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Abstract

Current Data Stream Management Systems do not fully
exploit their adaptive nature to handle complex queries.
To date, such systems route stream tuples to operators
or operator paths based only on operator-level statistics.
Their optimizers ignore non-independent distributions, at-
tribute correlations, and tuple content. In this paper, we
propose a content-based tuple routing approach which, to-
gether with histogram-like statistics, allows a stream query
processing system 10 exploit non-independent distributions
and correlations instead of being hurt by them. We present
a framework for content-based routing in a stream query
processing system and an algorithm for learning content-
based routes automatically and efficiently. We present an
extensive experimental evaluation of content-based routing
based on a prototype implementation in TelegraphCQ. Our
results clearly indicate that good content-based routes can
be learned quickly and efficiently to improve query perfor-
mance significantly. We believe that any system that pro-
cesses complex queries over possibly non-uniform data,
even in a non-stream environment, can profit by being si-
multaneously adaptive and content-aware.

1. Introduction

One of the biggest advantages of database systems is
the use of declarative languages. As such, the system, not
the user, is responsible for devising the plans to execute
queries. Since the beginning, almost all commercial sys-
tems use a plan-first, execute-next approach [34] using an
optimizer based on dynamic programming to determine a
“best” plan. These optimizers rely heavily on statistics to
determine the size of intermediate tables and decide join or-
derings and access methods. A key limitation of the current
approach is that errors for estimates in intermediate statis-
tics grow exponentially [22]. One solution is to use some
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form of query re-optimization: modifying query plans dur-
ing execution {6, 23, 24, 27], or Eddies [3], a tuple-routing
approach to query optimization. Eddies provide the most
flexible approach possible as the plan is chosen on a tuple-
by-tuple basis. That is, it is possible to have the simultane-
ous execution of different plans for different tuples of the
same query. Eddies work as follows: every time a tuple ar-
rives at the Eddy (from either a data source or the output of
an operator), it decides where to route the tuple next. Rout-
ing decisions employ a greedy approach and rely on simple
operator statistics like selectivity, cost, and queue length.

As data streams applications are developed, we expect
that these applications will have streams with increasing tu-
ple rates, and that users will pose complex decision sup-
port queries. Consider the following example. Imagine that
we want to select those stocks from a stream of stocks that
are doing better than the NASDAQ average over both the
past week and the past year. To evaluate these predicates,
we need to route tuples to operators that evaluate the week
predicate and the year predicate. The routing decision re-
quires choosing which operator to evaluate first. However,
there seems to be a strong relationship between the stock
type and the performance of the stock over time. For exam-
ple, gold stocks did much better than tech stocks just after
the dot-com crash. If the optimizer knows about this rela-
tionship, it can route tuples from tech stocks to the weekly
operator first (where they are likely to fail the selection)
and gold stock tuples to the yearly operator first. That is,
a content-based routing policy can exploit the differences
across tuples and generate plans tailored to different input
classes to eliminate tuples sooner, decrease average tuple
delay, and improve overall system performance.

This paper is organized as follows. In the rest of this sec-
tion we describe work related to data streams and query
optimization. Section 2 introduces and motivates content-
based routing. Section 3 describes a framework for content-



based routing, Section 4 describes the Content-Learns al-
gorithm for learning content routes automatically and effi-
ciently, and Section 5 discusses the impact of content-based
routing on adaptivity. Section 6 presents simulation re-
sults and Section 7 presents experimental results from a
prototype implementation of content-based routing in Tele-
graphCQ. Conclusions and future work are presented in
Section 8.

1.1. Related Work

Approaches for estimating the sizes of intermediate ta-
bles accurately include some form of re-optimization [6, 23,
24, 27], join synopses [1], intermediate statistics [9], multi-
dimensional histograms [31], finding correlated attributes
[21], adaptive sampling [25], and automatic statistics main-
tenance [13, 36]. Dynamic optimization [2] proposed start-
ing competing plans in parallel but considered only single
table accesses. The work of [19] was probably the first to
employ a specific operator to choose plans. Later, query
scrambling [40] (changing plans on the fly to cope with un-
expected delays) was developed. Urhan and Franklin de-
veloped algorithms for dynamic pipeline scheduling [39].
These systems require new types of joins: partially pre-
emptive hash joins [30], symmetric hash joins [41], Xjoins
[38], ripple joins [20], etc. Related to this work is Jug-
gle [33], a re-order operator that produces important re-
sults faster. Other fundamental operators are Eddies [3] and
SteMs [32]. Examples of stream management systems in-
clude Aurora [10], NiagaraCQ [14], STREAM [29], Tele-
graphCQ [11], etc. Several authors have proposed improve-
ments to data stream systems regarding operator schedul-
ing [4], distributed data streams [37], and sharing of work
among several continuous queries [26]. [12] proposes an in-
teresting symmetry between data and queries where it is
possible to pose new queries to old data and feed new data
to old queries. [18] contains an excellent survey of data
streams systems. [17] addresses several of the criticisms di-
rected at Eddies, namely, the cost of keeping a state vector
per tuple and the cost of invoking the data-flow optimizer
every time a tuple enters the Eddy.

2. Content-Based Routing

In this section we introduce and motivate content-based
routing. For ease of exposition, we will focus on data stream
processing in the Eddies context throughout this paper. The
reader should bear in mind that Eddies handle traditional
relational queries as well, so our techniques apply to such
queries. Also, we restrict ourselves initially to continuous
filter queries over a single stream processed using a set of
filter operators which either pass or drop an input tuple.
Non-filter operators are considered in Section 4.4.

Correlated attributes and predicates pose a huge chal-
lenge to modern query optimizers [15, 36]. It is expen-

sive to track correlation in large, update-intensive databases
[21]. Furthermore, query optimization time increases sig-
nificantly if we try to account for all possible correlations.
Consequently, optimizers often ignore correlations by as-
suming independence, resulting in query plans that may
be far from optimal when correlations are present [15].
This problem is particularly severe in data stream systems
where streamn characteristics may vary over time, some-
times very rapidly. An effective solution to this problem
is re-optimization, that is, interleaving the optimization and
the execution phases of query processing [23, 24, 27]. Re-
optimization leverages the idea that we can compute ac-
curate statistics on query subexpressions cheaply during
query execution and detect when the optimizer’s assump-
tions or estimates are incorrect. For example, if the size of a
query subexpression computed during execution differs sig-
nificantly from its size as estimated by the optimizer, then
the rest of the query could be re-optimized taking this ac-
curate new information into account. The Eddies approach
[3], which we adopt in this paper, interleaves the optimiza-
tion and execution stages continuously at the granularity of
tuples. Thus, Eddies adapt fast to changes in stream and sys-
tem conditions as well as converge to very efficient plans in
the presence of correlated attributes and predicates.

