Computer
Sciences
Department

A Gray-Box Approach to Controlling Data
Layout: Techniques and Implementation

James Nugent

Andrea Arpaci-Dusseau
Remazi Arpaci-Dusseau
Technical Report #1456

November 2002

UNIVERSITY OF

WISCONSIN

M A DI S O N




A Gray-Box Approach To Controlling Data Layout:
Techniques and Implementation

James Nugent, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

Computer Sciences Department
University of Wisconsin, Madison

Abstract

We present the design and implementation of
PLACE, a gray-box library for controlling file layout
on top of FFS-based file systems. PLACE exploits its
knowledge of FFS layout policies in order to let users
place files and directories into specific and local-
ized portions of disk. Applications can use PLACE
to colocate files that exhibit temporal locality of ac-
cess, thus improving performance. Through a se-
ries of microbenchmarks, we analyze the overheads
of controlling file layout on top of the file system,
showing that they are not prohibitively burdensome,
and also discuss the limitations of our approach. Fi-
nally, we demonstrate the utility of PLACE through
two case studies: we demonstrate the potential of file
layout rearrangement in a web-server environment,
and we build a benchmarking tool that exploits con-
trol over file placement to quickly extract low-level
details from the disk system, . In the traditional gray-
box manner, the PLACE library achieves these ends
entirely at user-level, without changing a single line
of operating system source code.

1 Introduction

High-performance I/O-intensive applications, in-
cluding database management systems and web
servers, have long yearned for control over the place-
ment of their data on disk [23]. Proper data alloca-
tion can exploit locality of access within a particular
workload, increasing disk efficiency and thereby im-
proving overall performance.

However, many file systems, while convenient to
use, do not provide the explicit controls that are

needed by applications to affect their desired file lay-
outs. For example, UNIX file systems based on the
Berkeley Fast File System (FFS) [12] group files by
a set of heuristics, specifically trying to group inodes
and data blocks of files that reside in the same di-
rectory. Applications that wish to have full control
over layout traditionally have avoided using file sys-
tems altogether, and thus giving up convenience for
control.

Gray-box techniques [1] are a promising approach
that can be used to gather information about and ex-
ert control over systems that do not export the nec-
essary interfaces to do so. By treating a system as
a gray box, one assumes some general knowledge
of how the system behaves or is implemented; that
knowledge plus observations of how the system is
currently behaving allows the construction of more
powerful services than those exported by the base
system.

In this paper, we explore the application of
gray-box techniques to the file placement problem.
Specifically, to retain the convenience of the file sys-
tem while regaining control over placement, we in-
troduce PLACE (Positional LAyout ControllEr), a
system that exploits “gray-box” techniques to give
applications improved control over file placement.
The system is depicted in Figure 1.

The most important component of PLACE is the
PLACE Information and Control Layer (ICL). The
PLACE ICL allows applications to group files or di-
rectories into localized portions of the disk, into a
particular group. Proper placement of data can im-
prove both read and write performance; by colocat-
ing files that are likely to be accessed at nearly the
same time, applications can improve their perfor-




PLACE
Unmodified Native
Application Application
A G 1A
, PLACEICL o
== o]

i

Unmodified FFS-like
File System

3

Figure 1: The PLACE System. The PLACE system con-
sists of three components, hzghlzghted in gray in the fig-
ure. The most important component is the PLACE ICL,
which uses gray-box techniques to discover information
about the file system, and the exploits that knowledge to
enable applications that link with it to control file and di-
rectory layout. The two other components of PLACE are
the tool pmk £s, which is used to initialize the PLACE on-
disk structures, and a set of PLACE command-line tools.
PLACE currently works on top of “FFS-like” file systems,
learning of their internal cylinder group structure, and ex-
posing this structure through the PLACE ICL.

mance by “short-stroking” the disk (reducing the cost
of seeks by limiting arm movement to a certain por-
tion of the disk). Applications that do not use the
PLACE library to access the file system are unaf-
fected and operate as expected.

The key to the PLACE implementation is the
shadow directory tree (SDT). The SDT is a hidden
control structure which the PLACE ICL uses to con-
trol where files are placed on disk. By carefully
creating this structure (and exploiting our gray-box
knowledge of file system behavior), the SDT enables
the PLACE ICL to place files according to user pref-
erences in a correct and efficient manner. Creating
and maintaining this structure is thus one of the cen-
tral challenges to an effective PLACE implementa-
tion.

We first evaluate the PLACE ICL with a set of mi-
crobenchmarks, to understand the basic costs and po-
tential benefits of using PLACE. In general, we find
that the costs of using PLACE are reasonable, al-

though a controlled file or directory creation is still
noticeably more costly than standard versions of ei-
ther operation in our initial implementation. We also
find that the potential benefits are substantial; ran-
dom I/O performance improves dramatically when
related data items are grouped into a small portion of
the disk.

We then demonstrate the utility of PLACE with
two separate application studies. In the first, we show
how a web server can use PLACE to group files that
exhibit temporal access locality, and thus improve
overall throughput and reduce response time. In the
second, we show how a high-speed user-level bench-
marking system can use PLACE to rapidly construct
its testing infrastructure.

The rest of this paper is organized as follows. In
Section 2, we describe the design and implementa-
tion of PLACE, and in Section 3, we measure its
basic overheads. In Section 4, we present two case
studies of PLACE usage. We describe related work
in Section 5, and conclude in Section 6.

2 PLACE: Design and
Implementation

In this section, we describe the PLACE system for
controlling file layout. We first provide some back-
ground, describe our goals in implementing PLACE,
and then describe the API as exposed through the
PLACE ICL.. After presenting the programming in-
terface, we discuss the PLACE implementation, in-
cluding the shadow structures it uses to control file
placement, system initialization, general operation,
issues of concurrency, and some limitations of the
current implementation.

