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Abstract

We propose a new approach for 1/0 scheduling that
performs on-line simulation of the underlying disk.
When simulation is integrated within a system, three
key challenges must be addressed: first, the simu-
lator must be portable across the full range of de-
vices; second, all configuration must be automatic;
third, the computation and memory overheads must
be low. Our simulator; the Disk Mimic achieves these
goals by building a model of the disk as it observes
the times for previous requests; each observed time
is recorded in a table, indexed by a single param-
eter: the inter-request distance. We show that a
shortest-mimic’ed-time-first (SMTF) scheduler, per-
forms close to an approach with perfect knowledge
of the underlying device and that it is superior 1o
traditional scheduling algorithms such as C-LOOK
and SSTF: our results hold as the seek and rotational
characteristics of the disk are varied.

1 Introduction

High-performance disk schedulers explored in the
research literature are becoming progressively more
tuned to the performance characteristics of the un-
derlying disks. Each generation of disk schedulers
has accounted for more of the behavior of storage
devices at the time. For example, disk schedulers
analyzed in the 1970s and 1980s focused on mini-
mizing seek time, given that seek time was often an
order of magnitude greater than the expected rota-
tional delay [8, 24, 28]. In the early 1990s, the focus
of disk schedulers shifted to take rotational delay into
account, as rotational delays and seek costs became
more balanced [11, 19, 29].

At the next level of sophistication, a disk scheduler
takes all aspects of the underlying disk into account:
track and cylinder switch costs, cache replacement
policies, mappings from logical block number to
physical block number, and zero-latency writes. For

example, Worthington ez al. demonstrate that al-
gorithms that effectively utilize a prefetching disk
cache perform better than those that do not [29].

However, the more intricate the knowledge a
scheduler has of the disk, the more barriers there
are to its realization within operating system kernels.
Specifically, there are three obstacles that must be
overcome. First, the scheduler must discover the de-
tailed knowledge of the underlying disk. Although
a variety of tools have been described that automati-
cally acquire portions of this knowledge [17, 23, 30],
this knowledge must still be embedded into the
disk model employed by the scheduler; the resulting
scheduler is then configured to handle only a single
disk with those specific characteristics. Second, the
disk scheduler must also have knowledge of the cur-
rent state of the disk, such as the exact position of
the disk head. Given that head position is not ex-
posed by current disk controllers and its position is
not predictable due to low-level disk techniques such
as wear leveling, predictive failure analysis, and log
updates, the scheduler must control the current po-
sition using non-trivial techniques [31, 9]. Finally,
the computational costs of a detailed modeling can
be quite high [29]; it is not uncommon for the time
to model request time to be larger than the time to
service the request [3].

Due to these difficulties, few disk schedulers that
Jeverage more than basic seek costs have been imple-
mented for real disks. When considering rotational
position, most previous work has been performed
within simulation environments [11, 19, 21, 29]. The
schedulers that have recently been implemented by
researchers have either contained substantial simpli-
fications [10] or have been painstakingly tuned for a
small group of disks [9, 31]. Not surprisingly, the
disk schedulers found in modern operating systems
such as Linux, NetBSD, and Solaris, attempt to min-
imize only seek time.




1.1 A Different Approach

We believe that a promising alternative approach to
embedding detailed knowledge of the disk into the
scheduler is to embed an on-line simulator of the disk
into the scheduler. An /O scheduler is able to use
on-line simulation of the underlying storage device
to predict which request in its queue will have the
shortest positioning time. Although a variety of disk
simulators exist [3], most are targeted for performing
traditional, off-line simulations, and unfortunately,
the infrastructure for performing on-line simulation
is fundamentally different.

In many respects, the requirements of an on-line
simulator are more stringent than those of an off-
line simulator. First, the on-line simulator must be
portable; that is, the simulator must be able to model
the behavior of any disk drive that could be used in
practice. Second, the on-line simulator must have
automatic run-time configuration, since one cannot
know the precise characteristics of the underlying
device when constructing the simulator; it is highly
undesirable if a human administrator must interact
with the simulator. Finally, the on-line simulator
must have low overhead; the computation and mem-
ory overheads of an on-line simulator must be mini-
mized such that the simulator does not adversely im-
pact system performance.

In addition to the complexity it introduces, an on-
line simulator also provides ample opportunities for
simplification. First, the on-line simulator has the
opportunity to observe the run-time behavior of the
device; not only does this allow the simulator to con-
figure itself on the fly, it also allows the simulator to
adjust to changes in the behavior of the device over
time. Second, the on-line simulator can be special-
ized for the problem domain in question. Finally, the
on-line simulator does not need to be parameteriz-
able; that is, since an on-line simulator is not explor-
ing different versions of the device itself, the simu-
lator does not need to contain a functional model of
the device.

1.2 Contributions

In this paper, we address how to implement an /O
scheduler that is aware of the underlying disk tech-
nology in a simple, portable, and robust manner.
To achieve this goal, we introduce the Disk Mimic,
which meets the requirements of an on-line simula-

tor for disk scheduling. The Disk Mimic is based
upon a simple table-based approach, in which input
parameters to the simulated device are used to in-
dex into a table; the corresponding entry in the table
gives the predicted output for the device. A table-
based approach is appropriate for on-line simulation
because it can portably capture the behavior of a vari-
ety of devices, requires no manual configuration, and
can be performed with little computational overhead.
However, there is a significant challenge as well: to
keep the size of the table tractable, one must iden-
tify the input parameters that significantly impact the
desired outputs. The method for reducing this input
space depends largely upon the domain in which the
on-line simulator is deployed.

