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In this paper, we investigate three representative methods for face expression recogni-
tion. The first one is the Bayes decision approach, which is the most classical algorithm for
general pattern recognition. The second is support vector machine (SVM) classification,
and the third is the AdaBoost method. Both SVM and AdaBoost are considered Large
Margin Classifiers. We evaluate these three methods for face expression recognition on a
common database. To solve the multi-class (7 expressions) recognition problem, we use a
voting scheme and a binary tree scheme. For the Bayes and AdaBoost methods, we use a
pairwise framework for both feature selection and discrimination in order to simplify the
problem, and get good results. In contrast, with SVMs, we use all the features without
selection. We compare linear and non-linear SVMs to see if there is any improvement us-
ing non-linear mapping. We also find that normalization makes recognition performance

worse for SVMs but has no influence for Bayes and AdaBoost methods.
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1. INTRODUCTION

Face expression recognition (FER) by computer is very useful for many ap-
plications such as human behavior understanding, perceptual user interfaces, and
interactive computer games. In an automatic FER system, the first step is face
detection or localization in a cluttered scene. Next, relevant features from the face
must be extracted, and finally the expression can be classified based on the ex-
tracted features. Unlike face recognition, FER focuses on how to discern the same
expressions from different individuals. Because different people may show the same
expression in different ways, the FER problem is very challenging.

There are two versions of the face expression recognition problem depending on
whether an image sequence is the input and the dynamic characteristics of expres-
sions are analyzed, or a single image is the input and expressions are distinguished
based on static differences. Previous work on dynamic expression recognition in-
cludes the following. Suwa et al. [28] analyzed dynamic facial expressions by
tracking the motion of twenty markers. Mase [22] computed first- and second-order
statistics of optical flow at evenly divided small blocks. Yacoob and Davis (37
used the inter-frame motion of edges extracted in the areas of the mouth, nose,
eyes, and eyebrows. Bartlett et al. [1] combined optical flow and principal com-
ponents obtained from image differences. Essa and Pentland {8] built a dynamic
parametric model by tracking facial motion over time. Donato et al. {6] compared
several methods for feature extraction, and found that Gabor wavelet coefficients
and independent component analysis (ICA) gave the best representation. Tian et
al. [30] tracked upper and/or lower face action units over sequences to construct
their parametric models.

There has also been considerable previous work on face expression recognition



from a single image. Padgett and Cottrell (23] used seven pixel blocks from feature
regions to represent expressions. Cottrell and Metcalfe (4] used principal component
analysis and feed-forward neural networks. Rahardja et al. [26] used a pyramid
structure with neural networks. Lanitis et al. [17] used parameterized deformable
templates to represent face expressions. Lyons et al. [19] [20] and Zhang et al. {39]
(38] demonstrated the advantages of using Gabor wavelet coefficients to code face
expressions. See [24] for a good review of different approaches for face expression
recognition.

In this paper we investigate face expression recognition from static images and
use Gabor filters for facial feature extraction. Our major focus is on the evaluation
of some new methods for face expression recognition. Recently, large margin clas-
sifiers such as support vector machines (SVMs) and AdaBoost were proposed from
machine learning society, and have been used for solving some vision problems.
Here we are interested to see if they are useful for face expression recognition. To
our knowledge, it is the first time to evaluate the large margin classifiers for face
expression recognition. On the other hand, the Bayes classifier is a classical method
for pattern recognition. We describe a simplified Bayes classifier for face expression
recognition, and use its results as a baseline for comparison.

Our approach to face expression recognition is summarized in Fig. 1. Each
input face image is convolved with 18 Gabor filters and results in 18 filtered images.
The amplitude of each filtered image at selected fiducial points are used as feature
values. The organization of the paper is as follows. In Section 2, the image database,
Gabor filter bank design, and feature extraction methods are described. In Sections
3, 4, and 5, we describe the three classifiers to be compared. In Sections 6 and 7

we present two strategies for multi-class expression recognition, and a pairwise
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FIG. 1 The framework of the face expression recognition system. Dashed blocks
represent operations while solid blocks contain the filtered images, feature vector,

and final class labels.

framework for feature selection. Experimental results and comparisons are given in

Section 8. Finally, we give some discussions on the results in Section 9.