2.1 Background

Many modern UNIX file systems are based on the
Berkeley Fast File System[12], including direct de-
scendants found in the BSD and Solaris families,
and intellectual descendants such as Linux ext2 [26].
One of the main innovations of FFS is the emphasis
placed upon locality — by placing related data objects
near one another on disk, FFS provided a quantum
leap in performance over file systems that scattered
data across the disk in an oblivious manner.



The primary construct used in FFS to manage disk
locality is the cylinder group (or block group in ext2,
terms that we will use interchangeably for simplic-
ity). A cylinder group divides the disk into a num-
ber of contiguous regions, each of which consist of
inodes, blocks, bitmaps to track inode and block us-
age, a small number of blocks that store implemen-
tation specific information. By placing related data
objects into a cylinder group, and conversely spread-
ing unrelated objects across different groups, locality
of access can be achieved.

The difficulty, of course, is deciding exactly which
objects are “related” and which are not. Typically,
simple heuristics based on the file system names-
pace are used. Specifically, to group related ob-
jects, most implementations place the inodes and
data blocks of files within the same directory into
the same group, assuming locality of access among
those files. Conversely, new directories are placed
in different groups, so as to spread presumably unre-
lated files across the disk (thus leaving in each group
some “room to grow”). Some FFS implementations
also spread large files across groups, so as to avoid
filling one group with a single large file.

In designing the PLACE ICL, we seek to exploit
our gray-box knowledge of how FFS-based systems
perform file layout in order to allow users to better
control where their files are placed on disk. We also
wish to understand the limits of such gray-box con-
trol, including the types of functionality that cannot
be realized on top of modern file systems.

2.2 Design Goals
In designing PLACE, we had the following goals:

e Simple and intuitive control over layout: Ap-
plications should be given a straight-forward
representation of disk locality, which they can
then exploit with their own application-specific
knowledge to improve I/O performance.

o Easy to use: PLACE should be as easy to use
as possible — no substantial code modifications
should be required. Both programming APIs
and command-line tools should be provided.

¢ Compatible with non-PLACE applications:
Applications that do not use PLACE on top of a

given file system should operate as before, i.e.,
basic file system structure and usage for unmod-
ified applications should not change.

e Unaffected file systemm namespace: Applica-
tions (and users) should be able to name files
according to whatever conventions they desire
— layout should not be dependent upon special-
ized naming schemes.

As we will see below, these goals impact both the
design and implementation of PLACE.

2.3 Abstractions and API

As its basic abstraction, PLACE exposes the under-
lying groups of FFS-based file systems to applica-
tions that link with the PLACE library. Applications
can then use knowledge of their own access patterns
to place related files and directories into a specific
group, thus exploiting locality. Group numbers also
provide applications with two other pieces of infor-
mation. First, applications can safely assume that
files in proximate groups are reasonably “close” to
one another, e.g., an object in group 1 is close to an
object in group 2, but not likely to be very close to
an object in group 55. Second, lower group num-
bers are located near the outer tracks of the disk,
whereas higher group numbers are located near the
inner tracks. Applications may wish to utilize zone-
sensitive placement for large files and thus improve
throughput.

Note that more abstract “virtual” groupings and
even group hierarchies could be layered on top of
the physical group interface if desired. However, for
simplicity, we focus solely on this lowest level of ab-
straction in the rest of this paper.

To allow applications to place files and directo-
ries into specific groups, PLACE provides two basic
functions to applications:

e Place CreateFile (char *pathname,
mode_t mode, int group) Creates a file
specified by pathname and with mode set
to mode in group number group. The first
two arguments are identical to the creat ()
system call.




e Place CreateDir {char *pathname,
mode.t mode, int group) Creates a
directory specified by pathname with mode
set to mode in group number group. The first
two arguments are identical to the mkdir ()
system call.

The Place.CreateFile call allows the fine-
grained placement of files into particular groups,
whereas the Place _CreateDir function allows
applications to create a directory in a controlled man-
ner. Subsequent file allocations in that directory
(through PLACE or not) are then likely to be colo-
cated, due to standard FFS policy.

Of course, PLACE may not be able to allocate the
file or directory into a particular group. In such a
case, the standard behavior is for the routine to re-
turn an error and for the object not be created. An
alternative interface can be used in which the rou-
tines can instead search for a “nearby” group upon
failure, and place the file or directory therein.

Several other utility and convenience functions are
also provided. For example, applications can dis-
cover the number of groups in a given file system, the
current utilization level of each group, or ask PLACE
to put an object into the currently least utilized group.

When a user does not wish to or cannot re-write
an application to use the PLACE API, a set of
command-line tools can instead be utilized. These
tools allow users to control the layout of directo-
ries and files; subsequent data access by unmodified
applications will thus enjoy the benefits of the rear-
rangement.

24

PLACE exploits the FFS tendency to use the file
namespace as a hint for placement in order to gain
control over file layout. To do so, PLACE must first
create a structure in which new files and directories
can be created in a controlled fashion; once created
therein, the PLACE library then renames the files,
thus moving them back into their proper location
within the file system namespace. This file system
structure, known as the shadow directory tree (SDT),
is thus central to the PLACE implementation.

At initialization (performed once per new file sys-
tem), PLACE produces an SDT structure that ap-
pears in the file system namespace as follows:

Basic Operation

.hidden/.superblock
.hidden/.concurrency
.hidden/D1/
.hidden/D2/

P .

/.hidden/Dn/

There are three important entities found within the
SDT. First, the .superblock file contains per-
sistent info about PLACE. Second, the .concur-
rency file is used to manage concurrent access to
files through the PLACE API. Both of these files are
discussed in more detail below. Third, and most in-
teresting, is the set of directories named D1 through
Dn, where n is the number of cylinder groups in the
file system. The initialization procedure (also de-
scribed in more detail below) ensures that directory
Dk is placed into cylinder group k. Note that all of
these structures are placed in a “hidden” directory
so that most applications will not “see” them when
traversing the directory tree.

