- Computer
Sciences
Department

Using Destination-Set Prediction to Improve
the Latency/Bandwidth Tradeoff in Shared
Memory Multiprocessors

Milo M. K. Martin
Pacia J. Harper
Daniel J. Sorin
Mark D. Hill
David A. Wood

Technical Report #1458 November 2002

UNIVERSITY OF

WISCONSIN

M A DI § O N

Technical Report #1458, Computer Sciences Department, University of Wisconsin-Madison — November 2002

Using Destination-Set Prediction to Improve the Latency/Bandwidth
Tradeoff in Shared Memory Multiprocessors

Milo M. K. Martin, Pacia J. Harper, Daniel J. Sorin¥, Mark D. Hill, and David A. Wood

Computer Sciences Department
University of Wisconsin-Madison

1CDepartment of Electrical and Computer Engineering
Duke University

http://www.cs.wisc.edu/multifacet/

Abstract

Prediction forms the basis of many optimizations in com-
puter architecture. In this paper, we explore using destina-
tion-set prediction to improve the latency/bandwidth
tradeoff of shared-memory multiprocessors. The destination
set is the collection of processors that receive a particular
coherence request. Snooping protocols send coherence
requests to the maximal destination set (i.e., all processors),
reducing latency for sharing misses at the expense of band-
width. Directory protocols send requests to the minimal
destination set, reducing bandwidth at the expense of an
indirection through the directory. Recently proposed hybrid
protocols trade-off latency and bandwidth by sending
requests to a predicted destination set less than all proces-
sors.

This paper explores the destination-set predictor design
space, focusing on a collection of important commercial
workloads. First, we analyze the sharing behavior of these
workloads using full-system simulations of a 16-way multi-
processor. We corroborate prior results that indicate a large
fraction of cache-to-cache misses, and further show that
these sharing misses exhibit a large degree of temporal and
spatial locality.

Second, we propose a set of predictors that exploit the
observed sharing behavior to target different points in the
latency/bandwidth tradeoff. We show that small predictors
(e.g., < 64K bytes) can use macroblock indexing (e.g., 1024-
byte macroblocks) to capture the spatial locality in these
workload’s sharing patterns.

Third, we illustrate the effectiveness of destination-set pre-
dictors in the context of a multicast snooping protocol.
Using a combination of traces and detailed full-system tim-
ing simulations of a 16-processor system, we show that the
Owner/Group predictor obtains almost 90% of the perfor-
mance of snooping while using only 15% more bandwidth
than a directory protocol (and less than half the bandwidth
of snooping).

1 Introduction

Prediction forms the basis of many optimizations in proces-
sors (e.g., branch prediction) and memory systems (e.g.,
hardware prefetching). In this paper, we explore using des-
tination-set prediction to improve the latency/bandwidth
tradeoff of shared-memory multiprocessors. The destina-
tion set is the collection of processors that receive a particu-
lar coherence request. For example, broadcast snooping
protocols send coherence requests to all processors in a sys-
tem. Conversely, directory protocols send coherence
requests only to the home node, which forwards requests to
the minimum number of processors.

The destination-set size represents a key factor in the
latency/bandwidth trade-off in shared-memory multipro-
cessors. Traditional snooping systems optimize sharing
miss! latency by broadcasting all coherence requests.
Broadcasts avoid the latency of indirections but require
(end-point) bandwidth proportional to the square of the
number of processors. Directory protocols require less
bandwidth, by first sending a request to the directory, that
then responds directly with data or redirects the request to a
limited number of possible sharers and/or a remote owner.
Directory protocols reduce the required bandwidth but
increase the latency of sharing misses because of the indi-
rection.

This latency/bandwidth tradeoff is especially important for
the many commercial workloads that exhibit a high fre-
quency of sharing misses [3, 5, 18, 30]. As illustrated in
Figure 1, system designers must choose between the high
bandwidth usage of snooping protocols or the higher shar-
ing latency of directory protocols. An ideal protocol would
combine the low latency of broadcast snooping with the
bandwidth efficiency of a directory scheme, by having a
processor directly send a request to only those processors
that need to see it.

Recently proposed hybrid protocols seek to achieve this
ideal [1, 2, 7, 32]. For example, Multicast Snooping [7]
reduces bandwidth compared to broadcast snooping, by

1. Sharing misses are those that move data directly between caches (ak.a.,
dirty misses, 3-hop transfers, and cache-to-cache transfers).

Technical Report #1458, Computer Sciences Department, University of Wisconsin-Madison — November 2002

A

directory protocol

®
latency
(indirections) ideal broadcast snooping
e ®

bandwidth usage
Figure 1. Tradeoff Between Latency and Bandwidth

multicasting a coherence request to a predicted destination
set. If the destination set is sufficient (e.g., includes the pro-
cessor or memory module that currently owns the block),
the request avoids indirection (like all requests in a broad-
cast snooping system). Similarly, Acacio, et al. add owner
prediction to a conventional directory protocol, reducing
some sharing misses from three network hops to only two
1, 2].

This paper is the first to examine the efficacy of destination-
set predictors for the commercial workloads that dominate
the current use of multiprocessor servers. Commercial
workloads can benefit substantially from destination-set
prediction due to their generally high miss rates and high
incidence of sharing misses. To evaluate this potential, in
Section 2 we analyze the sharing patterns of four commer-
cial workloads, including an online transaction processing
(OLTP) workload, a static web server, a dynamic web
server, and a Java middleware workload. We examine the
degree of instantaneous sharing, the degree of sharing of
data blocks over time, and the temporal and spatial locality
of sharing misses.

Section 3 introduces several destination-set predictors that
target different points in the latency/bandwidth design
space. These predictors exploit different aspects of the shar-
ing behaviors by training and predicting using different
information. We also describe some implementation issues,
including how to organize predictor resources and when to
allocate these resources.

In Section 4, we use request traces to evaluate the destina-
tion-set predictors by comparing their latency and band-
width profiles. We compare these predictors against a
broadcast snooping protocol, a directory protocol, and the
original multicast snooping destination-set predictor [7].
Results show that our predictors can reduce indirections by
up to 90%, with respect to a directory protocol, while using
less than one third the request bandwidth of a broadcast
snooping system.

Section 5 presents results from full-system timing simula-
tions—that model dynamically scheduled out-of-order pro-

cessors and a detailed memory system—of commercial
workloads running on a 16-processor multiprocessor.
Results for these timing runs, in terms of relative bandwidth
and performance, track the trace results from Section 4.
Results show that the our predictors can improve perfor-
mance by up to 100%, with respect to a directory protocol,
while using as little as half the bandwidth of a broadcast
snooping system.

Section 6 summarizes related work. Previous work on
hybrid protocols and destination-set predictors has focused
on single points in the destination-set predictor design
space using scientific workloads (e.g., SPLASH-2 bench-
marks [35)). This paper makes the following contributions:

e [t shows that sharing miss patterns in commercial
workloads have substantial temporal and spatial local-
ity that can be captured by destination-set predictors.

e It presents the first comparison of multiple destination-
set predictors and shows that they can exploit spatial
locality using macroblock indexing (e.g., 1024-byte
macroblocks) and achieve good performance with rela-
tively few entries (e.g., 8K entries).

e It presents the first detailed timing-simulation results
for a multicast snooping system running commercial
workloads, and it shows that destination-set prediction
can substantially reduce execution time (compared to
directories) while greatly reducing bandwidth (com-
pared to broadcast snooping).

