I pPEEEEOBE S

B B8

BB a

PP EERRBEEBREGEQDDEA

a
B
m
]
&8

gD DB EEE0DEEEDEOREDRE B

mEEEEGEBE0aa

Deploying Safe User-Level Network Services
with icTCP

Haryadi S. Gunawi
Andrea Arpaci-Dusseau
Remzi Arpaci-Dusseau

Technical Report #1517

October

UNIVERSITY OF

|

Deploying Safe User-Level Network Services with icTCP

Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
Department of Computer Sciences, University of Wisconsin, Madison

Abstract

We present icTCP, an “information and control” TCP implemen-
tation that exposes key pieces of internal TCP state and allows
certain TCP variables to be set in a safe fashion, The primary
benefit of icTCP is that it enables a variety of TCP extensions
to be implemented at user-level while ensuring that extensions
are TCP-friendly. We demonstrate the utility of icTCP through
a collection of case studies. We show that by exposing infor-
mation and safe control of the TCP congestion window, we can
readily implement user-level versions of TCP Vegas [11], TCP
Nice [50], UDP with congestion control [28], and the Conges-
tion Manager [6]; we show how user-level libraries can safely
control the duplicate acknowledgment threshold to make TCP
more robust to packet reordering [9] or more appropriate for
wireless LANs [47]; we also show how the retransmission time-
out value can be adjusted dynamically [30]. Finally, we find that
converting a stock TCP implementation into icTCP is relatively
straightforward; our prototype requires approximately 300 lines
of new kernel code.

1 Introduction

Years of networking research have suggested a vast num-
ber of modifications to the standard TCP/IP protocol
stack [3, 6, 9, 10, 11, 19, 21, 26, 34, 41, 47, 50, 55]. Un-
fortunately, while some proposals are eventually adopted,
many suggested modifications to the TCP stack do not be-
come widely deployed [38].

In this paper, we address the problem of deployment
by suggesting a small but enabling change to the network
stack found in modern operating systems. Specifically,
we introduce icTCP (pronounced “I See TCP”), a slightly
modified in-kernel TCP stack that exports key pieces of
state information and provides safe control to user-level
libraries. By exposing state and safe control over TCP
connections, icTCP enables a broad range of interesting
and important network services to be built at user-level.

User-level services built on icTCP are more deploy-
able than the same services implemented within the OS
TCP stack: new services can be packaged as libraries and
easily downloaded by interested parties. This approach
is also inherently flexible: developers can tailor them to
the exact needs of their applications. Finally, these ex-
tensions are composable: library services can be used to

build more powerful functionality in a lego-like fashion.
In general, icTCP facilitates the development of many ser-
vices that otherwise would have to reside within the OS.

One key advantage of icTCP compared to other ap-
proaches for upgrading network protocols [35, 38] is the
simplicity of implementing the icTCP framework on a
new platform. Simplicity is a virtue for two reasons. First,
given that icTCP leverages the entire existing TCP stack,
it is relatively simple to convert a traditional TCP imple-
mentation to icTCP; our Linux-based implementation re-
quires approximately 300 new lines of code. Second, the
small amount of code change reduces the chances of in-
troducing new bugs into the protocol; previous TCP mod-
ifications often do not have this property [37, 39].

Another advantage of icTCP is the safe manner in
which it provides new user-level control. Safety is an is-
sue any time users are allowed to modify the behavior of
the OS [44]. With icTCP, users are allowed to control
only a set of limited virtual TCP variables (e.g., cwnd,
dupthresh, and RTO). Since users cannot download arbi-
trary code, OS safety is not a concern. The remaining con-
cern is network safety: can applications implement TCP
extensions that are not friendly to competing flows [32]?
By building on top of the extant TCP Reno stack and al-
lowing virtual variables to be set to values only within a
range analyzed as safe, icTCP ensures that extensions are
no more aggressive than TCP Reno and thus are friendly.

In addition to providing simplicity and safeness, a
framework such as icTCP must address three additional
questions. First, are the overheads of implementing vari-
ants of TCP with icTCP reasonable? We show services
built on icTCP incur minimal CPU overhead when they
use appropriate icTCP waiting mechanisms.

Second, can a wide range of new functionality be im-
plemented using this conservative approach? We demon-
strate the utility of icTCP by implementing seven exten-
sions of TCP. In the first set of case studies, we focus on
modifications that alter the behavior of the transport with
regard to congestion: TCP Vegas [11], TCP Nice [50],
Congestion Manager (CM) [6], and congestion-controlled
UDP [28]. In our second set of case studies, we focus
on TCP modifications that behave differently in the pres-
ence of duplicate acknowledgments: avoid misinterpret-
ing packet reordering as packet loss [9, 55] and efficient

fast retransmit (EFR) [47]. In our third set, we explore an
extension that adjusts the retransmit timeout value [30].
Finally, can these services be developed easily within
the framework? We show that the number of statements
required to build these extensions as user-level services on
icTCP is similar to the original, native implementations.
The rest of this paper is structured as follows. In Sec-
tion 2 we compare icTCP to related work on extensible
network services. In Section 3 we present the design of
icTCP and in Section 4 we describe our methodology. In
Section 5 we evaluate five aspects important aspects of
icTCP: the simplicity of implementing icTCP for a new
platform, the network safety ensured of new user-level ex-
tensions, the computational overheads, the range of TCP
extensions that can be supported, and the complexity of
developing those extensions. We conclude in Section 6.

2 Related Work

As described, icTCP has two components: exposing key
internal state and providing safe control over important
variables. The idea of exposing network state to end hosts
has been explored in a number of contexts [6, 33, 42, 43];
given that this is not the primary contribution of icTCP,
and due to space constraints, we do not discuss these
projects further. Instead, we compare the icTCP approach
for controlling variables to other work that provides some
amount of networking extensibility.

Upgrading TCP: Four recent projects have proposed
frameworks for providing limited extensions for trans-
port protocols; that is, allowing protocols such as TCP to
evolve and improve, while still ensuring safety and TCP
friendliness. We compare icTCP to these proposals.

Mogul et al. [35] propose that applications can “get”
and more radically “set” TCP state. In terms of getting
TCP state, icTCP is similar to this proposal. The greater
philosophical difference arises in how internal TCP state
is set. Mogul ef al. wish to allow arbitrary state setting and
suggest that safety can be provided either with a crypto-
graphic signature of previously exported state or by re-
stricting this ability to the super-user. icTCP is more con-
servative, allowing applications to alter parameters only
in a restricted fashion. The trade-off is that icTCP can
guarantee that new network services are well behaved, but
Mogul et al.’s approach is likely to enable a broader range
of services (e.g., session migration).

The Web100 and Net100 projects [33] are developing
an advanced management interface for TCP. Similar to the
information component of icTCP, Web100 provides an in-
strumented TCP that exports a variety of per-connection
statistics; however, Web100 does not propose exporting
as detailed of information as icTCP (e.g., Web100 does
not export timestamps for every message and acknowl-
edgment). The TCP-tuning daemon within Net100 is sim-
ilar to the control component of icTCP; this daemon ob-

serves TCP statistics and responds by setting TCP param-
eters [14]. The key difference from icTCP is that Net100
does not propose allowing a complete set of variables to
be controlled and does not ensure network safety. Further-
more, Net100 appears suitable only for tuning parameters
that do not need to be set frequently; icTCP can frequently
adjust in-kernel variables because it provides per-message
statistics as well as the ability to block until various in-
kernel events occur.

STP also addresses the problem of TCP deploy-
ment [38]. STP enables communicating end hosts to re-
motely upgrade the other’s protocol stack; with STP, the
authors show that a broad range of TCP extensions can
be deployed. We emphasize two major differences be-
tween STP and icTCP. First, STP requires more inva-
sive changes to the kernel to support safe downloading
of extension-specific code; support for in-kernel extensi-
bility is wrought with difficulty [44]. In contrast, icTCP
makes minimal changes to the kernel. Second, STP re-
quires additional machinery to ensure TCP friendliness;
icTCP guarantees friendliness by its very design. Thus,
STP is a more powerful framework for TCP extensions,
but icTCP can be provided more easily and safely.

Finally, the information component of icTCP is derived
from INFOTCP, proposed as part of an infokernel [5].
INFOTCP exposes internal TCP state, but does not pro-
vide any way to directly set TCP state. With INFOTCP,
a user-level implementation of TCP Vegas can be per-
formed on top of the in-kernel TCP Reno; we repeat this
case study to show that icTCP implements this function-
ality more efficiently. We believe that icTCP has two im-
portant advantages over INFOTCP. First, icTCP provides
more efficient and more accurate control: applications
do not need to perform extra buffering and sleep/wake
events as they do with INFOTCP. Second, icTCP supports
a broader range of applications than INFOTCP.

User-Level TCP: Researchers have often found it use-
ful to move portions of the conventional network stack to
user-level [15, 16, 40]. User-level TCP can provide the
same advantage as icTCP of simplifying protocol devel-
opment. However, a user-level TCP implementation typ-
ically struggles with performance, due to extra buffering
and/or context switching. Again, these implementations
do not ensure TCP friendliness and thus do not provide a
real solution to the deployment problem.

Application-Specific Networking: A large number of
projects have investigated how to provide general extensi-
bility of network services [18, 22, 31, 49, 51, 52]. These
projects allow network protocols to be more specialized to
application requirements than does icTCP, and thus may
improve performance more dramatically. However, these
approaches tend to require more radical restructuring of
the OS or networking stack and do not guarantee TCP
friendliness.

