o @mR e B BB 8B

3

B E &

g m 8aaa

Aggregate Sharing in Stream Databases

LidanWang
- Jeffrey Freschl

Technical Report #1536

October 2005

UNIVERSITY OF

Aggregate Sharing in Stream Databases

Lidan Wang, Jeffrey Freschl
{lidan, jfreschl} @cs.wisc.edu

Computer Sciences Department
University of Wisconsin, Madison
May 13, 2005

Abstract

We consider the problem of handling aggregate computations in a scalable fashion in
stream databases. The queries of interest are sliding-window aggregate queries over a
single data stream. In the naive approach for this problem, each query is individually
processed one at a time, such that no sharing occurs among aggregates in terms of storage
and answer computations. We present two new algorithms, TimeGram and
OrderedSharing, both of which are designed with sharing among aggregates in mind.

Our performance results show that both drastically improve the current performance of
STREAM, a stream database system for which we have implemented and evaluated our
two algorithms.

1. Introduction

Traditional DBMS is not designed for continuous arrival of data tuples and continuous
queries. A traditional DBMS only supports data that is in the form of persistent relations,
and therefore it will not work for applications in financial, network monitoring, or sensor
networks. In contrast to the traditional DBMS, a stream database system can handle both
continuous data and continuous queries, a feature that has drawn attention from many
researchers. Much research has been devoted to how to process data tuples and answer
queries in a scalable fashion when there are 1000s to 10,000s queries in the stream
database system. Techniques for sharing selection predicates are fairly well understood,
but sharing aggregate computations in a scalable manner is largely unstudied.

In this paper we present two new algorithms, TimeGram and OrderedSharing. They aim
to improve scalability and response time in STREAM. The update, look-up, space, and
response time have been greatly reduced due to opportunities for sharing in sliding-
window aggregates, both in terms of storage and answer computations. By exploiting
them we obtain drastic performance improvement over naive, a non-sharing approach
used in STREAM. The remainder of the paper is organized as follows; in section 3 we
introduce TimeGram, and in section 6 we introduce OrderedSharing.

2. An Overview of the Naive Approach in STREAM

The current naive algorithm in STREAM processes each query individually. Each query
is assigned a storage space that is used to store data tuples. Also, the answer for a query
is computed independently of other queries, even though some queries may have the
same aggregate attribute. This naive approach also ignores the fact that data tuples are
common to all sliding-window queries. As a result, a large space overhead and
computation overhead occur in the system.

Furthermore, in addition to updating data structures with new tuples, the naive approach
also evaluates queries upon every new arrival of data tuples. This is an undesirable and
unnecessary property since we only want to lookup answers when the users request them.

The pseudo code for the current naive approach is given below.

Setup stage:
For each sliding-window query g; in the system

Assign an input queue and an output queue to g;
End

Data processing and evaluation stage:
Insert (tuple t)
For each window in the system
Store tuple t into the window’s input queue
Remove the oldest tuple from the input queue if necessary
Update/compute answer, and stream out the answer to output queue
End
End

Figure 1 Naive approach
3. The TimeGram Algorithm

We present the TimeGram algorithm and illustrate it through an example. But first, we
will give some background information on STREAM.

3.1 Data Tuples and Timestamps in STREAM

Each data tuple in STREAM has a timestamp in addition to attribute values. If tuple a
arrives before tuple b, then a’s timestamp is strictly less than b’s timestamp, i.e. ts_a <
ts_b. A stream of data is just an ordered sequence of data tuples, <ts_a, a>, <ts_b, b>,
<ts_z, z>. Here a, b,z represent the tuples themselves, and ts_i, i=a, b, ...z, represents
the timestamps.

Users can issue aggregate queries such as Select Max From S(A) [Rows 6]. It says “find
the maximum value on attribute A from the last 6 tuples in stream S”. Here the window
size for this sliding-window query is 6. Users can also issue other types of aggregate
queries such as Min, Count, Sum, Avg.

3.2 The TimeGram Algorithm
3.2.1 Key Points

1) It builds a “timegram” on the timestamps of the tuples in the largest window. The
timestamps are put into appropriate buckets based on their tuple values on the
aggregate attribute.

2) We exploit sharing since the single timegram data structure is shared by all queries
for both tuple processing and answer computations.

3) We only need to build the timegram on the largest window, because this timegram
will contain all the information for answering queries on any smaller windows in
addition to the largest window. This is due to the fact that the data of any smaller
window is included in the data of the largest window.