2.4.1 Controlling File Creation

With the SDT in place, creating a file in a particu-
lar group is straight-forward. An application calls
Place_CreateFile, passing in the pathname of
the file to be created, the mode bits, and the desired
group k within which to place the file. Internally, the
PLACE ICL creates a file in the Dk shadow direc-
tory, and then simply calls rename to put the file in
the proper location in the namespace.

PLACE also checks to make sure that the file is al-
located where the user requested, by looking up the i-
number of the newly allocated file. During initializa-
tion (described below), PLACE learns of and records
the i-number to group mapping, and uses that infor-
mation here to determine if the allocation was suc-
cessful. Upon failure, the file is not allocated and an
error is returned (an alternative API places the file
in a nearby group and informs the caller of the new
group number).

2.4.2 Controlling Directory Creation

Placing a directory into the proper group with
Place_CreateDir is more challenging; creating
a directory in the proper Dk shadow directory does
not suffice, as FFS-based file systems will place the



child directory in a different cylinder group than its
parent. Thus, a more sophisticated approach is re-
quired, and is described as follows:

repeat
tmp = PickNewName();
mkdir(tmp);
if (InDesiredGroup(tmp)) then
break;
end
FillOtherGroups() ;
until forever;
rename(tmp, dirname);

Algorithm 1: Directory Creation Algorithm

The basic algorithm works by creating a tempo-
rary directory, checking if it is in the desired group
(via its i-number), and repeating this process until the
temporary directory is created in the correct group.
When such a directory is created, it is renamed to the
proper location in the namespace.

One complication arises due to the particular di-
rectory allocation policies of some FFS-like file sys-
tems. For example, Linux ext2 uses the number of
bytes per group to place directories into the group
with the lowest number of used bytes, whereas other
FFS-based systems such as NetBSD FFS pick the
target group by finding a group with many free in-
odes and the fewest allocated directories. Thus, the
algorithm must also be willing to create temporary
files as well as directories to coerce the file sys-
tem into creating a directory in the desired group.
This process, referred to in Algorithm 1 as FillOther-
Groups(), creates some number of files in each of the
non-target groups. In order to ensure that the files
are not spread across different groups in the file sys-
tem, PLACE creates “small” files (i.e., files that do
not utilize any indirect pointers).

Unfortunately, this basic algorithm can be quite
slow, as we will demonstrate in Section 3. To speed
up the process in the common case, we build a
shadow cache of directories within the SDT. Before
attempting to create a new directory within a partic-
ular group, the directory creation algorithm first con-
sults the shadow cache to see if a directory within
that group already exists; if so, PLACE simply re-
names that directory and is finished, thus avoiding
the expensive directory creation algorithm.

If PLACE does not find the appropriate directory
in the cache, it performs the full-fledged algorithm
as described above. In this case, the directories that
are created during the algorithm can be added to the
cache, thus automatically repopulating the shadow
cache periodically.

2.5 SDT Initialization

We now discuss the initialization process required
by PLACE, as encapsulated within a tool we call
pmkfs (for “PLACE mkfs”). There are two steps
to pmk f£s. First, pmk £s must discover various sys-
tem parameters which are used in the algorithms
described above. Second, pmkfs must create the
SDT on-disk data structures and populate the shadow
cache.

2.5.1 Parameter Discovery

PLACE requires several pieces of information in or-
der to create the on-disk structures to support con-
trolled allocation. These are the number of groups
in the file systern (N), and the number of blocks (B)
and inodes (I) per group. The total number of blocks
and inodes in the system is readily available via the
statfs () system call.

Finding the number of groups is slightly more
challenging. Our current algorithm calculates this
number by allocating directories and recording the
difference in the inode numbers of subsequently al-
located directories. Since each directory is likely to
be in a new group, the most common difference is the
number of inodes per group. Once one knows I, one
can get the group number (GN) of an object from its
inode number (IN) by computing: GN = yl[:-l

The system also calculates the number of direct
pointers used in an inode (i.e., the size of a “small”
file), which is required for the directory creation al-
gorithm to work across multiple FFS platforms. This
value is discovered by synchronously writing blocks
into a file, and monitoring the number of free blocks
in the file system via stat £s. The “small” file size
is discovered at the point where a single allocating
block write decreases the free block count by two
blocks, indicating that an indirect block has been al-
located.




2.5.2 SDT Creation

In the second step, pmk £ s stores the necessary infor-
mation into the . superblock file, and then creates
the directory tree containing directories D1 through
Dn, assuming n groups. The process of creating
these directories is identical to the directory creation
algorithm found in Algorithm 1. As in the typical
directory creation procedure, excess directories that
are created are added to the shadow cache. In gen-
eral, PLACE tries to maintain some minimal thresh-
old of shadow directories per group, so as to avoid
the costly directory creation algorithm.

2.6 Other Issues: Crash Recovery
and Concurrency

During both file and directory creation, PLACE may
create files and directories in the SDT, and thus there
is the potential that data will accrue there over time;
this will occur, for example, when a file is created in
the SDT but the system crashes before the rename
has taken place, or worse, if a job is killed in the
midst of a PLACE library call. PLACE must thus
include a basic crash recovery mechanism in order
to periodically remove these files. We refer to this
process as SDT cleaning.

Our current implementation of the SDT cleaner
scans the directory structures and removes any data
objects that are “old” and thus left-overs from sys-
tem crashes. As for how often to run the cleaner,
many alternatives are possible. Our current imple-
mentation invokes the cleaner once every n invoca-
tions PLACE (currently, n is set to 1000, which is
probably too conservative), and whenever the longer

_directory-allocation process is run. Other alterna-
tives include running the cleaner once per time inter-
val (i.e., once every day), or in a background process.

New issues also arise when considering PLACE
usage under multiple processes or users. Concurrent
use of PLACE by different processes is only a prob-
lem in the current implementation when it is using
the basic algorithm to allocate a directory. In that sit-
uation, competing controlled directory creations in
different groups could lead to significant difficulty in
creating a directory in the desired location. To avoid
this problem, PLACE acquires an advisory lock on
the . concurrency file during this mode.