TCP Clients

@) (

States : snd.nxt, snd.una cwnd, cwnd.cnt, ssthresh
cwnd, ssthresh,
etc

Msglist : timeout, fr
seq.no, rit

ack.no, dsack

rev.wnd, rev.nxt

snd.una, snd.nxt

AckList : dupthresh, RTO, retransmits |

Figure 1: icTCP Architecture. The diagram shows the icTCP
architecture, At the base of the stack is icTCP, a slightly modified TCP
stack that exports information and limited control. On top of icTCP,
we have built a number of user-level libraries that implement various
pieces of functionality suggested by the literature. The libraries can be
composed (where applicable), thus enabling the construction of more
powerful services in a plug-and-play fashion. Applications sit at the
top of the stack and can choose the libraries that match their needs or
directly use the kernel transport.

Protocol Languages and Architectures: Network
languages [1, 29] and structured TCP implementations [3]
simplify the development of network protocols. Given the
ability to replace or subclass modules, it is generally eas-
ier to extend existing TCP implementations.

3 icTCP Design

The icTCP framework exposes information and provides
control over key parameters in the TCP protocol imple-
mentation. In this section, we give a high-level overview
of how user-level network services are deployed with ic-
TCP. We then describe the classes of information and con-
trol exported by icTCP.

3.1 System Architecture

Figure 1 presents a schematic of the icTCP framework.
As illustrated, user-level libraries implementing variants
of TCP are built on top of icTCP. The user-level libraries
can be transparently used by applications with the stan-
dard interfaces. Different TCP connections can use dif-
ferent icTCP libraries. Some icTCP libraries can also be
stacked. For example, the icUDP¢¢ library can either
use the default congestion control algorithm included in
icTCP, or it can use that provided by libTCPy¢gas. The
implication is that each stackable user-level library must
export the same interface as icTCP. The design of icTCP
is such that in most cases, only the sending side needs to
have icTCP deployed; receivers can be running icTCP or

an unmodified kernel stack.

To simplify the implementation, icTCP exports infor-
mation and provides control through the BSD socket in-
terface with a few new options. Although this approach
minimized our implementation work, it does impose un-
necessary run-time overhead: obtaining state requires a
copy from the kernel to user space. In our evaluation, we
see that user-level network services can see an increase
in CPU overhead if they frequently poll icTCP for state
information.

Therefore, for efficiency, icTCP provides both a polling
and an interrupt interface. Given that most TCP variables
are updated only when an acknowledgment arrives or at
the end of a round, applications can block until either an
ACK is received or a round ends. At this point, the appli-
cation will likely poll icTCP for the information of inter-
est, determine how it would like to set the TCP variables
for new control, and then call icTCP to set these variables.

3.2 Information

The first goal of icTCP is to expose information that is tra-
ditionally internal to TCP. The challenge is to determine
which information should be exposed: if too little infor-
mation is exposed, it may not be possible to build new
extensions on top of icTCP; if too much information is
exposed, then future kernel implementations of TCP may
be constrained by an undesirable, expanded interface.

Given that TCP implementations are constrained to ad-
here to the TCP specification [24], many internal variables
are already specified and required. Therefore, icTCP ex-
plicitly exports all variables that are part of the TCP spec-
ification, such as the next sequence number to be sent
(snd.nxt), the oldest unacknowledged sequence number
(snd.una), the congestion window (cwnd), and the slow
start threshold (ssthresh). Exposing this information from
any TCP implementation should be straightforward.

However, we have found that for more interesting ser-
vices, access to more information is needed. For example,
libraries commonly need to examine information about a
particular message. Therefore, icTCP exposes “standard”
information about each packet (e.g., its sequence number
and round-trip time and whether it is being sent for a time-
out or a fast retransmit) in a message list. Information
about incoming acknowledgments (e.g., the acknowledg-
ment number and DSACK information) is similarly made
available via an ack list.

Exposing per-packet and per-ack information may not
be trivial for those TCP implementations where it does
not already exist. Given that TCP Reno does not track the
round-trip time of each packet, we add a high resolution
timer to icTCP to record this information. An additional
complexity is that recording new per-message informa-
tion requires additional memory; therefore, icTCP creates
these lists only when enabled by user-level services.

Variable Description Safe Range Example usage
cwnd Congestion window 0<v<z Limit number of sent packets
cwnd.cnt Linear cwnd increase 0<v<z Increase cwnd less aggressively
ssthresh Slow start threshold 1<v<z Move to SS from CA
rcv.wnd Receive window size 0<v<z Reject packet; limit sender
rev.nxt Next expected seq num z —rcv.awnd < v < z+vrevwnd Reject packet; limit sender
snd.nxt Next seq num to send vsnd.una < v <z Reject ack; enter SS

snd.una Oldest unack’ed seq num z < v < vsnd.next Reject ack; enter FRFR
dupthresh Duplicate threshold 1 < v < vewnd Enter FRFR

RTO Retransmission timeout srtt 4 rttvar < v Enter SS

retransmits Number of consecutive timeouts 0 < v < threshold Postpone killing connection

Table 1: Safe setting of TCP variables. The wable lists the 10 TCP variables which can be set in icTCP. We specify the range each variable
can be safely set while ensuring that the result is less aggressive than the baseline TCP implementation. We also give an example usage or some
intuition on wity it is useful to control this variable. Notation: x refers 1o TCP's original copy of the variable and v refers to the new virtual copy
being set; SS is used for slow start, CA for congestion avoidance, and FRFR for fast restransmit/fast recovery; finally, srtt and rttvar represent

sntoothed round-trip time and round-trip time variance, respectively.

3.3 Control

The second goal of icTCP is to allow variables that are in-
ternal to TCP to be externally set in a safe manner. A new
challenge is to determine not only which variables can be
modified, but also to what values, while still ensuring that
the resulting behavior is TCP-friendly. Our philosophy is
that icTCP must be conservative: control is only allowed
when it is known to not cause aggressive transmission.

The basic idea is that for each variable of interest, ic-
TCP adds a new limited virtual variable. We restrict the
range of values that the virtual variable is allowed to cover
so that the resulting TCP behavior is friendly; that is, we
ensure that the new TCP actions are no more aggressive
than those of the original TCP implementation. Given that
the acceptable range for a variable is a function of other
fluctuating TCP variables, it is not possible to check at
call time that the user has specified a valid value and re-
ject invalid settings. Instead, icTCP accepts all settings
and coerces the virtual variable into a valid range. For ex-
ample, the safe range for the virtual congestion window,
vewnd, is 0 < vewnd < cwnd. Therefore, if vewnd raises
above cwnd, the value of cwnd is used instead.

Adding a virtual variable is not as trivial as it may
appear; that is, one cannot simply replace all instances
of the original variable with the new virtual one. One
must ensure that the virtual value is never used to change
the original variable. The simplest case is the statement
cwnd = cwnd + 1, which clearly cannot be replaced with
cwnd = vewnd + 1. More complex cases of control flow
are harder to track and currently require careful manual
inspection. Therefore, we limit the extent to which the
original variable is replaced with the virtual variable.

We have analyzed many of the variables in the Linux
TCP implementation to determine how each can be safely
set. We have identified the settings for 10 interesting vari-
ables, as summarized in Table 1. Our terminology is that
for a TCP variable with the original name foo, we intro-
duce a limited virtual variable with the name v f0o; how-

ever, when the meaning is clear, we simply use the origi-
nal. We do not introduce virtual variables when the orig-
inal variable can already be set through other interfaces
(e.g., sysctl of tcp.retries] or user_mss) or when they can
be approximated in other ways (e.g., we set RTO instead
of srtt, mdev, rttvar, or mrtt). We do not claim that these
10 variables represent a complete collection of settable
values, but that they do form a useful set.

We briefly discuss why the specified range of values is
safe for each icTCP variable. The first three variables (i.e.,
cwnd, cwnd.cnt, and ssthresh) have the property that it is
safe to strictly lower their value; in each case, the sender
directly transmits less data, because either its congestion
window is smaller (i.e., cwnd and cwnd.cnt) or slow-start
is entered instead of congestion avoidance (i.e., ssthresh).

The next set of variables determine which packets or
acknowledgments are accepted; the constraints on these
variables are more complex. On the receiver, a packet is
accepted if its sequence number falls inside the receive
window (i.e., between rcv.nxt and rcv.nxt + rcv.wnd);
thus, increasing rcv.nxt or decreasing rcv.wnd has the ef-
fect of rejecting incoming packets and forces the sender
to reduce its sending rate. On the sender, an acknowl-
edgment is processed if its sequence number is between
snd.una and snd.nxt; therefore, increasing snd.una or de-
creasing snd.nxt causes the sender to discard acks and
again reduce its sending rate. In each case, modifying
these values has the effect of dropping additional packets;
thus, TCP backs-off appropriately.

The final set of variables (i.e., dupthresh, RTO, and re-
transmits) control thresholds and timeouts; these variables
can be set independently of the original values. For exam-
ple, both increasing and decreasing dupthresh is believed
to be safe [55]. Changing these values can increase the
amount of traffic, but does not allow the sender to trans-
mit new packets or to increase its congestion window.