2 Commercial Workload Sharing Behaviors

In this section, we analyze the sharing behaviors of com-
mercial workloads. We use this analysis to guide destina-
tion-set predictor designs in subsequent sections. Table 1
describes the workloads we use as benchmarks. Due to the
growing prevalence of information services in our society,
commercial workloads are increasingly important for high
performance multiprocessor systems. Thus, we concentrate
on commercial workloads, such as database and web serv-
ers, but also include two scientific workloads for compari-
son. We refer interested readers to Alameldeen, et al. [3] for
more detailed description and characterization of these
workloads. We begin by presenting our methodology and
presenting some general characteristics of our workloads
such as miss rates, sharing misses, and data footprint. We
then show that the number of instantaneous sharers is small,
most of the misses are to a blocks touched by all processors,
and there is a large amount of locality among sharing
misses.

2.1 Methodology

We use Simics [23] to perform full-system simulation of
systems running commercial workloads. The simulated
machine is a 16-processor SPARC system running
Solaris 8. We collected traces of second-level cache misses

Technical Report #1458, Computer Sciences Department, University of Wisconsin-Madison — November 2002

Table 1. Benchmark Descriptions

Static Web Content Serving: Apache. Web servers such as
Apache are an important enterprise server application. We use
Apache 2.0.39 for SPARC/Solaris 8 configured to use pthread
locks and minimal logging at the web server. Our experiments
use a repository of 20,000 files (totalling ~500 MB) and 160 sim-
ulated users (10 per processor). The system is warmed up for 1.6
million requests, and our results are based on runs of 5,000
requests.

Scientific Applications: Barnes-Hut and Ocean. We selected
two applications from the SPLASH-2 benchmark suite [35]: bar-
nes-hut with 64k bodies, and ocean with a 514 x 514 grid. The
benchmarks were compiled with Sun’s WorkShop C compiler.
We begin measurement at the start of the parallel phase to avoid
measuring thread forking.

Java Server Workload: SPECjbb. SPECjbb2000 is a server-
side java benchmark that models a 3-tier system, focusing on the
middleware server business logic. We use Sun’s HotSpot 1.4.0
Server JVM. The benchmark includes driver threads to generate
transactions. Our experiments use 24 threads and 24 warehouses
(with a data size of approximately 500MB). The system is
warmed up for 100,000 transactions, and our results are based on
runs of 100,000 transactions.

Online Transaction Processing (OLTP): DB2 with a TPC-C-
like workload. The TPC-C benchmark models the database
activity of a wholesale supplier, with many concurrent users per-
forming transactions. Our OLTP workload is based on the TPC-C
v3.0 benchmark using IBM’s DB2 v7.2 EEE database manage-
ment system. We use an 800MB database with 4000 warehouses
stored on five raw disks and an additional dedicated database log
disk. The number of districts per warehouse, items per ware-
house, and customers per district were reduced to allow for con-
currency provided by a larger number of warehouses. There are
128 simulated users (8 per processor). The database is warmed
up for 10,000 transactions before taking measurements, and our
results are based on runs of 1,000 transactions.

Dynamic Web Content Serving: Slashcode. Our Slashcode
benchmark is based on an open-source dynamic web message
posting system used by slashdot.org. We use Slashcode 2.0,
Apache 1.3.20, and Apache’s mod _perl 1.25 module for the
web server, and MySQL 3.23.39 as the database engine. A multi-
threaded user emulation program is used to simulate user brows-
ing and posting behavior. The database is a snapshot of the
slashcode.org site, and it contains ~3,000 messages. There are 48
simulated users (3 per processor). The system is warmed up for
240 transactions before taking measurements, and our results are
based on runs of 100 transactions.

for our workloads by running simulations with a MOSI
coherence protocol (the simulated target system is
described in Section 5.1). We use the first one million
misses in the trace to warm up the caches (and later our des-
tination-set predictors). For each coherence request, trace
records contain the data address, program counter (PC)
address, requestor, and request type. Traces allow for quick
workload characterization and exploration of the predictor
design space and enable deterministic and precise compari-
sons, but they capture neither the effects of timing races nor
their impact on overall performance. In Section5 we
address these limitations of traces by presenting execution-

driven timing results from full-system simulations using a
detailed performance model, including dynamically sched-
uled processors and a coherent memory system.

2.2 General Properties

Studies of multiprocessor commercial workloads and their
properties have found that L2 cache misses, especially
misses due to sharing, can dominate performance. Table 2
shows that our commercial workloads have large data foot-
prints, in terms of total memory touched in 64-byte blocks
(column 2, second from the left) and 1024-byte macrob-
locks (column 3), and a large number of static instructions
that cause cache misses (column 4). The commercial work-
loads have relatively high L2 cache miss rates (columns 5
and 6) and many of the misses in our workloads are caused
by the operating system (column 7). Note that although the
scientific workloads spend little time in the kernel, their
user-level miss rates are so low that a high percentage of
total misses occur in the kernel. The rightmost column in
the table (column 8) lists the percent of L2 misses that
would cause indirections in a directory protocol. As dis-
cussed in the next section, these workloads have a large per-
centage of indirections, providing ample opportunity for
destination-set prediction to improve their performance.

2.3 Sharing Misses and Instantaneous Sharing

Previous studies have shown that commercial workloads
suffer from a large fraction of sharing misses [3, 5, 30]. Our
results, shown in column 8 of Table 2, concur with previous
results by finding that 35-96% of misses for our commer-
cial workloads are due to sharing. While Barnes-Hut and
Ocean both incur a large fraction of sharing misses, their
low miss rates result in low rates of sharing misses per
instruction when compared with our commercial work-
loads. Thus, workload analysis based on Barnes-Hut and
Ocean alone would be a poor basis for designing commer-
cial servers.

While the majority of misses for our workloads cannot be
completed without contacting at least one other processor,
the number that need to contact many processors is rela-
tively small. For example, at most one other processor (the
owner) needs to observe a request to obtain a shared copy
of a block. Figure 2 shows the percentage of requests that
needs to contact various numbers of processors. For our
workloads, many requests require directory indirections,
but only about 5% of all requests need to be sent to more
then one other processor. This result highlights the ineffi-
ciency of broadcast snooping, in which all processors in the
system observe all requests.

2.4 Degree of Sharing

While the instantaneous number of processors that need to
observe a request is small, the number of processors that
read or write a block during the execution is larger. In

Technical Report #1458, Computer Sciences Department, University of Wisconsin-Madison — November 2002

Table 2. Workload Properties

Static L2 cache Supervisor
Memory Memory instructions Total L2 misses per L2 misses
touched touched that cause misses 1,000 (percent of Directory
Workload (64 bytes) (1 Kbyte) L2 misses (millions) instructions total) indirections
Apache 46 MB 71 MB 18,745 2M 5.9 88% 89%
Barnes-Hut 11 MB 13 MB 7,912 M 04 26% 96%
Ocean 52 MB 61 MB 11,384 5M 0.5 46% 58%
OLTP 57 MB 125 MB 21,921 18M 7.0 42% T3%
Slashcode 181 MB 316 MB 42,770 13M 1.0 50% 35%
SPECjbb 341 MB 558 MB 24,023 21 M 33 21% 41%
80
B8 Get shared
Get exclusive
w2
Q@ 60
E
pusnn{
=
= 40
e
=
0
51
P
)
A 20
, | N .
- 01 2378 0 1 2378+ 0 1 2378+ 01 2378+ 1 2378+ 01 2378+
Apache Barnes-Hut Ocean OLTP Slashcode SPECjbb

Figure 2. Histogram of the number of processors that need to see an indirection in a directory protocol for requests

for shared and exclusive,

Figure 3(a), we plot a histogram of the number of unique
processors that access a block at least once during the exe-
cution. The data show a non-uniform distribution; most of
the blocks are touched by only one processor. In
Figure 3(b), we weight each block by the number of misses
(i.e., if a block had ten misses and was touched by four pro-
cessors, we add ten to the four-processor bin of the histo-
gram). The scaled data show that the majority of the misses
are concentrated on the small number of blocks that are
accessed by most or all of the processors. Ocean is an
exception; the majority of its misses are to blocks that have
been touched by four or fewer processors, a direct result of
its column-blocked stencil structure [35]. When we gener-
ated similar data (not shown) using 1024-byte macroblocks
(i.e, 16 blocks), we observed that the macroblock results are
similar for our commercial workloads, but the weight shifts
to the right for Bamnes-Hut and Ocean, indicating that
blocks within some macroblocks are accessed by different
sets of processors.