2. FACIAL FEATURE EXTRACTION

The face database [19] used in our experiments contains 213 images of 10
Japanese women. Each person has two to four images for each of seven expres-

sions: neutral, happy, sad, surprise, anger, disgust, and fear. Each image size is



256 x 256 pixels. A few examples are shown in Fig. 2. For details on the database

such as image collection, data description, and human ranking, see [19]. Other

researchers who have also used this database include [20] {39] (38].

FIG. 2 Some images in the face expression database. From left to right, the

expressions are angry, disgust, fear, happy, neutral, sad, and surprise.

Given a set of points detected or marked on a face image, two approaches to
facial feature extraction are to use either (1) the geometric positions of the fiducial
points, or (2) the Gabor filter coefficients (5] at the fiducial points. It was shown
in [20] [39] that the filter coefficients can characterize face expressions better than
the geometric positions. Therefore, in our study, we use Gabor filtering for facial

feature extraction.

2.1. The Gabor Filter Bank

A two-dimensional Gabor function, g(z,%), and its Fourier transform, G(u,v),

can be written as
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where W is the frequency of a sinusoidal plane wave along the z-axis, and oy
and o, are the space constants of the Gaussian envelope along the z and y axes,
respectively. o, = 1/2wo, and 0, = 1/2m0y. Filtering a signal with this basis
provides a localized frequency characterization. Filters with arbitrary orientations

can be obtained by a rigid rotation of the z-y coordinate system:

g'(z,y) = g(z', "), (3)

where

’

z' =xcosf+ysinh, y =-—zsinf+ ycosh, (4)

and 6 is the rotation angle.

In earlier applications of the Gabor filtering technique [5] for face recognition
[16] [36] and face expression classification [19] [20] [39] [38], investigators have only
varied the scale and orientation of the filters, but kept the Gaussian envelope pa-
rameter ¢ fixed to 7 or 2x. This methodology is questionable because the area
of the energy distribution of the filters varies with scale, so the Gaussian envelope
should vary with the filter size. Consequently, we designed the Gabor filter bank
based on the filters used perviously for texture segmentation and image retrieval
[14] [21].

The Gabor filter bank is designed to cover the entire frequency spectrum [14]
[21]. In other words, the Gabor filter set is constructed such that the half-peak
magnitude of the filters in the frequency spectrum touch each other. This results

in the following formulas to compute the filter parameters o, and oy:
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where U, and Uj, denote the lower and upper center frequencies of interest. m €
{0,1,...,8—1} and n € {0,1,..., K — 1}, are the indices of scale and orientation,

respectively. K is the number of orientations and S is the number of scales.

FIG. 3 The filter set in the spatial-frequency domain. There are a total of 18

Gabor filters shown at half-peak magnitude.

In our experiments we used Uy = \/5/4, U = \/5/16, and used three scales
(S = 3) and six orientations (K = 6). The half-peak supports of the Gabor filter
bank are shown in Figure 3. The differences in the strength of the responses of
different image regions is the key to the multi-channel approach to face image

analysis.

2.2. Feature Extraction

After Gabor filtering, the amplitude values at selected fiducial points on the face
images are used as the features. Automatically extracting these points [16] [36] is
still an open problem [39]. In order to focus this study on the classifier performance,
we manually marked the fiducial points in each image. Typical positions of 34
fiducial points are shown in Figure 4. Thus for each face image, the extracted

feature vector is of dimension 612 ( 34 x 3 x 6).




FIG. 4 34 fiducial points on a face image.

2.3. Data Normalization

There are two common ways for performing data normalization. The first is
very simple, just shifting each component to a given range, for example between 0
and 1:

~ Xik ™ mink

R = ik — Tk (8)

maxy — ming
where max; and min correspond to the biggest and smallest values in dimension
k of the training data, respectively, and x;i is the ith feature vector in dimension
k. This approach is not robust because some noisy, bigger values may overshadow
the smaller, but real, data. A better approach is to use Gaussian normalization,
by computing the mean, ux, and standard deviation, ok, in each dimension of the

training data. Then normalize the original data to a N (0, 1) distribution as follows:

~ Xik = Mk
Xik = —1—5;&‘“ {9)



We chose to use the second approach in our data normalization. In addition to
normalizing the training data, the test data was also normalized using the same p
and og.