Multiple users also introduce a new issue, par-
ticularly as to whether the SDT should be shared
or private per user. Sharing requires some level of
trust among applications, as the SDT must be in a
writable location. Thus, a shared SDT is vulnerable
to many types of attacks (e.g., changing the struc-
tures of PLACE to lead to poor allocations, or filling
the SDT and causing a denial of service). In many
environments, this is not a problem, as a single user
or application may have sole access to the file sys-
tem. However, in less trustworthy settings, the SDT
could be replicated on a per-user basis; although this
increases space utilization and duplicates much of
the work that needs to be done if many different users
are running PLACE-enabled applications, it circum-
vents the security issues that arise due to sharing.

2.7 Limitations

The primary limitation of PLACE is that it is cur-
rently implemented only for FFS-like file systems.
However, most modern UNIX file systems are FFS-
like, and recent features, including journaling [26]
within ext3 or Soft Updates that is found within the
BSD family of FFS implementations [21], do not
affect our ability to control file placement with the
techniques described above.

It should also be noted that most of our experience
has been with the Linux ext2 file system, although
our algorithms are designed to work upon most FFS
implementations with which we are familiar. The
breadth of PLACE portability are discussed further
in Section 3.

Controlling file placement from user-level in rad-
ically different file systems may be easier or more
difficult depending on the exact system. For exam-
ple, within a log-structured file system (LFS) [16],
grouping of particular “related” files would generally
be straight-forward; if a user wished to group two
files, they could write out those files at the same time,
and hence place them within the same log segment.
However, other aspects make LFS more challenging,
including the grouping of files that span multiple seg-
ments, and controlling the off-line behavior of the
cleaner. Thus, achieving user-level control of a log-
structured file system remains a potentially interest-
ing area of future work.

Another limitation arises due to the internal im-



plementation of some FES implementations, which
spread larger files across different cylinder groups in
order to avoid filling a single group too quickly [12].
This FFS behavior prevents PLACE from controlling
where large files are laid out on disk, given its current
implementation, and thus we provide an interface to
query PLACE as to the largest file size whose allo-
cation can be “guaranteed” to be controllable. One
notable exception to this standard “FFS” implemen-
tation strategy occurs within ext2, which does not
spread larger files across different groups; this im-
plementation strategy hints at what gray-box imple-
mentors would like to find inside of the systems they
build on top of — behavior that is simple to under-
stand and thus relatively easy to control.

One alternative that we had initially explored over-
comes this limitation but does not mesh well with
applications that do not use PLACE. In this alter-
native approach, PLACE initially fills the target file
system with a set of dummy files; by discovering
the exact locations of each file, PLACE could then
free up space whenever applications requested new
space, and thus all data allocations could be con-
trolled. However, we deemed this approach unac-
ceptable, as unmodified applications would not work
correctly — to those applications, the file system ap-
peared as if it was full.

3 Analysis

In this section, we analyze the behavior of PLACE,
demonstrating its functionality and its basic over-
heads. We first discuss the experimental environ-
ment, and then proceed through a series of mi-
crobenchmarks, demonstrating the effectiveness of
layout control, and revealing the costs of system cre-
ation and usage. We then show how much improve-
ment can be expected when reorganizing data and
controlling layout to account for zoned-bit recording.
Finally, we discuss our experience upon a broader
range of OS platforms.

3.1 Experimental Environment

We present results with PLACE on top of the
Linux 2.2 ext2 file system. All experiments on this
platform are performed on a 550 MHz Pentium-III

Group Utilization

P(100)

S(1) -

Approach

S(10) -

S(100)

0 10 20 30 40 50 60 70
Group Number

Figure 2: Controlled Allocation. The graph depicts four
different experiments, each of which creates 250 200-KB
files. In the first three, the standard file system interfaces
are used, but the number of directories under which the
files are created is varied, from I to 10 to 100; these three
experiments are labeled S(1), S(10), and S(100), respec-
tively. In the fourth experiment, the PLACE API is used to
create those files under 100 directories, but to place them
in a single group in the middle of the disk (labeled P(100)
in the graph). The group number is varied along the x-
axis, and the shaded bar indicates some data has been
placed in a particular group, with darker bars indicating
more data.

processor, 1 GB of main memory, and a 9 GB IBM
9LZX. The default ext2 file system built over this
disk consists of 68 block groups. We also report on
our experience with other file systems at the end of
the section.

3.2 Layout Control

We begin with a simple experiment to demonstrate
that PLACE effectively can colocate files into a spe-
cific group on the disk. Specifically, we compare
four different methods of creating 50 MB, allocated
across 250 uniformly-sized files. In the first three,
we use the standard file system interfaces, and alter
the number of directories under which to place the
files, from 1 to 10 to 100. In the fourth, we use the
PLACE ICL to create the files underneath of 100 di-
rectories, but direct the system to place the files and
directories into a single group in the middle of the
disk. Figure 2 shows the group utilization of each
approach organizations of 50 MB of data, in which
we use the debugf s command to gather the needed
information.

As we can see from the figure, with more direc-




System Creation Time
2500 T T T T T T

PLACE —t+—

2000 -

1500 | ~

Time(s)

1000 ]

500 -

0 i3 i 1 L i 1 1 i
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of Shadow Directories

Figure 3: System Initialization. System initialization
time is plotted. The dominant cost of system initialization
is the creation of shadow directories, and hence we vary
the number created along the x-axis.

tories and the standard layout algorithms, the data
from the files gets scattered across the disk. In con-
trast, with PLACE, we can observe that all of the data
is located in the middle group of the file system, ex-
actly as desired.

3.3 System Creation

Now that we have demonstrated basic control over
layout, we now seek to understand the costs of us-
ing the system. The first cost that we present is that
of system initialization, as performed by the pmk fs
tool. Figure 3 presents system initialization time.