4) The answers are approximated but can be made more precise by adjusting bucket
width. For a given query the answer is returned as [1, r], the boundary values of a
bucket in which the exact answer resides.

The timestamp and bucket information plays a very important role in this algorithm, in
terms of how to answer queries. We give the algorithm and an example below.

3.2.2 How to Build a TimeGram and How to Process Tuples
The steps for building a timegram and processing tuples are as follows:

a) Given a collection of aggregate queries on some common attribute A in stream data
S, each query is a sliding-window query Qi and therefore has a window size Wi.

b) Find the value range for A (aggregate attribute) in the largest window. For example,
let it be [L, R], where L and R are the minimum and maximum values, respectively,
for attribute A in the largest window.

c) Uniformly divide [L, R] into K buckets, B1, B2, ...Bk, each with width [R-L}/K.

d) When a new tuple arrives, its timestamp is put into an appropriate bucket based on the
tuple’s aggregate attribute value. For example, if tuple 3 arrives and its aggregate
attribute value is -1, and if a bucket B2 has range [-2, 4], then the timestamp of tuple
3 will be stored in bucket B2.

e) If with the addition of the new tuple’s timestamp the total number of timestamps held
in the timegram data structure is greater than the max window size, remove the oldest

timestamp.

f) At any given time, buckets B1, ... Bk hold the timestamps of tuples in the largest
window.

3.2.3 How to Lookup Answers

There are five cases for answer lookups. Let’s assume the window is W in a query we
want an answer for.

a)

Max: start from the last bucket (which holds the timestamps of tuples with the largest
values on the aggregate attribute), check if any timestamp in this bucket belongs to W.
If it is, return this bucket’s boundary values [], r] as the answer. If no timestamp in

b)

d)

e)

this bucket belongs to window W, move down to the next bucket whose boundary
values are smaller, repeat, until we find the first appearance of the timestamp that
belongs to this window W.

Min: similar to Max. Instead of starting from the last bucket, we start from the first
bucket, and the rest of the details are the same.

Count: if the query is on the largest window, just return the total number of
timestamps stored. Otherwise, we should check each bucket to count the number of
timestamps that belong to this W (we can use an efficient data structure to do this).

Sum: use bucket boundary values and Count resuits. Let Bucket 1=[L.1, R1], and
Bucket 2=[L2, R2], count_i=number of timestamps of W in bucket i, return the
answer as Sum=[a, b] where a=L1*count_1+L2*count 2, and

b=R1*count 1+R2*count 2.

Avg: similar to Sum, just divide the answer for Sum by the total number of
timestamps in the timegram data structure.

3.2.4 An Example

Assume we have the following stream data source. The format of each tuple is
<timestamp ts, attribute A, attribute B>.

Stream S:
T1=<1, 3, atc>
T2=<2, -10, agg>
T3=<3, -9, gtt>
T4=<4, 5, acc>
T5=<5, 2, ttg>
T6=<6, 7, gga>
T7=<7, -3, aat>

Assume there is a collection of standing aggregate queries as below:

Query 1: Select Sum (A) From Stream S on window size 4
Query 2: Select Max (A) From Stream S on window size 3
Query 3: Select Avg (A) From Stream S on window size 2

Build a timegram and lookup for answers:

Observe the aggregate attribute value range is [-10, 10] and max window size is 4.

Define 5 buckets (note the number of buckets here is user-defined):

Bucket 1: [-10, -6]
Bucket 2: [-6, -2]

Bucket 3: [-2, 4]
Bucket 4: [4, 6]
Bucket 5: [6, 10]

Process Data (only store timestamps for tuples in the largest window):
The tuples arrive in a continuous manner.

T1 arrives: T1’s A attribute = 3 =» put the timestamp 1 in Bucket 3

T2 arrives: T2’s A attribute = -10 =» put the timestamp 2 in Bucket 1

T3 arrives: T3’s A attribute = -9 =» put the timestamp 3 in Bucket 1

T4 arrives: T4’s A attribute = 5 =» put the timestamp 4 in Bucket 4

T5 arrives: T5’s A attribute = 2 =» put the timestamp 5 in Bucket 4
Total number of timestamps held by buckets > max window size 4
Remove timestamp for T1

T6 arrives: T6’s A attribute = 7 =» put the timestamp 6 in Bucket 5
Total number of timestamps held by buckets > max window size 4
Remove timestamp for T2