An Eddy processes a query by routing input stream tu-
ples through operators specific to that query. While there is
no explicit notion of a query plan in an Eddy, the routes fol-
lowed by tuples effectively simulate query plans. We will
use an example continuous query from the network intru-
sion detection domain [7, 35] to illustrate the Eddies ap-
proach. We will use the same example later to motivate
content-based routing. The goal in intrusion detection is to
track packets in a network which signify a potential attack.
An example continuous query in an enterprise network is:

Track packets with destination address match-
ing a prefix in table 7', and containing the 100-
byte and 256-byte sequences “0xab23...98b” and
“0x76853...786ab” respectively as subsequences.

The lookup table 7' may contain addresses of subnet-
works with access to the critical data in the enterprise. The
byte sequences may represent patterns common to a spe-
cific type of network attack [7]. An Eddy for this query uses
three operators—QO17, O3, and O3 corresponding to the filter
conditions—over an incoming stream S of network pack-
ets. Operator O; performs a prefix-based join on the desti-
nation address attribute of incoming S tuples with T'. (O
could be a user-defined join as in [16].) Operators Oy and
O3 perform the 100-byte and 256-byte sequence matches
respectively. The Eddy will forward incoming 5 tuples to
one of O0;—03. If the tuple is not dropped by that opera-
tor, the Eddy will forward it to one of the remaining opera-
tors, and so on. Tuples that pass all operators are streamed
in the query result. Most tuples are routed through the most



selective operator path based on current statistics (exploita-
tion). A small fraction of the tuples is routed through alter-
nate paths to estimate the performance of these paths (ex-
ploration).

Let ¢; denote the current expected processing cost per
tuple for operator O;, and let 03, 0 < o3 < 1, denote
the current expected selectivity of O;. (Selectivity refers to
the fraction of input tuples passed by the operator.) Sup-
pose the following conditions hold: ¢; > ¢z > c2 and
o1 > o3 > oo. Given these statistics, a traditional opti-
mizer which ignores correlations will pick a plan for this
query containing the operators in the order O, O3, Oy. If
the filter conditions are truly independent, the Eddy’s rout-
ing will converge to the ordering O3, O3, 04, i.e., most tu-
ples will follow this route. However, the conditions corre-
sponding to Oy and O3 could be correlated since they cor-
respond to the same type of network attack, e.g., most tuples
that pass (fail) Oz may also pass (fail) Os. The Eddy will
observe this correlation when it explores the performance
of different orderings, and converge to the optimal Oz, O1,
O3 which outperforms Og, O3, Oy in this case.

Suppose the attack monitored by our example query is
underway on a noncritical subnetwork whose prefix is not
in T'. In this case, 02 and o3 will be very high and o; will be
very low for packets (tuples) coming from the attacker(s).
So, 01, Os, O3 will be the most efficient ordering for pro-
cessing these “attack packets”. For other packets, Oz, O;,
O3 will remain the best ordering as before. Since an attack
happens typically from some group of compromised hosts,
we can distinguish between the attack and non-attack pack-
ets based on the source address. Therefore, we can route
packets through Oy, O, O3 or through Oy, O, O3 based
on the source address to ensure that both attack and non-
attack packets are processed with high probability by the
corresponding optimal ordering.

Currently, an Eddy makes routing decisions based exclu-
sively on operator selectivity and cost estimates that repre-
sent each operator’s performance over all tuples the operator
has processed recently. Tuple content is ignored completely
while estimating these statistics and making routing deci-
sions. Specifically, the Eddy does not differentiate among
tuples based on content while estimating operator selectiv-
ity or cost. Our example above illustrates a scenario where
it is most efficient to route tuples through different opera-
tor orderings based on tuple content. This form of routing is
called content-based routing (CBR). Without CBR, an Eddy
ends up routing most tuples through the current best single
ordering. CBR gives an Eddy the ability to detect and ex-
ploit multiple operator orderings simultaneously for a query
when the input contains multiple tuple classes with differ-
ent behavior with respect to operators, and therefore, dif-
ferent optimal operator orderings. However, the following
questions need to be answered before we can judge whether

Valueof A] o1 |02 | o3 |
A=a 032 | 0.10 | 0.55
A=1D 0.31 | 0.20 | 0.65
A=c¢ 0.27 | 0.90 | 0.60

[ Overall ]0.30 | 0.40 | 0.60 |

Table 1. Content-specific selectivities

CBR is viable or not:
o Q1: Under what scenarios does CBR apply?

¢ Q2: How can we automatically and efficiently learn
and use good content-based routes?

¢ Q3: How does CBR affect adaptivity?
o Q4: How does CBR perform in practice?

We address these questions in the next four sections. Sec-
tion 3 addresses Q1, Section 4 addresses Q2, Section 5 ad-
dresses Q3, and Section 7 addresses Q4.

3. A Framework for CBR
3.1. Tuple Classes

Informally, CBR applies when the input tuples can be
partitioned into two or more fuple classes where each class
has a different optimal operator order for processing. To im-
plement CBR efficiently, these tuple classes must be distin-
guishable easily from one another. In this paper we will con-
sider tuples classes that can be distinguished from one an-
other based on tuple content, namely, the attributes in the
tuples. When a discrete-valued attribute A is used for CBR,
we use hash-partitioning on A to partition the input tuples
into different classes. Similarly, when a continuous-valued
attribute A is used for CBR, we use range-partitioning on
A. (Details of implementing hash and range partitioning are
given in Section 4.1.) Attributes used to distinguish tuple
classes are called classifier attributes.

3.2. Classifier Attributes

CBR applies when each input tuple class has an opti-
mal (single) ordering for processing that is different from
the optimal ordering of each other class. Informally, such a
case arises when the selectivity of some operator is corre-
lated with the content of some input attribute. The follow-
ing example illustrates such correlation and its effect.

Example 3.1 Consider an input stream S processed by
three operators O, O2, and Os. Let A be an attribute in
S which takes one of three values a, b, or ¢ with equal prob-
ability. Table 1 shows the respective selectivities of O1-O3
for tuples with A = a, A = b, and A = c, and the overall
selectivity of each operator on S tuples. Assuming O1-O3
have equal costs, if we only take overall selectivities into
account, then the best ordering for S tuples is Oy, Oa, Os.
However, note that the selectivity of O is correlated with



the value of A: the selectivity of O, for A =aand A = b
is much lower than Oq’s overall selectivity, and it is much
higher for A = c. Therefore, for tuples with A = a or
A = b, the ordering O, 07, O3 will outperform Oy, Og,
O3, while O1, O3z, O will outperform O3, Oy, O3 for tu-
ples with A = c. |

Informally, an attribute A is called a classifier attribute for
an operator O if the content of A is correlated with the selec-
tivity of O. As illustrated by Example 3.1, CBR is based on
identifying and exploiting such classifier attributes. The de-
gree of correlation between two distributions may be speci-
fied in a number of ways [28]. In this paper we use a specifi-
cation from Information Theory which is based on the con-
cept of gain ratio [28), described next.

