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Abstract

Network intrusions have been a fact of life in the Internet for many years. However, as is the case with
many other types of Internet-wide phenomena, gaining insight into the global characteristics of intrusions
is challenging. In this paper we address this problem by systematically analyzing a set of firewall logs
collected over four months from over 1600 different networks world wide. The first part of our study is
a general analysis focused on the issues of distribution, categorization and prevalence of intrusions. Our
data shows both a large quantity and wide variety of intrusion attempts on a daily basis. We also find
that worms like CodeRed, Nimda and SQL Snake persist long after their original release. By projecting
intrusion activity as seen in our data sets to the entire Internet we determine that there are typically on
the order of 25B intrusion attempts per day and that there is an increasing trend over our measurement
period. We further find that sources of intrusions are uniformly spread across the Autonomous System
space. However, deeper investigation reveals that a very small collection of sources are responsible for a
significant fraction of intrusion attempts in any given month and their on/off patterns exhibit cliques of
correlated behavior. We show that the distribution of source IP addresses of the non-worm intrusions as
a function of the number of attempts follows Zipf’s law. We also find that at daily timescales, intrusion
targets often depict significant spatial trends that blur patterns observed from individual “IP telescopes”;
this underscores the necessity for a more global approach to intrusion detection. Finally, we investigate
the benefits of shared information, and the potential for using this as a foundation for an automated,
global intrusion detection framework that would identify and isolate intrusions with greater precision

and robustness than systems with limited perspective.

1 Introduction

Defending wide area networks from intrusion in the form of port scans and attacks poses a significant, on-
going challenge for network operators. Using backscatter analysis to characterize Denial-of-Service (DoS)

activity in the Internet, Moore et. al. show that these intrusions are numerous and on the rise [6]. In 2001,




two widely reported Internet worms (Code Red and Nimda) each infected hundreds of thousands of nodes
in less than a day and required countless hours to eradicate from systems. Recent work by Staniford et. al.
suggests that the intrusion activity we have seen to date might only be the tip of a very large iceberg and that
significant steps are necessary to counter these risks [19].

While methods and technology for securing networks against intrusions continue to evolve, the basic
problems are extremely challenging for a number of reasons. First, the Blackhats who perpetrate intrusions
continue to find ingenious ways to compromise remote hosts and frequently make their tools publicly avail-
able. Second, the size and complexity of the Internet, including end host operating systems, make it likely
that there will continue to be vulnerabilities for a long time to come. Third, sharing of information on in-
trusion activity between networks is complicated by privacy issues, and while there are certainly anecdotal
reports of specific port scanning methods and attacks, there is very little broad understanding of intrusion
activity on a global basis. Because of these challenges, current best practices for Internet security rely heav-
ily on word-of-mouth reports of new intrusions and security holes through entities such as CERT [4] and
DSHIELD [21].

The focus of this paper is the development of a quantitative characterization of intrusion activity in the
global Internet. To our knowledge, this is the first study to broadly address this problem using intrusion logs
from firewalls at sites distributed throughout the Internet. Specifically, our data was collected in over 1600
networks world wide over a 4 month period by DSHIELD.ORG. Entries in these logs consist of packets
rejected by firewalls and portscan logs recorded by Network Intrusion Detections Systems (NIDS -primarily
Snort [16]). This data set provides us with a unique perspective on global intrusion activity.

We investigated a range of fundamental features of intrusion activity by evaluating our data along a
number of dimensions. Specifically, we assess the daily volume of intrusion attempts, the sources and
destinations of intrusion attempts, and specific types of intrusion attempts.

Our results show the following:

e Volume: Daily intrusion attempts take place on an massive scale - as many as 3 million scans on a

single day - and in a bursty fashion.

o Distribution: Sources and destinations of intrusions from an Autonomous System (AS) perspective
are nearly uniformly distributed around the Internet. Furthermore, the distribution of the number of

scans per source IP versus their overall rank follows a power law (Zipf’s Law [24]).

e Types: Worm activity (intrusion attempts on port 80) varies between approximately 20% and 60%
of all intrusion attempts and worm signatures from Code Red and Nimda remain prominent today
(over a year since their original release). Non-port 80 intrusion attempts make up a surprisingly

large percentage of the daily volume. Decomposition of these indicates that while common scanning
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methods (eg. vertical and horizontal) are indeed prevalent, other methods such as coordinated and

stealthy scans are also widely used.