The dominant cost of system initialization is in the
number of shadow directories that are created within
the shadow cache. Therefore, we present the sensi-
tivity of initialization time to the number of shadow
directories created. As one can see from the fig-
ure, this cost does not scale well with an increas-
ing number of directories upon the Linux ext2 sys-
tem, as an increasing amount of data needs to be cre-
ated in order to allocate directories across all of the
groups successfully. A typical file system containing
roughly 100 groups would create on the order of 20
shadow directories per group, and thus would take a
few minutes to complete the procedure.

3.4 API Overheads

We next present the overheads of controlled file
and directory creation via PLACE. Our goal here

Time

0B 8KB 64KB 1 MB
Base 77%  12.0%  34.5% 85.6%
State 75.5%  70.8%  52.3% 10.7%
Alloc 9.2% 8.7% 6.4% 1.3%
Rename 2.6% 2.5% 1.9% 0.7%
Misc 5.0% 6.4% 4.9% 1.7%
Total 1.57ms 1.69ms 2.29ms 11.45ms

Table 1: File Allocation Overheads. Each result shows
the average of 100 controlled file creations using the

PLACE ICL. There was little variance (less than 0.04 ms)
across the runs.

is to understand the costs of gray-box control
over data placement. Table 1 breaks down the
cost of creating different-sized files through the
Place.CreateFile interface.

The costs presented in the table are broken down
into five different categories, across four different file
creation tests. The five categories are as follows:
Base, the time to create the file itself through stan-
dard interfaces, State, the time to read the .su-
perblock file to access system statistics and con-
figuration information; Alloc, the time to control al-
location (in this case, a stat system call to check
the inode number), Rename, the time to rename the
file into the correct namespace, and Misc, additional
software processing overhead.

As we can see from the table, the PLLACE API for
file creation adds roughly a 1 ms overhead to file cre-
ation. This cost is mostly due to PLACE initializa-
tion, which would be amortized over multiple calls
to the PLACE library. However, there is still signif-
icant overhead in the allocation, rename, and other
software overheads. Finally, as file size increases,
the overheads are also (unsurprisingly) amortized.

We next explore the overheads of directory cre-
ation via the Place CreateDir APIL Table 2
presents the cost breakdown of a controlled directory
allocation, both with and without the shadow cache.
Note that a new category is also included, labeled
Cleanup, which includes time spent cleaning up the
SDT after the directory-allocation process has run.
Also note that Alloc in this case refers to the costs of
creating any necessary files or directories as required
by the directory-allocation algorithm.



Time
Shadow Without
Cache Shadow Cache
Min Median Max
Base 4.4 3.0% 04% 0.0%
State 634 | 46.4% 48% 0.0%
Alloc 127 | 314% 22.1% 69.9%
Rename 2.0 1.0% 01% 0.0%
Cleanup 0.0 72%  70.7% 30.0%
Misc 175 | 11.0% 1.9% 0.1%
Total 1.85ms | 3.16ms 24.7ms 4.71s

Table 2: Directory Allocation Overheads. Each result
shows the average of 100 controlled directory creations
using the PLACE ICL.

From the table, we can make a number of obser-
vations. First, with the shadow cache, the time for
a controlled directory creation is quite reasonable,
coming in at roughly 1.85 ms (however, this value
is still substantially higher than the base directory-
creation cost, which is approximately a factor of 20
faster). Second, without the shadow cache, times
are unsurprisingly higher, with a median cost of
around 25 ms. The column that lists the maximum
time without the shadow cache indicates the potential
cost of running the full directory-creation process;
it takes over 4.7 seconds to finally create a direc-
tory in the correct group. In this case, the difficulty
arises with a controlled creation within the last (and
hence smaller) group; because ext2 allocates direc-
tories based on free bytes remaining, it takes a long
time to fill up the other groups in order to coerce a
directory allocation into this last group.

3.5 Bulk Colocation Costs

A common usage of PLACE is to move an en-
tire directory tree into a specific group on the disk,
which can be accomplished with one of the PLACE
command-line tools. Thus, we were interested in
what strategy this tool should take in moving a large
amount of data from the source to its final destination
within one group (or a small number of groups).
Figure 4 presents the time to perform this “bulk
colocation” of 50 MB of data, again spread evenly
across 250 200-KB files, under a varying number of

Directory Tree Create Performance

" PLACE (nai've; e
PLACE (directories first) ----»---
PLACE (directories first + shadow cache) --=-

1000 Standard ~—a-—

100 |

Time (s)

-3

JUTVIDE SRRV
JECE el

R g B
T
e

100 150 200 250
Number of Directories

0 50

Figure 4: Create Performance. The cost of moving a
directory tree into a specific group is presented, varying
the number of sub-directories in the structure along the x-
axis, given a fixed amount of data (50 MB, spread evenly
across 250 files). Four different approaches to creating
the structure are compared, as described in the text. The
y-axis presents the total time for the bulk colocation, on a
log scale.

sub-directories. Four schemes are compared. The
first uses PLACE in a “naive” fashion, by creating di-
rectories and files in the target group recursively, and
assuming that no shadow cache exists. This approach
is dramatically slow, as the directory creation algo-
rithm finds it increasingly difficult to force data into
the target group. The second approach creates “di-
rectories first”, and performance improves tremen-
dously, because the ext2 allocation policy uses the
number of bytes allocated in its group-selection pol-
icy. Thus, by not creating files in the target group,
it is much easier to coerce the system into choosing
it. The third scheme shows the time for the second
approach assuming that directories can be allocated
from the shadow cache, which also improves the per-
formance of the bulk colocation down to just a few
seconds. Finally, a traditional directory-tree copy is
shown as a comparison point; it is fast because it
does not have any overhead associated with it, even
though it is likely to spread data across the disk in a
less localized manner.