After processing the data, we trained the classifiers and then used the test
data for face expression recognition experiments. We leave the problem of feature
selection to Section 7 after the introduction of the classifiers and the multi-class

classification schemes.

3. BAYES CLASSIFIER

The Bayes classifier yields the minimum error rates when the underlying prob-
ability density function (pdf’s) are known [10]. The a posteriori probability of

pattern x belonging to class w is given by Bayes’ rule:

Plucpe) = DedPisled) (10)

where P(w.) is the a priori probability, p(x|w.) the conditional probability density
function of we, and p(x) is the mixture density. The maximum a posteriori (MAP)
decision is

w: = argmax P(wc|x), ¢=12,...,C (11)
[

The Bayes classifier can be used for both two-class and multi-class classifications.
In face expression recognition there are often not enough samples to reliably
estimate the conditional density function for each class. A compromise is to assume
that the within-class densities can be modelled as normal distributions, and all the
within-class covariance matrices are identical and diagonal. Liu and Wechsler [18]
used this simplification for face recognition. Here we evaluate this approach for the

problem of face expression recognition. The parameters of the normal distributions




are estimated as follows,

N,
1 5,0
;ch—Nszj , ¢=12,...,C (12)
J=1
where xig.c), j=1,2,..., N, represents the samples from class w,, and
Y = B = diag{o?,03,...,05} (13)

where D is the feature dimension. Each component ¢? can be estimated by the

sample variance in the one-dimensional feature subspace

C <

1 1 N (©) 2
T |\ N Zl (57 - e (14)
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where :cgf) is the ith element of the sample xg.c), lei the ith element of y., and C

the number of classes.

4. SUPPORT VECTOR MACHINE

4.1. Basic Theory of Support Vector Machines

Given a set of training vectors belonging to two separate classes, (x1, 41 Yoooos (X0, 01),
where x; € R™ and y; € {-1,+1}, one wants to find a hyperplane wx + b = 0 to
separate the data. Fig. 5(a) shows an example and several possible hyperplanes,
but there is only one (shown in Fig. 5(b)) that maximizes the margin ( i.e., the
distance between the hyperplane and the nearest data point of each class). This
linear classifier is called the optimal separating hyperplane (OSH).

The solution to the optimization problem of SVMs is given by the saddle point
of the Lagrange functional,

i
L(W’bva) = % “W ”2 —Zai {yi {(W)Q)'{*'b]—-l} (15)

i==1
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’ optimal hyperplane

(a) (b)

FIG. 5 Classification between two classes using hyperplanes: (a) Arbitrary hyper-
planes 1, m and n. (b) The optimal separating hyperplane with the largest margin

identified by the dashed lines, passing the support vectors.

where a; are the Lagrange multipliers. Classical Lagrangian duality enables the
primal problem (15) to be transformed to its dual problem, which is easier to solve.

The solution is given by

1
- - T 1 -
W o= Zaiyixi, b= "—'Q-W : [Xr + xs] (16)
i=1
where x, and x, are any two support vectors with a,,é&, > 0, yr = 1,and y, = ~1.

To solve a non-separable problem, Cortes and Vapnik [3] introduced slack vari-
ables & > 0 and a penalty function, F (§) = Zi:l &, where the §; measure the
mis-classification error. The solution is identical to the separable case except for a
modification of the Lagrange multipliers as 0 < o; < M, i=1,...,l. The choice
of M is not strict in practice, and we set M = 100 in all our experiments. See [33]

for more details on the non-separable case.
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input space feature space

FIG. 6 Nonlinear mapping of an SVM from the input space to a high-dimensional

feature space.
4.2. Non-Linear SVM

SVMs can realize non-linear discrimination by kernel mapping [33]. When the
samples in the input space can not be separated by any linear hyperplane, they
may be linearly separated in a non-linearly mapped feature space. Note that here
the feature space of the SVMs is different from the image feature space.