Our next step was to use these results to project intrusion activity to the entire Internet. We do this using
multiple perspectives so that, in addition to getting a perspective on global intrusion activity, we can assess
the extent to which the intrusion activity seen by a single network is representative of intrusion throughout
the Internet. Our projection method consists of using all of our data, only data from /16 networks and only
data from /24 networks. Resulting projections have roughly an order of magnitude difference respectively
(decreasing). The projection using the entire data set shows Internet wide intrusion attempts to be on the
order of 25B per day over all ports. A simple least squares fit through the data shows an increasing trend for
all projections.

Finally, we investigate the utility of sharing information between networks as a basis for a distributed
intrusion detection infrastructure. For example, we are interested in assessing the number of logs required
to establish particular source IPs as “worst offenders”. We use an information theoretic approach outlined in
[1] to assess the marginal utility of intrusion information collected from multiple sites. In addition to worst
offenders, we also assess the utility of additional logs in understanding intrusion prevalence with respect to
port targets. We find that small random collections of intrusion logs are not sufficient for gaining a consistent
view of worst offenders or port targets. This result combined with the Zipf result for worst offenders indicate
that while there is certainly potential for sharing information between networks as a means for improving
security, a thoughtful approach to log aggregation is likely to be required.

This paper is organized as follows. We describe studies related to this work in Section 2. In Section
4 background material on worms and scans is presented and in Section 3 we describe the details of our
data and our methods of analysis. We present results of our characterizations of fundamental features of
intrusions in Section 5 and extend those results to the entire Internet in Section 6. Our discussion of the use
of shared information in a distributed intrusion detection system is presented in Section 7. We summarize

and conclude in Section 8.

2 Related Work

The work by Moore et. al. is motivated by the question, “how prevalent are denial-of-service attacks in the
Internet today?” [6]. Our work is similar in spirit although we address the general question of intrusions
and are not specifically focused on DoS activity. Staniford et. al. report on recent worm activity (Code
Red, Nimda) in [19] and project the possibilities of much more serious worm threats in the future. Cowie
et. al. present a different perspective on the same work by examining hour long periods of “widespread

instabilities” in global BGP system in July and September of 2001 [5]. They describe the idea of “worm




induced traffic diversity” that is unlike other normal traffic experienced by routers and is the primary cause
of the BGP instabilities.

Our work has implications in development and configuration of network intrusion detection systems.
Many such systems have been developed and deployed (eg. [16, 15]). The standard approach for recogniz-
ing an intrusion is to create a rule-based description which is then used to configure the NIDS. However, the
task of accurately identifying new types of intrusions remains quite challenging.

Other well known studies related to ours are the DARPA Intrusion Data Sets from 1998 and 1999
[8]. These data sets are typically used as training sets to test NIDS. They suffer from being both old and
synthetically generated, thus their relevance to intrusion attempts of today should be questioned. Our data
(or a set like ours) could serve as a benchmark for creating or validating training sets in the future.

The Honeynet Infrastructure is a unique “network” dedicated to understanding the tools and activities
of the Blackhat community [11]. Their network consists of machines depolyed in the Internet with NIDS
that are virtually unused. Their lack of network use significantly reduces the possibility of false positives in
the data they generate - every packet received is considered suspect. The project publishes weekly reports
of recorded attack traffic and successful exploits.

Finally, there have been a number of recent papers on router-based techniques for IP traceback [17, 18].
These techniques all face considerable challenges in gaining operational deployment however they offer

interesting possibilities for identifying sources of intrusions.

3 Intrusion Data

We use a set of firewall logs of portscans collected over a 4 month period from over 1600 firewall admin-
strators distributed throughout the globe as the basis for our study. The logs provide a condensed summary
(smallest common denominator) of portscan activity obtained from various firewall/IDS platforms. Some
of the platforms supported include BlackIce Defender, CISCO PX Firewalls, ZoneAlarm, Linux IPchains,
Portsentry and Snort. This approach significantly increases the coverage and reduces reliance on individ-
ual IDS’s interpretation of events. Table 1 illustrates the format of a typical log entry. The date and time
fields are standardized to GMT and the provider hash allows for aggregation of destination IP addresses that
belong to the same administrative network.