3.6 Benefits of Colocation

To quantify the potential read performance improve-
ment of PLACE, we perform a final set of mi-
crobenchmarks. Figure 5 shows the performance of
the first set of tests, which present the time it takes




Directory Tree Read Performance

16 | Standard (random) ———
PLACE (randomy) ----%---
14 | Standard (optimal) - =
PLACE (optimal) &

Time (s)

o n B [=2] =<}
T T
X

100 150 200 250
Number of Directories

0 50

Figure 5: Small-file Reads. The time to read 250 200-
KB files (50 MB) of data is shown, under four different
circumstances, varying the number of directories across
which the data is placed. In two settings, the standard file
system APIs are used to create the files initially, and thus
the directories and files are spread across the groups of
the file system. In the other two settings, PLACE is used
to colocate all data into a single group. Two read orders
are shown for both the standard approach and PLACE:
'random’, which reads the files in random order, and "op-
timal’, which reads them in a single scan of the disk.

to read a set of 250 200-KB files in that have been
colocated on the disk.

From the figure, we can see that if an application
reads a set of files in random order, colocating them
into a localized portion of the disk improves perfor-
mance by almost a factor of two (the random’ lines
in the graph). However, if the files are read in the op-
timal order (essentially just scanning across the disk
in a single sweep), the benefits of colocation are quite
small; in this case, spreading data across the disk re-
sults in only a few additional seeks, and thus makes
little overall difference in performance.

We also demonstrate how PLACE can be used to
take advantage of the zoned bandwidth characteris-
tics of modern disks [14]. Figure 6 plots the per-
formance of large sequential file scans, when the
files are placed into specific groups. As one can
see from the figure, on the IBM disk under test, bet-
ter zone placement improves performance by about
33%; other disks may exhibit even greater differ-
entials across zoned regions. One limitation of this
style of usage is that it is not generic to all FFS-like
file systems; whereas the ext2 allocation strategy will
keep data from a large file within a single cylinder,
other FFS-based file systems likely will not.

Exploiting Zoned-Bit Recording
20

Bandwidth {MB/s)

30 40 50 60 70
Group Number

20

Figure 6: Large-file Reads. The performance of read-
ing a 100-MB file is shown, while varying the group in
which the file is created along the x-axis. The file cache is
flushed before the read to ensure that the disk bandwidth
is properly measured. Each point is the average of three
trials.

3.7 Other Systems

Our primary focus has been upon the ext2 file sys-
tem, as it is a modern implementation of FFS con-
cepts and a popular file system in the Linux commu-
nity. However, we designed many aspects of PLACE
with more general FFS-like systems in mind; there-
fore, we were curious to find exactly how portable
the PLACE algorithms for layout control were.

Our first test of generality was to run PLACE on
top of an ext3 file system, the journaling version of
ext2 [26]. Because ext3 goes to great lengths to pre-
serve backwards-compatibility with ext2, the same
on-disk structures are utilized. Thus, we were not
surprised to find that PLACE works without issue on
top of ext3.

We are currently investigating PLACE on top of
other platforms as well, and plan to have this experi-
ence included in the final version of this paper if ac-
cepted. One platform we are interested in is the BSD
family; we believe there are some new challenges in
this domain, as more recent BSD implementations
of FFS utilize the DirPrefs algorithm for directory
group selection [5]. This algorithm places directories’
near their parents, in an attempt to increase the per-
formance of certain common operations (e.g., the un-
tar’ing of a large directory tree). Building a gray-box
controller such as PLLACE on top of DirPrefs would
thus require that extra care be taken to spread direc-
tories across groups.

10



4 Case Studies

In this section, we describe two different uses of the
PLACE library. In the first, we demonstrate how a
web server can reorganize files with PLACE so as
to improve server throughput and response time. In
the second, we describe how a high-speed file sys-
tem benchmarking infrastructure can use PLACE to
quickly extract 1/O characteristics from the underly-
ing system.

4.1 Improving Web Server Throughput

In our first example, we apply PLACE in a more tra-
ditional manner, in order to understand the poten-
tial performance improvement in a web server en-
vironment. By reorganizing files such that the most
popularly-accessed files are close to one another on
disk, seek costs can be likely reduced. Web service is
a particularly good target for PLACE, as the structure
of a typical web directory tree does not match the
locality assumptions encoded into most FFS-based
file systems (e.g., an images directory that contains
images from all the pages scattered through the di-
rectory tree). Further, there is no need to change the
source code of the web server; the reorganization can
be performed off-line via command-line tools.

We study the potential benefits through a simpli-
fied trace-based approach. We utilize a web trace
from the University of Wisconsin web server. The
trace is first preprocessed to remove requests that do
not induce file system activity, such as errors and
redirects, and the only requests that remain are ones
that transfer data and HTTP 304 replies (a reply to a
cache coherence check). The trace contains roughly
2 million requests, and a accesses a total directory
tree size of 513 MB.

To understand the potential gains of colocation,
we run the trace through a file system request genera-
tor. The generator reads in a trace entry, generates the
appropriate file system call, and records the response
time. Although this approach does not capture the
full complexity of a web environment, it should give
us a baseline for the potential performance improve-
ment from file system reorganization.

We utilize the PLACE command-line tools to
colocate the directory tree into the outer-most tracks
of the disk, and compare this organization to a typical

11

directory tree spread across the drive as determined
by typical file system heuristics.

In our initial performance tests, running the en-
tire trace through on the standard file system orga-
nization takes roughly 406 seconds. On top of the
PLACE-organized directory tree, the time improves
to approximately 326 seconds, roughly a 20% de-
crease in total time. We are planning next to in-
vestigate tracing techniques that can give us better
input as to which exact files to colocate for further
improvements in performance.

4.2 Rapid File System Microbenchmarking

In our second example, we examine the use of
PLACE in a different context, that of fast discov-
ery of I/O performance characteristics. Many tools
have been developed over time that extract per-
formance characteristics from the underlying sys-
tem [4, 13, 18, 19, 25]. However, many of these
benchmarking tools need to be run as root, and all run
for an uncontrolled (and potentially lengthy) amount
of time. For example, Chen and Patterson’s self-
scaling benchmark runs for many hours (even days!)
before reporting results back to the user.