Let R be a random sample of tuples processed by an op-
erator O. Let o be the overall selectivity of O for tuples
in R. Each tuple in R belongs to one of two classes: tu-
ples that O passes and tuples that O drops. The entropy [28]
of R, which is an information-theoretic metric used to cap-
ture the information content of R, is defined as:

sz log, ps )

where ¢ is the number of classes in R and p; is the fraction
of R belonging to class 4. In our case ¢ = 2, corresponding
to the tuples passed and dropped by O, so p; = o and p =
1 — o respectively. Therefore:

Entropy(R) = —ologyo — (1 —0)logy(1 ~ o) (2)

Let A be an attribute of tuples in R. Let vq,vg,...,vq be
the distinct values of A in R. The information gain of A
with respect to R, which represents the increase in informa-
tion about R gained by knowledge of A, is defined as [28]:

Entropy(R) =

d
InfoGain(R,A) = Entropy(R) - Z %Entropy(&)
=1

(3)
Here, R; is the subset of R with A = v;, and |R| (|Rs]) is
the number of tuples in R (R;). Gain ratio is a normalized
representation of information gam [28]

Splitlnformation(A) = ‘ *l gz(t I) 4
< |R| |R|

InfoGam( R, A)
SplitInformation(A)

Gain ratio is used widely in decision-tree learning algo-
rithms (e.g., ID3 [28]) to determine the attribute that best
classifies a given data set. Since classifier attributes serve a
similar purpose in our case, our formal definition of a clas-
sifier attribute is based on gain ratio.

Definition 3.1 (Classifier Attribute) An attribute A is a
classifier attribute for an operator O if for any large ran-
dom sample R of tuples processed by O, we have
GainRatio(R, A) > =, for some threshold . i

GainRatio(R, A) =

®

Example 3.2 We revisit Example 3.1. Let Table 1 now
represent the selectivities computed from random samples
R1, R,, and Ry of tuples processed by operators Oy, Ox,
and O3 respectively. Since A takes one of values a, b, or
¢ with equal probability, the samples will contain tuples
with A = a, A = b, and A = c in roughly equal pro-
portion. We can use Equations (2)—(5) to compute the
gain ratio of attribute A with respect to R;, Rg, and Rj:
GainRatio(Ry, A) = 0.33, GainRatio(Rz, A) = 0.63, and
GainRatio(R3, A) = 0.37. Notice that GainRatio(Rz, A)
dominates the others because of the strong correlation be-
tween the selectivity of Oy and the content of A. 0

Our definition of classifier attributes extends to classifier at-
tribute sets where the result of an operator is correlated with
a set of attributes instead of with any single attribute in that
set. That is, tuple classes in the input may be determined
by a set of attributes instead of a single attribute. We do
not consider classifier attribute sets in this paper, instead
we focus on single classifier attributes and their combina-
tions. While some of our techniques extend directly to clas-
sifier attribute sets, we defer a detailed exploration of this
issue to future work.

3.3. Run-time Overhead of CBR

Even when the input data has multiple tuple classes and
optimal orderings that differ across these classes, CBR may
not always improve overall performance because of the
extra run-time overhead that CBR incurs. There are two
forms of overhead associated with CBR: the routing over-
head of evaluating content-based conditions while making
routing decisions, and the learning overhead of learning
and maintaining good content-based routes automatically.
Therefore, CBR should be used opportunistically. Because
of the extra routing overhead, CBR will not be useful for
queries which contain a small number of cheap operators
only, e.g., simple predicate evaluators. However, there are
a variety of more expensive operators in stream systems
where the benefits of CBR apply: joins with stored rela-
tions or windowed streams, user-defined functions that per-
form regular-expression-based pattern matching, multime-
dia or GIS functions, etc.

4. Learning Routes Automatically

We are now ready to consider the problem of learn-
ing good content-based routes automatically for the CBR
framework introduced in Section 3. We will consider a sin-
gle input stream S with attributes Cy, Cy, ..., C} that
is processed by operators Oi,0s,...,0On, and describe
our Content-Learns algorithm to learn good content-based
routes automatically in this setting. For now we will as-
sume that all of attributes Cy, Cs, ..., Cy and operators
04,03, ...,0, are candidates for CBR. In Section 4.3 we




will present heuristics to prune the space of attributes and
operators that we consider for CBR.

Content-Learns consists of two continuous, concurrent

steps:

o Optimization: In this step, for each operator O; €
O1,...,0,, if one or more attributes in Cy,...,C
are classifier attributes for Oy, then we keep track of
the best classifier attribute for O;. Informally, we iden-
tify the attribute in C1, . . ., Cy, based on whose content
we can make the best routing decisions with respect to
O;. The operator-attribute combinations identified dur-
ing optimization are used for CBR by the routing step
as described in Section 4.2. If the selectivity of Oy is
not correlated with the contents of any attribute, then
we do not perform CBR with respect to O;. Details of
the optimization step are described in Section 4.1.

o Routing: In this step we perform CBR using the cur-
rent operator-attribute combinations identified by the
optimization step. Our routing algorithm for CBR,
which extends the original Eddies routing algorithm,
is described in Section 4.2.

4.1. The Optimization Step of Content-Learns

The goal of optimization is to identify for each opera-
tor O; € Os,...,0,, the best classifier attribute for O,
in C1,...,C. We cycle through the operators in a round-
robin fashion, so each operator is considered periodically.
When we consider operator O, which we call profiling Oy,
we identify the best classifier attribute for O;. To identify
the classifier attributes for O;, we have to measure the gain
ratio of Cy,...,Cj based on a random sample of tuples
processed by Oy; recall Section 3.2. To collect this random
sample R when O is profiled, the Eddy routes a fraction of
input tuples to O, before they are routed to any other op-
erator, and notes whether O; dropped each such tuple or
not. This technique requires the specification of two param-
eters: a probability for sampling an input tuple so that it will
be routed first to O, and a sample size to fix |R|. Once R
has been collected, we can compute GainRatio(R, C;) for
each C; € Ch,...,Cy, to determine the classifier attributes
for O,. If there are two or more such attributes, then the
attribute with maximum gain ratio is the best classifier at-
tribute for O,. Details of our implementation for profiling O
are outlined next.

