger, uses ran-
domization and a voting scheme to improve the quality
of the resulting clusters. Using parsed web search resull
snippets, we have tesied our algorithm and compared it
against EigenCluster, a clustering meta-search engine de-
veloped by a research group at MIT. Our algorithm per-
Jorms comparably to EigenCluster, but with slightly more
overhead due to the extra work of the randomization step.
We have found entropy to be a valid and interesting mea-
sure of document similarity and additionally we find it
produces cohesive clusters.

1 Introduction

The technique of clustering has been widely used in many
areas of artificial intelligence and information retrieval,
however, it has only been in the last several years that it
has begun to spread to web applications. Much research
has been devoted to applying clustering techniques to or-
ganize web search results. The motivation behind this
research is the desire to move away from the “top ten”
syndrome. It has been conjectured that users rarely go
beyond the first page of ranked search results, posing a
problem for lesser known pages and users alike. For users

who are looking for information on a broad topic or per-
haps are not exactly sure what they are searching for, the
top ten results will not necessarily be very helpful. The
proposed answer to this problem is to present the user
with clusters of returned web pages that represent differ-
ent sub-categories of the queried topic. In this way, the
users will be able to look at a more thorough snapshot of
the returned data and hopefully this will help them pin-
point what they are looking for in a more efficient and
timely manner.

The key to this solution is the quality of the clustering
algorithm. Intuitively, the better the clustering, the more
helpful the results will be to the user. The question is
then, which clustering algorithm produces the “best” fi-
nal clustering? According to research, so far, it seems a
clear winner has yet to be found[7]. Each algorithm has
its advantages and disadvantages, which put most of the
implementations on the same level. With this in mind, we
sought to develop our own algorithm that combined sev-
eral different techniques and see how it compared with an
existing web search clustering application.

We have implemented an entropy-based clustering al-
gorithm that specifically applies to clustering documents
and web search results. Our implementation uses the tech-
niques of randomization and voting to improve the final
clustering result. This combined technique, which has
roots in machine learning, has yet to be used in other
entropy-based algorithms. When comparing output, we
found that our algorithm performs on par with a current



implementation from MIT called EigenCluster [3]. Addi-
tionally, we conclude that there are steps that still need to
be explored in order to fully address the problem of web
search result clustering.

The paper will continue as follows: in section 2 we
discuss related work, section 3 describes the concept of
entropy and how we utilize it. The details of our algo-
rithm are discussed in section 4 and performance results
are given in section 5. Finally we conclude in section 6.

2 Related Work

Cheng et al from MIT developed a divide and merge clus-
tering algorithm, which they then used to drive a meta-
search engine called EigenCluster [3]. The search engine
takes results from other search engines such as Google,
parses the results, and then returns clusters of the web
page snippets under topic headings. Their aim was to
combine a top-down or divide approach with a bottom-
up or merge technique to create a hierarchical tree whose
leaf nodes are clusters. They show that their algorithm
performs competitively with other clustering methods.
Grouper, an interface to a web search engine developed
at the University of Washington, is another application
which seeks to improve usability of search engines by
clustering results [8]. In their study, they compared the

differences of user actions when faced with a ranked list
versus a set of clusters. Though the authors mention that
they need to perform a more in-depth user study, their ini-
tial results show that a higher percent of users click on
more links with a clustered search result representation.
Unfortunately, their site has been retired and so we were
unable to personally assess the quality of their engine.

An interesting approach to using clustering for docu-
ment browsing comes from Cutting et al in their Scat-
ter/Gather application [4]. They propose using clustering
as a way to retrieve documents, instead of using the tech-
nique as a post filter on the search results. In this way
a user can incrementally search for results without being
overly specific in his/her query. Though certainly an in-
triguing concept, it would be difficult to apply it to the
vastness of the web search space.

There are currently several other clustering search en-
gines on the web. Clusty by Vivismo [9] and SRC beta by
MSRA [10] are two commercially available implementa-

tions. From casual use, they both appear to be passable
implementations of a clustering search engine. Just from
eying the clusters, however, it is clear that for a clustering
engine to really become popular more accurate clusters
need to be produced.