Table 2 provides a high level summary of the data that was used in this analysis. The dataset was
obtained from DSHIELD.ORG - a research effort funded by SANS Institute as part of its Internet Storm
Center. The main goals of DSHIELD include detection and analysis of new worms and vulnerabilities,
notification to ISPs of exploited systems, publishing blacklists of worst offenders and feedback to submitters

to improve firewall configuration. The data is comprised of logs submitted by a diverse set of networks



Table 1: Sample log entries from Portscan logs

Date Time Sub. Hash  No: Scans Src IP Src Port TargtIP Targt Port TCP Flag
2002-03-19 18:35:18 provider2323 3 211.10.7.73 1227 10.3.23.12 21 S
2002-03-19 18:35:19 provider2323 16 211.10.7.73 1327 10.3.23.12 53 SF
2002-03-19  18:35:20 provider2323 1 211.10.7.73 1231 10.3.23.12 111 F
2002-03-19  18:35:21 provider2323 1 211.10.7.73 1331 10.3.23.12 22 SA

Table 2: Monthly Summary of studied DSHIELD Logs

Month Number of Scans | Number of Dest IPs
Aug. 2001 30 million 260,726
May. 2002 48 million 375,323
June. 2002 61 million 382,224
July. 2002 68 million 402,050

and includes 5 Class B networks, over 45 Class C sized networks and several smaller subnetworks. One
of the highlights of this data source was its utility and contribution in the detection and early analysis of
CodeRed. Figure 1 is a Skitter-based AS level graph that shows the global distribution of the providers
that submit to DSHIELD. A Skitter graph provides a unique way of visualizing Autonomous Systems based
on their connectivity and geography without compromising provider identities. There are three distinct
regions in the graph and they correspond to autonomous systems based in Europe, North America and
Asia Pacific in clockwise order. The ASs closer to the center constitute the larger backbone providers and
telecommunication companies that have maximum connectivity while the stub ASs populate the periphery
[2].

The lowest common denominator approach by DSHIELD provides us with a unique, globally diverse
and stable data source. The simplicity and generality of this approach also makes analysis straightforward.
There are however some pitfalls that need to be considered. The logs do not provide information about
packet headers, or what happens during active connections. There is also a certain degree of vulnerability to
flooding by malicious users and by misconfigured firewalls. For example local broadcast traffic and network
games like Half-life can result in many false positives. These instances were filtered out from the dataset
before analysis. Finally NIDS systems maybe not be able to capture all packets during a Denial of Service
attack. However spikes before and after an attack should get recorded.

Finally we need to consider portscans from spoofed sources. Normally there is little benefit to an indi-

vidual spoofed portscan as the source does not get a response. A few specialized situations where a spoofed




Figure 1: Global Distribution of Provider Autonomous Systems

portscan by itself could prove beneficial to a portscanner, like spoof-bounce, have been documented [7].
However, the best known motivation for spoofing portscans is to create spurious background noise to hide
the real sources. By considering and correlating reports from multiple sources, the effect of the spoofed
sources are marginalized and real sources rise to the top. This works because in reality, spoofed portscans
form only a small fraction of all recorded portscans. Thus, analyzing source IPs of portscans can provide

valuable insight into the geographic distribution of malicious host subnets or stepping stones [23].

4 Background

4.1 The Worms

In this section we provide some background information on the major Internet worms released over the last
two years. We first describe the major port 80 worms CodeRed VI and Nimda. This is important because
port 80 scans still form the single most dominant group of scans accounting for nearly 20% - 60% of all
scans in any given day. Most port 80 scans observed in the 3 month period between May 2002-June 2002
can be attributed to either CodeRed or Nimda. The release date for Nimda was Sep 18, 2001 and so the port
80 scans in the August 2001 dataset are exclusively CodeRed. We also describe the SQL-Snake-a worm

which affects Microsoft SQL. Servers.

4.1.1 CodeRedl

CodeRed I exploited a well known Windows Internet Information Server (IIS) buffer overflow vulnerability

[12] and was released on July 12, 2001. The worm was so named because it defaced some web pages with
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Figure 2: Figure showing the “day of the month” characteristics of port 80 sources

the words “hacked by Chinese”. The worm operates in two distinct phases. In its first phase, the worm uses
a random IP generator to search for vulnerable targets. In the second phase (20-28th of every month),the
worm stops propogation and launches Denial of Service attacks against the http://www 1. whitehouse.gov

website [3].