Information 1.0C | Control LOC
States 25 | cwnd 15
Message List 33 | dupthresh 28
Ack List 41 | RTO 13
High-resolution RTT 12 | ssthresh 19
Wakeup events 50 | cwnd-cnt 14
retransmits 6
rcv.nxt 20
rev.wnd 14
snd.una 12
snd.nxt 14
Info Total 161 | Control Total 155
icTCP Total 316

Table 2: Simplicity of Environment. The table reports the num-
ber of C statements (counted with the number of semicolons) needed to
implement the current prototype of icTCP within Linux 2.4.

4 Methodology

Our prototype of icTCP is implemented in the
Linux 2.4.18 kernel. Our experiments are performed
exclusively within the Netbed network emulation en-
vironment [54]. A single Netbed machine contains an
850 MHz Pentium 3 CPU with 512 MB of main memory
and five Intel EtherExpress Pro 100Mb/s Ethernet ports.
In most scenarios, the sending endpoints run icTCP,
whereas the receivers run stock Linux 2.4.18. In some
experiments, icTCP is run on both senders and receivers.

For almost all experiments, a dumbbell topology is
used, with one or more senders, two routers intercon-
nected by a (potential) bottleneck link, and one or more
receivers. In some experiments, we use a modified Nist-
Net [13] on the router nodes to emulate more complex
behaviors such as packet reordering.

In most experiments, we vary the bottleneck band-
width, delay, and/or maximum queue size through the in-
termediate router nodes. Experiments are run multiple
times (usually 30) and averages are reported. Variance
was low in those cases where it is not shown. In general,
details of each experiment can be found in figure captions
or within the text that describes the particular experiment.

5 Evaluation

To evaluate whether or not icTCP is a reasonable frame-
work for deploying TCP extensions at user-level, we an-
swer five questions. First, how easily can an existing TCP
implementation be converted to provide the information
and safe control of icTCP? Second, does icTCP ensure
that the resulting network flows are TCP friendly? Third,
what are the computation overheads of deploying TCP ex-
tensions as user-level processes? Fourth, what types of
TCP extensions can be built and deployed with icTCP?
Finally, how difficult is it to develop TCP extensions in
this way? Note that we spend most of the remaining pa-

per addressing the fourth question concerning the range of
extensions that can be implemented.

5.1 Simplicity of Environment

We begin by addressing the question of how difficult
it is to convert a TCP implementation to icTCP. Our
initial version of icTCP has been implemented within
Linux 2.4.18. Our experience is that implementing icTCP
is fairly straightforward and requires adding few new lines
of code. Table 2 shows that we added 316 C statements
to TCP to create icTCP. While the number of statements
added is not a perfect indicator of complexity, we believe
that it does indicate how non-intrusive these modifications
are. These small changes make icTCP a highly practical
approach and greatly increases its chances of being de-
ployed in real systems.

5.2 Network Safety

Next, we investigate whether icTCP flows are TCP
friendly. We empirically demonstrate that icTCP flows
are not aggressive when competing with other TCP flows.
In our experiments, one TCP Reno flow between one pair
of hosts competes with one icTCP flow on another pair
of hosts; the two flows share a single link. The achieved
bandwidth of each flow is measured at the second shared
router. To confirm that icTCP is friendly, we check that
the icTCP flow does not obtain more of the available
bandwidth than the TCP Reno flow, as a function of the
packet loss rate,

To stress the safe setting of icTCP variables, we con-
struct a user-level process that sets the virtual variables to
random values; the distribution of random values is such
that 10% of the values fall beneath the minimum safe
value, 10% fall above the maximum safe value, and the
remaining 80% are safe. As explained previously, when
a user specifies an unsafe value for a parameter, icTCP
coerces that parameter within the safe range. We have
analyzed controlling each of the icTCP parameters in iso-
lation as well as sets of the parameters simultaneously. In
all cases, the icTCP flow obtains bandwidth that is either
lower or nearly equal to the competing Reno flow.

Figure 2 shows a small subset of our safety results. The
dark lines in the middle of each graph report the band-
width achieved for the Reno TCP flow and for the icTCP
flow with no user settings; as expected, the bandwidth of
the two flows is nearly identical and drops as the packet
loss rate increases. Across the graphs, we vary which ic-
TCP parameters are randomly set. In the first graph, only
one parameter, snd.una, is randomly set; we see that when
snd.una is set, the icTCP flow obtains less bandwidth than
previously and the Reno flow achieves more. In the sec-
ond graph, we summarize results from a number of inde-
pendent experiments, in each case randomly setting a sin-
gle icTCP parameter. For clarity, we show only the band-
width delivered to the icTCP connection; the bandwidth

TCP-friandly Bandwidth (snd.una)
N 1800

TCP-Friendly Bandwidth (All

Mix-all

1800 . . - . 180 . .
ICTCP - N0 Sot =—tmn 1600 R .’9%3,," N0 S8 wnbeume 0 ICTCP - N0 §8t =t
- 1600 Reno (vs IcTCP ng S0t} —t— 7 oo (vs ic msﬁ' e 5 1600 X Féeréo (\{g icThCP réo sat) ~—tt—
g 1400 snduna -+ 1400 e 8 gy cwnd, dupthresh, snduna) -+
g Reno (vs icTCP snd una) @ g DUPTHHE%&«)I - E__ g 1400 MIX2 {snd cwnd.cnt, Ho, rov.nxt) 8-
o 1200 T 1200 SSTHRESH o 1200 MIX3 (ssthresh, snd.nxt, rov wnd) -~
& 1000 & 1000 SND cvgﬂg Sﬁ;\ & 1000
¥ 800 ‘g goo {#- W™ SND NXT - &-- s 800
E T RCV.NXT -ep— B
< i°° el S ACVWND —v- [< i°°
00 &) 400 TR i " 00
o = e o
= 200 200 T F 200
0 v 0 T 3 o
0 5 10 15 20 0 5 10 15 20

Drop Rate (%)

Drop Rate (%)

Drop Rate (%)

Figure 2: Network Safety of icTCP. In these experiments, we vary the packet loss rate as one TCP Reno flow competes with one icTCP flow.
Each data point is the mean of S random samples, each from a 10 second run. The dark lines in the middle of each graph report the bandwidth
achieved for the Reno TCP flow and for the icTCP flow with no user settings. In the first graph, only one parameter, snd.una, is randomly set.
In the second graph, results for a number icTCP parameters are shown. Finally, in the third graph, we consider the case where multiple icTCP

parameters are set simultaneously.

CPU Overhead

infoV el
14 eV, /ack intr —&—
12 icV, polling £~
icV, fround intr —Q—
g 1 Reno —#—
o 8 4
% s
4
2
o

o 20 40 60 80
Bandwidth (Mb/s) - w/o delay

100

Figure 3: icTCPv ¢gas CPU Overhead. The figure compares the
overall CPU utilization of Reno, infoVegas, and the three versions of ic-
TCPvegas. Along the x-axis, we vary the bandwidth of the bottleneck
link.

for the competing Reno flow increases by the expected
amount. This second graph shows that icTCP is not ag-
gressive when any single variable is set. Finally, in the
third graph, we consider the case where multiple icTCP
parameters are set simultaneously. As desired, each com-
bination with icTCP remains less aggressive than the TCP
Reno flow. Although these experiments do not prove that
icTCP ensures network safety, these measurements along
with our analysis give us high confidence that icTCP can
be safely deployed.

5.3 CPU Overhead

We evaluate the overhead imposed by the icTCP frame-
work using a user-level implementation of TCP Ve-
gas [11]. In our implementation of icTCPyegqs, We €x-
plore ways in which the user-level library can reduce over-
head by minimizing its interactions with the kernel.
Overview: We focus on the most interesting difference
between TCP Vegas and Reno: congestion avoidance.
TCP Vegas reduces latency and increases overall through-
put by carefully matching the sending rate to the rate at
which packets are being drained by the network, thus
avoiding packet loss. Specifically, if the sender sees
that the measured throughput differs from the expected
throughput by more than a fixed threshold, it increases or
decreases its congestion control window, cwnd, by one.
Implementation: Our implementation of the Vegas con-

gestion control algorithm is structured as follows. The
operation of Vegas is placed in a user-level library, lib-
TCPyegas. This library simply passes all messages di-
rectly to icTCP, i.e., no buffering is done at this layer. We
implement three different versions that vary the point at
which we poll icTCP for new information: every time we
send a new packet, every time an acknowledgment is re-
ceived, or whenever a round ends. After the library gets
the relevant TCP state, it calculates its own target conges-
tion window, vewnd. When the value of vewnd changes,
libTCPy ¢gqs sets this value explicitly inside icTCP.

We note that the implementation of icTCPy ¢gqs 1S Sim-

ilar to that of INFOVEGAS, described as part of an infok-
ernel [5]. The primary difference between the two is that
because INFOTCP provides only information and not con-
trol, INFOVEGAS must manage the functionality of vewnd
for itself. When INFOVEGAS calculates a value of vewnd
that is less than the actual cwnd, INFOVEGAS must buffer
its packets and not transfer them to the TCP layer; INFO-
VEGAS then blocks until an acknowledgment arrives, at
which point, it recalculates vewnd and may send more
messages.
Evaluation: We have verified that icTCPycgqs behaves
like the in-kernel implementation of Vegas. Due to space
constraints we do not show these results; we instead focus
our evaluation on CPU overhead.