We show that for disk scheduling, a single input
of the logical distance between two requests is suf-
ficient for predicting the positioning time. However,
when using the inter-request distance for prediction,
two issues must be resolved. First, inter-request dis-
tance is a fairly coarse predictor of positioning time;
as a result, there is high variability in the times for
different requests with the same distance. The im-
plication is that the Disk Mimic must observe many
instances for a given distance and use an appropri-
ate summary metric for the distribution; experimen-
tally, we have found that summarizing a small num-
ber of samples with the mean works well. Second,
given the large number of possible inter-request dis-
tances on a modern disk drive, the Disk Mimic can
not record all distances in a table of a reasonable size.
We show that simple linear interpolation can be used
to represent ranges of missing distances, as long as
some number of the interpolations within each range
are checked against measured values.

We propose a new disk scheduling algorithm,
shortest-mimic’ed-time-first (SMTF), which picks
the request that is predicted by the Disk Mimic to
have the shortest positioning time. We demonstrate
that the SMTF scheduler can utilize the Disk Mimic
in two different ways; specifically, the Disk Mimic
can either be configured off-line or on-line, and both
approaches can be performed automatically. When
the Disk Mimic is configured off-line, it performs
a series of probes to the disk with different inter-
request distances and records the resulting times; in
this scenario, the Disk Mimic has complete control
over which inter-request distances are observed and



which are interpolated. When the Disk Mimic is con-
figured on-line, it records the requests sent by the
running workload and their resulting times. Note that
regardless of whether the Disk Mimic is configured
off-line or on-line, the simulation itself is always per-
formed on-line, within an active system.

In this work, we show that the Disk Mimic can
be used to significantly improve the throughput of
disks with high utilization. Specifically, for a vari-
ety of simulated and real disks, C-LOOK and SSTF
perform between 10% and 50% slower than SMTF.
Further, we demonstrate that the Disk Mimic can be
successfully configured on-line; we show that while
the Disk Mimic is learning about the storage device,
SMTF performs no worse than a base scheduling al-
gorithm (e.g., C-LOOK or SSTF) and quickly per-
forms close to the off-line configuration (i.e., after
approximately 750000 requests).

The rest of this paper is organized as follows. In
Section 2 we describe the SMTF scheduler in more
detail and in Section 3 we describe the Disk Mimic.
We describe our basic methodology for evaluation in
Section 4. Next, we investigate the issues of config-
uring the Disk Mimic off-line in Section 5. We then
describe the additional complexities of configuring
the Disk Mimic on-line and show its performance in
Section 6. Finally, we describe related work and con-
clude.

2 1/0 Scheduler

In this section, we briefly describe the approach of
a new I/O scheduler that leverages the Disk Mimic.
We refer to the algorithm implemented by this sched-
uler as shortest-mimic’ed-time-first, or SMTE. The
basic function that SMTF performs is to order the
queue of requests such that the request with the short-
est position time, as determined by the Disk Mimic,
is scheduled next. However, given this basic role,
there are different optimizations that can be made.
The assumptions that we use for this paper are as fol-
lows.

First, we assume that the goal of the I/O scheduler
is to optimize the throughput of the storage system.
We do not consider the fairness of the scheduler. We
believe that the known techniques for achieving fair-
ness (e.g., weighting each request by its age [11, 19]),
that have been added to approaches such as SSTF can
be added to SMTF as well.

Second, we assume that the I/O scheduler is op-
erating in an environment with heavy disk traffic.
Given that the queue lengths at the disk may con-
tain hundreds or even thousands of requests [11, 19],
the computational complexity of the scheduling al-
gorithm is an important issue [2]. Given these large
queue lengths, it is not feasible to perform an opti-
mal scheduling decision that considers all possible
combinations of requests. Therefore, we consider a
greedy approach, in which only the time for the next
request is minimized [11].

To evaluate the performance of SMTF, we com-
pare to the algorithms most often used in prac-
tice: first-come-first-served (FCFS), C-LOOK, and
shortest-seek-time-first (SSTF). To compare our per-
formance to the best possible case, we have also im-
plemented a best-case-greedy scheduler for our sim-
ulated disks; this best-case scheduler knows exactly
how long each request will take on the simulated disk
and greedily picks the request with the shortest posi-
tioning time next.

3 The Disk Mimic

In this section, we describe the Disk Mimic, which
captures the behavior of a disk drive in a portable,
robust, and efficient manner. To predict the perfor-
mance of a disk, the Disk Mimic uses a simple table,
indexed by the relevant input parameters to the disk.
Thus, the Disk Mimic does not attempt to simulate
the mechanisms or components internal to the disk;

instead, it simply reproduces the output as a function
of the inputs it has observed.

3.1 Reducing Input Parameters

Given that the Disk Mimic uses a table-driven ap-
proach to predict the time for a request as a function
of the observable inputs, the fundamental issue is re-
ducing the number of inputs to the table to a tractable
number. If the I/O device is treated as a true black
box, in which one knows nothing about the internal
behavior of the device, then the Disk Mimic must as-
sume that the service time for each request is a func-
tion of all previous requests. Given that each request
is defined by many parameters (i.e., whether it is a
read or a write, its block number, its size, the time
of the request, and even its data value), this leads to
a prohibitively large number of input parameters as
indices to the table.