2.5 Sharing Locality

Our workloads exhibit a high degree of locality among
sharing misses. Figure 4(a) shows the cumulative distribu-
tion of sharing misses for 64-byte data blocks. These data
show, for example, that the hottest 1,000 data blocks in
SPECjbb account for 80% of all sharing misses. Figure 4(b)
shows the distribution of cache misses for 1024-byte mac-
roblocks (i.e., aligned regions of 16 64-byte cache blocks),
and we observe even more locality. For all of our work-
loads, the 10,000 hottest macroblocks account for over 80%
of all sharing misses. Figure 4(c) shows the cumulative dis-
tribution of unique instructions that cause sharing misses.
These figures reveal significant amounts of temporal and
spacial locality in the sharing miss stream, a result that cor-
roborates prior work [30]. Predictors that exploit the local-
ity in data blocks or instructions (unique PCs) can capture
the sharing working sets of these workloads without requir-
ing prohibitive storage.

Technical Report #1458, Computer Sciences Department, University of Wisconsin-Madison — November 2002

100
80
60-
40 i
20

Percent of all blocks

0 e > T6 14 S 1216 14 8.121614 8 1216 14 8 1216
Apache Barnes-Hut Ocean OLTP Slashcode SPECjbb

(a) Percent of data blocks (64B) touched by n processors

100
80
60 -
40 -
20-

Percent of all misses

Apache Barnes-Hut Ocean OLTP Slashcode SPECjbb
(b) Percent of misses to data blocks (64B) touched by n processors

T 14 51614 8121614 81216

Figure 3. Number of blocks touched by various numbers of processors during execution. Part (a) shows a histogram
with one entry for each unique block (64B). In part (b), the data is weighted by the number of misses to the block.

100 100 7
T T @ v
2 = K=
£ = ks
g 801 IR g 801 E
= - = =
)) &
v 3 w1
% 60 2 60 4
g =) & i
) o o o0 1
£ T £ £
% 40 -~ Apache %’, 40 / ~—— Apache = 40 ~——n Apache
= {7 e Barnes-Hut = f e Barnes-Hut = 4 e Barnes-Hut
B e Qe B e Ocean B ~-—— Ocean
E 20 —-=--OLTP g 20 ~-=- OLTP g 20 ~- == OLTP
B ~ — - Slashcode 5 ~ — - Slashcode 5 - = - - Slashcode
5 —— SPECjbb N —— SPECjbb IR ——— SPECjbb
i 1 N { N J v i N 1 i i N I v i v U N 1 N i N U * { v 1 i 1
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Number of data blocks (64B) Number of data macroblocks (1024B) Number of static instructions
(a) (b) ©
Figure 4. Sharing Locality

3 Destination-Set Prediction ing the low cache-to-cache transfer latencies of snooping
Destination-set predictors exploit sharing patterns to guess systems.
which processors must observe a particular coherence Predictor design involves a trade-off between accuracy
request. For MOESI write-invalidate protocols, a request (latency) and bandwidth. Predicting too many processors
for shared must find the current owner, while a request for increases bandwidth usage with no increase in accuracy
exclusive must find the owner and all sharers. With accurate (decrease in latency). Predicting too few processors may
destination-set prediction, a hybrid protocol can use band- reduce bandwidth (depending upon the protocol spc?c1ﬁcs),
width comparable to directory-based systems while achiev- but it decreases accuracy (increases latency). Snooping and

Technical Report #1458, Computer Sciences Department, University of Wisconsin-Madison — November 2002

Table 3. Predictor Policies

Name

Owner

Broadcast-If-Shared

Group

Entry Structure

Owner ID and Valid bit

2-bit saturating counter,
Counter

N 2-bit saturating counters, Counters[0..N-1]
5-bit saturating RolloverCounter

Entry Size

log,N bits + 1 bit + tag
(~4 bytes)

2 bits + tag
(~4 bytes)

2N bits + 5 bits + tag
(~8 bytes)

Prediction Action
(for Shared or Exclusive)

If Valid, predict Owner
Otherwise, Default

If Counter > 1, broadcast
Otherwise, Default

For each processor n, if Counters[n] > 1, add n

to Default

If response from memory,

If response from memory,

If response not from memory, increment

Data clear Valid. Else, set Owner to | decrement Counter. Else, | Counters{responder].

o Response responder, and set Valid increment Counter Increment RolloverCounter'

£ o

g % Other Request | Set Owner to requestor and set

£ < (Exclusive) | Valid

& Increment Counters{requestor].

Increment Counter
Increment RolloverCounter
Other Request ignore
(Shared)

T If RolloverCounter rolls over, decrement Counter{i] for all i.

directories are effectively the two extremes: snooping
always predicts broadcast (perfect accuracy, but high band-
width usage), while directories always predict the minimal
destination set (low bandwidth usage, but low accuracy). In
this section, we present a predictor framework and a set of
policies that target different points in this design space.

3.1 Predictor Model

We assume each L2 (or L3) cache controller in the system
contains a destination-set predictor. Since only coherence
controllers are responsible for interacting with the predic-
tor, we require no modifications to the processor core, but
we will explore an optional enhancement of exporting the
program counter of an instruction that misses in
Section 3.4. Predictors are tagged, set-associative, and (by
default) indexed by data block address. The controller
accesses the predictor before initiating a coherence transac-
tion. On a tag match, the controller uses the prediction
according to the policies discussed below. On a miss, the
predictor returns a default destination set that depends upon
the specific hybrid protocol.

Since a small subset of data blocks account for most shar-
ing misses (recall Figure 4), the controller can reduce pres-
sure on the predictor by only allocating predictor entries for
blocks likely to be shared. The controller allocates an entry
only if the default destination set proves insufficient to
directly locate the requested block.

3.2 Training Information

The policies we discuss use two types of training cues to
predict sharing behavior: external coherence requests and
coherence responses. In both cases, the predictor learns the
identity of one or more other processors that have recently
accessed a block. On external coherence requests, the pre-
dictor automatically receives the requesting processor’s

identity (since this information is required to permit a
response). For responses, we extend data response mes-
sages to include the sender’s identity. Specific policies,
described next, use this information either to “train up” or
“train down”, i.e., increase or decrease the destination set.

3.3 Prediction Policies

Different policies can use some or all of the training infor-
mation to optimize for different points in the band-
width/latency spectrum. This section describes three
general policies, specified in Table 3, and one hybrid.

