Computer

Sciences
Department

Comparative Data Mining for Microarrays:
“A Case Study Based on Multiple Myeloma

David Page, Fenghuang Zhan, James Cussens,
Michael Waddell, Johanna Hardin, Bart Barlogie,
John Shaughnessy, Jr.

Technical Report #1453

November 2002

UNIVERSITY OF

WISCONSIN

M A DI § O N




Comparative Data Mining for Microarrays:
A Case Study Based on Multiple Myeloma

David Page*

Dept. of Biostatistics and
Medical Informatics &

Dept. of Computer Sciences

University of Wisconsin

Madison, WI 53706

Michael Waddell

Dept. of Computer Sciences &

Dept. of Biostatistics and
Medical Informatics

Fenghuang Zhan
Lambert Laboratory of
Myeloma Genetics
University of Arkansas for
Medical Sciences
Little Rock, AR 72205

Johanna Hardin

Southwest Oncology Group

Fred Hutchinson Cancer
Research Center

James Cussens
Computer Science Dept.
University of York
Heslington

York YO10 5DD
United Kingdom

Bart Barlogie

Myeloma Institute for
Research and Therapy

University of Arkansas for

University of Wisconsin Seattle, WA 98109 Medical Sciences
Madison, WI 53706 Little Rock, AR 72205
John Shaughnessy, Jr.
Lambert Laboratory of

Myeloma Genetics
University of Arkansas for

Medical Sciences
Little Rock, AR 72205

Keywords: gene expression microarrays, Bayesian networks, boosted decision trees,
support vector machines, ensembles.

Motivation: Supervised machine learning and data mining tools have become
popular for the analysis of gene expression microarray data. They have the potential
to uncover new therapeutic targets for diseases, to predict how patients will respond
to specific treatments, and to uncover regulatory relationships among genes in normal
and disease situations. Comparative experiments are needed to identify the
advantages of the leading supervised learning algorithms for microarray data, as well
as to give direction in methodological decisions.

Results: This paper compares support vector machines, Bayesian networks, decision
trees, boosted decision trees, and voting (ensembles of decision stumps) on a new
microarray data set for cancer with over 100 samples. The paper provides evidence
for several important lessons for mining microarray data, including: (1) Bayes nets
and ensembles perform at least as well as other approaches but arguably provide
more direct insight; (2) the common practice of throwing out low or negative average
differences, or those accompanied by an “absent” call, is a mistake; (3) looking for
consistent differences in expression may be more important than large differences.
Availability: All systems used are available online from the authors or others
(Section 3). The new cancer data set is available online from the authors at
http://lambertlab.uams.edu/publicdata.htm.

* To whom correspondence should be addressed. Fax: 608-265-7916. Email: dpage@cs.wisc.edu.




D.Page et al.

1. INTRODUCTION

Early studies of gene expression microarray data relied primarily on pairwise “fold-change”
comparisons of values and on clustering. More recently, supervised data mining algorithms such as
support vector machines (Furey et al., 2000), ensemble methods (Golub et al., 1999, Slonim et al.,
2000), and Bayes nets (Friedman et al., 2000; Pe’er et al., 2001) have become popular for analysis
of microarray data.' At least the first two approaches have been tested on two-class cancer data
sets of between 30 and 72 total samples. But questions remain about which supervised data mining
algorithms are most appropriate for microarray data. Furthermore, even after one has committed to
a particular algorithm, other important design decisions remain. For example, should some genes
be omitted because of low or negative expression levels (e.g., in Affymetrix™ data)? Therefore,
further application studies are needed to help give guidance in the selection and application of
supervised data mining algorithms to microarray data. The purpose of this paper is to present one
such application study. We compare SVMs, ensembles (voting), Bayes nets, decision trees, and
boosted trees on a new, publicly-available cancer data set consisting of 105 highly purified plasma
cell samples, from 74 newly diagnosed cancer samples and 31 normal healthy donors.> The cancer
being studied is multiple myeloma, an incurable malignancy of immunoglobulin secreting plasma
cells that grow and expand in the bone marrow. The microarray technology being employed is the
Affymetrix oligo-based approach. The experiments provide evidence for the following lessons.