Therefore, the only tractable approach is to make
assumptions about the behavior of the I/O device for
the problem domain of interest. Given that our goal
is for the I/O scheduler to be portable across the real-
istic range of disk drives, and not to necessarily work
on any hypothetical storage device, we can use high-
level assumptions of how disks behave to eliminate a
significant number of input parameters; however, the
Disk Mimic will make as few assumptions as possi-
ble.

Our current implementation of the Disk Mimic
predicts the time for a request from only a single in-
put parameter: the logical distance from the ending
block of the previous request; we refer to this input as
the inter-request distance. This conclusion that inter-
request distance is the key parameter agrees with that
of previous researchers [26].

We now briefly argue why inter-request distance
is a suitable parameter in our domain. We begin
by summarizing the characteristics of modern disk
drives; much of this discussion is taken from the clas-
sic paper by Ruemmler and Wilkes [16]; the inter-
ested reader is referred to their paper for more de-
tails.

3.1.1 Background

A disk drive contains one or many platters, where
each platter surface has an associated disk head for
reading and writing. Each surface has data stored in a
series of concentric circles, or tracks. A single stack
of tracks at a common distance from the spindle is
called a cylinder. Modern disks also contain static
RAM to perform caching; the caching algorithm is
one of the most difficult aspects of the disk to capture
and model [22, 30].

The disk appears to its client as a linear array of
logical blocks; these logical blocks are then mapped
to physical sectors on the platters. This indirection
has the advantage that the disk can reorganize blocks
to avoid bad sectors and to improve performance,
but it has the disadvantage that the client does not
know where a particular logical block is located. If a
client wants to derive this mapping, there are mul-
tiple sources of complexity. First, different tracks
have different numbers of sectors; specifically, due
to zoning, tracks near the outside of a platter have
more sectors (and subsequently deliver higher band-
width) than tracks near the spindle. Second, consec-

utive sectors across track and cylinder boundaries are
skewed, to adjust for head and track switch times; the
skewing factor differs across zones as well. Third,
flawed sectors are remapped through sparing; spar-
ing may be done by remapping a bad sector (or track)
to a fixed alternate location or by slipping the sector
(or track) and all subsequent ones to the next sector
(or track).

Accessing a block of data requires moving the disk
head over the desired block. The time for this has two
dominant components: moving the disk head over
the desired track, seek time, and waiting for the de-
sired block to rotate under the disk head, rotation la-
tency. The seek time for reads is likely to be less than
that for writes, since reads can be performed more
aggressively (i.e., a read can be performed when the
block is not yet quite available without losing data,
while a write cannot). The time for the platter to ro-
tate is roughly constant, but it may vary around 0.5
to 1% of the nominal rate; as a result, it is difficult
to predict the location of the disk head after the disk
has been idle for many revolutions.

3.1.2 Inter-Request Distance

Given this basic behavior, the inter-request distance
between logical block addresses captures some of the
underlying characteristics of the disk, while miss-
ing others. We note that ordering requests based on
the time for a given distance is significantly different
than using the distance itself; due to the complexity
of disk geometry, some requests that are separated
by a larger logical distance can be positioned more
rapidly.

In the opinion of Ruemmler and Wilkes, the fol-
lowing aspects of the disk should be modeled for the
best accuracy: seek time (calculated with two sep-
arate functions depending upon the seek distance,
and different for reads and writes), head and track
switches, rotation latency, data layout (including re-
served sparing areas, zoning, and track and cylinder
skew), and data caching (both read-ahead and write-
behind). We briefly discuss the extent to which each
of these components is captured with our approach.

Our approach accounts for the combined costs of
seek time, head and track switches, and rotation lay-
out, but in a probabilistic manner. That is, for a
given inter-request distance, there is some proba-
bility that a request crosses track or even cylinder
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Figure 1: Distribution of Off-Line Probe Times for Three Inter-Request Distances. Each graph shows
a different seek distance: 132KB, 224KB, and 300KB. Along the x-axis, we show each of the 1000 probes
performed (sorted by time) and along the y-axis we show the time taken by that probe. These times are for

the IBM 9LZX disk.

boundaries. Requests of a given distance that cross
the same number of boundaries have the same to-
tal costs: the same number of track seeks, the same
number of head and/or track switches, and the same
amount of rotation.

We note that the table-based method for track-
ing seek time can be more accurate than that advo-
cated by Ruemmler and Wilkes; instead of express-
ing seek time as a function of the seek distance, the
Disk Mimic records the precise seek time for each
distance. Although Ruemmler and Wilkes encour-
age treating the seek costs of reads and writes differ-
ently, this is not an issue for the Disk Mimic, since
the difference is constant regardless of the I/O sched-
ule created.

The cost incurred by the rotation of the disk has
two components: the rotational distance between the
previous and the current request and the elapsed time
between the two requests (and thus, the amount of
rotation that has already occurred). Although using
inter-request distance probabilistically captures the
rotational distance, the Disk Mimic does not record
the amount of time that has elapsed since the last re-
quest. This omission is not an issue for disk schedul-
ing in the presence of a full queue of requests; in this
case, the inter-arrival time between requests at the
disk is both negligible and identical and, thus, can be
ignored. Ignoring time does cause inaccuracies when
scheduling the first request after an idle period; how-
ever, if the disk is often idle, then I/O scheduling is
not an important problem.