3 Entropy

Entropy is the measure of information and uncertainty of
a random variable [6]. Let X be a random variable and
S(X) be the set of values X can take, and p(x) be the
probability function of X. The entropy of X is E(X):

E(X) == Y p()log(p(x))
X&S(X)

A cluster contains a set of documents, if we assume
independence of the attributes in each document, the en-
tropy for a cluster can be computed by:

E(X) = E(Xy) + E(X2) +... + E(Xn)

We denote the goodness of clusters by a term called
system entropy, which is a weighted sum of clustered en-
tropies. The equation of system entropy is:

BC)=3 P ppcy)
k D

4 Badger Vs. CoolCat

The clustering algorithm we implemented takes much of
its influences from the CoolCat algorithm described in the
paper by Barbara et al[1]. Their aim was to connect the
clustering of categorical data with the well-known con-
cept of entropy. In doing this, they showed that entropy is
a comparable similarity measurement as to those used in
other clustering algorithms[2]. However, we depart from
CoolCat’s implementation in two distinct ways. First, the
application domain of Badger has been extended to clus-
tering web search results. Secondly, we introduce ran-
domization and voting to reduce the negative effect of or-
der imposed on incremental document processing.

We found entropy to be an intriguing measurement be-
cause of its connotation of order, and additionally because



it has been used as a way of measuring the ”goodness” of
a final clustering in other clustering algorithms[7]. Below
we will describe our algorithm and then discuss the devi-
ations we have made from the CoolCat implementation.

4.1 Badger
4.1.1 Initialization Step

To begin the clustering process we must first create K
initial clusters of one document each. To do this, we first
randomly choose a sample set of N data points where N
is a subset of all documents being clustered. The goal of
the initialization step is to choose the K most dissimilar
points, with which we will initialize the clusters.

After we have chosen our sample, we then compare
each of the N points to every other point and create a
matrix of the pairwise entropies. To find the first two
points, (p1 ,p2), we select an entropy from the matrix,
which maximizes the minimum pairwise entropy. We do
this because we then get two points with the relative max-
imum difference. Once these two points are obtained they
are each put into a separate cluster, (C1, C2). The pro-
cess then continues: to create the j-th cluster we choose
a point pj that maximizes the minimum entropy between
the already chosen points.

Once K clusters have been created, the remaining
points in N are added back to the total list of documents
so that they can be clustered in the incremental step. The
initialization step takes O(N ?). It is important to note that
the number of points chosen for N is a significant param-
eter in the algorithm. The number of documents chosen
for N must be large enough that there is high probability
that at least one member of each category in the dataset is
chosen. Intuitively, this ensures the variety of the initial
clusters and a final clustering of better quality. Of course,
a balance must be made between choosing N to be big
enough, yet not so big that it slows down the algorithm
significantly.

4.1.2 Incremental Step

Once the initial clusters have been created, the remaining
points are added to clusters incrementally. A document is
added to a cluster such that the minimum system entropy

is maintained (see Figure 0). This is done until all points
are added.

do for each remaining document dn {
do for each cluster Ci {
place dn into Ci
calculate the system entropy
}
place dn into Cj, where placing
dn in Cj results in the minimum
system entropy
}

Figure 0. Pseudo code of Incremental Step

Clearly the ordering of the documents impacts the re-
sulting clustering. A document clustered early on may
later not fit in its cluster, and if it had been clustered later
in the set, it may have been put in a different cluster. For
these reasons we have departed from using this incremen-
tal step by itself and additionally use a function described
below.

4.1.3 Incremental Step with Randomization and
Voting (Badger)

This method uses the above incremental step, but also
introduces randomization and voting to result in a less
order-biased clustering. Randomization is used in choos-
ing the documents to put into clusters so that the order of
the dataset has no impact on the resulting clusters. Voting
then determines the most common clustering situation for
each document. The algorithm is bootstrapped using the
initialization step as before. Then the incremental step
is used, however, instead of clustering the documents in
order, each point is randomly chosen from the document
list. This step is performed R times, and at each itera-
tion we keep track of the cluster that each data point was
placed in. The final clustering is determined by the total
votes taken: each data point is put in the cluster where
they had most often been placed.