4.1.2 CodeRed 1

Despite superficial similarities, CodeRed II is a completely different worm that uses the same IIS vulnera-
bility. The name “CodeRed II” is derived from a string in the worm’s source code. Unlike CodeRed I, this
worm is not memory resident and hence a reboot does not disinfect the machine. CodeRed II’s propogation
mechanism generates a random IP address and a mask whose size determines the similarity between the
infected IP and probed IP. About 1/2 of the time CodeRed II probes an IP in the same /24, and about 3/8 of
the time CodeRed II probes an IP in the same /16 and a random IP remainder of the time. Finally CodeRed

II installs a root level backdoor that allows any other code to be remotely executed [3].

4.1.3 Nimda

Nimda stands for admin spelled backwards. The algorithm for target detection is not well known, but seems
to follow these rough probabilities: 50% an IP address with same first 2 octets, 25% an IP address with
matching first octet and 25% a completely random IP address [4].

Figure 2 shows the number of distinct sources scanning port 80 during the 3 months in 2002 from our
dataset. The graph shows the predictable nature of the port 80 scans and also very strong day of the month
characteristics. The sharp drop around the 19th of each month confirms that CodeRed I is still very much

alive.




4.1.4 SQL-Snake

The SQL-Snake was detecfed on May 20th 2002. This worm scans for open MS-SQL. 7 Servers which
run on port 1433 by default and exploits machines that have the default SA (Admin) account without an
associated password. The worm scans for IPs of the form A.B.C.D randomly on the following IP ranges
where: A = random number not equal to 10,127,172 or 192, B = 0-255, C = 1-255 and D = 1-254. The
primary function of the worm is to email passwords and related system information to ixltd @ postone.com

[22, 13].

4.2 Scan Types

We broadly categorize scans into four well known types [20].

1. Vertical Scan - is defined as a sequential or random scan of multiple (more than 5) ports of a single
IP address from the same source during a one hour period. These are usually an attempt to survey
which of several well known vulnerabilities applies to this host and are also known as strobe scans,

based on one of the original script-kiddie tools.

2. Horizontal Scan - is a scan from a single source of several machines (5 or more) in a subnet aimed at
the same target port, ie. the same vulnerability. In this case the attacker is searching for any machine
that is running specific service and does not care about any single machine in paricular. The attacker

could be just recruiting peers for launching larger distributed attacks.

3. Coordinated Scans - are scans from multiple sources (5 or more) aimed at a particular port of destina-
tions in the same /24 subnet within a one hour window. These are also called Distributed Scans [19].
These scans usually come from the more aggressive/active sources that comprise several collaborative

peers working in tandem.

4. Stealth Scans - are horizontal or vertical scans initiated with a very low frequency to avoid detection.
The key parameters in this definition include the maximum threshold (1 hour) and the minimum

threshold for the average interscan distance.

5 Intrusion Characteristics

In this section, we first provide a high level summary of intrusion distribution in terms of the destination ports
and the attack sources. We illustrate instances where the top sources depict striking correlated behavior. We

then project the observed scan rates over the entire IP space and try to identify temporal trends. We identify
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Figure 3: Scan rates for top 10 destination port categories May-July 2002

the predictable and perisistant behavior of the port 80 sources. Finally we investigate prevalence of spatial

trends in the scanning behavior.

5.1 Port Distribution

Monitoring the destination port of intrusion attempts in the Internet proves to be an effective method for
detecting exploits for new vulnerabilities and dissemination of new worms. The cases of CodeRed I/11,
Nimda and recent Opaserv (port 137) are instances where the heightened scanning rates were observed for
several days before they were identified.

The daily scanning volume of the top 10 destination categories for the 3 months from May 2002 - July
2002 is shown in Figure 3. Obviously the most signicant component of the graphs are the port 80 scans
from Nimda and CodeRedI/IL The Linux Slapper worm (released later this summer) is not part of this data. -
The visible spike in the port 1433 scans around the 4th week of May is directly attributable to the release of
SQL-Snake worm [22]. The P2P entry comprises of scans from Gnutella, Kazaa and EDonkey peers and the
port 137 scans are dominated by Windows NetBios misconfiguration. Of the non-worm scans, ssh (22), ftp
(21), rpc (111), dns(53) and icmp(0) tend to dominate. The scans from the Subseven trojan (leaves worm)
and scans to port 3128 (misconfigured proxy servers used to redirect/hide surfing behavior) also figure in

the top ports for the 3 months [21].