The Owner predictor. The Owner predictor targets scenar-
ios in which either (a) only one other processor needs to be
in the destination set (e.g., pairwise sharing) or (b) band-
width is limited. The predictor records the last processor to
invalidate or respond with a block. On a prediction, the pre-
dictor adds this processor to the default destination set.
Owner works well for pairwise sharing, because both pro-
cessors include each other in their predictions. Owner also
works well under limited bandwidth because it sends at
most one additional control message for each request, inde-
pendent of the number of processors in the system.

The Broadcast-If-Shared predictor. The Broadcast-If-
Shared predictor targets scenarios in which either (a) most
shared data are widely shared, (b) most data are not shared,
or (c) bandwidth is plentiful. Broadcast-If-Shared selects
either a destination set that includes all processors (if the
block is predicted shared) or the default destination set (oth-
erwise). A two-bit saturating counter—incremented on
requests and responses from other processors and decre-
mented otherwise——determines which prediction to make.
Broadcast-If-Shared performs comparably to snooping, but
it consumes less bandwidth by not broadcasting all
requests.

Technical Report #1458, Computer Sciences Department, University of Wisconsin-Madison — November 2002

The Group predictor. The Group predictor targets scenar-
ios in which (a) groups of processors (less than all proces-
sors) share blocks and (b) bandwidth is neither extremely
limited nor plentiful. Each predictor entry contains a two-
bit counter per processor in the system. On each request or
response, the predictor increments the corresponding
counter. The predictor also increments the entry’s 5-bit roll-
over counter; on overflow, the predictor decrements all 2-
bit counters in the entry. This training down mechanism
ensures that inactive processors are eventually removed
from the destination set. The Group predictor should work
well on a large multiprocessor in which not all of the pro-
cessors are working on the same aspect of the computation
or if the system is separated into multiple logical partitions.

The Owner/Group predictor. The Owner/Group policy
targets (a) stable sharing patterns and (b) more limited
bandwidth that Group. Owner/Group uses a Group predic-
tor to handle requests for exclusive and an Owner predictor
to handle requests for shared. This policy works well for
stable sharing patterns because all processors in the sharing
set observe all requests for exclusive, and thus they can
track the current owner in most cases. Thus requests for
shared can be sent only to the current predicted owner,
reducing the bandwidth demand.

3.4 Alternative Indexing

By default, the predictors are indexed with data block
addresses. In this paper, we also explore using the program
counter (PC) and “coarse-grain” macro-block addresses.

Program counter indexing. Figure 4(c) showed that a
small number of static instructions cause most sharing
misses. This observation, supported by prior work [16],
suggests that we index the predictor with the PC. To do this,
the processor supplies the PC of the load/store instruction
causing the miss. The cache controller appends this PC to
the coherence request (extending the message format) and
remembers it until the coherence response arrives.

Macroblock indexing. Figure 4(b) showed that sharing
misses exhibit significant spatial locality. For example, con-
sider a processor reading a large buffer that was recently
written by another processor. The last processor to write the
buffer may be difficult to predict; however, once a processor
observes that several data blocks of the buffer were sup-
plied by one processor, a macroblock-based predictor can
learn to find other spatially related blocks at that same pro-
cessor. To exploit this locality, we index the predictor with
macroblock addresses by simply dropping the least signifi-
cant bits. Macroblock indexing reduces the number of
unique entries thereby reducing pressure on the predictor.

3.5 Prior Work: Sticky-Spatial(1)

We compare our predictors to a variant of the original mul-
ticast snooping predictor developed by Bilir ez al. [7]. The

Sticky-Spatial(1) predictor is “sticky” because it only trains
up, relying on predictor replacements to reduce the destina-
tion-set size. It is “spatial” because it aggregates informa-
tion from neighboring predictor entries (restricting it to a
direct-mapped implementation). Sticky-Spatial trains up by
observing responses and retries from the memory controller
(described in Section 4.1).

Our predictors improve upon Sticky-Spatial(l) in two
important ways. First, macroblock addressing captures spa-
tial locality with a single entry. This approach reduces pres-
sure on finite predictors, allows set-associative
implementations, and eliminates aliasing (Sticky-Sparial
ignores the tag when making predictions). Second, all of
our predictors have explicit mechanisms to train down.

4 Evaluation of Destination-Set Predictors

This section evaluates the predictors using the trace-driven
methodology described earlier. Section 4.1 summarizes the
multicast snooping protocol we evaluate, Section 4.2
describes how we analyze the latency/bandwidth tradeoff,
Section 4.3 presents results for our prediction policies, and
Section 4.4 presents some sensitivity analyses.

4.1 Multicast Snooping Protocol

To evaluate our destination-set predictors in a concrete con-
text, we implemented them as part of a multicast snooping
system [7, 32]. Processors in a such a system act much like
they do in broadcast snooping, except that coherence
requests are multicast to a predicted destination set (called a
multicast mask in the original paper). To enforce the neces-
sary ordering requirements, requests are sent on a totally-
ordered interconnection network and the default destination
set includes both the requester and the home node for the
requested block. The home node maintains a directory
structure to track the owner and sharers of each block,
allowing it to detect if a request was sufficient (i.e., sent to
all necessary processors). A destination set is sufficient in
multicast snooping if it includes the requester, the home
memory module, the owner of the block, and, if the request
is for read/write permission, all processors that share the
block.

If a destination set is sufficient, the request is successful and
the owner (which could be the memory) responds to the
requestor with data, and the directory updates its state. If
the request was for read/write access, all sharers invalidate
their copies of the block.

If a destination set is insufficient, the request must be
retried. Our implementation uses the optimization proposed -
by Sorin, ez al. [32], where the directory re-issues the coher-
ence request2 with an improved destination set that reflects
the current owner and sharers. As in the original protocol,

2. To avoid deadlock, if a retry cannot use the request network due to lim-
ited buffering, the directory uses the response network to send a negative
acknowledgment (nack) for the request [32].

Technical Report #1458, Computer Sciences Department, University of Wisconsin-Madison — November 2002

however, a window of vulnerability exists between the
retry’s issue and when the request network orders it. During
this window, a racing request can intervene, changing the
owner and/or sharers such that the retry’s destination set is
now insufficient. The directory must detect this infrequent
race condition and retry the request again. To avoid livelock
in pathologic cases, the directory resorts to broadcasting on
the third retry, which is guaranteed to succeed. When a retry
succeeds, the system behaves as described for a successful
request.

4.2 Predictor Evaluation Methodology

Each predictor and base protocol represent one point in the
trade-off between latency and bandwidth. To visualize this
tradeoff, we plot results on a two dimensional plane. The
horizontal dimension represents request bandwidth per miss
(i.e., the bandwidth per miss used by requests, retries, and
forwarded requests). The vertical dimension represents
latency, measured as the percent of misses that require indi-
rection (i.e., three-hop requests in a directory protocol or
requests retried by the directory in multicast snooping). The
dashed vertical line represents the directory protocol band-
width, which is the best case for our predictors.

We compare our predictors against the base snooping and
directory protocols. We assume a typical MOSI broadcast
snooping protocol (denoted by % in our results) that relies
on a totally ordered broadcast network. We model an
aggressive, bandwidth-efficient MOSI directory protocol
(denoted by) based on the AlphaServer GS320 [11]. The
(GS320 uses a totally ordered interconnection network,
eliminating the need for explicit acknowledgment mes-
sages. Using such a directory protocol allows us to assume
the same interconnection network configuration for all pro-
tocols.