Figure 3 shows the total (user and system) CPU utiliza-
tion as a function of network bandwidth for TCP Reno,
the three versions of icTCPyegas, and INFOVEGAS. As
the available network bandwidth increases, CPU utiliza-
tion increases for each implementation. The CPU uti-
lization (in particular, system utilization) increases sig-
nificantly for INFOVEGAS due to its frequent user-kernel
crossings. This extra overhead is reduced somewhat for
icTCPygas When it polls icTCP on every message send
or wakes on the arrival of every acknowledgment, but is
still noticeable. Since getting icTCP information through
the getsockopt interface incurs significant overhead, ic-
TCPyegas can greatly reduce its overhead by getting in-

Spare Capacity Vs Latency
g o TCP Nice —e—
= icNicg ~-g—
& 100 Reno - &
=4
5 \
5 10 o ey
E -
@ R .
E 1 '\i\ >
8 I s el
Qo

1 10 100
Spare Capacity (S)

Figure 4: icTCPy;ce: Spare capacity vs. Foreground La-
tency. A foreground flow competes with many background flows. Each
line corresponds to a different run of the experiment with a protocol
for background flows (i.e., icTCP, TCP Nice, Reno, or Vegas). The y-
axis shows the average document transfer latency for the foreground
traffic. The foreground traffic consists of a 3 minute section of a Squid
proxy trace logged at U.C. Berkeley. The background traffic consists of
long-running flows. The topology used is a dumbbell with 6 sending
nodes and 6 receiving nodes. The foreground flow is alone on one of the
sender/receiver pairs while 16 background flows are distributed across
the remaining 5 sender/receiver pairs. The spare capacity, S, of the net-
work is varied along the x-axis. The spare capacity is achieved by setting
the bottleneck link bandwidih to (1 + 8) multiplied by the total number
of bytes transferred in the trace divided by the duration of the trace.

formation less frequently. Because Vegas adjusts cwnd
only at the end of a round, icTCPy¢gqs can behave accu-
rately while still waking only every round. The optimiza-
tion results in CPU utilization that is higher by only about
0.5% for icTCPy ¢gqs than for in-kernel Reno.

54 TCP Extensions

Our fourth axis for evaluating icTCP concerns the range
of TCP extensions that it allows. Given the importance
of this issue, we spend most of the remaining paper on
this topic. We address this question by first demonstrating
how six more TCP variants can be built on top of icTCP.
These case studies are explicitly not meant to be exhaus-
tive, but to instead illustrate the flexibility and simplicity
of icTCP. We then briefly discuss whether icTCP can be
used to implement a wider set of TCP extensions [38].

54.1 icTCPpyice
In our first case study, we show that TCP Nice [50] can be
implemented at user-level with icTCP. This study demon-
strates that an algorithm that differs more radically from
the base icTCP Reno algorithm can still be implemented.
In particular, icTCP ;e requires access to more of the
internal state within icTCP: the complete message list.
Overview: TCP Nice provides a near zero-cost back-
ground transfer; that is, a TCP Nice background flow
interferes little with foreground flows and reaps a large
fraction of the spare network bandwidth. TCP Nice is
similar to TCP Vegas, with two additional components:
multiplicative window reduction in response to increasing
round-trip times and the ability to reduce the congestion
window below one. We discuss these components in turn,
TCP Nice halves its current congestion window when
long round-trip times are measured, unlike Vegas which
reduces its window by one and halves its window only

Latency Throughput
g 1000 TCP Nice —a— | = 30000 TCP Nice ~—&—
R 100 l%N!ce el ¥ 25000 i%Nica e

@ = e o
g e b g 20000 no
EERL] o7 S 15000 6 © °
I a— 2 j - -
5 4 iy E 10000 e
3 B =y I ((3 5000 § ., . =,
a iR 0 -
1 10 100 1 10 100

Number of Background Number of Background

Figure 5: icTCPpic.: Impact of Background Flows. The
nwo graphs correspond to the same experiment; the first graph shows
the average document latency for the foreground traffic while the second
graph shows aggregate throughput for background traffic. Each line
corresponds to a different protocol for background flows (i.e., TCP Reno,
icTCP Nice,» or TCP Nice). The number of background flows is varied
along the x-axis. The spare capacity, S, of the network is set to 2. The
experimental setup is identical to Figure 4.

when packets are lost. To determine when the window
size should be halved, the TCP Nice algorithm monitors
round-trip delays, estimates the total queue size at the bot-
tleneck router, and signals congestion when the estimated
queue size exceeds a fraction of the estimated maximum
queue capacity. Specifically, TCP Nice counts the num-
ber of packets for which the delay exceeds minRT'T +
(mazRTT — minRTT) % t (where t = 0.1); if the frac-
tion of such delayed packets within a round exceeds f
(where f = 0.5), then TCP Nice signals congestion and
decreases the window multiplicatively.

TCP Nice also allows the window to be less than one;

to affect this, when the congestion window is below two,
TCP Nice adds a new timer and waits for the appropriate
number of RTTs before sending more packets.
Implementation: The implementation of icTCP e is
similar to that of icTCPy ¢gqs, but slightly more complex.
First, icTCP ;¢ requires information about every packet
instead of summary statistics; therefore, icTCP;c. 0Ob-
tains the full message list containing the sequence number
(seqno) and round trip time (usrt?) of each packet. Second,
the implementation of windows less than one is tricky but
can also use the vewnd mechanism. In this case, for a win-
dow of 1/n, icTCP ;¢ sets vewnd to 1 for a single RTT
period, and to O for (n — 1) periods.
Evaluation: To demonstrate the effectiveness of the ic-
TCP approach, we replicate several of the experiments
used for TCP Nice (i.e., Figures 2, 3, and 4 from [50]).
Our results show that icTCP ;. performs almost identi-
cally to the in-kernel TCP Nice, as desired.

Figure 4 shows the latency of the foreground connec-
tions when it competes against 16 background connec-
tions and the spare capacity of the network is varied. The
results indicate that when icTCPp;ce or TCP Nice are
used for background connections, the latency of the fore-
ground connections is often an order of magnitude faster
than when TCP Reno is used for background connections.
As desired, icTCP y;ce and TCP nice perform similarly.

The two graphs in Figure 5 show the latency of fore-

ground connections and the throughput of background
connections as the number of background connections in-
creases. The graph on the left shows that as more back-
ground flows are added, document latency remains essen-
tially constant when either icTCP y;c. or TCP nice is used
for the background flows. The graph on the right shows
that icTCP n;ce and TCP nice obtain more throughput as
the number of flows increases. As desired, again both ic-
TCPp;ce and TCP Nice achieve similar results.

542 icCM

We show that some important components of the Conges-
tion Manager (CM) [6] can be built on icTCP. The main
contribution of this study is to show that information can
be shared across different icTCP flows and that multiple
icTCP flows on the same sender can cooperate. Further,
we show that different transport protocols (e.g., TCP and
UDP) can cooperate as well.
Overview: The Congestion Manager (CM) architec-
ture [6] is motivated by two types of problematic behav-
ior exhibited by emerging applications. First, applications
that employ multiple concurrent flows between sender and
receiver have flows that compete with each other for re-
sources, prove overly aggressive, and do not share net-
work information with each other. Second applications
which use UDP-based flows without sound congestion
control do not adapt well to changing network conditions.

CM addresses these problems by inserting a module
above the IP layer at both the sender and the receiver;
this layer maintains network statistics across flows, or-
chestrates data transmissions with a new hybrid conges-
tion control algorithm, and obtains feedback from the re-
ceiver.
Implementation: The primary difference between icCM
and CM is in their location; icCM is built on top of the
icTCP layer rather than on top of IP. Because icCM lever-
ages the congestion control algorithm and statistics al-
ready present in TCP, icCM is considerably simpler to
implement than CM. Furthermore, icCM guarantees that
its congestion control algorithm is stable and friendly to
existing TCP traffic. However, the icCM approach does
have the drawback that non-cooperative applications can
bypass icCM and use TCP directly; thus, icCM can only
guarantee fairness across the flows for which it is aware.

The icCM architecture running on each sending end-
point has two components: icCM clients associated with
each individual flow and an icCM server; there is no com-
ponent on the receiving endpoint. The icCM server has
two roles: to identify macroflows (i.e., flows from this
endpoint to the same destination), and to track the aggre-
gate statistics associated with each macroflow. To help
identify macroflows, each new client flow registers its PID
and the destination address with the icCM server.

To track statistics, each client flow periodically obtains

Reno icC™m

1200 1

be:
=
f=
=]

Sequence Numi
N A oo
c o o
o O O O
\
Ll
C

800

Sequence Number
-
=1
3

0 5 10 15 20 25 30 0 5 1 15 20 25 30
Time (seconds) Time (seconds)

Figure 6: icCM Fairness. The two graphs compare the perfor-
mance of four concurrent transfers from one sender 1o one receiver, with
the bottleneck link set to 1 Mb/s and a 120 ms delay. On the left, stock
Reno is used, whereas on the right, icCM manages the four TCP flows.

its own network state from icTCP (e.g., its number of out-
standing bytes, snd.nxt - snd.una) and shares this with
the icCM server. The icCM server periodically updates
its statistics for each macroflow (e.g., sums together the
outstanding bytes for each flow in the macroflow). Each
client flow can then obtain aggregate statistics for the
macroflow for different time intervals.