Data layout is incorporated fairly well by the Disk
Mimic as well. The number of sectors per track
and number of cylinders impact our measured val-
ues in that these sizes determine the probability that

a request of a given inter-request distance crosses
a boundary; thus these sizes impact the probability
of each observed time in the distribution. Although
zoning behavior and bad sectors are not tracked by
our model, previous research has shown that this
level of detail does not help with scheduling [29].

The aspect which we model the least directly is
that of general caching. However, the Disk Mimic
will capture the effects of simple prefetching, which
is the most important aspect of caching for schedul-
ing [29]. For example, if a read of one sector causes
the entire track to be cached, then the Disk Mimic
will observe the faster performance of accesses with
distances less than that of a track. In this respect,
configuring the Disk Mimic on-line by observing the
actual workload could be more accurate than config-
uring off-line, since the locality of the workload is
captured.

3.2 Results
To illustrate some of the complexity of using inter-
request distance as the single predictor of request
time, we show the distribution of times observed. For
these experiments, we configure the Disk Mimic off-
line as follows.

The Disk Mimic configures itself by probing the
/O device using fixed-size read operations (i.e.,
1KB). For each of the possible inter-request dis-
tances covering the disk (both negative and positive),
the Disk Mimic samples a number of points of the
same distance: it reads a block the specified distance
from the previous block. To avoid any caching or
pre-fetching performed by the disk, the Disk Mimic
reads from a random location before each new probe
of the required distance. The observed times are
recorded in a table, indexed by the inter-request dis-




Configuration | rotate seek head cyl | track cyl | sec/trk heads
lcyl 400 3000 | switch switch | skew skew

1 Base 6 08 6.0 8 0.79 1.78 36 84 272 10
2 Fast seek 6| 016 132 1.6 0.79 1.00 36 46 272 10
3 Slow seek 6 20 33.0 400 0.79 2.80 36 127 272 10
4 Fast rotate 2 08 6.0 8 0.79 1.78 108 243 272 10
5 Slow rotate 12 08 6.0 8 0.79 1.78 18 41 272 10
6 Fast seek+rot 210160 1.32 1.6 0.79 1.00 108 136 272 10
7 More capacity 6 0.8 6.0 8 0.79 1.78 36 84 544 20
8 Less capacity 6 0.8 6.0 8 0.79 1.78 36 84 136 5

Table 1: Disk Characteristics. Configurations of eight emulated disks. All times are in milliseconds. In

most experiments, the base disk is used.

tance.

In Figure 1 we show a small subset of the data col-
lected on the IBM 9LZX disk. The figure shows the
distribution of 1000 samples for three inter-request
distances of 132KB, 224KB, and 300KB. In each
case, the y-axis shows the request time of a sample
and the points along the x-axis represent each sam-
ple, sorted by increasing request time.

We make two important observations from the
sampled times. First, for a given inter-request dis-
tance, the observed request time is not constant; for
example, at a distance of 132K, about 10% of re-
quests require 1.8 ms, about 90% require 6.8 ms,
and a few require almost 8ms. Given this multi-
modal behavior, the time for a single request can-
not be reliably predicted from only the inter-request
distance; thus, one cannot usually predict whether a
request of one distance will be faster or slower than
a request of a different distance. Nevertheless, it is
often possible to make reasonable predictions based
upon the probabilities: for example, from this data,
one can conclude that a request of distance 132K is
likely to take longer than one of 224K.

Second, from examining distributions for differ-
ent inter-request distances, one can observe that the
number of transitions and the percentage of samples
with each time value varies across inter-request dis-
tances. The number of transitions in each graph cor-
responds roughly to the number of track (or cylinder)
boundaries that can be crossed for this inter-request
distance.

This data shows that a number of important is-
sues remain regarding the configuration of the Disk
Mimic. First, since there may be significant variation
in request times for a single inter-request distance,

what summary metric should be used to summarize
the distribution? Second, how many samples are re-
quired to adequately capture the behavior of this dis-
tribution? Third, must each inter-request distance be
sampled, or is it possible to interpolate intermediate
distances? We investigate these issues in Section 5.

4 Methodology

To evaluate the performance of SMTF scheduling,
we consider a range of disk drive technology. We
have implemented a disk emulator that accurately
models a seek curve, fixed rotation latency, track and
cylinder skewing, and a simple segmented cache; this
emulator is similar in spirit to that implemented else-
where [6], but can use the memory of either a net-
worked machine or the local machine as the storage
media of the emulated disk. For most of our exper-
iments, we configure the disk emulator to have per-
formance characteristics similar to the IBM 9LZX
disk. The characteristics of the eight disks that we
emulate are summarized in Table 1. We also run our
experiments on an IBM 9LZX disk.