4.3 Predictor Policy Evaluation

Figure 5 displays the results for the four predictor policies,
assuming 8,192 entries indexed using 1024-byte macrob-
lock addressing (note the different y-axis for each work-
load). We find that destination-set prediction provides a
favorable bandwidth/latency tradeoff over a range of work-
loads. The best predictors approach the low latency of a
snooping protocol (by substantially reducing indirections),
while reducing the request bandwidth by a factor of three.
Alternatively, the predictors allow for systems that use
bandwidth comparable to a directory protocol while sub-
stantially reducing indirections (and hence latency).

Owner predictor (denoted by ®). Figure 5 shows that
Owner achieves its goal of reducing indirections while
using only incrementally more bandwidth than the directory
protocol. Since the Owner predictor only includes one addi-
tional destination in the predicted set, it prevents the system
from using too much bandwidth. In five of our six bench-
marks, the Owner predictor reduces the rate of indirections

to less than 25% of all misses. The reduction of indirections
comes at the cost of less than a 25% increase in request traf-
fic for five of six benchmarks (less than a 15% increase in
total traffic).

Broadcast-If-Shared predictor (). In contrast to the
Owner predictor, the goal of Broadcast-If-Shared is to
achieve performance similar to broadcast snooping systems
while using less bandwidth. Broadcast-If-Shared meets its
goal by keeping indirections to less than 6% of misses for
all of our benchmarks while using less bandwidth. In those
workloads with a low percentage of sharing misses (Slash-
code and SPECjbb), the Broadcast-If-Shared predictor
reduces the request bandwidth used by more than half. In
those workloads with a high percentage of sharing misses
(Apache, Barnes-Hut, and OLTP), the predictor broadcasts
most requests. Thus, for those workloads, Broadcast-If-
Shared has similar traffic and indirection characteristics as
broadcast snooping.

Group predictor (A). While the Owner and Broadcast-If-
Shared predictors are often too conservative or too aggres-
sive, respectively, the Group predictor provides an attractive
alternative to these two extreme predictors. For all work-
loads, the Group predictor reduces request traffic to no
more than half that of snooping, while keeping indirections
below 15% of misses. This predictor configuration works
particularly well on Slashcode, using one fifth the request
bandwidth of snooping with less than 5% of requests
requiring indirection (a factor of ten improvement).

Owner/Group predictor (¥). The Owner/Group predictor
for this configuration performs much like Group, but it uses
less bandwidth at the cost of more indirections. Not surpris-
ingly, for most of our benchmarks, the results for this pre-
dictor lie between those of Group and Owner (i.e., it is
neither clearly worse nor better than either predictor). How-
ever, for Ocean, the Owner/Group predictor incurs only 6%
indirections, while using one fifth the request bandwidth of
broadcast snooping. The explanation for this commendable
performance comes directly from data shown in
Figure 3(b). Ocean has a large number of misses to macrob-
locks that are only shared among a small number of proces-
sors (a consequence of its column-blocked data layout
[35]). The “Group” aspect of the Owner/Group predictor
detects this stable, limited sharing, and the “Owner” aspect
reduces the bandwidth even further by sending requests for
shared to the current owner.

Predictor policy conclusions. For most workloads, there is
no “best choice” among these four destination-set predic-
tors. For a system designer, the right choice will depend
upon the relative importance of latency and the cost of
bandwidth in the system being designed. However, for
many systems, Owner and Owner/Group appear to present
attractive alternatives.

Technical Report #1458, Computer Sciences Department, University of Wisconsin-Madison — November 2002

~ ~ ~
2] w2 w2
% Apache % Barnes-Hut % Ocean
ol E oo g
— 80" : —] : ot :
= : = 20 = 50 :
S 5 :3] t_ﬁ : + Directory
o 60 - | o} (] 40 : X Brozdcast Snooping
- : s 60_ - ® Owner
fou) ' s} o ' B Broadcast-If-Shared
8 ’ . 8 4 @ 8 30 : A Group

- . : V Owner/Group
597 g 40- 8209 I
~) 3‘ ~] ~ :
2 20+ - g 20- a 10 .
g : A 8 . : g VoA "
80---:-|'---|'---.1x80--':-|~---|--~':.‘~’-801'-:-'|"--|-~'-|x
= 0 5 10 15 8 0 5 10 1538 O 5 10 15
e > 5 > 5 :
= request messages per miss -—= request messages per miss -~ request messages per miss

2 2 2

g OLTP ?2’ Slashcode g SPECjbb

EE H g 11 'E 409 1t

=604 i = 304 G ;

kS ; B] 5303

2404 g 204 g :

5407 8 7 3209

) B] 5 ‘°

& o S 10 & :

2207 v, 2 s g 107 v

2 : ® =] i = ;oA
80""'l""l""lxg0"""1' 'I""ngOI""'I""I""I"“'
20 5 10 15& 0 5 10 155 0 5 10 15
H request messages per miss-S request messages per miss-= request messages per miss

Figure 5. Predictor Results: Standout Predictors (8,192 entries, 1,024-byte block indexing)

4.4 Sensitivity Analysis

We now examine the sensitivity of these results to indexing
and predictor size. To limit the number of graphs, we only
present data for the OLTP workload, noting significant dif-
ferences in other workloads. To facilitate comparisons
between predictors using the same policy, Figures 6-8
“connect the dots” for those data points with similar predic-
tion policies but different configurations.

Program Counter Indexing. Figure 6 illustrates (for
OTLP with unbounded predictors) the trade-off between
using data block or PC-based indexing. These results, and
others not shown, indicate that data block indexing yields
better predictions in many cases (e.g., for the Owner and
Owner/Group policies). In other cases, the choice between
PC and data block indexing creates a bandwidth/latency

tradeoff (e.g., for the Group and Broadcast-If-Shared poli-
cies). These results indicate that PC-indexing does not pro-
vide sufficiently better performance to justify the additional
design cost and complexity required to send miss PCs from
the processor core to the cache controller. PC-based index-
ing performs slightly better for finite size predictors, but
these effects are dwarfed by macroblock indexing, dis-
cussed next.

Macroblock Indexing. Figure 7 shows (for OLTP with
unbounded predictors) the result of using 256-byte and
1024-byte macroblock indexing. Macroblock indexing
improves prediction by reducing both traffic and indirec-
tions in most cases. In addition, macroblock indexing
simultaneously reduces the number of entries required in
the predictor. For unbounded predictors, most of the benefit
of capturing spatial locality is achieved by 256-byte mac-

Technical Report #1458, Computer Sciences Department, University of Wisconsin-Madison — November 2002

o~ —~ —
o v [72]
9 OLTP 2 OLTP 2 OLTP
[75] 4] o
+ : + :
g E é 5 é T + Directory
——y ot : —t . X Broadcast S i
a 60.. N 60 ' m 60.— H .0‘3:.0:35[noopmng
. (o] Gy H i W Broadcast-If-Shared
o E | / o , o A Group
h~1 \ = ¥ - ! ¥ Owner/Group
8 40 ‘e 5 40 - : 5 40 E ® StickySpatial(1)
2 L 5 P 5 '
& PovA & 6V & o ¢
o 204 ~a w 2004 0 e w204 ¢
o : = v s N
) :] O A " @] 1 N YA
80""'|""|""“! ¢ O0r——1r——g—rx o O04+—r— 17X
= 0 5 10 ,g 0 5 10 15 .g) 5 10 15
£ request messages per miss | -2 request messages permiss | -5 request messages per miss
Index Index Size with 1kB block indexing
B 64B block M 64B block M unbounded
[pC 256B block . 32,768 entries
[1kB block 1 8192 entries

Figure 6. Predictor Results: Pro-
gram Counter vs. Data Block Index-
ing for OLTP

roblocks, but 1024-byte macroblocks perform still better
while further reducing predictor pressure. Experiments with
even larger macroblocks and unbounded predictors (not
shown) indicate little additional benefit. Apache and Slash-
code exhibit performance similar to OLTP; however, using
macroblocks with SPECjbb and Ocean has little effect due
to an already low percentage of indirections.