There are a few kernel functions that have been used previously for nonlinear
mapping [33], with the Gaussian radial basis function (GRBF) the most commonly
used. We used the GRBF kernel in our experiments with the form K(x,y) =
exp <~(—x;—2yﬁ), where parameter vy is the width of the Gaussian function.

For a given kernel function, the SVM classifier is now given by

!
f(x) = sign <Z &y K (%, %) + 5) 7)
i=1

5. ADABOOST

Boosting is a method for combining a collection of weak classification functions

(weak learners) to form a stronger classifier. AdaBoost is an adaptive algorithm



that boosts a sequence of classifiers, in that the weights are updated dynamically
according to the errors in previous learning [9]. AdaBoost belongs to the class
of large margin classifiers. The original AdaBoost method [9] works on all given
features. Recently, Tieu and Viola [31] adapted the AdaBoost algorithm for natural
image retrieval, and later for face detection [34]. They let the weak learner work
using a single feature at a time. So after T" rounds of boosting, T' features are
selected together with the T weak classifiers. Tieu and Viola’s AdaBoost algorithm
[31] is briefly described below:

AdaBoost Algorithm
Input: 1) n training examples, (X1,%1),---,(Xn,¥n), with y; = 1 or 0;

2) the number of iterations, T

Initialize weights wy,; = %—l or 51—7;1 for y; = 1 or 0, respectively, with [ +m = n.

Dofort=1,...,T:

1. Train one hypothesis h; for each feature j with w,, and error ¢; = Pr;" [h;(zi) #

vil-
2. Choose hi(-) = hi(-) such that Vj # k,ex < €;. Let € = €.

3. Update: wi414 = wy :8f°, where e; = 1 or 0 for example z; classified correctly

or incorrectly, respectively, with §; = 1—?2: and oy = log .é:

4. Normalize the weights so they are a distribution, w41, «— gt

w -
j=1 t+1,5

Qutput the final hypothesis

1 i T ahy(z) 2 1T
hf(.’E)= if 21_10 t(x) 22_:% (18)

0 otherwise
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6. MULTI-CLASS CLASSIFICATION

Previous sections described the basic theory of Bayes, SVMs and AdaBoost
for two-class classification. It is very easy to extend Bayes decision to multi-class
cases, but difficult for SVM and AdaBoost. With SVM and AdaBoost, a multi-class
system can be built from two-class classifiers. There are two main schemes used
for this purpose. One is the one-against-all strategy to classify each class against
all the remaining classes; The other scheme is the one-against-one strategy that
classifies between each pair. For the former, the number of positive and negative
examples are extremely unbalanced. Hence we take the latter approach. The
problem becomes how to combine the binary classification results to obtain the
final decision. A classical method is to use a voting strategy that considers all pairs
of classes, hence there will be C(C — 1)/2 comparisons. Another strategy is to
use a binary tree structure to get the final classification, where the total number
of comparisons is C — 1. We use the voting scheme for pairwise Bayes decision
and AdaBoost because the C(C —1)/2 comparisons are not a heavy computational
burden for them. For SVMs, however, we use a binary tree structure to reduce the

number of comparisons required by this more computation-intensive classifier.

6.1. Voting Scheme

For each test example, there are a total of C(C — 1)/2 pairs of classifications
computed. The output of the C(C — 1)/2 classifiers is used to construct a matrix,
as shown in Fig. 7. Each element is equal to 1 or 0, where ¢; ;(x) = 1 if x is
classified as class ¢ and ¢; ;(x) = 0 if x is classified as class j. All elements on the
main diagonal are zeros.

The outputs of the pairwise classifiers are combined to obtain the final decision.

14
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FIG. 7 The pairwise classification results ¢; ; are listed in a C x C matrix for the
C class classification problem. The values of ¢;; are equal to 1 or 0. If ¢;; = 1,

¢;: = 0.