In this more thorough version of the incremental step,
the final clustering benefits from many earlier clustering
results. Voting and randomization ensures that a docu-
ment that may have been placed in an inappropriate clus-
ter in an earlier iteration has a chance to be moved to a



better cluster. The parameter R is another important vari-
able in the algorithm. Intuitively, we would like to choose
R to be as big as possible, because that would introduce
the maximum amount of randomness into the clustering.
Of course making R too large would radically slow down
the performance of the algorithm. As is common in the
database field, the trick is to balance the performance
trade-off with the quality gain. At the moment we have
chosen R to be twenty.

4.2 New Features Introduced in Badger
CoolCat differs in several points from our implementa-
tion. Our technique of randomization and voting is not
used by CoolCat. The authors of course noted the im-
pact of clustering the documents in order and their solu-
tion was to pick a percentage of points that seemed poorly
suited to their cluster and reclustered them. This solution,
however, still suffers from the original ordering problem.
We further discuss this issue in the performance section.

An additional difference between our implementation
and CoolCat is the change in usage domain. CoolCat was
not meant to cluster web search results. Since part of our
project’s aim is to do just that, we have applied our algo-
rithm to web search data and it has generally performed
well.

5 Performance

In this section we are interested in identifying how sen-
sitive the resulting clustering is to varying each of the
three parameters in our Badger algorithm. We also want
to compare the performance of Badger versus EigenClus-
ter, and the performance of Badger versus CoolCat (in-
cremental). Lastly, we want to see how Badger works on
different datasets.

5.1 Varying The Number of Clustering
Systems

5.1.1 [Identifying The Problem

One weak point in the original CoolCat algorithm is that
the order of processing points has a definite impact on
the quality of the final clusters. It is quite possible that a

point added to a cluster at a given time may become un-
fit for the same cluster at a later time as more points are
clustered. To address this issue, the CoolCat algorithm se-~
lects a fraction of the points which can be considered the
worst fit for the clusters they reside in, and re-cluster these
points by using the same incremental method it uses origi-
nally to cluster them. However, it is obvious that the same
problem of incremental clustering will persist for these se-
lected points too as they are being clustered; i.e., the order
of processing these selected points again matters, thus it
again has an effect on the quality of final clustering. As
a result, there is still no guarantee that the re-processing
scheme used by CoolCat will improve the quality of the
clustering.

5.1.2 Our Solution

To solve this problem, we use a well known method in
machine learning and expert systems — ensemble, a.k.a.
expert voting. We build a set of clustering systems, where
each clustering system is constructed from a different or-
dering of processing the documents. We then let them
vote which cluster a given document should belong to.
The parameter R in the Badger’s algorithm denotes the
number of such clustering systems we build. Intuitively,
the more clustering systems, i.e. experts, the better the
voting results or the quality of final clusters we should
get. The following theorem in expert systems serves as a
justification for using this method:

Theorem: Let Ri(X) be the region in feature space

X that classifier i classifies correctly. Then, the re-

gion of correct classification of the mixture of ex-

pert classifier R(X) belongs to union(allRi(x)).

5.1.3 Results Of Varying R

Here we ran a set of experiments with various values for
R (while other parameter values are fixed throughout) to
see figuratively why R is an important parameter and how
it impacts the quality of clusters. The dataset is con-
structed from Google search results for the query “door”.
Each search result returned by Google is a document, and
the Badger algorithm clusters these documents by mini-
mizing cluster entropies and using the ensemble scheme.
Two other parameters are kept constant; K (the number of
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Figure I: System Entropy with Varying Values of R.

clusters) is 10, and N (the sample size used to initialize
clusters) is half of total number of documents.

The system entropy is the weighted sum of cluster en-
tropies in the system, and it is used as a measure of “good-
ness” of clustering. As we see from Figure 1, as the
number of clustering systems increases, we generally get
better clusters, as evidenced by the reduced system en-
tropy. This relates to the theorem mentioned earlier, sim-
ply, more experts are better than few experts.

As Figure 2 clearly displays, there is a trade-off be-
tween runtime and the quality of clustering. We may be
forced to compromise on the value for R, which results
in a good (not best) clustering, but only takes a moderate
amount of time.