Finite Sized Predictors. Figure 8 compares (for OLTP) the
performance of unbounded predictors to those with 8,192
and 32,768 entries. Since our predictor entry sizes range
from ~4 to ~8 bytes, the total predictor sizes range from
32kB to 64kB (less than 2% of our L2 cache size). The
results show that predictors in this range perform compara-
bly to unbounded predictors, for these workloads. Limited
experiments with smaller predictors (not shown) show an
increase in indirections but a corresponding decrease in
bandwidth. We expect this result, since on a miss, our pre-
dictors resort to predicting the default destination set
(reducing traffic, but also increasing indirections).

Comparison to Previous Predictors. The original destina-
tion-set prediction is Sticky-Spatial(1), which was described
in Section 3.5. Sticky-Spatial(1) is also shown in Figure 8
(denoted by #) for a range of predictor sizes. For OLTP, our
predictors perform better than Sticky-Spatial(1) (e.g., our
Owner/Group predictor uses less bandwidth and has fewer
indirections). In general, our predictors either perform simi-
larly or better than Sticky-Spatial in one or both criteria.

Figure 7. Predictor Results: Macrob-
lock Indexing for OLTP

10

Figure 8. Predictor Results: Sensi-
tivity to size and comparison to
StickySpatial(1) for OLTP

5 Runtime Performance Evaluation

This section evaluates the impact of destination-set predic-
tion policies on the runtime performance of multicast
snooping running commercial workloads. We first present
the evaluation methodology and then summarize the key
results.

5.1 Target System

We evaluate 16-node SPARC V9 systems running unmodi-
fied Solaris 8. Each node contains a dynamically scheduled
processor core, split first level instruction and data caches,
unified second level cache, cache controller, and memory
controller for part of the globally shared memory. Table 4
lists the system parameters for both the memory system and
the processor. We choose memory system parameters to
approximate the published latencies of systems like the
Alpha 21364 [13]. These assumed latencies result in a 180
ns latency to obtain a block from memory, a 112 ns latency
for a cache-to-cache transfer for both a broadcast snooping
and a successful multicast snooping request, and a 242 ns
latency for a cache-to-cache transfer for a directory and a
retried multicast snooping request. All request, forwarded
request, and retried request messages are 8 bytes, and data
responses are 72 bytes (64 byte data block with an 8 byte
header).

Destination-set predictor updates complete in a single
cycle. However, the predictors train only on data responses

Technical Report #1458, Computer Sciences Department, University of Wisconsin-Madison — November 2002

Table 4. Target System Parameters

Coherent Memory System

Dynamically Scheduled Processor

L1 instruction cache 128kBytes, 4-way, 2 cycles

L1 data cache 128kBytes, 4-way, 2 cycles

L2 cache (unified) 4MBytes, 4-way, 12ns
block size 64 Bytes

memory 2 GBytes total, 80ns
network link bandwidth 10 GBytes/s

network latency 50ns traversal

clock frequency 2 Ghz

reorder buffer 64 entry

pipeline width 4-wide fetch & issue
pipeline stages 11

direct branch predictor 1kBytes YAGS
indirect branch predictor 64 entry (cascaded)
return address stack 64 entry

or on requests from other processors. Since multiple misses
are generated in parallel, later misses do not always benefit
from the training responses from the earlier misses before
being issued into the memory system.

5.2 Simulation Methods

We simulate our target systems with the Simics full-system
multiprocessor simulator [23], and we extend Simics with
detailed processor, memory hierarchy, and network models
to compute execution times.

Full-system simulation. Simics is a.system-level architec-
tural simulator developed by Virtutech AB that can run
unmodified commercial applications and operating sys-
tems. Simics is a functional simulator only, but it provides
an interface to support our detailed timing simulation.

Processor models. We present results using two different
processor models. For some results we use TFsim [25] to
model superscalar processor cores that are dynamically
scheduled, exploit speculative execution, and generate mul-
tiple outstanding coherence requests. We configured TFsim
to model the processor described in Table 4 and to support
SPARC’s total store order (TSO) memory consistency
model. For other results, we use a faster (by an order of
magnitude) but simple, in-order, sequentially consistent,
blocking processor model that would complete four billion
instructions per second if the L1 caches were perfect. The
results using the detailed processor model capture effects
due to parallel misses and speculative execution, while the
simple processor model allows us to simulate a larger num-
ber cycles to avoid possible bias introduced by executing
only short segments of a workload.

Memory hierarchy model. Our memory hierarchy simula-
tor captures timing races and all state transitions (including
transient states) of the coherence protocols in cache and
memory controllers. We use traces, similar to those used in
Sections 2 and 4, to warm up the simulated caches and pre-
dictors before beginning the timing simulations.

Interconnection network model. We consider integrated
processor/memory nodes connected via a single link to an
interconnection network. Since all of the coherence proto-
cols we consider—broadcast snooping, multicast snooping,

11

and directory—require a total order of requests, we model a
crossbar switch including limited bandwidth and conten-
tion.

Variability in Workload Performance. To address the
variability in runtime performance of commercial work-
loads, we use the methodology described by Alameldeen, et
al. [3]. We simulate each design point multiple times with
small, pseudo-random perturbations of memory latencies to
cause alternative scheduling paths. The results reported in
this section are averages of these multiple simulations.

5.3 Results

While trace-driven simulation (Section4) allows rapid
exploration of the design space, this section presents the
bottom line: execution time and interconnect traffic. How-
ever, which protocol performs best depends upon the num-
ber of processors and the available interconnect bandwidth.
Clearly, a directory protocol will excel in a large or band-
width-starved system, while a snooping system will domi-
nate at the other extreme. Rather than evaluate these
protocols for a particular design point (and arbitrarily pick a
winner), we simulate a system with ample bandwidth (10
GB/s links) and examine the tradeoff between execution
time and bandwidth. Although snooping always performs
best for such a system, we believe these results provide
more insight than arbitrarily picking a single bandwidth-
constrained design point that would have many critics.