Let D; denote the domain of potential classifier attribute
C;. For each C; we choose a partitioning function f; that
partitions D; into d partitions. If Cj is a discrete-valued at-
tribute, we choose a hash function that maps any v € D;
to one of d buckets. If Cj is a continuous-valued attribute,
we maintain running estimates of max(D;) and min(Dj)
and use a range-partitioning function to map any v € D,
into one of d partitions. Without loss of generality, let
v1,Vs,. .., vq denote the d partitions of each domain. (Note

that, e.g., partition v; of domain D, is not the same as par-
tition vy of domain D5.)

Content-Learns maintains two types of run-time data
structures:

1. Selectivity Matrix: Content-Learns maintains ad x k
selectivity matrix, denoted M, for each profiled oper-
ator O,. The rows of M; correspond to the d partitions
v1,...,vg of each attribute domain. The columns of
M, correspond in order to the k potential classifier at-
tributes C1, . . ., Cg. Informally, M;[4, j] represents the
selectivity of O; for tuples which map to the ith parti-
tion of the domain of C;. Each column of the matrix
is implemented as a hash table of selectivities. Once a
random sample R of tuples have been collected while
profiling Oy, we can compute M;[i, j] as the fraction
of tuples with f;(¢.C;) = wv; which are not dropped
by operator O;. In our implementation, we maintain
M[4, 7] incrementally as new tuples are added to R,
which has the advantage that we do not need to store
the sample R.

2. Weight Matrix: Content-Learns maintains a d x k
weight matrix, denoted W), for each profiled opera-
tor O;. The rows and columns of W; correspond to the
rows and columns of M. For the random sample R of
tuples collected when O is profiled (which is used to
compute M, [z, 7]) W[4, j] maintains the fraction of tu-
ples in R with f;(¢.C;) = v;. Informally, Wi, 5] rep-
resents the fraction of tuples that map to the ith parti-
tion of the domain of C; when O is profiled. W;[i, j]
is maintained incrementally similar to M [z, 5].

Once we have collected the random sample R of tu-
ples processed by operator O; while profiling O, we
can compute GainRatio(R,C;) (Equation (5)) for all
C; € Ci,...,Ck using matrices M; and W. From
Equation (2), Entropy(R) depends only on the over-
all selectivity of O; over R, which is the weighted sum
Z?:l Wi, j1My[i, 7] for any j. (Alternatively, the over-
all selectivity of O; over R is simply the fraction of tuples
in R passed by O;.) Similarly, Entropy(R;) in Equa-
tion (3) for InfoGain(R, C;) depends only on M;[i, j]. Fi-
nally, !—l—}}%"!—' in Equations (3) and (4) for InfoGain(R,C})
and SplitInformation(C};) is equal to Wi, 5].

So far we have seen how the classifier attributes for O,
can be determined by profiling O,. If there are one or more
such attributes, then the attribute with maximum gain ra-
tio, denoted C,az, is the best classifier attribute for Oy.
Even though Cp,. is the best classifier for Oy, using the
0;-Cinae combination for CBR may not improve overall
performance. (Details of using operator-attribute combina-
tions during routing are given in Section 4.2.) The reason
it may not improve performance is that we may already be
using some other operator-attribute combinations for CBR.



The additional benefit that O;-Cq. gives in this context
may be lower than the extra routing overhead that it in-
curs. We use a simple yet accurate technique to estimate the
overall benefit of adding O;-Cipex for CBR in the current
context. We simply start using O;-Cpnag for CBR along-
side the other operator-attribute combinations being used al-
ready, and measure the overall performance with and with-
out O;-Cinas. We characterize overall performance in terms
of the rate at which the Eddy can process input tuples, which
can be measured at negligible overhead. If the overall per-
formance improves when we start using O;-Crqq for CBR,
then we stick with it until the next time Oy is profiled. (Just
before we start profiling an operator O, we stop using any
O,-attribute combination being used for CBR.) Otherwise,
we stop using O;-Cpagz- In either case, we move on to pro-
file the next operator in our round-robin schedule. Note that
after computing gain ratio values for C1, . . ., Cy while pro-
filing O;, we may realize that Oy has no classifier attributes.
Then, we move directly to profile the next operator.

4.2. The Routing Step of Content-Learns

In this section we describe how we extend the original
Eddy routing algorithm to incorporate the operator-aftribute
combinations identified in the optimization step for CBR.
The routing algorithm implemented in the current Tele-
graphCQ release [11] does not take operator costs into ac-
count. This algorithm routes tuples to operators according
to a probability which is inversely proportional to the oper-
ators’ selectivities.! We call this algorithm Selectivity.

We designed Content-Learns to account for operator
costs along the lines of [17] and [5). Furthermore, we sepa-
rated the statistics gathering part so that operator selectivity
and cost statistics are now measured and updated for only
a sample of the tuples processed instead of for every sin-
gle tuple as done by the original implementation. In addi-
tion to reducing the run-time overhead of Eddies, this mod-
ification ensures that statistics are maintained in an unbiased
manner, e.g., independent of the dominant operator routes.
Again, the ideas are borrowed from [17] and [5]. Next, we
describe our improved version of the Eddies algorithm and
then describe our simple extension to incorporate CBR.

When an Eddy has to route a tuple ¢ to one of operators
Oy, ...,0n, the Eddy routes ¢ to the operator which has
minimum value of (1 — ¢)/cost, where o is the expected
overall selectivity of the operator and cost is the expected
cost of the operator to process a tuple. When CBR is be-
ing used, some operators may be tagged with a classifier at-
tribute. With CBR, when an Eddy has to route a tuple ¢ to
one of operators Oy, . . ., Oy, the Eddy routes ¢ to the oper-

1 Note that these selectivities represent the overall percentage of tuples
that pass an operator. They do not represent the percentage of some
class of tuples that passes an operator.

ator which has minimum value of (1 — o)/cost, where ¢ is
defined as follows for an operator O:

o If O is tagged with classifier attribute C;, then ¢
is the expected selectivity of O; for tuples ¢ with
£;(t'.C;) = f;(t.C;), which is equal to My[i, j] where
£i(t.C;) = v;. (We have used the same notation as in
Section 4.1.)

e If O, is not tagged with a classifier attribute, then o
is the expected overall selectivity of Oy, which is the
same value as that used always by the original Eddies
algorithm.

Although cost is defined in a content-specific manner just
like selectivity, we ignore this aspect for simplicity of pre-
sentation. Intuitively, for operators that have a classifier at-
tribute, CBR uses the content-specific selectivity of the op-
erator while making routing decisions. The content-specific
selectivity is available from the selectivity matrix for the op-
erator, For operators that do not have a classifier attribute,
CBR uses the overall selectivity of the operator across all
tuples as done by the original Eddy routing algorithm. Fur-
thermore, CBR defaults to the overall selectivity estimate
for attribute values for which the selectivity matrix does not
contain a content-specific estimate.