5.2 Comparing Badger and EigenCluster

EigenCluster is another interesting clustering based web
search engine. We are interested in comparing the Bad-
ger algorithm with EigenCluster in terms of time used to
return results for a given query and the quality of final
clusters.

The dataset used here is comprised of Google snip-
pets returned by the query “Wisconsin database group”.
Forty-two results are returned by this query. EigenCluster

Figure 2: Measurement of Time with Increasing Values of R.

EginCluster Badger
Cluster 1 18 documents | 11 documents
Cluster 2 24 documents | 31 documents
Time (sec) 0.04 0.39
System Entropy | 30.71 333

Table 1: EigenCluster Vs. Badger. Dataset: query “Wisconsin
database group” .

forms two main clusters for this query. The key words for
Cluster 1 by EigenCluster are the database group at Uni-
versity of Wisconsin-Madison and other schools or de-
partments that have associations it. The key words for
Cluster 2 by EigenCluster are the research projects as-
sociated with UW-Madisons database group. Most of
these results returned by Badger overlapped with results
by EigenCluster in each cluster, and Badger returned a
similar number of documents in each cluster as Eigen,
with roughly the same overall meaning as the Eigen in
each cluster. The results are displayed in Table 1.
EigenCluster is a good clustering algorithm because it
combines hierarchical clustering with flat clustering. As
a result, it consists of a top-down and bottom-up phase
which results in better clustering quality, but similarly
to Badger, at the cost of increased time complexity. We



=] | R=15 | R=20 =25 | R=30 | R=35
Sys. 72.7 | 482 | 479 |4753 | 46.6 | 464
Ent.
Time | 0.48 | 1.7 2.1 2.6 3.0 3.6
(sec)

Table 2: Varying R Values (averaged over five runs)

Badger CoolCat
Mis-classification | 1 document | 5 documents
System Entropy 34.2 43.12

Table 3: Badger vs. CoolCat. Mis-Classification and System
Entropy

chose the number of clustering systems to be ten in Bad-
ger, and as a result, the amount of time for Badger to re-
turn results is higher than the time taken by EigenCluster.

5.3 Comparing Badger with CoolCat

5.3.1 Dataset “Door” (as described in section 5.1.3)
In the CoolCat algorithm, R=1, i.e. only one clustering
system is built. From Table 2 we see CoolCat system
entropy is 72.2, which is much higher than the Badger
algorithms entropies, which range from 46.4 to 48.2 de-
pending on the R value.

Though we are improving the quality of clustering, it
is at the cost of increased running time. This fact is again
illustrated in Figure 2.

5.3.2 A Different Dataset

We manually constructed a dataset “eclipse”, which com-
bines the query results returned by two queries “eclipse
IDE” and “eclipse lunar”. Our goal is to see whether
Badger is able to identify each member in each cluster
correctly, and if there are any mis-classifications. We
can compute mis-classifications by Badger because we
know beforehand what the membership for each docu-
ment should be.

From Table 3 we see that Badger outperforms CoolCat
on this dataset. Badger only mis-classifies 1 document
while CoolCat mis-classifies 5, and additionally as a re-
sult, CoolCat has a higher system entropy. This is due to

the introduction of randomization and voting in the Bad-
ger algorithm.

5.4 Varying Initial Sample Size

Given a set of data, we want to determine the size of the
sample such that at least one member of each cluster ex-
ists in the sample, so that they will serve as good starting
points for the incremental step. A subset of the sample is
used to initialize the clusters, and the subset points should
be the K most dissimilar points in the sample, in order
to maximize the distance/dissimilarity clusters (K is the
number of clusters). One observation we have made is
that the sample size, N, is dependent on the number of
clusters, K. The more clusters there are, the larger sample
size should it be in order to guarantee with high probabil-
ity that at least one member of each cluster exists in the
sample.

We ran several experiments to verify our observation.
We are interested to see how various sample sizes, when
other parameters are fixed (R=20, K=4), would affect the
clustering outcome in terms of the resulting entropy for
each cluster. The dataset we used is the Google snippets
returned by query “door”, each snippet is considered an
individual document, and our Badger algorithm clusters
these documents with the expert voting scheme.

System Entropy vs. Sample Size N

64,6
64.4

e
20

63.8
63.8

Systemn entropy

63,4
63.2

1] 2 4 B 8
Sample size (a fraction)

Figure 3: System Entropy with Varying Values of N.