To implement bandwidth sharing across clients in the
same macroflow, each client calculates its own window to
limit its number of outstanding bytes. Specifically, each
icCM client obtains from the server the number of flows in
this macroflow and the total number of outstanding bytes
in this flow. From these statistics, the client calculates the
number of bytes it can send to obtain its fair share of the
bandwidth. If the client is using TCP for transport, then
it simply sets vewnd in icTCP to this number. Thus, ic-
CM clients within a macroflow do not compete with one
another and instead share the available bandwidth evenly.
Evaluation: We demonstrate the effectiveness of using
icTCP to build a congestion manager by replicating one
of the experiments performed for CM (i.e., Figure 14 [6]).
Figure 6 shows two graphs of sequence number traces.
In each graph, there are four flows within a macroflow;
across graphs, we vary whether TCP Reno or TCP with
icCM is used. The first graph shows that the four TCP
Reno flows do not share the available bandwidth fairly;
the performance of the four connections varies between
39 KB/s and 24 KB/s, a factor of 1.6 in transfer time be-
tween the fastest and slowest connections. The second
graph shows that the four TCP icCM connections progress
at very similar and consistent rates; all four connections
achieve throughputs of roughly 30 KB/s.

We also performed the same experiment, but with a
congestion-controlled UDP flow in the mix; the results
were identical and are not shown due to lack of space.
However, for UDP to work within our framework, it must
also have some form of congestion control, the topic of
the next subsection.

54.3 icUDPcc

The previous case studies showed that icTCP can be used
to change the congestion control behavior of a TCP con-

Microscopic View of icUDPce

icCCUDP pof ssmemnme
TCP cwnd ~r

Packets

0 05 1 15 2 25 3
Time (s)

Figure 7: Microscopic View of icUDPcc. The y-axis shows
the number of packets on the fly for icUDP¢ ¢ and the TCP probe con-
nection. In this setup, icUDPgc is competing with a TCP flow; the
icUDPcc and TCP endpoints are all distinct, but an intermediate link
between all four nodes with a linited bandwidth of 2 MB/s is shared.

nection. In this case study, we show that icTCP can
also be used to add congestion control to other protocols.
Specifically, we show that we can easily build an unreli-
able UDP flow with congestion control, and that this con-
gestion control can be based on Reno or Vegas. Again,
the icTCP approach helps ensure that a correct congestion
control algorithm is deployed, since one is able to directly
leverage an existing, tested TCP implementation.
Overview: Applications that desire timeliness of data
over reliability have typically used UDP, despite its lack
of congestion control. However, the presence of a large
number of flows without congestion control leads to clear
problems in the Internet. Protocols designed to add con-
gestion control to UDP, such as DCCP [28], have turned
out to be more complex than expected; for example,
DCCP requires a sequence number space to communi-
cate packet arrivals and losses, a feedback channel to con-
vey congestion information back to the sender, and well-
defined mechanisms to set up and cleanly tear down state.
Implementation: To build icUDPo¢, the key insight is
that one can use information obtained from a TCP flow
along the same network path to determine the amount of
UDP data that should be sent. Thus, we associate a icTCP
flow between the same sender and destination as the ic-
UDP¢ flow. One disadvantage of this approach is that
we cannot ensure that these two flows are routed along the
same paths; however, given current routing algorithms,
this assumption often holds [23, 45, 48].

A second disadvantage is that the icTCP flow imparts
a small amount of additional traffic on the network: each
time icUDPg¢ sends a UDP packet, it also sends a one
byte icTCP packet. However, given large UDP packets,
the amount of additional traffic is small. This pair of ic-
TCP and UDP packets behaves similarly to a TCP packet
of the total size. Given that the TCP congestion window
reflects the number of TCP packets that can be sent, ic-
UDPcc obtains cwnd from icTCP and ensures that the
corresponding amount of UDP data is sent. However, this
approach raises two issues.

First, there is no existing mechanism to determine
the number of UDP packets on the fly. Therefore, we

added an ack-mechanism within the libUDP¢ ¢ applica-
tion layer: icUDP¢¢ adds a UDP sequence number to
each packet and the receiver acknowledges its highest-
numbered UDP packet. libUDPcc uses these acks to
determine how many packets are outstanding and either
waits or sends more packets accordingly.

Second, lost UDP packets may cause libUDPg¢ to
have an inaccurate tally of the number of packets on the
fly. Specifically, if either the last UDP packet or ack lost,
icUDPcc will believe more packets are still in transit and
will send fewer UDP packets than allowed; in general, this
is only a transient problem, since the next received UDP
ack allows icUDP¢¢ to catch up. However, a problem
does occur for very small congestion windows: if all UDP
acks are lost, libUDP¢ ¢ will never wake. This problem is
solved with a standard time-out mechanism.

One of the advantages of the icTCP approach is
that each library can form a new layer in the system.
Thus, icUDPae can easily leverage the congestion con-
trol algorithm implemented by any of our existing lay-
ers. For example, by sending the icTCP probe packets
through libTCPy ¢gqs instead of icTCP, we have built ic-
UDPcc,vegas, UDP with Vegas congestion control. Al-
ternatively, by registering with the icCM server, a UDP
flow can fairly share bandwidth with TCP flows. Specifi-
cally, the UDP client uses icTCP probe packets to obtain
the statistics to share with the icCM server; the UDP client
then subtract its number of bytes on the fly from its fair al-
location and ensures that only that many bytes are sent.
Evaluation: To demonstrate the effectiveness of ic-
UDPc ¢, we show that it behaves as expected, that it in-
curs minimal overhead, that icUDP¢¢ shares bandwidth
fairly with TCP flows, and that the congestion control al-
gorithm can be easily changed.

First, we demonstrate that icUDP¢ ¢ obtains the ex-
pected AIMD (Additive Increase Multiplicative Decrease)
behavior of the Reno congestion control algorithm. Fig-
ure 7 shows the the number of packets on the fly for ic-
UDPc ¢ and cwnd for the TCP probe connection. These
results show that the two connections closely follow one
another (in this experiment, the difference is never more
than four); as a result, the icUDPg¢ flow sends a steady
stream of packets, as desired.

Second, we show that the overhead incurred by ic-
UDP¢¢ is minimal. Deployed in an environment with-
out contention, icUDP¢¢ and icUDPcc, vegas have slow-
downs of 5.9% and 6.6%, respectively, relative to UDP.
Given that the default TCP Reno exhibits a slowdown of
1.6%, some of the overhead is simply due to the cost of
providing congestion control. The additional slowdown
of the icUDPq ¢ variants is due to the insertion of probe
packets in the network and additional computation per-
formed at the user level. We believe that providing con-
gestion control is worth this degradation in bandwidth.

Bandwidth {MB/s}

UDP w/ 3TCPs UDP w/3 TCPs TCP w/ 3 TCPs

TCPw/ 3 TCPs {cUDPee w/ 3 TCPs iclDPcc w/ 3 TCPs

tept —
tcp2
tcp3

tep

L_.'__

Bandwidth (MB/s}

udp -

lcUDPdSc

s

tepl
tcp2
tep3

ot

Bandwidth (MB/s)

| | [, i

800 [200 400 600

Time (seconds})

200 400 600
Tima {seconds}

4 200 400 8OO

Time {seconds}

BOD 0

800

200 400 60D 8OO L] 200 400 600
Time (seconds) Time (seconds)

o 200 400 600 800]

Time {seconds}

Figure 8: icUDPcc Fairness. The three pairs of graphs correspond 1o three experiments. In each experiment, one UDF, one TCF, or one
icUDP ¢ connection conpetes with three TCP connections. The first graph in each pair shows the bandwidth achieved by the UDP, TCF, or
icUDPce connection;the second graph in each pair shows the bandwidth achieved by the three TCP connections. The topology contains 1wo
sender/receiver pairs; two TCP flows run between one pair and the third TCP connection and the experimental flow runs berween the other pair.

The UDP, TCP, or icUDP o connection runs the entire time. The two

TCP connections that share a sending and destination node start sending

at 100 and 200 seconds, and finish at 700 and 600 seconds, respectively; the third TCP connection starts at 300 seconds and ends at 500 seconds.

The bottleneck bandwidth is set 1o 100 Mb/s with no delay.

0

icUDPce on Reno icUDPcc on Vegas False Fast Retransmits Throughput
60 50 . ~ 51000
2 Linux 2.4 veoreen 4 i
0 50 £ 1000 Linux 2,4 (DSACK) - - - 338 Linux 2.4 }'5‘5‘;’3(:2{(‘; -
0 (a0 E iETCP o & 700 TGP -
@
=]
2 20 8 20 WMMM & el %388
@ e d T 2 200
10 10 2 45 {7 €100 { e
0 fis E o
3 4 5 8

7 3 4

Tima (s}

0 1 2

Time (s)

Figure 9: icUDPcc and icUDPco, vegas. The figures show
the behavior of icUDPcc when the control channel is built upon the
stock kernel Reno implementation (left) and on top of the icTCPy ¢gqs
layer (right). In both experiments, the number of outstanding packets is
graphed over time, and the bottleneck link is set to a 20 Kb/s throughput
and 5 ms delay.

Third, we demonstrate that icUDP¢ ¢ fairly shares net-
work bandwidth with competing TCP flows. Figure 8
shows how bandwidth is divided when UDP, TCP, or ic-
UDP¢ o compete against three TCP flows. The first pair
of graphs show that one UDP connection sending a large
amount of data prevents the three TCP connections from
obtaining much bandwidth. The second pair of graphs
show that when all four connections use TCP, the deliv-
ered bandwidth is approximately equal. Finally, the third
pair of graphs shows that one icUDP¢¢ connection com-
peting with TCP behaves similarly to TCP; that is, the
icUDP¢c flow backs off when there is contention. How-
ever, we note that icUDP ¢ does not behave exactly like
TCP. In the TCP graphs, bandwidth is smooth with three
total connections because the available bandwidth (100
Mb/s) is not saturated; it is only with four TCP connec-
tions (from 30 to 50 seconds), that fluctuations occur. In
the icUDPg¢ graphs, bandwidth fluctuations occur when
less contention exists.