5.2 Source Distribution

One of the challenges in a study of the sources of the intrusions is to account for the disparities in the scan-
ning behavior of self propogating and non-worm traffic. To simplify we classify scans into three categories:
port 80, 1433 and the remaining non worm traffic. We filtered out traffic from worms like Subseven and
noise due to Windows NetBios and the peer-to-peer scans. All future references to non-worm scans use this

filtered dataset. Figure 4 shows the global distribution of autonomous system level sources of port 80, port




Figure 4: Source Distribution of Nimda/CodeRed(left), SQL.-Snake(middle) and Non-Worm(right) scans

1433 and the non-worm scans for the month of June 2002. These graphs serve to illustrate the global reach
and uniformity of attack sources (also victims in the former two cases) in each category. It is apparent that
the distribution of the SQL. Snake victims even at its peak, was much less dense in comparison to port 80 or

other non-worm traffic. Nevertheless it was responsible for a significant portion of all recorded scans.

5.2.1 Persistence of Worm Activity

Another interesting aspect of worm behavior is the persistence of attacks. In particular, we wanted to
understand how long a subnet remained infected. We compute the duration of port 80 scans during the 3
month period based on aggregates of /24 and /32. The motivation behind looking for /24 matches come from
CodeRed II's and Nimda’s affinity towards local targets. The half lives of the 3 categories are 18 days for
/24 matches and 6 hours for /32 match. The /24 matches are biased by individual sources that send only a
single portscan and do.not really indicate quick disinfection. The graph in Figure 5 reveals an almost linear
relationship between duration and number of infected /24 subnets with a very small slope. This indicates that
while most subnets become Nimda/CodeRed free in about 18 days, significant number of subnets continue

to be infected for extended periods.

5.3 Top Sources

Isolating and understanding behavior of worst offenders (in terms of source IP) is crucial to defending
networks. We focus primarily on the non-worm intrusions in this section. First we look at a cumulative
distribution of the source IPs shown in Figure 6. This graph shows the scans per source IP as a function
of the source IP rank (fe. popularity) on a log scale. The decreasing linear slope of this plot indicates a
power-law distribution which leads us to conclude that “worst offender” IPs follow Zipf’s Law [24]. Many

other phenomenon in the Internet have a similar characteristic. This indicates that very few sources are in
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Figure 6: CDF of source IPs with respect to number of monthly scans for each of the four months

fact responsible for generating a significant fraction of all non-worm scans that are observed.

Figure 7 plots the daily scan volume from the top 100 sources (out of 261K) along with the total
scans and further supports this results. The graph shows that the top sources which are responsible for
rougly half of all non-worm scans, also account for most of the variability that is exhibited. Another way to
consider worst offender behavior is to focus on the scans emanating from the top 20 sources for each month.
Observing the daily on/off patterns of the 20 sources during the course of each month reveals clusters of
correlated behavior. Such clusters were observed prominently in the top 20 sources of each of the four
months under consideration. Figures 8 and 9 show clusters from the top 20 sources from August 2001 and
June 2002. These sources are “on” during the same days of the month with similar levels of activity and bear
little locality in IP space. Figure 10 captures a set of four IPs that display similar staggering behavior but
on different days. The similarity in the actual number of scans during the on periods is striking. This points
to an identical attack or an attack using the same tool lauched from disparate sources on different days.

These results lead us to conclude that such attacks are in fact fairly common, and that blacklisting

worst offenders would be an effective mechanism of defending against non port 80 intrusions. Instances of
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Figure 12: Distribution of coordinated, horizontal and vertical scan episodes for the month of June 2002

collaborative clusters can be effectively isolated and should be investigated with greater vigor.

5.3.1 Identification of Scan Types

Figures 11 and 12 show the daily distribution of the three scan types during the month of June 2002. This
indicates that horizontal scans account for 60-70% of all non-worm scans. Another surpising revelation is
that a large proportion of the daily scans are coordinated or come from distributed sources. The coordinated
scan rate also seems much more tightly tied to the number of coordinated scan episodes with the ratio
of 100 scans per epsode. The most common ports scanned included port 111 (RPC), port 53 (DNS) and
scans for alternate webserver ports like 8000 and 8080. Although horizontal scans are more common than
vertical scans, there are fewer horizontal scan episodes than vertical scan episodes. Figure 13 shows daily
distribution of observed stealth scans with minimum thresholds of 30 secs and 3 minutes. Stealthy scans are
not uncommon, however only makeup a small percentage of all vertical and horizontal scans. Vertical scans

seem to be much more likely to exhibit stealthy behavior than horizontal scans.