In the voting scheme, a count c(w;|x) of the number of pairwise classifiers that label

x in class w; is calculated by

clwilx) = D ¢1,3(x) (19)
J
The input x is assigned the class label for which the count is maximum, i.e.,

wi = argmaxc{w;|x), i=1,2,---,C (20)
2

6.2. Binary Tree Scheme

In order to reduce the number of comparisons for SVMs in multi-class cases, we
construct bottom-up a binary tree that has been used successfully in multi-class face
recognition [12]. Suppose there are seven classes in the data set, the decision tree is
shown in Fig. 8, where the numbers 1-7 encode the class labels. The numbers are
arbitrary without any meaning associated with the ordering. From a comparison
between each pair, one class is chosen representing the “winner” of the current two
classes. The selected classes (from the lowest level of the binary tree) move up

to the next higher level for another round of tests. Finally, a unique class label

15




appears at the top of the tree. This process corresponds to a single-elimination
tournament.

The binary tree structure reduces the number of comparisons to C — 1 instead
of the C(C —1)/2 comparisons in the voting scheme. This benefit is especially
useful when the number of classes is very large. If a test image can be classified
correctly, the output of the binary tree is the same no matter how it is arranged.
On the contrary, when a test example is classified incorrectly, the output depends,

in general, on the ordering of the classes at the leaves.

FIG. 8 The binary tree structure of a 7-class classification problem. At each non-
leaf node a comparison is made between the classes at its two child nodes, and the
winner class is then associated with the current node. This process continues until

a class is selected at the root node.

Note that although there are only C — 1 comparisons, SVMs still need to be
trained using C(C — 1)/2 pairs because the classes associated with non-leaf nodes

can not be determined in advance, and instead depend on the test example.



7. PAIRWISE FEATURE SELECTION

In the representation of face expression images using a bank of Gabor filters,
the issue of selecting a good subset of the extracted features (in our case 612)
must be addressed. Traditionally, feature selection is defined as follows: given a set
of candidate features, select a subset that performs best under some classification
system [15]. In the past decade, many researchers have studied search algorithms
for feature selection. Jain and Zongker [15] evaluated different search algorithms
for feature subset selection and found that the sequential forward floating selection
(SFFS) algorithm proposed by Pudil et al. [25] performed best. However, SFFS is
very time consuming when the number of features is large. Vailaya [32] reported
that using SFFS to select 67 features from 600 for a two-class problem (indoor vs.
outdoor images), took 12 days to compute. Moreover, it is difficult to select the
best features when the number of training samples is small [15], which is often the
case for face expression recognition.

Because of the difficulties of using traditional feature selection methodologies
for face data, we propose another idea called “feature ranking” to distinguish it
from feature selection. In feature ranking, all features are assumed independent
and a criterion is used to compare the discriminative capabilities of each feature.
The feature ranking approach simplifies and speeds up the process to select a subset
of the features. We will select the best features for discriminating between each
pair of expression types. The pairwise framewdrk was first presented in {13] for face
recognition because the features useful for a pair of classes may not be appropriate

for some other pair of classes. A simple criterion,

| tia = p5a ||
7‘% S (21)




is used to rank the d‘* feature for d = 1,2,---, D, in discriminating between ex-
pression classes i and j. 4 (ija) is the mean value of class i (j), and o4 is the
variance of the samples of the d** feature. The larger the value of 1‘1-1j, the more
discriminative the dth feature for distinguishing between classes ¢ and j.

Using 7‘{1J to rank the features in descending order according to their discrim-
inability, combined with a user-specified number, N, of features to use, the system
selects the first N features to train the classifiers and also to recognize a new face.

Feature ranking is executed for each pair of classes. It provides some knowledge
regarding the importance of certain features over others for a specific classification
problem. The top features in the list are expected to have higher discrimination
capability. Using fewer number of features reduces dimensionality without losing
much discrimination power.