In some settings, it would be quite useful to have a
system benchmarking tool that ran quickly, perhaps
trading accuracy for a shorter run-time. For exam-
ple, when running an application in a foreign com-
puting environment (e.g., Seti@Home [24], or in any
wide-area shared computing system such as Con-
dor [11] or Globus [7]), a “mobile” application needs
to quickly extract the characteristics of the underly-
ing system so that it can parameterize itself properly
to the system. Further, the benchmark must be run
entirely at user-level, requiring no special privileges
to discover system parameters.

Thus, we develop the benchmarking tool FAST
(Fast or Accurate System exTraction), that allows
a mobile application to extract various performance
characteristics from the underlying system under a
fixed time budget and entirely at user-level. Al-
though FAST currently can extract information about
both the /O system and the memory system, only the
I/O system component utilizes PLACE.

As an example of a mobile application, we ex-
amine the single processor version of NOW-Sort, a
world-record breaking sorting application [2]. While




Time (s)
Cache 0.73
Bandwidth 2.46
Max Seek 0.52
pmkfs 4.51
Total 8.22

Table 3: FAST performance. The table presents the time
FAST takes to discover system parameters. In this mode,
FAST is configured to run as quickly as possible, extract-
ing coarse estimates but consuming less overall time.

traditionally thought of in database contexts [15],
sorting is also commonly found in many scientific
computation pipelines [9], and therefore it is a rea-
sonable candidate for mobile execution in scientific
peer-to-peer shared computing systems [7].

NOW-Sort requires three parameters to tune itself
to the host system. The first two are I/O parameters:
the bandwidth expected from the local disk, and the
worst-case seek time. With these two numbers, the
sort can estimate how large its buffers must be dur-
ing the merge phase in order to amortize seek costs.
The third is the size of the caches in the memory-
hierarchy. By sorting data in cache-sized chunks,
sorting proceeds at a much faster rate [15].

The most difficult of these parameters to generally
extract is the maximum seek cost. However, with
the PLACE API, the FAST tool can create two files
that are far apart on the disk, issue a synchronous
update to the first, start a timer, issue a synchronous
update to the second, and record the elapsed time of
the second write, giving a coarse estimate of a full-
stroke seek. Further refinements can be made over
time, in order to remove rotational costs if so desired.

Table 3 presents the costs of running FAST on our
test system. In this mode of operation, FAST runs
as quickly as possible, garnering coarse estimates of
the required system parameters. From the figure, we
observe that the total time to extract the needed in-
formation for sorting is roughly 8 seconds. For sorts
of massive data sets, spending the extra few seconds
to configure the application is well worth the time.
Finally, note that pmk£s is specialized to the task
at hand; by giving it command-line options so as to
prevent the creation of any shadow directories, ini-
tialization time is reduced to a small, fixed overhead.

12

5 Related Work

The most directly related work to PLACE is the gray-
box File Layout Detector and Controller (FLDC) de-
scribed in the original gray-box paper [1]. The FLDC
has two components: the first can be used to to de-
cide in which order to access a set of files, and the
second to re-write out files within a particular di-
rectory so as to likely improve later accesses. Both
components could be useful here; however, PLACE
goes well beyond FL.DC, exposing fine-grained con-
trol over file and directory layout to applications.

Applications have long sought better control over
the underlying operating system’s policies and mech-
anisms [23]. In response to this demand, previous
research has developed new operating systems, in-
cluding Spin [3], Exokernel [6], and VINO [20], that
allow much-improved control over operating system
behavior. The gray-box approach provides a dif-
ferent route to improved control over the underly-
ing OS; by exploiting knowledge of OS behavior,
PLACE demonstrates that file and directory layout
can perhaps be realized at user-level.

Moving data blocks into a better spatial arrange-
ment, as we do in the web server case study, has been
explored in many other contexts. For example, in
their work on disk shuffling, Ruemmler and Wilkes
track frequency of block accesses, and reorder disk
blocks to reduce seek times [17]. At a higher level,
Staelin and Garcia-Mollina rearrange where files are
placed within the file system [22]. The major differ-
ence between these approaches and PLACE is that
they are performed transparently to users and appli-
cations; no control is exposed. However, both are
more sophisticated in tracking which blocks or files
are accessed in temporal succession, and thus are
likely to be more successful in arriving at a better
rearrangement.

Finally, the FAST tool bears some similarity to re-
cent work in database management systems. For ex-
ample, in online aggregation [8], the DBMS returns
an approximate result of a selection query to the user
immediately, and includes a statistical estimate of the
accuracy of the result. If the user allows the query to
keep running, the system refines the result over time,
and as more data is sampled, the answer becomes
more precise. The FAST tool applies this same phi-
losophy to a benchmarking system.



6 Conclusions

In the classic paper Hints for Computer System De-
sign [10], Lampson tells us: “Don’t hide power.”
Higher-level abstractions should be used to hide the
undesirable properties; useful functionality, in con-
trast, should be exposed to the client.

Many UNIX file systems do not expose explicit
controls for laying out files according to user de-
mands. Given standard layout heuristics, workloads
that do not conform to the locality assumptions set in
stone nearly 20 years ago perform poorly.

In this paper, we present the design, implemen-
tation, and evaluation of PLACE, a gray-box ICL
known as PLACE that exposes file and directory lay-
out control to applications. By exploiting knowl-
edge of the internal algorithms that are common to
FFS-like file system implementations, PLACE en-
ables users to control file and directory allocations.

Through microbenchmarks, we have shown that
the costs of gray-box control are not overly burden-
some, and that the potential benefits of controlled al-
location are substantial. Through two case studies,
we have demonstrated that the PLACE system can
be used in realistic and diverse application settings.
We have also discussed the limitations of PLACE as
well as the gray-box approach to controlled alloca-
tion, highlighting the features of file system alloca-
tion policies that make it simple or difficult to build
control on top of them.