5.4 Network Telescopes

Network telescopes serve as a useful mechanism for measuring and understanding Internet attack behavior

[14], especially worms like CodeRed and Nimda. We examine their potential for characterizing the patterns
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Figure 14: Daily scan rate of port 80 scans observed from a Class B telescope with respect to overall rate

during June 2002-August 2002

of non-worm scans in the larger Internet. Figures 15 and 14 show the observed daily scan rates from an
entire Class B with respect to the overall scan rates for both non-worm and port 80scans. They reconfirm
that for modeling port 80 scans even a Class B telescope works reasonably well. However the non-worm
traffic modeled from the same telescope exhibits significant variability unlike the global rates. This suggests
that non-worm traffic has inherent spatial components that can be captured effectively only from a globally

distributed pool of IP addresses.

6 Global Prevalence

6.1 Projection

Scanning patterns seen in the Internet have been highly dynamic especially over the last couple of years
with the emergence of novel and more sophisticated worms. One of the intriguing questions that we would
like to answer is how the volume of scans have changed over the last year? To address this question, we
begin by projecting the daily scans observed in our dataset to the larger Internet. We do this by simply
taking the “average scans per IP” for our set of destination IPs and then multiplying that by the number of

IPs in the entire IP space. We assume uniformity, but do not test for it. That is, we assume that since our
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Figure 16: Projection of port 80 scans Aug 2001-July 2002, over /32, /24 and /16 aggregates

set of provider networks are reasonably well distributed (both geographically and over the IP space), our
perspective reflects what is seen over the larger Internet. This projection indicates daily scan rates as high
as 25B/day.

We perform similar projections using /24 and /16 aggregates and try to discern trends via linear fits. The
/16 and /24 aggregates provide very conservative estimates of the observed scan rates due to sparse network
representations. One motivation behind them is to account for possible IPs that may not receive any scans
during an entire day. Figures 16 and 17 show the results for port 80 and non-worm scans. The port 80 scan
rates show a decreasing trend which is due to high levels of CodeRed incidences in Aug 2001. The rates
between May and August 2002 are relatively steady with a very small upward slope. The non-worm scan
rates however clearly show an increasing trend. The average daily number of scans over the IP space jumps

from 6.5 B scans to 8.2 B, an increase of over 25%.

7 Implications of Shared Information

A number of recent papers and proposals address the concept of developing an infrastructure that would pool

resources in order to more rapidly and more effectively respond to attacks and intrusions [20, 11, 9]. There
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Figure 17: Projection of port 80 scans Aug 2001-July 2002, over /32, /24 and /16 aggregates

are many issues involved in the creation of such an infrastructure, not the least of which is understanding its
potential for success. Given the fact that there is likely to be little synchronization of timestamps between
daily firewall logs in our data set, we did not attempt to evaluate how rapidly attacks and intrusions could be
identified if data were collected in central repository in real time from sites distributed across the Internet —
we leave that for future work. Our data does, however, lend itself to evaluating other aspects of developing

composite views of intrusion activity and we explore two examples of these in this section.

7.1 An Information Theoretic Approach

Exploring the extent of refinement of perspective provided by additional data is a standard notion in infor-
mation theory. Relative entropy is a measure of the distributional similarity between two variables [10].
This measure is commonly estimated using the Kullback-Leibler distance metric which was extended in [1]
to measure the marginal utility of adding additional experimental results to an aggregate data set of network
topology measurements. Our interest is in understanding how the addition of intrusion logs to an aggregate
data set improves the resolution of identifying “worst offenders” and the prevalence of scans of particular
ports. The marginal utility metric will quantitatively express the information gained by the additional logs.