1. A directly comprehensible model, such as a Bayes net, decision tree, or ensemble of voters,
has the advantage of exposing “trivially-accurate genes.” These are genes that provide no
new insight but are highly-accurate owing to the nature of the disease or of sample
collection. If the data mining goal is to obtain insight, and not just an accurate predictor,
then trivially-accurate genes should be removed through consultation with a domain expert.

2. Unweighted voting and Bayes net learning provide accuracies at least as high as the other
approaches (Figure 1) and arguably provide much more direct insight than they do.

3. Information gain provides a very different sort of insight than the traditional “fold-change”
measure for comparing a gene’s expression measurements across different samples.
Information gain looks for a high level of consistency in differential expression rather than
large differences between some samples of different classes. Considering consistency alone
works surprisingly well.

4. The ability of SVMs to consider the magnitude of the difference in expression in addition to
the consistency of the difference appears to yield little or no benefit beyond methods that
consider only the consistency of the difference.

5. Throwing out data based on low or negative average difference values or absent callsis a
mistake, at least with data generated using Affymetrix technology before 2002.

To our knowledge, the present paper is the first to report a comparative experiment of such a wide
variety of the leading supervised data mining algorithms on a gene expression microarray data set.

Figure 1 summarizes the accuracies of each of the five supervised data mining algorithms
examined in this paper. Figures 2 and 3 summarize the highlights from voting — the genes that are
most predictive of Myeloma vs. Normal according to information gain.

! Bayes nets are not necessarily a “supervised” approach, but when a class value is included as a variable they can be
viewed as such. We employ a Bayes net learning algorithm tailored to classification and hence to supervised learning.
2 This data set is likely to grow to the order of 500 samples in the next year.
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Method ACOnly AC+AD
Trees 90.5 98.1
Boosted Trees 96.2 99.0
SVMs 95.2 93.3
Vote 94.0 100.0
Bayes Nets 95.2 100.0

Figure 1. Summary of accuracies, by leave-one-out cross-validation, of data mining techniques
applied to predicting Myeloma vs. Normal. The column labeled “AC” gives performance when
using only the Affymetrix Absolute (Absent-Present) Call. “AC+AD” uses both Absolute Call and
Average Difference. The significant (sign test, 0.05 level) differences are the following. Using AC
only, all methods significantly outperform decision trees. Using AC+AD, all methods significantly
outperform SVMs. Further discussion appears in Section 4.

Score  Gene Accession Number Split MH ML NH NL
0.80 APOA2 X04898 =777 74 0 1 30
0.74 HERV K22 pol K03498 637 3 71 31 0
0.70 TERT AF015950 -1610 70 4 0 31
0.70 UMOD M15881 1119.1 0 74 28 3
0.70 CDHj4 L34059 -278 74 0 3 28
0.66 ACTRIA 714978 3400.6 3 71 30 1
0.66 MASPI D17525 -536.6 71 3 1 30
0.65 PTPN21 X79510 -1256.1 6 68 31 0

Figure 2. The eight genes with the top information gain scores according to absolute call or
average difference. All the top-scoring features were average difference features. “Score” is the
information gain score, and “Split” is the value for Average Difference at which the split is made.
MH is the number of samples that have class “Myeloma” (M) and an average difference higher (H)
than the split value. ML is the number of samples with class “Myeloma” and average difference
lower than the split value. NH and NL are analogous for samples with class value “Normal.”

Score Gene Accession Number MH ML NH NL
0.45 HIF2 X57129 57 17 0 31
0.44 NCBP2 D59253 57 17 0 31
0.43 SM135 U73167 56 18 0 31
0.43 GCNJ3L2 U57316 56 18 0 31
0.41 MHC2 beta W52 HT3779 12 62 29 2
0.41 RNASEG6 U64998 15 59 30 1
0.41 TNFRSF7 M63928 15 59 30 1
0.41 SDF1 L36033 15 59 30 1

Figure 3. The eight top-scoring genes by information gain when using only Absolute (Absent-
Present) Calls. We equate “H” with “Present” to retain the notation from Figure 2.