System Entropy vs. K (Number of
Clusters)
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Figure 4: System Entropy with Varying Values of K.

From Figure 3, we see that as the sample size
increases, we generally get better clusters, as evidenced
by the de- crease in system entropy, which is the quantity
we are try- ing to minimize. So this has confirmed our
earlier conjec- ture that sample size correlates positively
with the quality of final clusters.

5.5 Varying The Number of Clusters

K is the number of clusters predefined by the user. Each
dataset naturally always has a K value that represents
the real number of clusters that should be formed in the
dataset, but we do not know what the K is for any given
dataset. Here, we experiment with various K values and
see how they affect the outcome of clustering, We keep
all other parameters fixed. The dataset is “door” as de-
scribed earlier in section 5.1.3, which is a very generic
word with multiple meanings, and thus should result in a
large number of clusters, with each cluster representing
one meaning of “door”.

From the entropy curve in Figure 4, we can make a
good guess on what the correct K value should be for the
query results of “door”. We observe that when K=46, the
system entropy reaches its minimum, and when K=47,
the system entropy starts to increase again. Thus the op-
timal K value is 46. Examining the output snippets from

Google query more carefully, we find that roughly K=46
is a good number of clusters. For example, there is a door
magazine, the Double Door music hall, the girl next door,
door and hardware institute, etc.

We further examined the output of the query “door”
when run on EigenCluster, and found that it roughly re-
turns around 50 clusters as well.

6 Conclusion

Badger is a clustering algorithm that utilizes entropy as a
measure of document similarity and entire system order-
ing. Our implementation involves an initialization step to
bootstrap the clusters, and then an incremental step, which
uses randomness and a voting methodology to create the
final clustering.

Based on the experiments we performed we can con-
clude that Badger has a better clustering qualify than
CoolCat, but with a slight increase in time complexity. We
have also seen how various parameters in Badger would
affect the outcome of the clustering. Furthermore, upon
comparing Badger and EigenCluster, we see that there is
consistency between results returned by them, and Badger
works well on finding right membership for documents
as illustrated by the “eclipse ” dataset example in section
5.3.2.

We conclude that further research needs to be done to
create really meaningful clusters. The current problem
with clustering web search results is it is difficult to pro-
duce clusters that encapsulate the central topic of several
web pages. Many times an implementation will either cre-
ate clusters that do not group documents correctly, or cre-
ate topic groups that are incoherent, We have concluded
that document clustering needs to move beyond the bag of
words model to embrace a more complete understanding
of the content of documents.

References

[1] D. Barbara, J. Couto , Y. Li. CoolCat an entropy-based algo-
rithm for categorical clustering. In CIKM '02, November 4-9, 2002,
McLean, VA, USA

[2] D. Barbarg, J. Couto, Y. Li. CoolCat: an entropy-based algorithm
for categorical clustering. draft, 2001

{3] D. Cheng, R. Kannan, S. Vempala, G. Wang. A Divide-and-Merge
Methodology for Clustering. 2004



[4] D. Cutting, D. Karger, J. Pedersen, J. Tukey. Scatter/Gather: A
Cluster-based Approach to Browsing Large Document Collections
In /5th Ann Int'l SIGIR '92/Denmark-6/92 1992.

[5] B. Larson, C. Aone. Fast and Effective Text Mining Using Linear-
time Document Clustering. 1999

[6] CE. Shannon A Mathematical Theory of Communication. In Bell
System Technical Journal, pages 379-423, 1948, Technical Report
00-034 1999

M. Steinback, G. Karypis, V. Kumar. A comparison of Document
Clustering Techniques. Technical Report 00-034 1999

[8] O Zamir, O. Etzioni. Grouper. A Dynamic Clustering Inter-
face to Web Search Results. http:/www8 org/w8-papers/3a-search-
query/dynamic/dynamic html 1999

7

—

[9] Vivisimo. Clusty Search Engine. http://vivisimo.com/

[10] Microsoft Research Group Asia. MSRA SRC Toolbar 1.12
http://wsm.directtaps.net/default aspx.

[11] Google. http://www.google.com.