T7 arrives: T7’s A attribute = -3 =» put the timestamp 7 in Bucket 2
Total number of timestamps held by buckets > max window size 4
Remove timestamp for T3

In the end each bucket’s content is as follows:

Contents: | | | | TS | |
| | T7 | | T4 | T6e |
Buckets: <-10, -6> <-6, -2> <-2, 4> <4, 6> <6, 10>

Figure 2 Resulting bucket content

Observations:
1. Some buckets may be empty and thus when we lookup answers we can just skip them.
2. Constant storage: the space is bounded by the number of tuples in the largest window

Lookup Answers:

If we want the answer for Query 2: Select Max (A) From Stream S on window size 3, we
check if <6, 10> contains a timestamp for window size 3, which it does (since window
size 3 has timestamps T7, T6, and T5), so we just return <6, 10> as an answer for this
query (the exact answer is 7 which lies within this interval).

Important Note:

Note that tuple processing and answer lookups can be an interleaved process; i.e., we can
look for answers in the middle of processing tuples, although for simplicity we did not
illustrate this in the example.

3.2.5 Time and Space Complexity

The TimeGram algorithm is a highly scalable algorithm with O(1) update cost and O(1)
lookup cost (if using efficient data structures for buckets), and a space cost that is
bounded only by the max window size in the standing queries, O(MaxWin).

4 Key Advantages of TimeGram

1. Highly scalable due to one common timegram data structure that is shared by all
queries for tuple processing and answer computations.

2. Cheap lookup O(1) and update O(1)

3. Reduced space overhead; unlike the Naive approach (separate storage for each query
in DB), we only use one common shared storage, the timegram data structure (i.e. a
list of buckets).

4. Adaptive to user needs for answer precision and answer frequency; we can change
bucket width to get more/less answer precision, and can also adjust the
update lookup ratio to achieve different answer lookup frequencies.

5 Experiments and Analysis:

In this section we will look into how TimeGram performs in comparison to the Naive
algorithm. We think that there are three key factors that govern the response time for the
system, and they are:

1) Update_lookup ratio (how often a user wants query answers versus how often new
data tuples are processed).

2) The total number of queries in the system

3) Skewed data distribution

First we will use 1000 randomly generated data tuples to illustrate point 1) and point 2),
and then we will repeat the same experiments by using 1000 skewed data tuples. Also,
when evaluating point (2) we were restricted to a maximum of 8 queries due to
limitations in the system; ideally, we would have liked to register as many as 1000
queries.

5.1 Response Time vs. Update_Lookup Ratio

In both algorithms new data tuples are processed right away as they continuously arrive.
However, the lookup rate is different between TimeGram and Naive. The Naive
algorithm re-evaluates aggregate answers whenever a new tuples arrives, because both
the current aggregate answers and the new tuple have to be used for computing new
aggregate answers. This scheme is inefficient for two reasons:

1) First, it is unnecessary to give query answers when users did not ask for them, and it
wastes system resources in doing so.

2) Second, it binds its evaluation scheme with one particular update_lookup ratio, 1:1.
This is not a desirable property because the update lookup ratio is really a system
parameter, and therefore the algorithm should not be developed based upon one
particular value of this parameter.

TimeGram resolves both of these two issues. The update lookup ratio now is a parameter
of the TimeGram algorithm and the lookup now becomes on-demand.

Response Time vs. Update_Iookup Ratio

|

TimeGram = = = Naivel

Response time (sec)
© o o
N w g

©
-

l l

0 10 20 30
Update_lookup ratio

o

Figure 3 Response time vs. update _lookup ratio

As we see from Figure 3, the response time for Naive is constant because it always re-
evaluates on each new tuple arrival. For TimeGram, the response time gradually
decreases as lookup becomes more sporadic, and the difference between the two
algorithms also becomes greater as a result of more infrequent lookups. Also, TimeGram
is much faster and uses less system resources (due to the sharing among aggregates) than
Naive.

5.2 The Total Number of Queries in the System

TimeGram handles aggregate sharing in a scalable fashion. All aggregate queries (with
the same aggregate attribute) share one common data structure for tuple processing and
answer computations. The data structure, i.e. a list of buckets as we saw earlier, holds all
the necessary information for answering all queries, and its space is only bounded by the
size of the largest window, not by the total amount of data tuples. TimeGram is highly
scalable with a large amount of queries.