To evaluate scheduling performance, we show re-
sults from the HP traces [15]; in most cases, we fo-
cus on the trace for the busiest disk from the week
of 5/30/92 to 6/5/92. For our performance metric,
we report the time the workload spent at the disk.
To consider the impact of heavier workloads and
longer queue lengths, we compress the inter-arrival
time between requests. When scaling time, we at-
tempt to preserve the dependencies across requests
in the workload by observing the blocks being re-
quested; we assume that if a request is repeated to a
block that has not yet been serviced, that this request
is dependent on the previous request first complet-
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Figure 2: Sensitivity to Summary Metrics. This
graph compares the performance of a variety of
scheduling algorithms on the base simulated disk
and the week-long HP trace. For the SMTF sched-
ulers, no interpolation is performed and 100 samples
are obtained for each data point. The x-axis shows
the compression factor applied to the workload. The
y-axis reports the time spent at the disk.

ing. Thus, we hold repeated requests, and all sub-
sequent requests, until the previous identical request
completes.

5 Off-Line Configuration

In this section, we explore the SMTF scheduler when
the Disk Mimic has been configured off-line; again,
although the the Disk Mimic is configured off-line,
the simulation and predictions required by the sched-
uler are still performed on-line within the system.
As described previously, configuring the Disk Mimic
off-line involves probing the underlying disk with re-
quests that have a range of inter-request distances.
We note that even when the model is configured off-
line, the process of configuring SMTF remains en-
tirely automatic and portable across a range of disk
drives. The main drawback to configuring the Disk
Mimic off-line is a longer installation time when a
new device is added to the system: the disk must be
probed before it can be used for workload traffic.

5.1 Summary Data

To enable the SMTF scheduler to easily compare the
expected time of all of the requests in the queue, the
Disk Mimic must supply a summary value for each
distribution as a function of the inter-request dis-
tance. Given the multi-modal characteristics of these
distributions, the choice of a summary metric is non-
obvious. Therefore, we evaluate five different sum-

mary metrics: mean, median, maximum, mini-
mum, and probabi1ist ic, which randomly picks
a value from the sampled distribution according to its
probability.

The results for each of these summary metrics on
the base simulated disk are shown in Figure 2. For
the workload, we consider the week-long HP trace,
scaled by the compression factor noted on the x-axis.
The graph shows that FCFS, SSTF, and C-LOOK all
perform worse than each of the SMTF schedulers; as
expected, the SMTF schedulers perform worse than
the greedy-optimal scheduler, but the best approach
is always within 7% for this workload. These results
show that using inter-request distance to predict po-
sitioning time merits further attention.

Comparing performance across the different
SMTF approaches, we see that each summary met-
ric performs quite differently. The ordering of per-
formance from best to worse is: mean, median,
maximum, probabilistic,and minimum. It is
interesting to note that the scheduling performance of
each summary metric is not correlated with its accu-
racy. The accuracy of disk models is often evaluated
according to its demerit figure, which is defined as
the root mean square of the horizontal distance be-
tween the time distributions for the model and the
real disk. This point is briefly illustrated in Fig-
ure 3, which shows the distribution of actual times
versus the predicted times for three different metrics:
probabilistic,mean, and max imum.!

As expected, the probabilistic model has
the best demerit figure; with many requests, the
distribution it predicts is expected to match that of
the real device. However, the probabilistic
model performs relatively poorly within SMTF be-
cause the time it predicts for any one request may
differ significantly from the actual time for that re-
quest. Conversely, although the maximum value re-
sults in a poor demerit figure, it performs adequately
for scheduling; in fact, SMTF with maximum per-
forms significantly better than with minimum, even
though both have similar demerit figures. Finally,
using the mean as a summary of the distribution

'The relatively large differences between the actual and pre-
dicted distributions for small request times is due to a small
discrepancy in our methodology: although we probed 1 KB re-
quests, we schedule 4 KB requests. We will correct this error in
the final version of the paper.
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achieves the best performance, even though it does
not result in the best demerit figure; we have found
that mean performs best for all other days from the
HP traces we have examined as well. Thus, for the
remainder of our experiments, we use the mean of
the observed samples as the summary data for each
inter-request distance.

5.2 Number of Samples
Given the large variation in times for a single inter-
request distance, the Disk Mimic must perform a
large number of probe samples to find the true mean
of the distribution. However, to reduce the time
required to configure the Disk Mimic off-line, we
would like to perform as few samples as possible.
Thus, we now evaluate the impact of the number of
samples on SMTF performance.

Figure 4 compares the performance of SMTF as

a function of the number of samples to the perfor-
mance of FCES, C-LOOK, SSTF, and optimal. As
expected, the performance of SMTF increases with
more samples; on this workload and disk, the perfor-
mance of SMTF continues to improve up o approx-
imately 10 samples. However, most interestingly,
even with a single sample for each inter-request dis-
tance, the Disk Mimic performs better than FCFS,
C-LOOK, and SSTF.

5.3 Interpolation

Although the number of samples performed for each
inter-request distance impacts the running time of
the off-line probe process, an even greater issue is
whether each distance must be explicitly probed or if
some can be interpolated from other distances. Due
to the large number of potential inter-request dis-
tances on a modern storage device (i.e., 2 ¥ number
of sectors for both negative and positive distances),
not only does performing all of the probes take a sig-
nificant amount of time, but storing each of the mean
values is prohibitive as well. For example, given a
disk of size 10 GB, the amount of memory required
for the table can exceed 200 MB. Therefore, we ex-
plore how some distances can be interpolated with-
out making detailed assumptions about the underly-
ing disk.