The gray-box approach provides an alternative
path for innovation. Instead of requiring changes to
the underlying operating system, which may be dif-
ficult to implement, maintain, and distribute, a gray-
box ICL embeds some knowledge of the underlying
system, and exploits that knowledge to implement
new functionality, often in a portable manner. One
important question remains: what is the full range
of functionality can be implemented in the gray-box
manner, and what are the ultimate limitations? With
each ICL, we make another small step towards the
final answer.

References

[1] A.C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Infor-
mation and control in gray-box systems. In Symposium on
Operating Systems Principles, pages 43-56, 2001.

13

[2]

3]

(4]

5]

(6]

(7

(8]

191

(101

[11]

(12]

[13]

(14]

[15]

(16]

17]

(18]

(19]

A.C. Arpaci-Dusseau, R. H. Arpaci-Dusseay, D. E. Culler,
J. M. Hellerstein, and D. Patterson. High-Performance
Sorting on Networks of Workstations. In Proceedings of
the 1997 ACM SIGMOD Conference on the Management
of Data (SIGMOD ’97), Tucson, Arizona, May 1997.

B. N. Bershad, S. Savage, E. G. S. Przemyslaw Pardyak,
M. E. Fiuczynski, D. Becker, C. Chambers, and S. Eggers.
Extensibility, Safety and Performance in the SPIN Operat-
ing System. In Proceedings of the 15th ACM Symposium
on Operating Systems Principles, December 1995.

P. M. Chen and D. A. Patterson. A New Approach
to /O Performance Evaluation-Self-Scaling 1/0 Bench-
marks, Predicted I/O Performance. In Proceedings of the
1992 ACM SIGMETRICS Conference, pages 1-12, May
1993.

L. Dowse and D. Malone. Recent Filesystem Optimisations
on FreeBSD. In Proceedings of the USENIX Annual Tech-
nical Conference (FREENIX Track), Monterey, California,
June 2002.

D. R. Engler, M. F. Kaashoek, and J. W. O’Toole. Exok-
ernel: An Operating System Architecture for Application-
Level Resource Management. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles, De-
cember 1995.

1. Foster and C. Kesselman. Globus: A Metacomputing
Infrastructure Toolkit. International Journal of Supercom-
puter Applications, 11(2):115-128, 1997.

1. M. Hellerstein, P. J. Haas, and H. J. Wang. Online Ag-
gregation. In SIGMOD International Conference on Man-
agement of Data (SIGMOD '97), pages 171182, Tucson,
Arizona, May 1997.

K. Holtman. CMS data grid system overview and require-
ments. CMS Note 2001/037, CERN, July 2001.

B. W. Lampson. Hints for Computer System Design. In
Proceedings of the 9th ACM Symposium on Operating Sys-
tem Principles, pages 33—48, Bretton Woods, NH, Decem-
ber 1983. ACM.

M. J. Litzkow, M. Livny, and M. W. Mutka. Condor -
A Hunter of Idle Workstations. In Proceedings of ACM
Computer Network Performance Symposium, pages 104~
111, June 1988.

M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry.
A fast file system for UNIX. Computer Systems, 2(3),
1984,

L. McVoy and C. Staelin. lmbench: Portable Tools for Per-
formance Analysis. In Proceedings of the 1996 USENIX
Winter Technical Conference, January 1996.

R. V. Meter. Observing the Effects of Multi-Zone Disks.
In Proceedings of the 1997 USENIX Conference, January
1997.

C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and
D. Lomet. AlphaSort:' A RISC Machine Sort. In 1994
ACM SIGMOD Conference, May 1994.

M. Rosenblum and J. Qusterhout. The Design and Imple-
mentation of a Log-Structured File System. ACM Transac-
tions on Computer Systems, 10(1):26-52, February 1992.

C. Ruemmler and J. Wilkes. Disk Shuffling. Technical Re-
port HPL-91-156, Hewlett Packard Laboratories, October
1991.

R. H. Saavedra and A. J. Smith. Measuring Cache and

TLB Performance and Their Effect on Benchmark Run-
times. IEEE Transactions on Computers, 44(10):1223—

1235, 1995.

J. Schindler and G. R. Ganger. Automated Disk Drive
Characterization.  Technical Report CMU-CS-99-176,
Carnegie Mellon, 1999.




(201

(21]

[22]

[23]

(24]

(23]

[26]

M. Seltzer, Y. Endo, C. Small, and K. Smith. Dealing
with Disaster: Surviving Misbehaved Kernel Extensions.
In OSDI 11, 1996.

M. L Seltzer, G. R. Ganger, M. K. McKusick, K. A. Smith,
C. A. N. Soules, and C. A. Stein. Journaling Versus Soft
Updates: Asynchronous Meta-data Protection in File Sys-
tems. In Proceedings of the 2000 USENIX Annual Techni-
cal Conference, pages 71-84, San Diego, CA, June 2000.

C. Staelin and H. Garcia-Mollina. Smart Filesystems. In
Proceedings of the 1991 USENIX Winter Technical Con-
ference, Dallas, Texas, January 1991.

M. Stonebraker. Operating System Support for Database
Management. Communications of the ACM, 24(7):412-
418, July 1981.

W. T. Sullivan, D. Werthimer, S. Bowyer, J. Cobb,
D. Gedye, , and D. Anderson. A New Major SETI Project
based on Project Serendip Data and 100,000 Personal
Computers. In Proceedings of the 5th International Con-
ference on Bioastronomy, 1997.

N. Talagala, R. H. Arpaci-Dusseau, and D. Patterson.

Microbenchmark-based Extraction of Local and Global
Disk Characteristics. Technical Report CSD-99-1063,

University of California, Berkeley, 1999.

T. Ts'o and S. Tweedie. Future Directions for the Ext2/3
Filesystem. In Proceedings of the USENIX Annual Tech-
nical Conference (FREENIX Track), Monterey, California,
June 2002.

14