Response Time vs. Number of Queries

TimeGram = = = = = Naive |

IS S
w

Response time (sec)
oo
- N

(e}

0 5 10

Number of queries

Figure 4 Response time vs. number of queries '

As we see from figure 4, the response time increases as the number of queries grow. The
rate of increase, however, is much larger for Naive than for TimeGram, as evidenced by
the sharp slope exhibited by Naive and a relatively flatter slope exhibited by TimeGram.
In other words, this has confirmed our earlier belief that TimeGram scales well as the
amount of queries grows due to the way it handles aggregate sharing.

5.3 Skewed Data Distribution

We are also interested in learning how skewed data would impact the results we have
seen. The data tuples are now generated using a Gaussian probability function that
produces 1000 skewed data tuPles, most of them are between [-20,20]. We then repeat
the previous two experiments.

Response Time vs. Update Lookup Ratio

(on Skewed Data)
] TimeGram = - - - - Naive I
80.47
5027
5 0.1
&
o 0

(=]

10 20 30
Update_lookup ratio

Figure 5 Response time vs. update_lookup ratio on skewed data

! With the current STREAM it cannot support more than 8 user queries. But nonetheless, our claims on increased
scalability can still be illustrated regardless of this issue.

Response Time vs. Number of Queries (on
Skewed Data)

TimeGram - Naive]

o
I

0.35

o
w

0.25

©
—
8}

Response time (sec)
o
N

o
-

0.05

0 5 10

Number of queries

Figure 6 Response time vs. number of queries on skewed data

As we see from Figures 5 and 6, the relative performance between TimeGram and Naive
is about the same as before. TimeGram has a better response time, which is inversely
proportional to the lookup frequency. It also scales well with a large number of queries.
This robustness is due to the implementation details of TimeGram. Skewed data may
result in unbalanced distribution of data tuples such as some buckets may be empty or
have fewer tuples than others. However, this is not a problem because each bucket has a
size variable, and if the size is zero for some bucket the algorithm immediately skips that
bucket. More importantly, the amount of timestamps inspected during the course of
execution on skewed data is really the same as before on randomly generated data. As a
consequence, the placement of data does not have a noticeable impact.

5.4 Comments on TimeGram’s Bucket Size

Since for a given query, TimeGram returns an approximate answer in terms of the two
boundary values of a particular bucket in which the exact query answer resides, we can
make the answer more precise or more vague by reducing or expanding the bucket size,
respectively. Thus, TimeGram can adapt to user needs on answer precision, i.e. in certain
applications users may want a less precise answer in the interest of a low time cost, while
in other applications users may want more precision and do not care about costs.
TimeGram can cater to both situations.

6 The OrderedSharing Algorithm

In this section, we introduce OrderedSharing, a highly scalable algorithm that relies on
two key properties of a set of windows to maximize the amount of sharing between

aggregate queries. For clarity, we assume that the aggregate function is max, although
we do show how to support min. Unlike in TimeGram, subtractive aggregates are not
supported.

6.1 Preliminaries

In this section we discuss the state of each window, and also define what it means for a
window to be valid.

For each window w, we have

1. An answer for this window (denoted w.answer)

2. A timestamp ts for when we calculated w.answer (denoted w.ts). Initially, the
ts is —infinity meaning that we cannot use the answer.

3. The size of this window (denoted w.size); that is, how many tuples fit into this
window.

Definitions:

Valid: a window w is valid at time currentTime iff there exists a window w’ such
that w’.size >= w.size and

currentTime — w’.ts < w.size

This means that we either have an answer w.answer for w that is within its window, or
we have an answer for a larger window w’ that is also contained within the window of w.

Invalid: a window that is not valid.
6.2 Key Ideas

Given a set of n windows W = {W_i}, we can order the windows by size in increasing
order; i.e.,

W={W_1,W_2,...,W_n} st. foranyi<j, W_isize<W j.size (1)

Observe that because increasing the size of a window can only include more tuples, we
also have that the answer can only increase in value; i.e.,

For any i<j, W_i.size < W_j.size > W_ianswer < W _janswer (2)
6.2.1 Insert
Because of the above properties (1) and (2), if a new arrival tuple is the max of a window
w, then it is also a max of all smaller windows. Specifically, on an insert of value A, we

first find the largest valid window w such that w.answer <= A. We then validate window
w and all smaller windows w’ (i.e., W’.size <=w.size) by updating w.answer and w.ts to

11

A and the currentTime respectively. So that we do not have to update the answer and
timestamp for all smaller windows with the same value, we set their timestamps to —
INFINITY (this takes 1 operation, described below in our implementation). Note that if
we did not use the largest window, then we would have a valid window with a wrong
answer which is incorrect.