Finally, we show that icUDP¢¢ can be configured to
use different types of congestion control. Figure 9 shows
over a longer time-scale that icUDP¢¢ follows the AIMD
behavior of the TCP Reno congestion window whereas ic-
UDPcc,vegas follows TCP Vegas behavior.

544 icTCPgrr

TCP’s fast retransmit optimization is fairly sensitive to
the presence of duplicate acknowledgments. Specifically,
when TCP detects that three duplicate acks have arrived,

10 18 20 25
Packet Detay Rate (%)

0 5 10 15 20 25 30

Packet Dalay Rate (%)

Figure 10: Avoiding False Retransmissions with icTCP rz.
On the left is the number of false retransmissions and on the right is
throughput, both as we vary the fraction of packets that are delayed (and
hence reordered) in our modified NistNet router. We compare three dif-
ferent implementations, as described in the text. The experimental setup
includes a single sender and receiver; the bottleneck link is set to 5 Mb/s
and a 50 ms delay. The NistNet router runs on the first router, intro-
ducing a normally distributed packet delay with mean of 25 ms, and
standard deviation of 8 ms.

it assumes that a loss has occurred, and triggers a retrans-
mission [4, 25]. However, recent research indicates that
packet reordering may be more common in the Internet
than earlier designers suspected [3, 7, 9, 55]. When fre-
quent reordering occurs, the TCP sender receives a rash
of duplicate acks, and wrongly concludes that a loss has
occurred. As a result, segments are unnecessarily retrans-
mitted (wasting bandwidth) and the congestion window is
needlessly reduced (lowering client performance).

A number of solutions for handling duplicate acknowl-
edgments have been suggested in the literature [9, 55]. At
a high level the algorithms detect the presence of reorder-
ing (e.g., by using DSACK) and then increase the dupli-
cate threshold value (dupthresh) to avoid triggering fast
retransmit.

Overview: icTCPgp is a user-level library that is robust
to packet reordering; we base our implementation on that
of Blanton and Allman’s work [9], although more sophis-
ticated approaches have been proposed [55]. icTCPgrr
mimics Blanton and Allman’s proposal quite closely: we
limit the maximum value of dupthresh to 90% of the win-
dow size and when a timeout occurs, dupthresh is set back
to its original setting of 3.

Implementation: The library implementation of ic-
TCPgR, libTCPRpg, is straightforward. The library keeps
a history of acks received; this list is larger than the ker-

10

80O

200
150
100

50

Relransmissions Throughput
160 350
Reno (FR) —— Reno
140 icEFR (FR) 300 ICEFR s
120 Reno (TO} ~wmmm 250
100

80
60
40
20

Retransmitted Packets
Throughput (Kb/s}

{x10ms}

11 12 13 14 15

Loss Rate (x 10°-3)

15 10 it 12 13 14

Loss Rate (x 10%-3)

Figure 11: Aggressive Fast Retransmits with icTCPgrg. On
the left is the number of retransmitted packets for both Reno and ic-
TCPg g — due to both retransmission timeouts (TO) and fast retrans-
mits (FR) — and on the right is the achieved bandwidth. Along the x-axis,
we vary the loss rate so as to mimic a wireless LAN. A single sender and
single receiver are used, and the bottleneck link is set to 600 Kb/s and a
6 ms delay.

nel exported ack list because the kernel may be aggressive
in pruning its size, thus losing potentially valuable infor-
mation. When a DSACK arrives, icTCP places the se-
quence number of the falsely retransmitted packet into the
ack list. The library consults the ack history frequently,
looking for these occurrences. If one is found, the library
will search through past history to measure the reordering
length, and thus set dupthresh accordingly.

Evaluation: Figure 10 shows the effects of packet re-
ordering. We compare three different implementations:
stock Linux 2.4 without the DSACK enhancement, Linux
2.4 with DSACK and reordering avoidance built into the
kernel, and our user-level libTCPg g implementation. On
the left, we show the number of “false” fast retransmis-
sions that occur, where a false retransmission is one that
is caused by reordering. One can see that the stock ker-
nel issues many more false retransmits, as it (incorrectly)
believes the reordering is actual packet loss. On the right,
we observe the resulting bandwidth. Here, the DSACK
in-kernel and libTCP g versions perform much better, es-
sentially ignoring duplicate acks and thus achieving much
higher bandwidth.

54.5 icTCPgrr

Our previous case study showed that increasing dupthresh
can be useful. In contrast, in environments such as wire-
less LANS, loss is much more common and duplicate acks
should be used a strong signal of packet loss, particularly
when the window size is small [47]. In this case, the op-
posite solution is desired; the value of dupthresh should
be lowered, thus invoking fast retransmit aggressively so
as to avoid costly retransmission timeouts.

Overview: We next discuss icTCPgrg, a user-level li-
brary of implementation of EFR that interprets small num-
bers of duplicate acks as strong signals of loss and thus
triggers fast retransmit aggressively [47]. The observa-
tion underlying EFR is simple: the sender should adjust
dupthresh so as to meet the number of duplicate acks it
could receive. This optimization is of particular impor-
tance in a wireless setting, where a small window size

11

Eifel RTO using icTCP Self-trained Eitel RTO

1200 Measured RTT

User-| leve! Karn-| Palndga {UL-KP}
UL-KP + 2 lines spike ﬁ"i

i § User-feve! Eifel RTOlww-
i
|

1000

800

{x10ms)

600 {

400

200

80
Time {s)

160 180 200 220 240 260 280 300
Time {s)

Figure 12: Adjusting RTO with icTCPg;se1. The graph on the
left shows three versions of libTCP g; yey. For each experiment, the mea-
sured round-trip time is identical; however, the calculated RTO differs.
The first line shows when the karn-partridge RTO algorithm [27] is dis-
abled in the kernel that it can be implemented at user-level with icTCP.
In the second experiment, we remove two lines of TCP code that were
added to fix the RTO spike; we show that this same fix can be easily pro-
vided at user-level, In the third experiment, we implement the full Eifel
RTO algorithm at user-level. In these experiments, we emulate a band-
width of 50 kbps, 1 second delay, and a queue size of 20. The graph on
the right shows the full adaptive Eifel RTO algorithm with a bandwidth
of 1000 kbps, 100 ms delay, and a queue size of 12.

makes it unlikely that the default setting of 3 can detect
loss and thus trigger fast retransmit.

Implementation: The libTCPgrgr implementation is
also quite straightforward. For simplicity, we only mod-
ify dupthresh when the window is small; this is where the
EFR scheme is most relevant. When the window is small,
the library frequently checks the message list for dupli-
cate acks; when it sees one, it computes a new value for
dupthresh and sets it.

Evaluation: Figure 11 shows the behavior of lib-
TCPgrgr versus the in-kernel Reno as a function of
loss rate in an emulated wireless network. Because lib-
TCPgrp interprets duplicate acknowledgments as likely
signs of loss, the number of fast retransmits increases (as
shown in the graph on the left) and more importantly,
the number of costly retransmission timeouts is reduced;
the graph on the right shows that achieved bandwidth in-
creases as a result.

5.4.6 iCTCPEi fel

The retransmission timeout value (RTQ) determines how
much time must elapse after a packet has been sent until
the sender considers it lost and retransmits it. Therefore,
the RTO is a prediction of the upper limit of the mea-
sured round-trip time (mRTT). Correctly setting RTO can
greatly influence performance: an overly aggressive RTO
may expire prematurely, forcing unnecessary spurious re-
transmission; a too conservative RTO may cause long idle
times before lost packets are retransmitted.

Overview: The Eifel RTO [30] corrects a number of
problems with the traditional karn-partridge RTO [27].
First, immediately after mRTT decreases, RTO is incor-
rectly increased; after some period of time, the value
of RTO decays to the correct value again. Second, the
“magic numbers” in the RTO calculation assume a low
mRTT sampling rate and low sender load; if these as-

50 100 110 120

sumptions are incorrect, RTO incorrectly collapses into
mRTT.

Implementation: We have implemented the Eifel
RTO algorithm as a user-level library, ibTCPg;se;. This
library needs access to three icTCP variables: mRTT,
ssthresh, and cwnd; from mRTT, it calculate its own val-
ues of srit (smoothed round-trip) and rttvar (round-trip
variance). The libTCPg;ye library operates as follows:
it wakes when an acknowledgment arrives, polls icTCP
for the new mRTT; if mRTT has changed, it calculates
the new RTO and sets it with icTCP. Thus, this library
requires safe control over RTO.

Evaluation: We have verified that libTCPg;fe cor-
rects these RTO problems and behaves identically as when
these fixes are implemented in the kernel; due to space
constraints, we do not show the (identical) in-kernel be-
havior. The progression of libTCPg;fe; improvements
is shown in the first graph of Figure 12; these experi-
ments were chosen to approximately match those in the
Eifel RTO paper (i.e., Figure 6). In the first experiment,
we disable the karn-partridge RTO algorithm [27] in the
kernel and show that karn-partridge RTO can be imple-
mented at user-level with icTCP; as expected, this version
incorrectly increases RTO when mRTT decreases. The
second version corrects this problem, but RTO eventu-
ally collapses into mRTT. Finally, the third version of lib-
TCPg; e adjusts RTO so that it is more conservative and
can avoid spurious retransmissions.