To illustrate the potential for performing simple
interpolations, we show the mean value as a func-
tion of the inter-request distance in Figure 5. The
graph on the left shows the mean values for all inter-
request distances on our simulated disk. The curve of
the two bands emanating from the middle point cor-
responds to the seek curve of the disk (i.e., for short
seeks, the time is proportional to the square root of
the distance, whereas for long, the time is linear with
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Figure 5: Mean values for samples as a function of inter-request distance. The graph on the left shows
the mean time for the entire set of inter-request distances on our simulated disk. The graph on the right
shows a close-up for inter-request distances; other distances have qualitatively similar saw-tooth behavior.

distance); the width of the bands is relatively con-
stant and corresponds to the rotation latency of the
disk. The graph on the right shows a close-up of
the inter-request distances. This graph shows that the
times follow a distinct saw-tooth pattern; as a result,
a simple linear model can likely be used to interpo-
late some distances, but care must be taken to ensure
that this model is applied to only relatively short dis-
tances.

Given that the length of the linear regions varies
across different disks (as a function of the track and
cylinder size), our goal is not to determine the partic-
ular distances that can be interpolated successfully.
Instead, our challenge is determine when an interpo-
lated value is “close enough” to the actual mean such
that scheduling performance is impacted only negli-
gibly.

Our basic off-line interpolation algorithm is as fol-
lows. After the Disk Mimic performs S samples of
two inter-request distances left and right, it chooses
a random distance middle between left and right; it
then linearly interpolates the mean value for middle
from the means for left and right. If the interpolated
value for middle is within error percent of the probed
value for middle, then the interpolation is considered
successful and all the distances between left and right
are interpolated. If the interpolation is not successful,
the Disk Mimic recursively checks the two smaller
ranges (i.e., the distances between left and middle
and between middle and right) until either the inter-
mediate points are successfully interpolated or until
all points are probed.
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Figure 6: Sensitivity to Interpolation. The graph
shows performance with interpolation as a function
of the percent of allowable error. Different lines cor-
respond to different numbers of check points, N. The
x-axis is the percent of allowable error and the y-
axis is the time spent at the disk. These results use
the base simulated disk and the week-long HP trace
with a compression factor of 20.

For additional confidence that linear interpolation
is valid in a region, we consider a slight variation in
which N points between left and right are interpo-
lated and checked. Only if all N points are predicted
with the desired level of accuracy is the interpolation
considered successful. The intuition of performing
more check points is that a higher error rate can be
used and interpolation can still be successful.

Figure 6 shows the performance of SMTF when
distances are interpolated; the graph shows the ef-
fect of increasing the number of intermediate points
N that are checked, as well as increasing the accept-
able error, error, of the interpolation. We make two




Check Points | Acceptable
N Error
1 1%
2 2%
3 5%
4 10 %
5 15 %
10 20 %

Table 2: Allowable Error for Interpolation. The
table summarizes the percentage within which an in-
terpolated value must be relative to the probed value
in order to infer that the interpolation is success-
ful. As more check points are performed between
two inter-request distances, the allowable error in-
creases. The numbers were gathered by running a
number of different workloads on the simulated disks
and observing the point at which performance with
interpolation degrades relative to that with no inter-
polation.

observations from this graph.

First, SMTF performance decreases as the allow-
able error of the check points increases. Although
this result is to be expected, we note that perfor-
mance decreases dramatically with the error not be-
cause the error of the checked distances is increased,
but because the interpolated distances are inaccurate
by much more. For example, with a single check
point (i.e., N = 1) and an error level of 5%, we have
found that only 20% of the interpolated values are ac-
tually accurate to that level and the average error of
all interpolated values increases to 25% (not shown).
In summary, when disk time increases significantly,
there was not a linear relationship for the distances
between left and right and interpolation should not
have been performed.

Second, SMTF performance for a fixed error in-
creases with the number of intermediate check points
N. The effect of performing more checks is to con-
firm that linear interpolation across these distances is
valid. For example, with N = 10 check points and
error = 95%, almost all interpolated points are accu-
rate to that level and the average error is less than 1%
(also not shown).

Table 2 summarizes our findings for a wider num-
ber of check points. The table shows the allowable
error percentage as a function of the number of check
points, N, to achieve scheduling performance that is
identical to that with all probes. Thus, the final probe
process can operate as follows. If the interpolation
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Figure 7:  Sensitivity to Disk Characteristics.
This figure explores the sensitivity of scheduling per-
formance to the disk characteristics shown in Ta-
ble 1. Performance is shown relative to greedy-
optimal. The bar for SMTF with interpolation is
shown stacked on top of the bar for SMTF without
interpolation (i.e., all probes).

of one distance between left and right has an error
less than 1%,, it is deemed successful. Otherwise,
if two distances between left and right have errors
less than 2%, the interpolation is successful as well.
Thus, progressively more check points can be made
with higher error rates to be successful. With this
approach, 90% of the distances on the disk are in-
terpolated instead of probed, and yet scheduling per-
formance is virtually unchanged; thus, interpolation
leads to a 10-fold memory savings.