4.3. Pruning Operators and Attributes

So far we considered all attributes and all operators
as potential candidates for CBR. We now describe some
heuristics to prune this space. These heuristics often reduce
the learning overhead of CBR significantly without any no-
ticeable effect on the quality of content-based routes.

CBR applies when optimal operator orderings differ
across input tuple classes. That is, the relative positions of
operators differ across these orderings. However, if an op-
erator is very cheap or very selective with respect to the
other operators, or both, then it’s position will mostly re-
main unchanged across these orderings. This intuition trans-
lates into an effective pruning heuristic where we do not
consider very cheap (e.g., simple predicate evaluators) or
very selective operators for CBR. Similarly, we can ignore
operators that are very expensive or very unselective with
respect to the other operators because their position is likely
to remain unchanged across those orderings as well.

Similar to pruning operators, there are some effec-
tive heuristics to prune the attributes considered for
CBR. For example, we can ignore monotonically in-
creasing (or decreasing) attributes such as timestamps or
sequential identifiers which typically are generated syn-
thetically. Discrete-valued attributes with large domains,
e.g., a comments string attribute, may be ignored. (It is ad-
visable to ignore long attributes for CBR to keep routing




overhead low.?) While it is not hard to detect such at-
tributes automatically, the required information often is
available from the schema definitions.

4.4. CBR for Non-Filter Operators

We have focused so far on filter operators that either pass
or drop an input tuple. This class does not capture, e.g., non-
foreign-key join operators, limiting the scope of our tech-
niques. However, our techniques apply to non-filter opera-
tors with one simple modification. We have used the filter
property of an operator only to compute entropy in Equa-
tion 2 which contributed to the gain ratio value used to
identify classifier attributes. The two-class notion of passed
and dropped tuples is meaningless for non-filter operators
whose “selectivity”—the expected number of tuples pro-
duced per input tuple-—can be any non-negative real num-
ber. Our real purpose here is to quantify the skew in content-
specific operator selectivities with respect to the overall se-
lectivity. Gain ratio is one proven technique to quantify this
skew, which is used widely in decision-tree learning [28].
There are other techniques to quantify this skew, e.g., vari-
ance, which apply to non-filter operators. Therefore, our
techniques for CBR apply to non-filter operators provided
the gain-ratio-based test for classifier attributes is replaced
by an appropriate test that applies to non-filter operators.

5. Adaptivity

Since the Eddies architecture has been designed to sup-
port adaptive processing, a relevant question to ask is how
our extensions to support CBR in Eddies affect adaptivity.
Adaptivity refers to the ability of the system to find an ef-
ficient plan quickly for the new data and system character-
istics when these change. CBR increases both the learning
overhead and the routing overhead of Eddies. Fundamen-
tally, reducing run-time overhead is at odds with improving
adaptivity [5, 11]. The approach we have adopted in this pa-
per is to keep run-time overhead as low as possible while
settling for slower adaptivity. So, we profile only one oper-
ator at a time, which may fail to adapt fast if the classifier at-
tributes of an operator change in between two of its profiling
phases. One possible extension to our approach is to contin-
uously maintain all entries M;[i, j], Wi[i, 7], 1 < i < 4,
for each O;-C; operator-attribute combination being used
for routing. This extension will enable us to track the corre-
sponding gain ratio values so that we can stop using O;-C}
immediately if this correlation reduces significantly. There
are various other techniques here with different tradeoffs
between run-time overhead and adaptivity. We defer a de-
tailed exploration of this spectrum to future work.

2 Note that this heuristic does not contradict the intrusion detection ex-
ample in Section 2. In that example, the long attributes are analyzed
only by the operators, while CBR checks only the four-byte source ad-
dress attribute,

6. Simulation Results

A major focus of this work was to add two content-based
routing policies to TelegraphCQ. However, we started by
adapting the simulator used in [37] to include content-based
routing. The simulator allowed us to compare content-based
routing against more advanced policies not available in
TelegraphCQ. It also allowed us to measure the average tu-
ple delay and to include a routing-cost penalty to content-
based policies. Note that the average tuple delay is a mean-
ingless measure in the current implementation of Tele-
graphCQ because the system uses the stack model of op-
erator scheduling. With this model, TelegraphCQ processes
each input tuple completely before starting with another tu-
ple. As such, if all operators have a selectivity of less than
or equal to 100%, then the inter-operator queues will never
contain more than one unprocessed tuple. Therefore, bad
routing decisions will not affect the average delay time that
tuples wait in queues because no tuples are waiting in any
operator queue. Instead, bad routing decisions affect how
long it takes to drop a tuple, the total number of routing
calls, and the total execution time. Note that output tu-
ples need to satisfy all operators and therefore take more
or less the same time regardless of the routing policy used.
Note also that it is not possible to implement policies Q, T,
SCQ and WSCQ? [37] in TelegraphCQ because the opera-
tor queues will have at most one tuple, and because these
policies all need queue length to represent the load level of
operators,

6.1. Simulator Setup

The goal of the simulations was to quickly explore sce-
narios where CBR outperforms other policies. In this sec-
tion, our routing policy does not leamn correlations and does
not use sampling. These advanced features where left for
the next section. Instead, for the simulations, the Eddy with
CBR knows which attribute is the classifier. Furthermore,
the Eddy with CBR updates statistics for every tuple instead
of using sampling. In fact, the simulation results lead us to
implement these features in the real implementation of CBR
in TelegraphCQ (Section 7) as a way to keep the CBR over-
head small.

As for other routing policies, in [37], WSCQ was shown
to have the best overall performance. Therefore, we com-
pare only WSCQ and content-based routing.

3 With policy Q, the Eddy routes tuples to the operator with the shortest
gueue, With policy T, the Eddy routes tuples to operator with biggest
ticket number. T reverts to Q when the operators are overioaded. With
SCQ tuples are routed to the operator with greater benefit where the
benefit takes into account selectivity, cost, and queue length. WSCQ
is a variation of SCQ where tuples are routed to an operator with a
probability proportional to the square of the benefit.



[ [Opl [Op2 [Op3 [ Classtotal |
Class1 | 5% 100% | 100% | 5%
Class2 | 100% | 5% 100% | 5%
Class3 | 100% | 100% | 5% 5%

[Overall | 68.3% | 68.3% | 68.3% | |

Table 2. Selectivities used for simulation’s
base experiment.
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Figure 1. Average tuple delay for selectivities
of base experiment.