The remainder of the paper is organized as follows. Section 2 provides basic background about
multiple myeloma and about the data set; this brief background is necessary for the sections that
follow. Section 3 discusses the methodology of the data mining experiments. Section 4 discusses
the results and the lessons that these results support. Section 5 summarizes the conclusions and
identifies important questions and directions for further work.
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2. BACKGROUND AND MATERIALS

Multiple myeloma is a cancer of antibody secreting plasma cells that grow and expand in the bone
marrow. Although multiple myeloma is hypoproliferative (the cancer cells replicate at a relatively
low rate), the disease is incurable and usually progresses rapidly after diagnosis, with bone
demineralization, renal failure, anemia, and secondary infections resulting from
immunosuppression as common causes of mortality.

A healthy body is capable of producing millions of distinct antibodies through a combinatorial
process in which so called variable region (V), joining region (J), and diversity region (D) genes
undergo site specific DNA recombination to create unique antigen binding domains. This process
ensures that essentially all potential infectious agents will be recognized and eliminated during an
immune response. Thus, a normal sample of plasma cells is polyclonal, containing a large number
of plasma cells that each produce a different antibody. In contrast, a sample of plasma cells from a
patient with multiple myeloma will be monoclonal, containing plasma cells that are all identical.
This is due to cancer’s nature as an uncontrolled growth and expansion of the progeny of a single
aberrant cell, e.g. a plasma cell from a multiple myeloma patient. Hence by the time diagnosis of
multiple myeloma is made, the plasma cells producing this one antibody have taken over the bone
marrow, where all blood cells are normally produced. This eliminates the capacity of the bone
marrow to produce the normal variety of antibody secreting plasma cells as well as the normal red
and white blood cells. This leads to the anemia and immunosuppression mentioned above. This
difference in expression between monoclonal and polyclonal samples is important for portions of
the discussion in the next section.

The data were produced by purifying plasma cell samples from 74 newly-diagnosed multiple
myeloma patients and 31 normal healthy donors, extracting total mRNA from these plasma cell
samples, converting this RNA to biotinylated cRNA, and then hybridizing the cRNA to
microarrays. Further details about this process are available from Zhan et al. (in press). The
resulting Affymetrix output files are publicly available at lambertlab.uams.edu/publicdata.htm.

Details about the Affymetrix process are available at www.affymetrix.com and are beyond the
scope of this paper. But a very brief overview is needed for parts of the discussion that follows.
One Affymetrix file is generated for each patient or sample. For each gene, this file contains two
values. One is the Absolute Call (AC), taking values A (Absent), P (Present), or M (marginal,
occurring only about 4% of the time in our data, which is consistent with many other Affymetrix
data sets). The other value is the Average Difference (AD), which is a floating-point value that can
be positive or negative. In a nutshell, AD compares hybridization with 25-mers that are known to
appear in a gene against hybridization with the same 25-mers except that the middle (13™) base has
been changed to its complement. A negative AD means the “mismatch” 25-mers tend to hybridize
more than the “perfect match” ones. For this reason some researchers choose to ignore negative
values or values for which the corresponding AC is Absent, while others choose to use these
values. We chose not to eliminate or modify any values in the data, and we will return to this point
several times in the discussion that follows.

Our set of 105 Affymetrix files, one per patient or sample, was converted into a single file with one
row per sample and two columns per gene, one for the AC and one for the AD. In addition we
added a final column holding the class value, “Myeloma” or “Normal.” The file format is
illustrated in Figure 4. We view a data point as a row, or sample, with the columns being features.
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Accession Number Class
A28202 AB00014 ABO00015 e
Person 1 P | 11420] A 321.0| P | 2567.2| ... | myeloma
g Person 2 A -5863 | P 586.1| P 759.0 | ... | normal
§ Person 3 A 1052 | A 5593 | P | 3210.7| ... | myeloma
A | Person 4 P -42.8 1 A 692.1 | P 812.0 | ... | normal

Figure 4. Illustration of the input file form for data mining runs.