Figure 9 shows results generated using the simple processor
model that compare the runtime (normalized to the direc-
tory protocol) and bandwidth (traffic per miss normalized to
broadcast snooping). The dotted lines indicate the band-
width and runtime requirements of the directory and snoop-
ing protocols, respectively. For our particular system
configuration, the snooping protocol uses about twice the
bandwidth of the directory protocol, but it also outperforms
the directory protocol by up to a factor of two. The snoop-
ing protocol only uses twice the bandwidth, since the point-
to-point response messages (64 bytes) are much larger than
the request messages (8 bytes) that are broadcast to all 16
processors. Not surprisingly, the workloads that show the
most benefit from snooping (OLTP and Apache) have the

Technical Report #1458, Computer Sciences Department, University of Wisconsin-Madison — November 2002

normalized traffic per miss

normalized traffic per miss

Apache Barnes-Hut Ocean
100+ + 100 t, 1001 "
) . : O 1 e / Q 1 :
E 80- : £ 80—-‘ """" *E 80, P Ya.m. x
2 60+ LY, = 60 B 60-
o 1 2 ...)('-O 4 3 p . + Directol
g S g : X Broadcarzl Snooping
= 40 - b 40 =1 s 40 1 . @ Owner
cés i céi i g : g;giicasl-lf—smmd
= 204 o 204 o 20 : ¥ Owner/Groy
g 7 : g “] _ g | :
0 — T 0 T 0 L L S e S|
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
normalized traffic per miss normalized traffic per miss normalized traffic per miss
OLTP Slashcode SPECjbb
100 ~ b 100 ta 100 *
E 30- E sl T S - BV S Y
g . El 2 s
5 60- oy 5 60- 5 60+
o Tt A o] i o] |
Q B EE T EEE TR LR B X O Q
= 40+ S 40 = 404
E o E 0l E]
5 204 5 20+ 5 20+
&] : =i] : &] ;
0 L T " 71 71 O L - T 71 O L - - 7
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
normalized traffic per miss normalized traffic per miss normalized traffic per miss
Figure 9. Simple Processor Model Runtime Performance Results
Apache SPECjbb OLTP
100+ + 100 ~ + 100 +
O 1 : Q 1 $ Q 4 :
E 80- . B 804" ok *E 80 |
= 1 i va g 1 = :
B 60 e e sx B 60+ B 60- s
3 : o = @
8 0] - S 0. S 40, 5
= 404 = 40+ e) I R x
g 0] & E o]
E 20 E 20- E 20-
= J : =] E : = 1 '
O U r I O L - L 0 MU ~ | L
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

normalized traffic per miss

Figure 10. Detailed Processor Model Runtime Performance Results

12

Technical Report #1458, Computer Sciences Department, University of Wisconsin-Madison — November 2002

highest miss rates and sharing miss rates (recall Table 2).
Even those benchmarks with relatively low miss rates
improve by approximately 10% to 25%.

Figure 9 also shows that the runtime/bandwidth tradeoff
qualitatively —mirrors the indirection/request-message
tradeoff in Figure 5. The quantitative benefits are somewhat
smaller for reasons analogous to why cache miss ratio
reductions translate to more modest runtime gains; the pre-
dictors help sharing misses, but not private misses or com-
putation. As before, our predictors capture most of the
performance benefit of snooping while using significantly
less bandwidth. For example, our predictors obtain almost
90% of the performance of snooping while using only
approximately 15% more bandwidth than a directory proto-
col (and less than half the bandwidth of snooping).

Figure 10 displays similar results using our complex pro-
cessor model and the three most important commercial
workloads. To enable reasonable simulation runtimes, we
simulated an order of magnitude fewer transactions for
these runs than the earlier trace-based or simple processor
model simulations. Normalized runtime and bandwidth
numbers are similar to results with the simple processor
model, although the absolute runtimes are different.

6 Related Work

Several papers have examined shared memory behavior.
Gupta and Weber analyzed invalidation patterns in parallel
scientific and engineering applications and observed that
different data structures exhibit specific sharing patterns
and that most invalidations affect a small number of proces-
sors [12]. Recent research has studied commercial work-
loads [5, 28, 29, 30, 34] but not the distribution of sharers.
To our knowledge, this is the first paper to perform a
detailed analysis of sharing patterns for commercial work-
loads and their impact on multiple destination-set predic-
tors.

Previous work on destination-set predictors has focused on
the correctness of the hybrid protocols and single points in
the destination-set predictor design space using scientific
workloads (e.g., SPLASH-2 benchmarks [35]). Acacio, et
al. studied a two-level owner predictor, with the first level
deciding whether to predict an owner and the second level
deciding which node might be the owner [1]. In a second
paper, Acacio, et al. studied a single-level predictor to pre-
dict sharers [2]. Bilir, et al. [7] studied multicast snooping
with a 4K-entry StickySpatial(1) destination-set predictor.

Many papers have examined or exploited other forms of
coherence prediction. Researchers have developed proto-
cols that adapt to specific sharing behaviors [6], including
read-modify-write sequences [21, 28], migratory sharing
[8, 33], and dynamic self-invalidation [20, 22]. More
recently, research has focused on separating the predictor

13

from the coherence protocol [27]. Coherence predictors
have been indeéxed with addresses [27], program counters
[16], message history [19], and other state [17]. Other
hybrid protocols adapt between write-invalidate and write-
update [4, 26, 31], write-through and write-invalidate sub-
protocols [9, 15], or by migrating data near to where it is
being used [10, 14, 36]. Another protocol adapts to avail-
able bandwidth but not sharing patterns [24].

7 Conclusions

In this paper, we have demonstrated the potential to use
destination-set prediction to improve the latency/bandwidth
tradeoff in coherence protocols for commercial workloads.
While broadcast snooping optimizes latency and directory
protocols optimizes bandwidth, they represent the extreme
points in the design space. Even simple destination-set pre-
dictors, used in the context of multicast snooping, can (a)
greatly reduce the bandwidth usage, with respect to snoop-
ing, for a small cost in extra indirections, or (b) greatly
reduce the iumber of indirections, with respect to directory
protocols, for a small cost in extra bandwidth. While com-
mercial workloads have larger footprints and more sharing
misses than scientific workloads, we have shown that rea-
sonably-sized predictors can still achieve high accuracy.

Acknowledgments

We thank Virtutech AB, the Wisconsin Condor group, and
the Wisconsin Computer Systems Lab for their help and
support. We thank Alaa Alameldeen, Carl Mauer, Kevin
Moore, and the Wisconsin Computer Architecture Affiliates
for their comments on this work.

This work is supported in part by the National Science
Foundation (EIA-9971256, EIA-0205286, CDA-9623632,
and CCR-0105721), a Norm Koo Graduate Fellowship and
an IBM Graduate Fellowship (Martin), a Los Alamos Com-
puter Science Institute Fellowship (Harper), an Intel Gradu-
ate Fellowship (Sorin), Spanish Secretarfa de Estado de
Educacién y Universidades (Hill sabbatical), two Wiscon-
sin Romnes Fellowships (Hill and Wood), and donations
from Compaq Computer Corporation, Intel Corporation,
IBM, and Sun Microsystems.

References

[1] M.E. Acacio, J. Gonzdlez, J. M. Garcfa, and J. Duato. Owner
Prediction for Accelerating Cache-to-Cache Transfers in a cc-
NUMA Architecture. In Proceedings of SC2002, Nov. 2002.
M. E. Acacio, J. Gonzdlez, J. M. Garcia, and J. Duato. The
Use of Prediction for Accelerating Upgrade Misses in cc-
NUMA Multiprocessors. In Proceedings of the International
Conference on Parallel Architectures and Compilation Tech-
niques, pages 155~164, Sept. 2002.

A. R. Alameldeen, C.J. Mauer, M. Xu, P.J. Harper, M. M.
Martin, D. J. Sorin, M. D. Hill, and D. A. Wood. Evaluating
Non-deterministic Multi-threaded Commercial Workloads. In
Proceedings of the Fifth Workshop on Computer Architecture
Evaluation Using Commercial Workloads, Feb. 2002.