The second graph of Figure 12 is similar to Figure 10
of the Eifel paper and shows that we have implemented
the full Eifel RTO algorithm at user-level: this algorithm
allows RTO to become increasingly aggressive until a spu-
rious timeout occurs, at which point it backs off to a more
conservative value.

5.4.7 Discussion

From our case studies, we have seen a number of strengths
of the icTCP approach First, icTCP easily enables TCP
variants that are less aggressive than Reno to be imple-
mented simply and efficiently at user-level (e.g., TCP Ve-
gas and TCP Nice); thus, there is no need to push such
changes into the kernel. Second, icTCP easily enables
functional compositions: for example, we can plug in
our icTCPy¢gqs library underneath of our icUDPcc li-
brary. Third, icTCP is ideally suited for tuning parame-
ters whose optimal values depend upon the environment
and the workload (e.g., the value of dupthresh). Finally,
icTCP is useful for correcting errors in parameter values
(e.g., the behavior of RTO).

Our case studies have illustrated limitations of icTCP
as well. From icCM, we saw how to assemble a frame-
work that shares information across flows; however, any
information that is shared across flows can only be done
voluntarily. Furthermore, congestion state learned from

12

previous flows cannot be directly inherited by later flows;
this limitation arises from icTCP’s reliance upon the in-
kernel TCP stack, which cannot be forcibly set to a start-
ing congestion state. From icUDP¢ ¢, we saw that se-
quence numbers and acknowledgments had to be added
the data payload, requiring both sender and received to
utilize the icUDP¢ ¢ library. Further, icUDPc¢ requires
a separate TCP channel along the same path; this may lead
to additional overhead as well as inaccuracy.

5.4.8 Other Extensions

We evaluate the ability of icTCP to implement a wider
range of TCP extensions by considering the list discussed
for STP [38]. Of the 27 extensions, 8 have already
been standardized in Linux 2.4.18 (e.g., SACK, DSACK,
FACK, ECN, New Reno, and SYN cookies) and 5 have
been implemented with icTCP (i.e., RR-TCP, DCCP, Ve-
gas, CM, and Nice). We discuss some of the challenges in
implementing the remaining 14 extensions.

Packet Format Modifications: The icTCP framework
does not allow changes in the format or content of packets.
For example, an extension that puts new bits into the TCP
reserved field (e.g., the Eifel algorithm [26]) cannot be
implemented easily with icTCP. However, one approach
we can take is to encapsulate extra information within ap-
plication data; while requiring both sender and receiver to
use an icTCP-enabled kernel and the appropriate library,
this technique allows extra information to be passed be-
tween protocol stacks while remaining transparent to ap-
plications. Another solution we plan to investigate is how
icTCP can allow header information to be safely added or
modified.

Low-level Protocol Modifications: Another limitation
of the icTCP approach is its inability to directly alter
the low-level protocol that the stock TCP or UDP imple-
ments. For example, if receipt of a message generates
an acknowledgment, the user-level library on top of the
protocol cannot alter this basic behavior. One idea is to
place a packet filter [36] beneath the kernel stack and to
allow a library some control over its own packets, perhaps
changing the timing, ordering, or altogether suppressing
or duplicating some subset of packets as they pass through
the filter. However, such control must be meted out with
caution; ensuring such changes remain TCP friendly is a
central challenge.

Of the remaining 14 extensions, we believe that icTCP
provides sufficient information and control to implement
6, to at least some extent (i.e., limited transmit [3], ro-
bust congestion signaling [17], appropriate byte count-
ing [2], Eifel [26], equation-based TCP [20], and TCP
Westwood [53]). However, the icTCP versions of many of
these extensions will be more conservative than their na-
tive implementations. For example, equation-based TCP
specifies that the congestion window should increase and

Case Study icTCP Native
iIcTCPvegas 162 140
icTCPNice 191 267
icCM 438 1200*
icTCPgrRr 48 26

Table 3: Ease of Development with icTCP. The 1able reports
the number of C siatements (counted with the number of semicolons)
needed to implement the case studies on icTCP compared to a native ref-
erence implementation. For the native Vegas implemeniation, we count
the entire patch for Linux 2.2/2.3 [12]. For TCP Nice, we count only
statements changing the core transport layer algorithm. For CM, quan-
tifying the number of needed statements is complicated by the fact that
the authors provide a complete Linux kernel, with CM modifications dis-
tributed throughout; we count only the transport layer. *However, this
comparison is still not fair given that CM contains more functionality
than icCM. For RR, we count the number of lines in Linux 2.4 1o cal-
culate the amount of reordering. In-kernel RR uses sack/dsack, whereas
icTCPp g traverses the ack list.

decrease more gradually than Reno; icTCPgg, will al-
low cwnd to increase more gradually, as desired, but will
force cwnd to decrease at the usual Reno rate. Never-
theless, limited implementations of these extensions can
still be beneficial. For example, even though appropriate
byte counting (ABC) implemented on icTCP cannot ag-
gressively increase cwnd when a receiver delays an ack,
icTCP 4 gc can still correct for ack division.

In summary, approximately 8 of the 27 extensions
cannot be implemented with icTCP because the ex-
tensions either do not follow the existing TCP states
(e.g. T/TCP [10]) or they define a new mechanism (e.g.,
SCTP checksum [46]). Even though icTCP is not as flex-
ible as STP [38], we believe that the simplicity of pro-
viding an icTCP layer far more than outweighs this draw-
back.

5.5 Ease of Development

Finally, we address the question of how the icTCP frame-
work simplifies or complicates the development of TCP
extensions relative to directly extending TCP in the ker-
nel. To quantify complexity, we count the number of
C statements in the implementation (i.e., the number of
semicolons), removing those that are used only for print-
ing or debugging. Table 3 shows the number of C state-
ments required for the three case studies with reference
implementations: Vegas, Nice, CM, and RR. Comparing
the icTCP user-level libraries to the native implementa-
tions, we see that the number of new statements across
the two is comparable. Thus, we conclude that develop-
ing services using icTCP is no more complex than build-
ing them natively and has the advantage that debugging
and analysis can be performed at user-level.

6 Conclusions

We have presented the design and implementation of ic-
TCP, a slightly modified version of Linux TCP that ex-

13

poses information and control to applications and user-
level libraries above. We have evaluated icTCP across five
axes and our findings are as follows.

First, converting a TCP stack to icTCP requires only
a small amount of additional code; however, determin-
ing precisely where limited virtual parameters should be
used in place of the original TCP parameters is a non-
trivial exercise. Second, icTCP allows ten internal TCP
variables to be safely set by user-level processes; regard-
less of the values chosen by the user, the resulting flow
is TCP friendly. Third, icTCP incurs minimal additional
CPU overhead relative to in-kernel implementations as
long as icTCP is not polled excessively for new informa-
tion; to help reduce overhead, icTCP allows processes to
block until an acknowledgment arrives or until the end of
a round. Fourth, icTCP enables a range of TCP exten-
sions to be implemented at user-level. We have found that
icTCP framework is particularly suited for extensions that
implement congestion control algorithms that are less ag-
gressive than Reno and for adjusting parameters to better
match workload or environment conditions. To support
more radical TCP extensions, icTCP will need to be devel-
oped further, such as by allowing TCP headers to be safely
set or packets and acknowledgments to be reordered or
delayed. Fifth, and finally, developing TCP extensions
on top of icTCP is not more complex than implementing
them directly in the kernel and are likely easier to debug.

Our overall conclusion is that icTCP is not quite as
powerful as other proposals for extending TCP or other
networking protocols [38, 35]. However, the advantage of
icTCP is in its simplicity and pragmatism: it is relatively
easy to implement icTCP, flows built on icTCP remain
TCP friendly, and the computational overheads are rea-
sonable. Thus, we believe that systems with icTCP can,
in practice and not just in theory, reap the benefits of user-
level TCP extensions.

References
[1] M. B. Abbott and L. L. Peterson. A Language-based Approach to
Protocol Implementation. IEEE/ACM Transactions on Network-
ing, 1(1):4-19, Feb, 1993.

M. Allman. TCP Congestion Control with Appropriate Byte
Counting. RFC 3465, Feb, 2002,

M. Allman, H. Balakrishnan, and S. Floyd. Enhancing TCP’s Loss
Recovery Using Limited Transmit, Jan. 2001. RFC 3042.

M. Allman, V. Paxson, and W. R. Stevens. TCP Congestion Con-
trol, RFC 2581, Internet Engineering Task Force, Apr. 1999.

A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, N. C. Burnett, T. E.
Denehy, T. J. Engle, H. S. Gunawi, J. Nugent, and F. 1. Popovici,
Transforming Policies into Mechanisms with Infokernel. In SOSP
03, 2003.

H. Balakrishnan, H. S. Rahul, and S. Seshan. An Integrated Con-
gestion Management Architecture for Internet Hosts. In SIG-
COMM '99, pages 175-187, 1999,

J. Bellardo and S. Savage. Measuring Packet Reordering. In Pro-
ceedings of the 2002 ACM/USENIX Internet Measurement Work-
shop, Marseille, France, Nov. 2002.

E. Biagioni. A Structured TCP in Standard ML. In Proceedings
of SIGCOMM *94, pages 36-45, London, United Kingdom, Aug.
1994.