The top N features are used by the Bayes classifier during training. In Ad-
aBoost, features are selected one by one according to the classification error of the
weak learner in the previous step [31]. For SVMs, feature selection is not trivial
[11]; while the general framework of pairwise feature selection [13] should work, the
problem is how to select the features for the SVMs in each pair of classes. The
ranking strategy is too simple to select appropriate features for SVMs. The reason
may be because of the difference in the optimization criterion used in SVMs ver-
sus other methods such as a Bayes classifier. This means that some features may
be good for a Bayes classifier but poor for an SVM, which requires a nice repre-
sentation for the margin between two classes. Consequently, in our study, all the
features were used for SVMs in both training and classification. Some appropriate
feature selection methods [35] for SVMs can be explored in the future for use in

face expression recognition.
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8. EXPRESSION RECOGNITION EXPERIMENTS

In this section, we evaluate the three classifiers for face expression recognition
and compare their performance based on recognition accuracy. In addition, we also
compare our experimental results with previous approaches that used the same

database.

8.1. Experimental Results

Our experimental procedure used 10-fold cross validation because the face database
is relatively small (213 image). That is, the face expression database was divided
randomly into 10 parts, from which the data from 9 parts were used for training the
classifiers and the last part was used for testing. We do this kind of data separation
for 10 runs, and the average recognition accuracy over these 10 runs is reported as

the final recognition accuracy for each method.

Face expression recognition
T T

0751 “

- ~O~ AdaBoos!
~»-_ Bayes Classifier

0.55¢ b

Recognition accuracy
=3

X1 b

. L . s L . 2 L
10 20 30 40 50 €0 70 80 80 100
Number of features selected

FIG. 9 Experimental results of the simplified Bayes decision and Adaboost as a

function of the number of selected features.
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For the given training data, each of the three classifiers was trained separately
and independently. The input parameters required were minimal. Specifically, the
only parameter for the Bayes classifier and AdaBoost was the number of features
or the number of boosting rounds. For linear SVM, the parameter was set to
M = 100. For non-linear SVMs with the GRBF kernel, we experimentally set the
width parameter to obtain the best performance. A pairwise framework is used in
feature selection and classification for both the Bayes classifier and AdaBoost.

First, the Bayes classifier and the AdaBoost algorithm were compared. Fig.
9 shows the results as the number of features was varied in both methods. It is
clear that only a small number of features is sufficient for both algorithms. The
Bayes classifier reached its best performance of 70.95% with 60 features, and the
performance deteriorated slightly if more features were used. Using all 612 features
the recognition accuracy was 63.33% (shown in Fig. 10 as B612, which means Bayes
using all features). This demonstrates that over-fitting is a serious problem for the
Bayes method, and indicates that feature selection is necessary for this classifier.

For the AdaBoost method, peak performance was 71.9% using 80 features. As
shown in Fig. 9. using more features slightly lowered recognition accuracy. In Fig.
10, the recognition results of various approaches are shown, where B60 means Bayes
using 60 features, and A80 means AdaBoost using 80 (boosted) features. Note that
the number of features in Fig. 9 means how many features used for each pair of
classes, but which features were used for each pair was generally not the same. We
also tested recognition performance using normalized features (Eq. 9), but this
made no difference for either Bayes or AdaBoost.

We evaluated SVMs using the binary tree tournament scheme, and show results

in the right half of Fig. 10, where SVM-L denotes linear SVM, and nSVM-L means
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FIG. 10 Experimental results of various approaches for face expression recognition

on a common database. See context for the description of each approach.

linear SVM classification using normalized features. Normalization reduced recog-
nition accuracy for linear SVMs. Specifically, the recognition accuracy of SVM-L
was 92.4% while it was 82.4% for nSVM-L. It was expected that recognition perfor-
mance would be improved or at least not become worse with data normalization.
But here we get the opposite situation for linear SVMs. Why does data normal-
ization of face expression features deteriorate the performance for linear SVMs,
and have no positive effect on Bayes and AdaBoost? It is difficult to address this
problem theoretically. Our intuitive interpretation is that normalization moves the
point positions in feature space that are sensitive to the margin computation, hence
reducing the generalization capability for the SVM classifiers. Besides linear SVMs,
we also experimented with non-linear SVMs on the same problem, termed SVM-
NL in Fig. 10, in which there is one parameter, i.e., the Gaussian width ~ of the

GRBF kernel function. We chose the parameter -y experimentally to a value (can
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take any value between 5 and 7) where recognition results were best. The accuracy
of SVM-NL was 91.9%, which is comparable to the performance by linear SVMs.
This indicates again the special characteristics of the face expression data. In other
words, the non-linear mapping using the GRBF kernel function showed no benefit
for face expression recognition using this data set.