The base case was a query with three operators over a
stream with 100,000 tuples. The interval between tuples was
set at 0.01 time units. Following the values used in [37], the
available CPU per time unit was set at 300. The available
CPU per time unit limits how many tuples can be processed
by an operator. The CPU cost (the cost to process one tuple
in one operator) was varied from 0.5 to 5 units. As an ex-
ample, if the CPU cost to process an operator was 5 units,
then the CPU could process 60 tuples per time unit.

[37]’s stream generator was changed such that there were
three classes of tuples, with all classes equally likely to be
generated and with the selectivities shown in Table 2. Al-
though all operators had an overall selectivity of 68.3%, for
one class of tuples the true selectivity was 5% while for the
other two classes of tuples the true selectivity was 100%.
All classes of tuples had a 5% chance of passing all three
operators.

6.2. Average Tuple Delay

We used the simulator with the previous setup and var-
ied the CPU cost from 0.5 to 5. The average tuple delay is
shown in Figure 1.

As the CPU cost is increased, the number of tuples in
the operator queues also increases. As such, the average tu-
ple delay grows exponentially. It grows faster with WSCQ
because this policy is unable to learn that the underlying
stream is composed of three classes of tuples, each of which

| [Opl [ Op2 | Op3 [ Class total |

Skew 5/100 | 5% 100% | 100% | 5%
Skew 15/58 | 15% | 58% | 58% | 5%
Skew 25/45 | 25% | 45% | 45% | 5%

[Skew 35/38 | 35% | 38% | 38% | 5% |

Table 3. Selectivities for tuples of Class 1
for different skews. Selectivities for tuples of
Classes 2 and 3 are set similarly.

has different selectivities with respect to the operators. The
content-based policy sends tuples to the right operator. That
is, it sends tuples of class 1 to operator 1 first, it sends tu-
ples of class 2 to operator 2 first, etc. Thus, the content-
based policy is able to drop tuples sooner, maintain shorter
queues, and keep the average tuple delay small. Note that
WSCQ overloads the system when the CPU cost reaches 4.5
units. Using WSCQ, the average tuple delay jumps from 0.4
units to 22.1 units to 123.8 units as the cost to process one
tuple increases from 4 to 4.5 to 5 units. Using the content-
based policy, the average tuple delay grows from 0.07 units
to 0.09 units to 0.12 units as the CPU cost increases from 4
t0 4.5 to 5 units.

The selectivities of Table 2 are highly favorable for a
content-based routing policy because the penalty of mak-
ing the incorrect decision is very big. That is, when a tuple
of, say, Class 1 arrives, if the Eddy makes the right deci-
sion and routes it to operator 1, there is a 95% chance that
the tuple will be dropped. However, if the Eddy routes it to
operators 2 or 3, there is a 0% chance that the tuple will
be dropped. In this case, the tuple will consume CPU time
when it is processed, increasing the queue length, which in
turn, increases the average tuple delay time. On the other
hand, if the difference between operator selectivities is not
so skewed, content-based routing provides less benefit. The
following experiment explores other skews.

The selectivities in Table 3 were chosen so that the over-
all selectivity was kept constant for the different skews. The
average tuple delays corresponding to these selectivities are
shown in Figure 2.

The improvement in the average tuple delay of using the
content-based routing policy is shown in Figure 3. Note,
however, that with a content-based routing policy, a system
is likely to incur higher routing costs. To model that cost, an
extra routing cost equal to 50% of the processing cost was
added®. That is, if the operator CPU cost is 3 units per tu-
ple processed, the extra routing cost for the content-based

4 'We verified this value through experimental results (shown in Section
5) that content-based routing has a routing overhead 50% higher than
selectivity routing. Since selectivity routing is actually simpler to im-
plement than WSCQ, the 50% extra routing overhead considered here
is an upper limit.
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Figure 3. Speedup due to Content (no exira
routing cost).

routing policy will be 1.5 units per tuple routed. These re-
sults are shown in Figure 4.

As can be seen, even with extra routing overhead,
content-based routing provides very substantial improve-
ments over WSCQ. The more skewed the selectivi-
ties are, and the more costly it is to process a tuple, the
larger the improvement provided by content-based rout-
ing.

In one extreme, when the skew is very high, content-
based is between a factor of 2 to a factor of 5.5 faster
than WSCQ. On the other extreme, when there is no skew,
content-based routing is between 8% and 17% worse than
WSCQ because of the extra routing overhead and because
WSCQ takes into account the queue length in the opera-
tors. We note that this was the result that lead us to develop
a CBR algorithm with very low routing overhead (described
in Section 4 and evaluated in Section 7). In the experimental
results of Section 7 we show that the overhead of content-
based routing in practice is very low and content-based rout-
ing is never worse than the TelegraphCQ policy.

7. Experimental Results

We now describe an experimental evaluation of our CBR
techniques. We have studied CBR using both a simulator
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Figure 4. Speedup due to Content (with extra
routing cost).

and a prototype implementation in TelegraphCQ [11].

In our prototype, some features of our CBR algorithm
from Section 4 have not been completed yet. The relevant
features among these are: (i) operator costs are not being
measured, so costs are assumed to be the same for all oper-
ators; (ii) we do not compare performance with and without
using a chosen operator-attribute combination before using
it for routing; (iii) pruning heuristics are not used. The im-
plementation of these features is straightforward as we have
described, and is scheduled as immediate future work.

- 7.1. Experimental Setup

Section 4.2 described most details of our implementa-
tion of CBR in TelegraphCQ, and the non-content-based Se-
lectivity algorithm in TelegraphCQ. To bring out the differ-
ences between the learning overhead and the routing over-
head of CBR, our experiments include a routing algorithm
called Content-Knows which does not need to learn clas-
sifier attributes automatically. Instead, Content-Knows is
“told” which attribute is the best classifier for each oper-
ator. Effectively, Content-Knows is Content-Learns without
the learning overhead.

To speedup the computation of entropies, we use a table
with 101 precomputed entries. Each entry corresponds to a
selectivity value o € {0.00,0.01,...,1.00] and stores the
corresponding entropy computed from Equation 2.

For our experiments, we created a synthetic benchmark
based on a star schema. Instead of the central fact table,
we used a data stream S. Our experiments use N-way join
queries of the following form which join incoming S tu-
ples with N dimension tables d1, d2, ..., dN:

SELECT * FROM stream S8, dl, d2, ..., dN

WHERE s.fkdl = dl.pk // Opl
AND s.fkd2 = d2.pk // Op2
AND s.fkdN = dN.pk // OpN

A star schema was chosen for two reasons. First, it seems
that the majority of queries over streams refer to one single
stream source that joins with zero or more normal tables,



] [ Operator 1 | Operator 2 | Operator 3 |

Class 1 | 100% 50% 0%

Class 2 | 50% 50% 50%

Class 3 | 10% 20% 30%
[Overall [ 533% | 40% [267% |

Table 4. Content-specific selectivities

which is similar to what queries over star-schemas do. Sec-
ond, it seems that the majority of data streams applications
have streams that represent facts (traffic information; on-
line purchases; search engine requests; stock trading; etc.)
which then join with dimensions (speed sensors and carlD;
productID, costumerID, and date; keyword, client IP, and
browser version; and stockID, stockType, and date; etc.).
For each query, a stream of 100,000 tuples was generated.
Depending on the query, between two to eight dimension ta-
bles containing 10,000 tuples each are used.