The goal of mining this data is to gain new insights into multiple myeloma development and also to
identify new therapeutic targets. For example, suppose a gene is expressed at a consistently higher
level in myeloma samples than in normal. Then perhaps the protein that is expressed from this
gene has a key role in the development or progression of the disease. If so, then a small molecule
that will bind to this protein, in a way that inhibits its activity, could be an effective drug to treat
multiple myeloma. With this goal in mind, it is clear that comprehensibility of the data mining
results is paramount. An accurate but incomprehensible predictor is of little value in the search for
new therapeutic targets.  Nevertheless, we measure accuracy of predictors because a
comprehensible but inaccurate predictor also is of little value. We seek accurate predictors that
will provide insight into the disease. The goal is the same in most other applications of data mining
to microarray data for diseases.

3. METHODOLOGY

We ran all five data mining approaches listed in Figure 1 on the data in the form shown in Figure 4
(modulo syntactic changes required by the different software systems). For trees and boosted trees,
we used C5.0 (www.rulequestcom). For support vector machines, we used SVMPEH
(svmlight.joachims.org). We experimented with both linear support vector machines and Gaussian
kernels but found linear SVMs performed better, which is consistent with the results of Furey et al.
(2000) which used SVMs on similar but somewhat smaller cancer data sets. The voting algorithm
we employed scored all features according to entropy-based information gain, kept the top scoring
1% of the features, and took a majority vote among these features. In other words, we used an
unweighted ensemble of decision stumps with the number of stumps equal to 1% (70 in this case)
of the number of features (roughly 7000).*> The Bayes net application is slightly more involved and
is motivated and described in the following paragraph.

Bayes net learning algorithms are being applied to attempt to uncover regulatory information from
microarray data. They are very well suited in general to modeling probability distributions and
revealing conditional dependencies among variables. But conventional wisdom holds that for a
pure classification task Bayes nets are inferior to classification algorithms such as those named in
the last paragraph. For this reason we would not have applied a Bayes net learner to the present
task but for rtecent lessons from KDD Cup 2001 [Cheng et al, 2002] (or see
www.cs.wisc.edw/~dpage/kddcup2001). In that competition a Bayes net learner tailored to
classification outperformed 113 other classification approaches on a task with similar properties to

3 1t is worth noting that one can obtain higher accuracies for voting in the “AC only” case by playing around with the
percentage of features used in the ensemble. We chose 1% before running any experiments because it is a commonly
used value. We did not modify it based on the cross-validation results because this is a kind of “cheating” that can
give an overly-optimistic impression of performance.
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the present one, albeit a drug design task. Our knowledge of this result led us to try that same
algorithm, BayesNet PowerPredictor (www.cs.ualberta.ca/~jcheng), with the same methodology
employed there. Because the learning algorithm could not work with more than 30 features, we
first used information gain to narrow the set of thousands of features to the top 30; analogous
feature selection was used in the KDD Cup application. Because the underlying algorithm could
not directly use continuous values, we discretized AD values based on whether they were greater
than the split value that gave optimal information gain for that feature. We then applied BayesNet
PowerPredictor. This approach can be viewed as a sophisticated form of weighted voting that takes
into account not only the strength of correlation between a feature and class value, but also the
correlations among different features.

4. RESULTS

On the initial runs of voting, Bayes nets and trees, the features with highest information gain were
genes associated with immune function, such as IGL and TGHM. These genes were absent or had
very low expression in myeloma samples, but they were present or had higher expression in normal
samples. As discussed in Section 2, this difference is because of the monoclonal versus polyclonal
nature of the myeloma and normal plasma cell populations. These genes are unlikely to provide
important disease specific information. Therefore, although the predictions were highly accurate,
the domain experts in this work advocated removing all immunoglobulin (IG) and HLA genes,
which we did through interaction with GeneCards (bioinfo.weizmann.ac.il/cards). This removal of
such “trivially-accurate” genes ensures that if a tool gives a high accuracy it will be based on novel
insights into the disease. We are not certain whether this issue of trivially-accurate genes or
predictors occurs in other applications of supervised data mining to microarray data. But we
recommend (lesson 1) that those carrying out such applications begin by asking whether this might
be the case for their application. All results reported in this paper are after the removal of all IG
and HLA genes.

Having removed all IG and HLA genes, we then ran the five supervised data mining tools as
described. We also ran them all using only the Absolute Calls, because (1) information gain as
used by trees and voting sometimes overfits floating point features such as Average Difference, and
(2) it is believed by some that Absolute Calls are less noisy. We wanted to test whether the results
using AC only were as strong as AC+AD. All results were reported in Figure 1, copied below as
Figure 5 for the reader’s convenience. The results were almost uniformly better with AC+AD.
The lone exception is with SVMs and leads to our lesson 4, discussed near the end of this section.
Because the AC+AD results were almost always better, we begin with a discussion of those.