5.4 Disk Characteristics
To demonstrate the robustness and portability of the
Disk Mimic and SMTF scheduling, we now consider
the full range of simulated disks described in Ta-
ble 1. The performance of FCFS, C-LOOK, SSTE,
and SMTF relative to greedy-optimal for each of the
seven new disks is summarized in Figure 7. We
show the performance of SMTF both with interpo-
Jation and without, but their performance is nearly
identical. As expected, FCFS performs the worst
across the entire range of disks; sometimes perform-
ing more than a factor of two slower than greedy-
optimal. C-L.OOK and SSTF perform relatively well
when seek time dominates performance (e.g., disks 3
and 4); SSTF performs better than C-LOOK in these
cases as well. Finally, SMTF performs very well,
even when rotational latency is a significant com-
ponent of request positioning (e.g., disks 2 and 4).
In summary, across this range of disks, SMTF al-
ways performs better than both C-LOOK and SSTF
scheduling and within 8% of the optimal algorithm.
To show that SMTF can handle the performance
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variation of real disks, we compare the performance
of our implementation of SMTF to that of FCFS,
SSTF, and C-LOOK when run on the IBM 9LZX
disk. Note that due to the difficulties of performing
an optimal simulation of a real disk, we do not com-
pare to greedy-optimal in this case. For our initial
results, we consider a synthetic workload in which
a 4K request is randomly generated for a disk block
between 400 MB and 450 MB; we assume a closed
system with 50 outstanding requests. The results of
this preliminary investigation are extremely promis-
ing: SMTF performs better than all of the other
schedulers; specifically, C-LOOK and SSTF perform
about 40% slower than SMTF and FCFS performs
about 80% slower. We will investigate a more thor-
ough set of workloads in the final version of the pa-
per.

6 On-Line Configuration

In this section, we explore the SMTF scheduler when
all configuration is performed on-line. With this ap-
proach, there is no overhead at installation time to
probe the disk drive; instead, the Disk Mimic ob-
serves the behavior of the disk as the workload runs.
As in the off-line version, the Disk Mimic records the
observed disk times as a function of its inter-request
distance, but in this case has no control over the inter-
request distances it observes.

6.1 General Approach

For the on-line version, we assume that many of
the lessons learned from off-line configuration hold.
First, we continue to use the mean to represent the
distribution of times for a given inter-request dis-
tance. Second, we continue to rely upon interpola-
tion; note that when the Disk Mimic is configured
on-line, interpolation is useful not only for saving
space, but also for providing new information about
distances that have not been observed.

The primary challenge that SMTF must address in
this situation is how to schedule requests when some
of the inter-request distances have unknown times
(i.e., this inter-request distance has not yet been ob-
served by the Disk Mimic and the Disk Mimic is un-
able to confirm that it can be interpolated success-
fully). We consider two algorithms for comparison.
Both algorithms assume that there is a base sched-
uler (either C-LOOK or SSTF) which is used when
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the Disk Mimic does not have sufficient information.

The first algorithm, Online-Priority, tries
to schedule only those requests for which the Disk
Mimic has information. Specifically, Online-
Priority gives strict priority to those requests in
the queue that have an inter-request distance with
a known time; among those requests with known
times, the request with the minimum mean time
is picked. With Online-Priority, the base
scheduler (e.g., C-LOOK or SSTF) is only used
when no inter-request distances for the current queue
are known. There are two problems with this ap-
proach. First, given its preference for scheduling
already known inter-request distances, Online-
Priority may perform worse than its base sched-
uler. Second, schedules with a diversity of distances
may never be produced and thus the Disk Mimic may
never observe some of the most efficient distances.

The second algorithm, Online-Set, improves
on both of these limitations by using the decision of
the base scheduler as its starting point, and schedul-
ing a different request only when the Disk Mimic
has knowledge that performance can be improved.
Specifically, Online-Set first considers the re-
quest that the base scheduler would pick. If the time
for the corresponding distance is not known by the
Disk Mimic, then this request is scheduled. How-
ever, if the time is known, then all of the requests
with known inter-request distances are considered
and the one with the fastest mean is chosen. Thus,
Online-Set should only improve on the perfor-
mance of the base scheduler and it is likely to sched-
ule a variety of inter-request distances when it is still
learning.

6.2 Experimental Results
To evaluate the performance of the on-line algo-
rithms, we return to the base simulated disk. The left-
most graph of Figure 8 compares the performance of
Online-Priorityand Online-Set, when ei-
ther C-LOOK or SSTF is used as the baseline algo-
rithm and both with and without interpolation. Per-
formance is expressed in terms of slowdown relative
to the off-line version of SMTF. We make three ob-
servations from this graph.

First, and somewhat more surprising, although C-
LOOK performs better than SSTF for this work-
load and disk, SMTF performs noticeably better
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Figure 8: Performance of On-Line SMTF. The first graph compares the performance of different vari-
ations of on-line SMTF; the performance of the last day of the week-long HP trace is shown relative to
off-line SMTF. The second graph shows that the performance of Online-Set improves over time as more

inter-request distances are observed.

with SSTF than with C-LOOK as a base; with C-
LOOK, the Disk Mimic is not able to observe inter-
request distances that are negative (i.e., backward)
and thus does not discover distances that are close to-
gether. Second, Online-Set performs better than
Online-Priority with SSTF as the base sched-
uler. Third, although interpolation does significantly
improve the performance of Online-Priority
and of Online-Set with C-LOOK, it leads to only
a small improvement with Onl ine-Set and SSTE.
Thus, as with off-line configuration, the primary ben-
efit of interpolation is to reduce the memory require-
ments of the Disk Mimic, as opposed to improving
performance.