As each new stream tuple arrives, the Eddy decides to
which of N SteMs, or join operators, to route it to.3 Our
stream generator is able to generate tuples with any kind
of non-independence between the classifier attribute anrC
and the selectivity of the join operators. For instance, it
can generate a stream with the characteristics in Table 4.
In this stream, tuples of Class 1 have 0% chance of find-
ing a matching tuple when probing operator 3’s SteM and
have a 100% chance of finding a matching tuple when prob-
ing operator 1’s SteM. Therefore, a clever algorithm for this
streamn will send Class 1 tuples to Operator 3 first, Class 3
tuples to Operator 1 first, then to Operator 2, and finally to
Operator 3, and Class 2 tuples to any operator. In addition
to the running time, we use the number of routing calls as
the performance metric in some experiments. The justifica-
tion for using routing calls is that it shows a clearer picture
of the quality of the routing algorithm regarding its abil-
ity to find the most selective operators. A bad routing algo-
rithm will miss opportunities to route a tuple to the most se-
lective operator, e.g., a tuple may be routed several times
before being dropped. On the other hand, the running time
represents overall performance, including the overhead of
learning and routing.

7.2. Benefits of CBR

In this section we present results from experiments
where we studied the performance of CBR with re-
spect to the amount of correlation between operator selec-
tivity and attribute content. We added additional attributes
to the input stream apart from the foreign keys correspond-
ing to the dimension tables. One such attribute, denoted

5 Each hash join is composed of two SteMs. Tuples from one relation in
a join build into one of the SteMs and probe into the other. Although
the query plan contains a total of 2N SteMs (2 per join), half of them
will be build SteMs for incoming stream tuples.

[ [Opl [ Op2 [ --- [ OpN |
Class1 | A B ..« | B
Class2 | B A ... | B

ClassN | B B 1A
Table 5. Selectivities for class/operator pairs

N= N=4 =6 N=8
A B B B B
5% | 100% | 100% | 100% | 100%

15% | 33% | 69% |80% |85%
25% | 20% 58% | 12% | 79%
35% | 14% 52% | 68% | 76%
45% | 11% | 48% | 64% | 73%
55% | 9% 45% 62% | T1%
65% | 8% 43% 60% | 69%
5% | 1% 41% 58% 68%
85% | 6% 39% 57% 67%
95% | 5% 37% 55% 66%

Table 6. Selectivities A and B for different
number of operators N in the experiments

airC, is the one whose content is varied in the exper-
iments in this section to vary the correlation between
input content and the selectivity of the N join opera-
tors. The content of the other additional attributes is chosen
randomly, so they are uncorrelated with operator selectiv-
ities. These attributes enable us to test the effectiveness
of Content-Learns at identifying the right classifier at-
tribute. Based on this setup, attrC is the only potential
classifier attribute in the input stream. While this infor-
mation is provided to the Content-Knows algorithm, the
Content-Learns algorithm must learn the classifier at-
tribute to be able to use CBR.

In the following experiments, streams with as many tu-
ple classes as joins were used. For example, for a 5-way join
query, the domain of attrC had five values. The motivation
is to evaluate situations where the complexity of data and
the complexity of queries grow in a similar way. For each
stream, tuple classes at random were generated with equal
probability. The selectivities of the operators for tuples in
one class were different from the selectivities of operators
for tuples in another class. Selectivities were assigned as
shown in Table 5. That is, for each class, there is one op-
erator whose selectivity (A) is different from the selectivi-
ties of the other operators (B). The aggregate selectivity of
Opl A Op2 A... OpN was kept constant at 5% by choos-
ing the values for A and B as shown in Table 6. (Aggregate
selectivity is varied in Section 7.5.)




In the upper-right triangular region in Table 6 where
A < B (marked in bold), a clever routing algorithm can ex-
ploit the selectivity skew by routing tuples first to the lower
selectivity operator corresponding to A. In the lower-left re-
gion where A > B, a clever routing algorithm will avoid
the A operator and route tuples through B operators first.
The N-way join query was run for two, four, six, and eight
join operators, using selectivities as given by Tables 5 and
6. The results for two and six joins are shown in Figure 5
and Figure 6 respectively. The results for the other queries
are similar in the sense that the curve for Content-Learns is
below® the one from Selectivity, and having a similar num-
ber of routing calls only when the values of A and B are
close (and therefore, when routing decisions become less
relevant). Also, the difference in number of routing calls
between Content-Learns and Selectivity is largest in the left
part of the graph, i.e., when the selectivity skew is high.
As skew decreases, both algorithms require essentially the
same number of routing calls. Finally, as the skew increases
again, Content-Learns incurs fewer routing calls than Se-
lectivity, although by a much smaller margin. Furthermore,
in all cases, Content-Learns closely follows the curve of
Content-Knows. This shows that Content-Learns is learn-
ing the classifier attribute correctly and quickly.

Overall, the higher the skew between the selectivity val-
ues A and B, especially when A < B, the greater the ex-
tent by which Content-Learns outperforms Selectivity. At
most, Content-Learns outperforms Selectivity by perform-
ing 65.0% fewer routing calls (with eight operators and
the largest skew). Across all experiments, when A < B,
Content-Learns required on average 20.6% fewer routing
calls, and when A > B, Content-Learns required 9.3%
fewer routing calls. That is, it is more useful to know which
operator is different by being more selective, than it is to
know which operator is different by being less selective.
Overall, Content-Learns required 14.7% fewer calls.

Why do the initial skew (A < B) and the final skew
(A > B) yield different results? This difference is ac-
counted for by the likelihood of finding the most selec-
tive operator and the difference between the most and the
least selective operators. For instance, for the 6-way join
query, initially there is a 1/6 chance of finding the A oper-
ator which has a selectivity of 5%, while at the end of the
curve, there is a 5/6 chance of finding any of the five B op-
erators that have a selectivity of 55%.