Method ACOnly AC+AD
Trees 90.5 98.1
Boosted Trees 96.2 99.0
SVMs 95.2 93.3
Vote 94.0 100.0
Bayes Nets 95.2 100.0

Figure 5. Leave-out-one cross-validation results for Myeloma vs. Normal (copied from Figure 1).

Voting and Bayes nets clearly produce the best results given AC+AD, although their differences
with trees and boosted trees are not significant. Lesson 2 is that, in addition to being at least as
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accurate as any other approach, voting and Bayes nets provide greater direct insight than the other
approaches. With the results of both of these tools, one can see at a glance which genes are
important for distinguishing between the classes; this is not the case for boosted trees or SVMs. For
example, contrast the list of top voters as given in Figure 2 (repeated as Figure 6 below), or the
Bayes net in Figure 7, with a collection of ten weighted trees or a collection of SVM coefficients.
Furthermore, while a single decision tree is at least as comprehensible as a Bayes net or collection
of top voters, the single tree provides less information. A typical tree in the cross-validation runs
uses only two or three genes, whereas voting allows one to immediately see all the genes that are
most consistently differentially expressed.4 Bayes nets and voting have a trade-off with regard to
insight. The Bayes net exposes correlations among groups of genes that are not evident with the
voting results. But the Bayes net may discard some genes of interest if a smaller subset has equal
predictive power. The average number of features retained by the Bayes net learning algorithm
over the cross-validation runs was roughly 20 out of the 30 provided to it.

Score Gene Accession Number Split MH ML NH NL
0.80 APOA2 X04898 -777 74 0 1 30
0.74 HERV K22 pol K03498 637 3 71 31 0
0.70 TERT AF015950 -1610 70 4 0 31
0.70 UMOD M15881 1119.1 0 74 28 3
0.70 CDH4 L34059 -278 74 0 3 28
0.66 ACTRIA 214978 3400.6 3 71 30 1
0.65 MASPI D17525 -536.6 71 3 1 30
0.65 PTPN21 X79510 1256.1 6 68 31 0

Figure 6. Top voters according to information gain (copied from Figure 2).

MHC?2 beta W52 LAMCI ETF3S9

diagnosis

NCBP2 Ty

SS42

4BL1 STIP1 IFRD2 " ppyst2

Figure 7. Structure of the Bayes net learned from AC only.

4 Nevertheless, during boosting the later frees in the boosting run are more complex.
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The Bayes net given “AC only” is shown in Figure 7. Note the large number of dependencies
among features. In contrast, the Bayes net given AC+AD had no dependencies among features it
retained: it had the structure of a naive Bayes model. Nevertheless, the Bayes net learning system
did recognize that 11 of the 30 features could be completely removed, because they provided no
further information beyond that provided by the other 19. We suspect the reason for no
dependencies was because each feature alone was very highly correlated with the class value — see
the first 30 features in the appendix. The naive Bayes net simply provided a weighted voting
approach with a selected subset of genes.

Trees, boosted trees, voting, and Bayes nets as used here all ignore the magnitude of differences in
expression level, or average difference (AD), and look at only the consistency of these differences.
For example, the top voter in Figure 6 achieves its high rank entirely because all but one of the
normal cases have AD values lower than any of the myeloma cases. The magnitude of those
differences plays no role. Lesson 3 is that a measure that considers only consistency works quite
well, as evidenced by both voting and Bayes nets achieving 100% cross-validation accuracy given
AC+AD (and in fact using AD only). One would think that taking magnitude into account as well
might be a good idea, especially given the common use of “fold change” in microarray analysis.
SVMs provide the capability to consider both consistency and magnitude; magnitude plays a role
because large differences in AD values contribute to a wider margin for an SVM. As a result, it
was our expectation prior to the experiments that (1) SVMs would perform better than other
methods when given AC+AD, and (2) SVMs would perform better given AC+AD than given AC
only. Therefore, it was most surprising that including AD values actually decreased SVM
performance, and that all other approaches significantly outperformed SVMs given AC+AD.
Hence lesson 4 is that the ability of SVMs to consider the magnitude of difference in expression in
addition to the consistency of difference appears to yield little or no benefit beyond methods that
consider only consistency of the difference.