The right-most graph of Figure 8 illustrates how
the performance of Online-Set improves over
time as more inter-request distances are observed.
We see that the performance of the Online-Set
algorithms (with and without interpolation) is better
than the base-line schedulers of SSTF and C-LOOK
even after one day of the original trace (i.e., ap-
proximately 150000 requests). The performance of
Online-Set with SSTF converges to within 3%
of the off-line version after four days, or only about
750000 requests.

At this point, we feel that there are two opportuni-
ties for further improving the performance of on-line
SMTF relative to off-line SMTF. First, in our current
on-line implementations, if a slow time for a partic-
ular distance is observed initially, the scheduler will
avoid that distance even if the mean is much faster.

To address this, we plan on requiring that a distance
has a minimum number of samples before being clas-
sified as known. Second, our current algorithm does
not leverage idle time. We plan on performing probes
of known inter-request distances during idle times so
that the Disk Mimic can learn more of the character-
istics of the disk.

7 Related Work

7.1 Disk Modeling

The classic paper describing models of disk drives is
that by Ruemmler and Wilkes [16]. The main focus
of this work is to enable an informed trade-off be-
tween simulation effort and the resulting accuracy of
the model. Ruemmler and Wilkes evaluate the as-
pects of a disk that should be modeled for a high
level of accuracy, using the demerit figure. Other
researchers have noted that additional non-trivial as-
sumptions must be made to model disks to the de-
sired accuracy level [12]; modeling cache behavior
is a particularly challenging aspect [22].

Given that the detailed knowledge for model-
ing disks is not available from documentation, re-
searchers have developed innovative methods to ac-
quire the information. For example, Worthington ez
al.describe techniques for SCSI drives that extract
time parameters such as the seek curve, rotation
speed, and command overheads as well as informa-
tion about the data layout on disk and the caching and
prefetching characteristics[30]; many of these tech-
niques are automated in later work [17].

Modeling storage devices using tables of past per-
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formance has also been explored in previous work;
in most previous work [1, 5], high-level system pa-

rameters (e.g., load, number of disks, and operation’

type) are used as indices into the table. Anderson
also uses the results on-line, to assist in the recon-
figuration of disk arrays. The approach most similar
to ours is that of Thornock et al. [25]. In this work,
the authors use stochastic methods to build a model
of the underlying drive. However, the application of
this model is to standard, off-line simulation; specifi-
cally, the authors study block reorganization, similar
to earlier work by Ruemmler and Wilkes [14].

At a higher level, Seltzer and Small suggest in situ
simulation as a method for building more adaptive
operating systems [20]. In this work, the authors sug-
gest that operating systems can utilize in-kernel mon-
itoring and adaptation to make more informed policy
decisions. By tracing application activity, the VINO
system can determine whether the current policy is
behaving as expected or if another policy should be
switched into place. However, actual simulations of
system behavior are performed off-line, as a “last re-
sort” when poor performance is detected.

7.2 Disk Scheduling

Disk scheduling has long been a topic of study in
computer science [28]. Rotationally-aware sched-
ulers came into existence in the early 1990’s, through
the work of Seltzer et al. [19] and Jacobson and
Wilkes [11]. However, perhaps due the difficulty
of implementation, those early works focused solely
upon simulation to explore the basic ideas. Only
recently have implementations of rotationally-aware
schedulers been described within the literature, and
those are crafted with extreme care [9, 31].

More recently, Worthington et al. [29] examine
the benefits of even more detailed knowledge of
disk drives within OS-level disk schedulers. They
find that algorithms that mesh well with the mod-
ern prefetching caches perform best, but that detailed
logical-to-physical mapping information is not cur-
rently useful.

Anticipatory scheduling is a recent scheduling
development that is complementary to our on-line
simulation-based approach [10]. An anticipatory
scheduler makes the assumption that there is likely
to be locality in a stream of requests from a given
process; by waiting for the next request (instead of

servicing a request from a different process), perfor-
mance can be improved. The authors also note the
difficulty of building a rotationally-aware scheduler,
and instead use a empirically-generated curve-fitted
estimate of disk access-time costs; the Disk Mimic
would yield a performance benefit over this simpli-
fied approach.

8 Conclusions

In this paper, we have explored some of the issues
of using simulation within the system to make run-
time scheduling decisions; in particular, we have fo-
cused on how a disk simulator can automatically
model e a range of disks without human interven-
tion. We have shown that the Disk Mimic can model
the time of a request by simply observing the logi-
cal distance from the previous request and predict-
ing that it will behave similarly to other requests
with the same distance in the past. The Disk Mimic
can configure itself for a given disk by either prob-
ing the disk off-line or, at a slight performance cost,
by observing requests sent to the disk on-line. We
have demonstrated that a disk scheduler, shortest-
mimic’ed-time-first (SMTF), based upon the Disk
Mimic, can significantly improve disk performance
relative to FCFS, SSTF, and C-LOOK for a range of
disk characteristics.

In the future, we plan to show that SMTF schedul-
ing is appropriate for a range of storage devices other
than disk drives. For example, RAID systems [13],
network-attached storage devices [4], MEMS-based
devices [18], tapes [7], and non-volatile memory [27]
may all be used as building blocks in a storage sys-
tem. Each of these devices has its own complex per-
formance characteristics and it would be ideal if the
/O scheduler could automatically adapt to any of
these devices.
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