Comparing all three classifiers together, we conclude from Fig. 10 that the recog-
nition accuracies of AdaBoost and Bayes are comparable, and their performance is
worse than that based on linear or non-linear SVMs. Overall, linear SVMs without
data normalization give the highest recognition accuracy in our experiments.

Finally, we did not quantitatively compare the computation times for each algo-
rithm. Roughly speaking, the Bayes classifier is fastest and SVMs are the slowest,
with AdaBoost taking more time than the Bayes approach, but it is much faster

than SVMs.

8.2. Comparison with Previous Approaches

Besides comparisons among these three classifiers, we also compared recognition
performance with other methods [39] [38] [20] that used the same database. In [39]
[38] a neural network approach was used. With the same evaluation criterion,
their reported result was 90.1%, which is higher than the Bayes and AdaBoost
approaches, but lower than the 92.4% by linear SVMs and the 91.9% by non-linear
SVMs. They also removed certain problematic images in the database, and reported
a recognition accuracy of 92.2%, which is still not higher than linear SVMs applied
to the entire database. This demonstrates the good generalization capability of
linear SVMs on face expression data.

In [20], a result of 92% using linear discrimination analysis (LDA) was reported,
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but they only included 9 people’s face images, hence only 193 instead of all 213
images were used. In conclusion, linear SVMs have good generalization capability

for face expression recognition compared with other classifiers.

9. DISCUSSION AND FUTURE RESEARCH DIRECTIONS

The Bayes classifier is a classical technique, however with a small database, it is
difficult to estimate the co-\rax"iance matrix. Assuming an independently identical
distribution ( i.i.d.), we simplified the problem of class density estimation. From
our experiments, the problem of over-fitting is a serious one when using Bayes
with high dimensional data. The pairwise feature selection framework improves
the performance to some extent.

Support Vector Machines have been applied recently to vision problems such as
face detection and recognition. Qur experiments further demonstrate their good
generalization ability for face expression recognition. The recognition accuracy of
SVMs is high and it can be taken as a benchmark for comparing other methods for
face expression recognition. On the other hand, we have some new observations.
Why did data normalization reduce the performance of SVMs on face expression
images so much? In addition, why does the non-linear GRBF kernel function not
show any improvement over linear SVMs? It may be necessary to do a deeper
analysis of kernel SVMs for face expression data.

The AdaBoost algorithm is a relatively new method for solving computer vision
problems. Our experiments on face expression recognition show that AdaBoost
does not currently produce high recognition accuracy. But this does not mean the
demise of the AdaBoost approach. On the contrary, more research on boosting-like

techniques should be investigated.
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Feature selection is a classical problem in pattern recognition. Qur pairwise
framework simplifies the problem of both feature selection and classification. The
question is how to select relevant features for each pair of classes. Our simple
feature ranking approach worked well for Bayes and AdaBoost (in which feature
selection is incorporated into the boosting process). However, how to select features
for SVMs is still an open problem. For example, it has been shown that feature
selection for SVMs for image retrieval is difficult [11]. Recently, Weston et al. [35]
addressed the feature selection problem for SVMs, but it is not clear if that method
will work for a large variety of data. Different feature selection techniques may be

necessary for SVMs to work on different types of data.

10. CONCLUSIONS

We have investigated experimentally three representative classifier methods:
Bayes, SVM, and AdaBoost for face expression recognition. Linear SVMs with-
out feature selection and without data normalization gave the best recognition
accuracy. Simple feature selection using a pairwise class discrimination framework
works well for the Bayes and AdaBoost methods. But more work is needed to
improve the performance of Bayes and AdaBoost so they are comparable to SVMs

for face expression recognition.
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