At the end of the previous section, we stated that the primary goal of the analysis was to gain
insights into multiple myeloma. Let’s return to the voting approach and examine what the results
tell us. The top eight voters were presented in Figures 2 and 6; the appendix presents the full set of
the top 70 voters. All are potentially of great interest. APOAZ2 is Apolipoprotein II, TERT is
telomerase reverse transcriptase, UMOD is the uromodulin Tamm-Horsfall, and CDH4 is cadherin-
4. These genes merit special attention given that they all relate to known properties of either cancer
genetics in general or myeloma genetics in particular. Note that three of these four have negative
split points and hence would have been missed had we thrown out negative AD values. Lesson 5
from these results is that throwing out data based on low or negative average difference values, or
absent calls (which would have a similar effect), is a mistake. We make this claim only for
Affymetrix technology because that is the technology used here, although it may apply to some
extent to other technologies. We also note that Affymetrix software recently has been modified to
not produce negative AD values, although the same issue still may arise with low values. While
lesson 5 applies clearly to data generated before 2002, it remains to be seen whether some data
should be eliminated when using the new Affymetrix software.
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5. CONCLUSIONS AND FUTURE DIRECTIONS

This paper has reported experiments comparing leading supervised data mining approaches on gene
expression microarray data for multiple myeloma. These comparative experiments provide
evidence for the following lessons that may prove useful in other applications of supervised data
mining to microarray data for studying diseases.

1. A directly comprehensible model, such as a Bayes net, decision tree, or ensemble of voters,
has the advantage of exposing “trivially-accurate genes.” These are genes that provide no
new insight but are highly-accurate owing to the nature of the disease or of sample
collection. If the data mining goal is to obtain insight, and not just an accurate predictor,
then trivially-accurate genes should be removed through consultation with a domain expert.

2. Unweighted voting and Bayes net learning provide accuracies at least as high as the other
approaches (Figure 1) and arguably provide much more direct insight than they do.

3. Information gain provides a very different sort of insight than the traditional “fold-change”
measure for comparing a gene’s expression measurements across different samples.
Information gain looks for a high level of consistency in differential expression rather than
large differences between some samples of different classes. Considering consistency alone
works surprisingly well.

4. The ability of SVMs to consider the magnitude of the difference in expression in addition to
the consistency of the difference appears to yield little or no benefit beyond methods that
consider only the consistency of the difference.

5. Throwing out data based on low or negative average difference values or absent calls is a
mistake, at least with data generated using Affymetrix technology before 2002.

An obvious direction for future research is to test these lessons on additional, larger microarray
data sets when they become available. As mentioned earlier, the multiple myeloma data set is
expected to grow to the order of 500 samples in the next year. To further facilitate comparative
experiments, we hope other researchers will make their data sets publicly available, particularly
those with sample numbers of a hundred or more. In addition to the need for further comparative
experiments, three other future research directions are now becoming obvious as well.

The first of these new directions regards multiple myeloma in particular. A benign plasma cell
dyscrasia called MGUS (monoclonal gammopathy of undetermined significance) appears to cause
expression patterns very similar to multiple myeloma, yet MGUS is harmless unless it progresses
to multiple myeloma. (About 1% of all MGUS cases progress to multiple myeloma per year.) Itis
possible that most myelomas progress from the MGUS condition. Therefore, perhaps an even
better way to understand myelomagenesis and to identify critical myeloma specific therapeutic
targets would be to compare myeloma vs. MGUS, myeloma vs. normal, and MGUS vs. normal.
Toward this aim, we have begun collecting a large panel of MGUS samples. An initial six samples
are available now at www.lambertlab.uams.edu/publicdata.htm.