(2]
31
{4]
(5]

n

18]

9

(10]

[t

[12]
[13]
(14]

{15]

[16]

[17]

(18]

[19]

[20]

21

[22]

[23]

[24)
(23]

[26]

[27]

[28]

[29]

[30]

[31]

(321

[33]

[34]

E. Blanton and M. Allman. On Making TCP More Robust
to Packet Reordering. ACM Computer Communication Review,
32(1), Jan. 2002.

R. Braden, T/TCP - TCP Extensions for Transactions. RFC 1644,
Internet Engineering Task Force, 1994,

L. S. Brakmo, S, W. O’Malley, and L. L. Peterson. TCP Vegas:
New Technigues for Congestion Detection and Avoidance. In Pro-
ceedings of SIGCOMM 94, pages 24-35, London, United King-
dom, Aug. 1994.

N. Cardwell and B. Bak. A TCP Vegas Implementation for Linux.
http://flophouse.com/ neal/uw/linux-vegas/.

M. Carson and D. Santay. NIST Network Emulation Tool.
snad.ncsl.nist.gov/nistnet, January 2001.

T. Dunigan, M. Mathis, and B. Tierney. A TCP Tuning Daemon,
In §C2002, Nov. 2002.

A. Edwards and S. Muir. Experiences Implementing a High-
Performance TCP in User-space. In SIGCOMM '95, pages 196
205, Cambridge, Massachusetts, Aug. 1995.

D. Ely, S. Savage, and D. Wetherall. Alpine: A User-Level In-
frastructure for Network Protocol Development. In Proceedings
of the 3rd USENIX Symposium on Internet Technologies and Sys-
tems (USITS '01), pages 171-184, San Francisco, California, Mar.
2001.

D. Ely, N. Spring, D. Wetherall, and S. Savage. Robust Congestion
Signaling. In ICNP '01, Nov. 2001.

M. E. Fiuczynski and B. N. Bershad. An Extensible Protocol Ar-
chitecture for Application-Specific Networking. In Proceedings
of the USENIX Annual Technical Conference (USENIX *96), San
Diego, California, Jan. 1996,

S. Floyd. The New Reno Modification to TCP’s Fast Recovery
Algorithm. RFC 2582, Internet Engineering Task Force, 1999.

S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based
Congestion Control for Unicast Applications. In Proceedings of
SIGCOMM '00, pages 43-56, Stockholm, Sweden, Aug, 2000.

S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Extension
to the Selective Acknowledgment (SACK) Option for TCP. RFC
2883, Internet Engineering Task Force, 2000.

G. R. Ganger, D. R. Engler, M. F. Kaashoek, H. M. Briceno,
R. Hunt, and T. Pinckney. Fast and Flexible Application-level Net-
working on Exokernel Systems. ACM TOCS, 20(1):49-83, Feb.
2002.

1. Gojmerac, T. Ziegler, F. Ricciato, and P. Reichl. Adaptive Mul-
tipath Routing for Dynamic Traffic Engineering. IEEE Globecom
'03, 2003.

ISI/USC. Transmission Control Protocol. RFC 793, Sept. 1981.

V. Jacobson. Congestion avoidance and control. In Proceedings of
SIGCOMM 88, pages 314-329, Stanford, California, Aug. 1988.

V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High
Performance. RFC 1323, Internet Engineering Task Force, 1992.
P. Karn and C. Partridge. Improving Round-Trip Time Estimates
in Reliable Transport Protocols. In Proceedings of SIGCOMM 87,
Aug. 1987.

E. Kohler, M. Handley, and S. Floyd. Designing DCCP: Conges-
tion Control Without Reliability. www.icir.org/kohler/dcp/dcep-
icnp03s.pdf, 2003.

E. Kohler, M. F. Kaashoek, and D. R. Montgomery. A Readable
TCP in the Prolac Protocol Language. In Proceedings of SIG-
COMM ’99, pages 3-13, Cambridge, Massachusetts, Aug. 1999.
R, Ludwig and K. Sklower. The Eifel Retransmission Timer. ACM
Computer Communications Review, 30(3), July 2000.

C. Maeda and B. N. Bershad. Protocol Service Decomposition for
High-performance Networking. In Proceedings of the 14th ACM
Symposium on Operating Systems Principles (SOSP '93), pages
244-255, Asheville, North Carolina, Dec. 1993.

J. Mahdavi and S. Floyd. TCP-friendly unicast rate-
based flow control. endZend-interest mailing list,
http://www.psc.edu/networking/papers/tcp. friendly.html, Jan.
1997.

M. Mathis, J. Heffner, and R. Reddy. Webl100: Extended tcp in-
strumentation. ACM Computer Communications Review, 33(3),
July 2003.

M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective
Acknowledgment Options. RFC 2018, Internet Engineering Task
Force, 1996.

14

[35]

[36]

[37]

[38]

[39]

(401

[a1]

[42]

[43]

[44]

[45]
{46]

[47]

[48]

[49]

(50]

[51]

(52]

[53]

[54]

{55]

J. Mogul, L. Brakmo, D. E. Lowell, D. Subhraveti, and J. Moore.
Unveiling the Transport. In HotNets II, 2003.
J. C. Mogul, R. F. Rashid, and M. J. Accetta, The Packet Filter:

an Efficient Mechanism for User-level Network Code. In Proceed-
ings of the 11th ACM Symposium on Operating Systems Principles

(SOSP '87), Austin, Texas, November 1987.

J. Padhye and S. Floyd. On Inferring TCP Bebavior. In SIGCOMM
"01, pages 287-298, August 2001,

P. Patel, A. Whitaker, D, Wetherall, J. Lepreau, and T. Stack. Up-
grading Transport Protocols using Untrusted Mobile Code. In
SOSP "03, 2003.

V. Paxson, M. Allman, S. Dawson, W. Fenner, J. Griner, I. Heav-
ens, K. Lahey, J. Semke, and B. Volz. Known TCP Implementation
Problems. RFC 2525, Internet Engineering Task Force, Mar. 1999.
P. Pradhan, S. Kandula, W. Xu, A. Shaikh, and E. Nahum.
Daytona: A user-level tcp stack. http://nms.Ics.mit.edu/ kan-
dula/data/daytona.pdf, 2002,

K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Ex-
plicit Congestion Notification (ECN) to IP. RFC 3168, Internet
Engineering Task Force, 2001.

S. Savage. Sting: a TCP-based Nework Performance Measurement
Tools. In Proceedings of the 2rd USENIX Symposium on Inter-
net Technologies and Systems (USITS *99), pages 71-79, Boulder,
Colorado, Oct. 1999,

S. Savage, N. Cardwell, and T. Anderson. The Case for Informed
Transport Protocols. In Workshop on Hot Topics in Operating Sys-
tems, pages 58-63, Rio Rico, Arizona, Mar. 1999,

M. L. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing With
Disaster: Surviving Misbehaved Kernel Extensions. In Proceed-
ings of the 2nd Symposium on Operating Systems Design and Im-
plementation (OSDI '96), pages 213-228, Seattle, Washington,
Oct. 1996.

G. Siganos and M. Faloutsos. BGP Routing: A Study at Large
Time Scale, 2002.

1. Stone, R. Stewart, and D. Otis. Stream control transmission
protocol. RFC 3309, Sept. 2002.

Y. Tamura, Y. Tobe, and H. Tokuda. EFR: A Retransmit Scheme
for TCP in Wireless LANs. In IEEE Conference on Local Area
Networks, pages 2-11, 1998.

R. Teixeira, K. Marzullo, S. Savage, and G. M. Voelker. In Search
of Path Diversity in ISP Networks. In Proceedings of the Internet
Measurement Conference, pages 313-318, 2003.

C. A. Thekkath, T. D. Nguyen, E. Moy, and E. D. Lazowska. Im-
plementing Network Protocols at User Level. IEEE/ACM Trans-
actions on Networking, 1(5):554-565, 1993.

A. Venkataramani, R. Kokku, and M. Dahlin. Tcp-nice: A mech-
anism for background transfers. In Proceedings of the 5th Sym-
posium on Operating Systems Design and Implementation (OSDI
’02), pages 329-344, Boston, Massachusetts, Dec. 2002,

T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A User-
Level Network Interface for Parallel and Distributed Computing.
In Proceedings of the 15th ACM Symposium on Operating Sys-
tems Principles (SOSP '95), pages 40-53, Copper Mountain Re-
sort, Colorado, Dec. 1995.

D. A. Wallach, D. R. Engler, and M. F. Kaashoek. ~ASHs:
Application-specific Handlers for High-performance Messaging.
IEEE/ACM Transactions on Networking, 5(4):460-474, Aug.
1997.

R. Wang, M. Valla, M. Sanadidi, and M. Gerla. Adaptive Band-
\,X{/)lzdtl% O%gare Estimation in TCP Westwood. In /EEE Globecom

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. New-
bold, M. Hibler, C. Barb, and A. Joglekar. An Integrated Exper-
imental Environment for Distributed Systems and Networks. In
Proceedings of the 5th Symposium on Operating Systems Design
and Implementation (OSDI '02), pages 255-270, Boston, Mas-
sachusetts, Dec, 2002.

M. Zhang, B. Karp, S. Floyd, and L. Peterson. RR-TCP: A
Reordering-Robust TCP with DSACK. In 11th International Con-
ference on Nerwork Protocols (ICNP °03), June 2003.