In summary, given a set of windows, some of which we have answers for (i.e., the valid
windows), and given a new arrival value, does this value change the answer of any of the
current valid windows? All that matters is that all valid windows have the correct
answer. All invalid windows will be handled accordingly on a lookup.

6.2.2 Lookup

Initially all windows are invalid and will remain invalid until a lookup is performed on
some window w. Remember that the only way we can implicitly validate an invalid
window is if it can use the answer of some larger valid window. To explicitly validate an
invalid window, we must re-calculate its answer. Subsequently, the lookup will then find
that w is invalid and therefore it must calculate the answer for w by iterating over all
tuples in w. A nice consequence of this is that while calculating the answer for w, we are
also calculating the answer for all smaller windows. Thus, we not only validate w, we
also validate all smaller windows! Here is a summary of what happens when a lookup is
performed:

Lookup(window w)
1. Is wvalid?
2. Ifso, return the answer for w.
3. otherwise, re-calculate the answer for w and all smaller windows.

6.3 Implementation

(1) On insert(value A), how do we efficiently find the largest valid window w
such that w.answer <= A without having to iterate over each window? In other words,
given an ordered set of valid and invalid windows, how do we find a window with a
specific answer?

(2) Similarly, on a lookup(window w), how do we find a window w’ that has an
answer valid for w? In other words, how do we find a window with a specific size?

6.3.1 Main Data Structure — Binary Search Tree

The data structure we use is a single Binary Search Tree sorted on answers. To answer
question (1) on an insert of value A, we do a binary search for A to find a current valid
answer for some window w, such that w.answer <= A. A nice property of this tree is that
because it is sorted on answers where each answer has a corresponding window, the tree
is also sorted on the window size. Remember properties (1) and (2) give that the

12

windows are sorted on size if and only if their answers are also sorted. In other words, if
value wl.answerl < w2.answer2, then wl.size < w2.size.

6.3.2 Insert and Lookup on the Tree

In this section, we give a summary of how to insert and how to do a lookup within the
binary tree.

6.3.2.1 Insert

Insert(Tree t, newValue, currentTime)

1. Find the largest valid answer w.A in t such that w.A <= newValue, where A is
the current answer for window w. (This is a simple binary search for
newValue in tree t)

2. Ifvalue w.A does exist

a. w.answer € newValue (since w.A now has a new answer)

b. w.ts € currentTime (We changed w’s answer at time currentTime)

¢. Remove all smaller windows r from the tree (i.e., r.size < w.size),
because their answer is now stored in w.answer.

d. Fix Tree if necessary. In some cases, updating w.answer violates the
binary search tree property. This occurs in 2 cases: (1) The right child
of w is invalid, and thus can have a smaller answer after the update;
(2) The parent of w is invalid, and thus can have a smaller value.

3. otherwise, all valid answers are greater than newValue, and thus there are no
answers to update.

Example 1) Assume all nodes are valid in the following tree:

Tree Before Insert Tree After Insert (30)

Figure 7. On the left, we have answers for windows A, B, C, D, E, and F. Notice
that there answers are also sorted! Afier an Insert of value 30, we get the tree on the
right.

13

What happens when we insert value 30 into the tree? Step (1) of Insert gives us window
E. Then for step (2) we update the answer and timestamp of window E, and for step(3)
we remove all smaller windows giving us the tree on the right in Figure 7, because not
only is 30 an answer for E, it is an answer for all smaller windows.

For the tree before insert, what happens if E is invalid when inserting value 35? Since
window D has the largest valid answer smaller than 35, we update D to have 35 as its
answer, and then remove A, B, and C (i.e., all smaller windows). However, in this case,
increasing the answer of node D violates the binary search tree property, because E has a
smaller answer than its left child. Thus, we must fix the tree by removing node E, and
replacing it with node F. We would then replace F with its right child if the tree property
was still violated; however, this only occurs if F is also invalid.