Second, it is surprising that simple unweighted voting performs as well as Bayes net learning,
which as noted in Section 4 can be viewed as a sophisticated weighted voting scheme. This
comparison should be carried out on larger data sets when they become available, and also on cases
such as MGUS vs. myeloma where distinctions are likely to be more difficult. More generally, it
will be interesting to repeat the comparison reported in this paper on larger data sets as they
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become available and on MGUS vs. myeloma, or other tasks where distinction is likely to be very
difficult.

Third, how will the lessons of this paper change as the underlying technology changes? Affymetrix
has just introduced a new method for computing AC and AD that, among other differences, results
in fewer negative average difference values. We expect the broad lessons of our study are robust
enough to hold across such technological changes, but that will need to be tested. Also, the entire
field of gene expression microarrays may lose some ground to emerging techniques in proteomics,
where the amount of protein product from a gene is measured directly, rather than measuring the
amount of mRNA, which serves as a (noisy) surrogate for the amount of protein. We expect that
supervised data mining algorithms can be applied in similar ways to proteomics data, and again that
our broad lessons will be applicable, but this applicability also will need to be tested.
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APPENDIX

Below are the top 70 (by information gain) clones, used in the AC+AD ensemble (unweighted
vote). All are in fact AD values; the split point for each is given. The adjusted p-value gives the
probability that a gene would look as one-sided as we see; all other columns are as in Figure 2. To
compute the p-value, we used the hypergeometric distribution (for each of the possible extreme
tables) which gives the probability of such a configuration under the assumption of no association
between the two variables disease status and high/low status. We have adjusted our p-values to
account for multiple testing procedures. Therefore, this column gives us the probability that any
gene (of the 7129) will show such an extreme configuration. Since our p-values are so low, this
gives us strong evidence that the assumption of no association between the two variables is false.
And in turn implies that genes which high association between the two groups and the numerical
value of the gene may be genes that are of interest in researching the disease.

Accession Adjusted

InfoGain Gene Number Split MH ML NH NL p-value

0.802422 APOA2 X04898 =771 74 0 1 30 1.363E-21
0.735975 HERVK22pol K03498 637 3 71 31 0 1.174E-19
0.704489 TERT AF015950 -1610 70 4 0 31 1.056E-18
0.701219 UMOD M15881 1119.1 0 74 28 3 1.364E-18
0.701219 CDH¢4 L34059 -278 74 0 3 28 1.364E-18
0.664859 ACTRIA 714978 3400.6 3 71 30 1 7.853E-18
0.664859 MASPI D17525 -536.6 71 3 1 30  7.853E-18
0.650059 PTPN2I X79510 1256.1 6 68 31 0  4.950E-17
0.650059 TCEB3 L47345 1451.4 6 68 31 0  4.950E-17
0.63397 SDF1 L36033 2178.6 4 70 30 1 6.783E-17
0.625966 TNFRSF7 M63928 8129 7 67 31 0  2.758E-16
0.625966 UROD M14016 2718.9 7 67 31 0  2.758E-16
0.625966 KIAA0135 D50925 788.7 7 67 31 0 2.758E-16
0.625966 KIAA0133 D50923 -1517 67 7 0 31 2.758E-16
0.612641 PML M79463 88.7 71 3 2 29 2.657E-16
0.612641 IFNA4 M27318 415 3 71 29 2 2.657E-16
0.612641 PPP2R5D L76702 -1601.8 71 3 2 29 2.657E-16
0.606152 H2BFQ X57985 506.3 69 5 1 30 4.821E-16
0.606152 ABLI X16416 709 69 5 1 30 4.821E-16
0.606152 DCTD L39874 3545 69 5 1 30 4.821E-16
0.606152 H24AFO L19779 7368 69 5 1 30 4.821E-16
0.603481 CNGBI U58837 173.8 8 66 31 0 1.379E-15
0.603481 ADRAIB HT4369 994 8 66 31 0 1.379E-15
0.603481 RAD23A4 D21235 5044 66 8 0 31 1.379E-15
0.582583 NNT U40490 -2.1 74 0 6 25 5.819E-15
0.582366 DUSP7 X93921 1088 9 65 31 0 6.282E-15
0.58236 MAPKI2 X79483 1814.7 4 70 29 2 2.201E-15
0.580711 H326 U06631 1501 68 6 1 30 2.934E-15
0.580711 APOE M12529 1044 6 68 30 1 2.934E-15
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