7.3. Quality of Learning

To study the quality of Content-Learns, we ran the N-
way join query with four, six, and eight joins. Each query
was run over 50 streams of 100,000 tuples each and with

6 There were a few statistically insignificant points were Selectivity had
slightly less (at most 0.3% less) routing calls than Content-Learns in
the region where the two curves meet.
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random amounts of correlation between values of attribute
attrC and the selectivities of each join operator. We included
additional attributes (a constant, a sequence number, and
random numbers as the foreign keys) whose content was
not correlated with any of the selectivities of the opera-
tors. Therefore, Content-Leamns has to learn that the right
classifier attribute is attrC among all attributes in the input
stream. There were 6, 8, and 10 extra attributes not corre-
lated with any operator for the queries with 4, 6, and 8 joins
respectively. The results, reported in Figures 7 and Fig-
ure 8, show that Content-Learns is very effective at learn-
ing the right classifier. Out of the 16 million routing calls,
Content-Learns used the wrong classifier only 1.2% of the
time, yielding on average 20%, 28%, and 33% fewer rout-
ing calls than Selectivity for the queries with 4, 6, and 8
joins respectively.

7.4. Run-time Overhead of Learning

At first, we expected Content-Learns to have higher
run-time overhead——extra learning and routing—than both
Content-Knows and Selectivity. This overhead has three
components: the storage overhead for content-based selec-
tivities and weights, the cost of gathering and updating these
statistics in addition to operator statistics, and the cost of
computing gain ratio to identify classifier attributes. How-
ever, as seen in Figure 9, in practice, maintaining these ex-
tra statistics and computing the gain ratio does not incur a
significant amount of run-time overhead. The reason is that
the extra statistics are only updated during operator profil-
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ing (on average, one out of 8 tuples is sent to the profiled
operator first) and the gain ratio is computed only after 500
samples have been collected (or around 4000 tuples).

For all policies and for all queries, the overhead cor-
responding to routing and updating statistics was around
1.75%. For the Selectivity policy, this represented 2.2 mi-
croseconds per routing decision and for Content-Learns it
represented 2.4 microseconds per routing decision.

With respect to storage overhead, Selectivity uses one
double value per operator to store the operator’s selectiv-
ity. Content-Knows stores one hash table of selectivities
per operator-classifier combination used for CBR. Since
we have at most one classifier attribute (attrC) in our ex-
periments, the number of selectivity hash tables needed by
Content-Knows is at most the number of operators (= N).
All attributes in our experiments are discrete-valued, so a
selectivity matrix in Content-Knows stores pair-wise se-
lectivities of the form (attrC=X, o(0;)) in a table hashed
by the value X of a#trC. Content-Learns requires every-
thing that Selectivity requires, plus a hash table of selec-
tivities for each potential classifier attribute while profiling
an operator. Each hash table contains 32 buckets and each
bucket stores one selectivity value of type double. Further-
more, Content-Learns requires also one hash table per oper-

ator O, for which an O;-attribute combination is being used
for CBR. Thus, for Content-Learns, the total storage over-
head grows at most as O((#Potential classifiers + #Ops) *
Hash_table_size). An N-way join in our experiments has N
operators and N+3 potential classifier attributes (including
attrC). For N = 8 and for hash tables containing 32 4-
byte doubles, this overhead comes to 2432 bytes. The corre-
sponding weight matrices require other 2432 bytes totalling
an overhead of 4864 bytes.

7.5. Robustness of Performance

In Section 7.2, the choice of selectivities made routing
tuples to operators difficult for the Selectivity routing algo-
rithm because all operators appeared to be equally selective.
Each operator had selectivity A for one class of tuples and
B for all other classes. Thus, in all cases, the operators ap-
peared to have a selectivity of (4 + B(N — 1))/N, for the
N-way join. In the following experiments, selectivities are
random multiples of 10 between 0 and 100. The N-way join
query was run with 2, 4, 6, and 8 operators using 50 differ-
ent input streams. Figure 10 shows the improvement in run-
ning time of Content-Learns versus Selectivity.

1t is clear from Figure 10 that a content-based routing al-
gorithm can improve performance significantly compared
to an algorithm that ignores tuple content. Note that the
larger the number of operators involved, the more oppor-
tunities are available for improvement.

The selectivities used in the experiments so far were all
low. In Section 7.2, the overall aggregate selectivity was
kept at 5%. In Section 7.3 and in the previous experiment,
the operator selectivities were random without any guaran-
tee on the aggregate selectivity. On average, that aggregate
selectivity was very close to the expected aggregate selec-
tivity of 0.5 for each stream (with N = 2, 4, 6, and 8 oper-
ators) or about 8% on average across all streams. This sec-
tion explores the space of aggregate selectivities from 5%
to 35%. For this experiment, the 6-way join query was run
with “random” selectivities. These selectivities were cho-
sen with the restriction that the overall aggregate selectivity
was kept at some pre-determined value of 5%, 15%, 25%, or
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Figure 11. Varying aggregate selectivity: per-
centage of total time that Content-Learns is
faster than Selectivity (for 6-way join queries)

35%. In each case, 50 streams of 100,000 tuples were pro-
cessed. The results appear in Figure 11.

8. Conclusions and Future Work

In this paper we showed how the adaptive architecture of
a Data Stream Management System can be extended with
content-based learning and routing to enable the system to
exploit non-independent distributions and correlations in-
stead of being hurt by them. Our most important contribu-
tion was to show that this content-based learning and rout-
ing can be done very cheaply and still achieve relevant per-
formance improvements. We presented the Content-Learns
algorithm which learns good content-based routes automat-
ically and showed that the overhead of maintaining the extra
statistics and computing gain ratio is negligible when com-
pared to the Selectivity algorithm.

Our prototype implementation indicates that CBR can
improve execution time by up to 20% when compared with
routing based on operator statistics alone. Whenever skew
was present, Content-Learns yielded better results than Se-
lectivity in all experiments, both in the number of routing
calls as well as in absolute running time. When no skew was
present, Content-Learns was at most 0.3% worse than Se-
lectivity. In addition, the performance comparison between

Content-Learns and Content-Knows showed that Content-

Learns leams classifier attributes correctly in real time.
While CBR seems to be a promising approach in stream

query processing, many issues remain to be explored:

o In this paper we considered only operator-attribute
combinations as the basis for CBR. This approach
could be extended to consider combinations of oper-
ator sets (or lists) and attribute sets. The relevance of
classifier attribute sets was discussed briefly in Sec-
tion 3.2. Operator sets for CBR are useful in the pres-
ence of non-commutative operators and also to reduce
routing overhead.

¢ Some run-time parameters in our implementation of
CBR are not learned automatically yet. These include
the hash and range partitioning functions, the sched-
ule for profiling operators, and the sampling rate and
sample size for computing gain ratio.

e Does CBR apply to adaptive plan-based stream sys-
tems like STREAM [5] and to adaptive database sys-
tems like Leo [36]? Based on initial studies, we expect
most of our techniques to apply directly to plan-based
stream systems, but further investigation is needed.
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