6.3.2.2 Lookup

// Find the answer for window w

Lookup(Tree t, window w)
1. ifwis valid
a. return answer for w.
2. otherwise,
a. remove all windows smaller than w, because we are going to re-
calculate the answer for all smaller windows.
b. Re-calculate the answer for w and all smaller windows. In our actual
implementation, we used a Red Black Tree to keep the tree balanced.
¢. For each window w’ we validate, we insert <currentTime, w’.answer,
w’.size> into the tree with its new answer.

Example 2)

Assume all nodes are valid in the following tree t:

Figure 8: Here we have answers 5, 10, 15, 20, 30, and 50 for windows A, B, C, D, E, and
F respectively.

14

What happens when we perform a lookup on window E in Figure 8?7 Doing a binary
search in t, we find that not only is E valid, but that it is also in the tree; thus, we return
30 as an answer. What if we did a lookup on window E’ where E.size < E’.size < F.size?
In this case, F is the smallest window larger than E’. We then see if F.answer is valid for
us. If it is, then we return 50, otherwise, the value 50 is outside the window of E” and we
re-calculate the answer of E’. Of course, for every window we validate, we must first
remove it from the tree and then re-insert the window with its new answer.

6.3.2.3 A Single Binary Tree for Min

Using a single binary tree to store both the window size and the answer works for max,
because with increasing answers, we also have increasing window sizes. However, does
this work for min, where with increasing answers, we have decreasing window sizes?
Using a single tree still works, because the only difference is how to search for a window
within the tree. Basically, on a lookup(window w), if w > currentTreeNode (i.e., the
window size of the current node in the binary search), then go to the left child which will
lead us to a smaller answer, but larger window. The window size must be larger, because
adding more tuples (i.e., increasing the window size) can only give us a better answer
(i.e., a smaller min value).

6.4 Time and Space Complexity

The time to do an Insert is O(log(|w}])), where |w] is the number of registered windows.
The reason is that the main operation in Insert is to do a binary search for the new
inserted value. Similarly, the time to perform a Lookup is O(log(jw])), because we are
doing a binary search on the looked up window. Finally, the space complexity is the
space to store the binary tree, which is O(jw]|) in the worst case, although in the field the
space may be much smaller depending on the window size distribution.

6.5 Experiments and Analysis
In this section, we will look into how OrderedSharing performs in comparison to the

Naive algorithm. We repeat the experiments in section 5, except that we replace
TimeGram with OrderedSharing.

15

Response Time vs. Number of Queries

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

—e— orderedSharing
e NTVE

Response Time (sec)

0 2 4 6 8 10

Number of queries

Figure 9: Response Time vs. Number of Queries.

In Figure 9, we see that OrderedSharing performed quite well in comparison to naive.
After 2 queries, the response time for orderedSharing remains relatively constant, while
the response time for naive steadily increases. The reason is that for OrderedSharing,
when a single window w is validated, most of the other windows could use w’s answer
for a large number of lookups until eventually w’s answer is no longer valid. Then in the
next few lookups, a majority of the windows are once again valid, thus requiring a small
lookup time for subsequent lookups.

Response vs. Number of Queries (on Skewed
Data)

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

—o— orderedSharing
—&— naive

Response time (sec)

0 2 4 6 8 10

Number of Queries

Figure 10: Response Time vs. the number of queries on skewed data.

In Figure 10, we see that OrderedSharing performed slightly better than before
with non- skewed data. The reason for this slight improvement is that because the new

16

arriving tuples are skewed, once the maximum for a window is established, it remains the
maximum for a longer time making the tree and its contained answers more stable.

7 Conclusions

We have introduced the TimeGram algorithm, which is a scalable algorithm for shared
aggregate computations in stream database systems. It builds a timegram data structure
which is shared by all queries for both tuple processing and answer computations. The
answer is returned as <, r>, boundary values of a bucket in which the exact answer
resides. The TimeGram has a much lower response time than Naive and it can adapt to
user needs on answer frequency and answer precision, in addition to being scalable and
having low lookup, update, and space overhead.

We also introduced the OrderedSharing algorithm that stores the answers for only
a subset of the registered set of windows. On an Insert, we would have to find which
window’s answer if any, needed to be updated. This would also imply that all smaller
windows had the same answer as the largest window whose answer was updated allowing
us to only store the largest window’s answer. We were then able to use a single Binary
Search Tree sorted on the window’s answers, to either find a specific window size or
answer in log time. Finally, in our performance analysis we were able to show that
OrderedSharing performs much better than Naive with the increase in number of
concurrent queries.

17