(2]

(3]

Technical Report #1458, Computer Sciences Department, University of Wisconsin-Madison — November 2002

C. Anderson and A. R. Karlin. Two Adaptive Hybrid Cache

Coherency Protocols. In Proceedings of the Second IEEE

Symposium on High-Performance Computer Architecture,

Feb. 1996.

L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory

System Characterization of Commercial Workloads. In Pro-

ceedings of the 25th Annual International Symposium on

Computer Architecture, pages 3-14, June 1998.

1. K. Bennett, J. B. Carter, and W. Zwaenepoel. Adaptive

Software Cache Management for Distributed Shared Memory

Architectures. In Proceedings of the 17th Annual Internation-

al Symposium on Computer Architecture, May 1990.

E.E. Bilir, R. M. Dickson, Y.Hu, M. Plakal, D.J. Sorin,

M. D. Hill, and D. A. Wood. Multicast Snooping: A New Co-

herence Method Using a Multicast Address Network. In Pro-

ceedings of the 26th Annual International Symposium on

Computer Architecture, pages 294-304, May 1999.

A.L. Cox and R. J. Fowler. Adaptive Cache Coherency for

Detecting Migratory Shared Data. In Proceedings of the 20th

Annual International Symposium on Computer Architecture,

pages 98-108, May 1993.

F. Dahigren. Boosting the Performance of Hybrid Snooping

Cache Protocols. In Proceedings of the 22nd Annual Interna-

tional Symposium on Computer Architecture, June 1995,

[10] B. Falsafi and D. A. Wood. Reactive NUMA: A Design for
Unifying S-COMA and CC-NUMA. In Proceedings of the
24th Annual International Symposium on Computer Architec-
ture, pages 229-240, June 1997.

[11] K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren. Ar-
chitecture and Design of AlphaServer G5320. In Proceedings
of the Ninth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
pages 13-24, Nov. 2000.

[12] A. Gupta and W.-D. Weber. Cache Invalidation Patterns in
Shared-Memory Multiprocessors. IEEE Transactions on
Computers, 41(7):794-810, July 1992.

[13] L. Gwennap. Alpha 21364 to Ease Memory Bottleneck. Mi-
croprocessor Report, Oct. 1998.

[14] E. Hagersten and M. Koster. WildFire: A Scalable Path for
SMPs. In Proceedings of the Fifth IEEE Symposium on High-
Performance Computer Architecture, pages 172-181, Jan.
1999.

[15] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator.
Competitive Snoopy Caching. Algorithmica, 3(1):79-119,
1988.

[16] S. Kaxiras and J. R. Goodman. Improving CC-NUMA Per-
formance Using Instruction-Based Prediction. In Proceedings
of the Fifth IEEE Symposium on High-Performance Comput-
er Architecture, Jan. 1999.

[17] S. Kaxiras and C. Young. Coherence Communication Predic-
tion in Shared-Memory Multiprocessors. In Proceedings of
the Sixth IEEE Symposium on High-Performance Computer
Architecture, Jan, 2000.

{18] S. Kunkel, B. Armstrong, and P. Vitale. System Optimization
for OLTP Workloads. IEEE Micro, pages 56-64, May/June
1999.

[19] A.-C. Lai and B. Falsafi. Memory Sharing Predictor: The Key

to a Speculative Coherent DSM. In Proceedings of the 26th

(4]

(3]

(6]

191

Annual International Symposium on Computer Architecture, -

pages 172-183, May 1999.

[20] A.-C. Lai and B. Falsafi. Selective, Accurate, and Timely
Self-Invalidation Using Last-Touch Prediction. In Proceed-
ings of the 27th Annual International Symposium on Comput-
er Architecture, pages 139-148, June 2000.

14

[21] J. Laudon and D.Lenoski. The SGI Origin: A ccNUMA
Highly Scalable Server. In Proceedings of the 24th Annual In-
ternational Symposium on Computer Architecture, June 1997.

[22] A.R. Lebeck and D. A. Wood. Dynamic Self-Invalidation:
Reducing Coherence Overhead in Shared-Memory Multipro-
cessors. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, June 1995.

[23] P. S. Magnusson et al. Simics: A Full System Simulation Plat-
form. IEEE Computer, 35(2):50-58, Feb. 2002.

[24] M. M. K. Martin, D. J. Sorin, M. D. Hill, and D. A. Wood.
Bandwidth Adaptive Snooping. In Proceedings of the Eighth
IEEE Symposium on High-Performance Computer Architec-
ture, pages 251-262, Feb. 2002.

[25] C. J. Mauer, M. D. Hill, and D. A. Wood. Full System Tim-
ing-First Simulation. In Proceedings of the 2002 ACM Sig-
metrics Conference on Measurement and Modeling of Com-
puter Systems, pages 108-116, June 2002,

[26] F. Mounes-Toussi and D. J. Lilja. The Potential of Compile-
Time Analysis to Adapt the Cache Coherence Enforcement
Strategy to the Data Sharing Characteristics. IEEE Transac-
tions on Parallel and Distributed Systems, 6(5), May 1995.

[27] S. S. Mukherjee and M. D. Hill. Using Prediction to Acceler-
ate Coherence Protocols. In Proceedings of the 25th Annual
International Symposium on Computer Architecture, pages
179-190, June 1998.

[28] J. Nilsson and F. Dahlgren. Improving Performance of Load-
Store Sequences for Transaction Processing Workloads on
Multiprocessors. In Proceedings of the International Confer-
ence on Parallel Processing, pages 246-255, Sept. 1999.

[291 I. Nilsson and F. Dahlgren. Reducing Ownership Overhead
for Load-Store Sequences in Cache-Coherent Multiproces-
sors. In Proceedings of the 2000 International Parallel and
Distributed Processing Symposium, May 2000.

[30] P. Ranganathan, K. Gharachorloo, S. Adve, and L. Barroso.
Performance of Database Workloads on Shared-Memory Sys-
tems with Out-of-Order Processors. In Proceedings of the
Eighth International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct. 1998.

[311 A. Raynaud, Z. Zhang, and J. Torrellas. Distance-Adaptive
Update Protocols for Scalable Shared-Memory Multiproce-
sors. In Proceedings of the Second IEEE Symposium on High-
Performance Computer Architecture, Feb. 1996.

[32] D. I Sorin, M. Plakal, M. D. Hill, A. E. Condon, M. M. Mar-
tin, and D. A. Wood. Specifying and Verifying a Broadcast
and a Multicast Snooping Cache Coherence Protocol. IEEE
Transactions on Parallel and Distributed Systems,
13(6):556-578, June 2002.

[33] P. Stenstrém, M. Brorsson, and L. Sandberg. Adaptive Cache
Coherence Protocol Optimized for Migratory Sharing. In Pro-
ceedings of the 20th Annual International Symposium on
Computer Architecture, pages 109-118, May 1993.

[34] P. Trancoso, J.-L. L. Pey, Z.Zhang, and J. Torrellas. The
Memory Performance of DSS Commercial Workloads in
Shared-Memory Multiprocessors. In Proceedings of the Third
IEEE Symposium on High-Performance Computer Architec-
ture, pages 250-260, Feb. 1997.

[35] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Methodolog-
ical Considerations. In Proceedings of the 22nd Annual Inter-
national Symposium on Computer Architecture, June 1995.

[36] Q. Yang, G.Thangadurai, and L.N. Bhuyan. Design of
Adaptive Cache Coherence Protocol for Large Scale Multi-
processors. [EEE Transactions on Parallel and Distributed
Systems, 3(3):281-293, May 1992.