A framework for marginal utility evaluation is presented in [1]. The framework considers a set of n
identical (ie. aimed at discovering a common property) experiments S 1,52, ...,8". In our case, these ex-
periments would be intrusion logs submitted by distinct sites. Marginal utility is defined as the reduction in
uncertainty resulting from the next experiment added to the aggregate set. Two alternatives for calculating
marginal utility are presented: one which considers the reduction in uncertainty in an online manner and
the other in an offfine manner. The essential difference between the two is that the offline metric considers
marginal utility from the perspective of the set of all n experiments. We select the offline metric for anal-
ysis since, as stated above, we are not considering issues related to the order in which individual logs are
submitted.

The formal definition of marginal utility of an experiment S™ is defined to be U™ (S™) and is given by
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the following equation:
Pr(si™)
1
where i ranges over all possible outcomes and Pr(sf ) is the probability associated with outcome s; after

the conclusion of experiments S*, S?,..., 87, and m is the total number of experiments conducted.

7.2 Identification of Worst Offenders and Prevalence of Target Ports

Our experiments to evaluate the marginal utility of intrusion log sharing focuses on two issues: the identifi-
cation of worst offenders and the identification of ports (non-port 80) that are most frequently scanned. Our
intent is to examine this issue in a general sense. To that end we conducted the experiments by selecting
a single day at random from our data set. We then select logs from 100 /16’s at random and 100 /24’s at
random to determine how many logs are required to get a consistent perspective on offenders and intrusion
targets. Our analysis of network telescopes in Section 6 gives us the intuition that the aggregation of logs
from a non-trivial number of sources, will be required to gain a representative perspective on these two
issues.

The graph in Figure 18 shows the marginal utility of additional logs for identifying worst offenders.
For this analysis (and the analysis of port targets), we ordered the logs by the number of scan entries. If
the distribution of information in the logs is relatively stable, then this ordering should provide a sequence
of marginal utility measures that follow a decreasing trend. It can be seen in the figure for the larger
/16 networks, that this is indeed the case. Beyond the aggregation of about 35 intrusion logs, almost no
additional information is added. The plot for the /24 networks tells a different story. Non-negligible marginal
utility metrics exist over a great deal of the graph indicating that aggregations more than 100 /24’s may be
necessary to get a clear view of worst offender distributions.

The results for the marginal utility of identifying target ports is somewhat different. As can be seen

in Figure 19, there is a good deal of variability in marginal utility metrics for both /16’s and /24’s for log
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Figure 19: Utility of additional subnets for detecting top target ports

aggregations under 30. However, beyond 40, both exhibit fairly small marginal utility metrics indicating

that stable perspectives on port targets may be achieved with relatively small numbers of logs.

8 Summary and Conclusion

In this paper we present a broad, empirical analysis of Internet intrusion activity using a large set of NIDS
and firewall logs collected over a 4 month period. We found daily intrusion activity as seen in our data to be
highly variable ranging from between about 1M to 3M scans per day. Examination of source IPs for these
scans shows that they are widely disbursed across the autonomous system space, and that the distribution
of attempts per source IP follows a power law. Our breakdown of scan types shows the predictably large
amount of worm activity but also a large amount of scanning directed toward ports other than 80. We find
that while 60-70% of all non-worm scans are horizontal scans, the daily number of horizontal scan episodes
is typically lower than vertical scan episodes.

To gain insight into the global nature of intrusions we used our data to project activity across the Internet.
We used three different methods in this regard; considering first our entire set of data, then just /16 networks
then just /24 networks. We find total intrusion activity to be as high as 25B per day and that non-port 80
scans increased by approximately 25% over our measurement period.

We also presented a high level information theoretic evaluation of the potential of using data shared
between networks as a foundation for a distributed intrusion detection infrastructure. Our analysis indicates
that small collections of logs from smaller networks may not be sufficient to identify either worst offenders
or most popular port targets for attacks.

Our analysis has a number of implications. First, intrusion activity takes place on a massive scale
throughout the Internet and it is on the rise —network admininstrators should beware. Second, the worst
offenders typically depict coordinated behavior and are responsible for significant fraction of all scanning

activity. This is a strong argument for developing better blacklists and employing appropriate ingress filter-
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ing. Third, while current firewall and NIDS systems provide useful clues about attack patterns their views
are limited by their vantage points. There is significant benefit to be acheived by collaboration, however this
benefit is sensitive to the size of the peering group and its diversity.

Next steps in this work will be to attempt to refine the means by which intrusion data used in a distributed
coordinated infrastructure. We are also interested in how effectively intrusion data collected in real time can

positively identify new intrusion exploits in the Internet.
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