Computer

Sciences
Department

Semantically-Smart Disk Systems

Muthian Sivathanu
Vijayan Prabhakaran
Florentina Popovici
Timothy Denehy
Andrea Arpaci-Dusseau
Remzi Arpaci-Dusseau

Technical Report #1444 /545

August 2002

UNIVERSITY OF

WISCONSIN

M A DI S O N

Semantically-Smart Disk Systems

Muthian Sivathanu, Vijayan Prabhakaran, Florentina I. Popovici, Timothy E. Denehy,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Computer Sciences Department
University of Wisconsin, Madison

Abstract: We propose and evaluate the concept of a
semantically-smart disk system (SDS). As opposed to a tradi-
tional “smart” disk, an SDS has detailed knowledge of how the
file system above is using the disk, including information about
the file system on-disk data structures and policies. An SDS ex-
ploits this knowledge to transparenily improve performance or
enhance functionality beneath a standard block read/write in-
terface. To automatically acquire this knowledge, we introduce
a 100l (EOF) that can discover file-system specifics for certain
types of file systems, and then show how an SDS can exploit this
knowledge on-line 1o understand file-system behavior. We quan-
1ify the space and time overheads that are common in SDS’s,
showing that they are not excessive. We then study the issues
surrounding SDS’s by designing and implementing a number of
prototype SDS’s as case studies; each case study exploits knowl-
edge of some aspect of the file system 1o implement powerful
functionality beneath the standard SCSI interface. Overall, we
find that a surprising amount of functionality can be embedded
within an SDS, hinting at a future where disk manufacturers can
compete on enhanced functionality and not simply cost-per-byte
and performance.

1 Introduction

“To know that we know what we know, and that we
do not know what we do not know, that is true knowl-
edge.” Confucius

As microprocessors and memory chips become smaller,
faster, and cheaper, embedding processing and memory
in peripheral devices becomes an increasingly attractive
proposition [1, 15, 27, 33]. Placing processing power
and memory capacity within a “smart” disk system allows
functionality to be migrated from the file system into the
disk (or RAID), thus providing a number of potential ad-
vantages over a traditional system. For example, when
computation takes place near the data, one can improve
performance by reducing traffic between the host proces-
sor and disk [1]. Further, such a disk system has and can
exploit low-level information not typically available at the
file-system level, including exact head position and block-
mapping information [21, 29]. Finally, unmodified file

systems can leverage these optimizations, enabling de-
ployment across a broad range of systems.

Unfortunately, while smart disk systems have great
promise, realizing their full potential has proven difficult.
One causative reason for this shortfall is the narrow inter-
face between file systems and disks [12]; the disk subsys-
tem receives a series of block read and write requests that
have no inherent meaning, and the data structures of the
file system (e.g., bitmaps for tracking free space, inodes,
data blocks, directories, indirect blocks) are not exposed.
Thus, research efforts have been limited to applying disk-
system intelligence in a manner that is oblivious to the
nature and meaning of file system traffic, e.g., improving
write performance by writing blocks to the closest free
space on disk [11, 33].

To fulfill their potential and retain their utility, smart
disk systems must become “smarter” while the interface
to storage remains the same. Such a system must acquire
knowledge of how the file system is using it, and exploit
that understanding in order to enhance functionality or in-
crease performance. For example, if the storage system
understands which blocks constitute a particular file, it
can perform intelligent prefetching on a per-file basis; if a
storage system knows which blocks are currently unused
by the file system, it can utilize that space for additional
copies of blocks, for improved performance or reliability.
We name a storage system that has detailed knowledge of
file system structures and policies, a Semantically-Smart
Disk System (SDS), since it understands the meaning of
the operations enacted upon it.

An important problem that must be solved by an SDS
is that of “information discovery” — how does the disk
learn about the details of file system on-disk data struc-
tures? The most straight-forward approach is to assume
the disk has exact “white-box” knowledge of the file sys-
tem structures (e.g., with access to all relevant header
files). However, in some cases such information will be
unavailable or cumbersome to maintain. Thus, in this pa-
per, we explore a “gray-box” approach [4], attempting
where possible to automatically obtain such file-system
specific knowledge within the storage system.

We develop and present a fingerprinting tool, EOF, that
automatically discovers file-system layout through probes
and observations. We show that by using EOF, a smart
disk system can automatically discover the layout of a cer-
tain class of file systems, namely those that are similar to
the Berkeley Fast File System (FFS) [22].

We then show how to exploit layout information to infer
higher-level file-system behavior. The processes of clas-
sification, association, and operation inferencing include
the ability to categorize each disk block (e.g., data, inode,
or bitmaps), to detect the precise type of each data block
(i.e., file, directory, or indirect pointers), to associate each
data block with its inode, and to identify higher-level op-
erations such as creating and deleting files and allocating
and freeing blocks. An SDS can use some or all of these
techniques to implement its desired functionality.

To prototype a smart disk system, we use a software
infrastructure in which an in-kernel driver interposes on
read and write requests between the file system and the
disk. In our prototype environment, we can explore most
of the challenges of adding functionality within an SDS,
while adhering to existing interfaces and running under-
neath a stock file system. In this paper, we focus on the
Linux ext2 file system, but also report on preliminary ex-
perience running underneath NetBSD FFS.

To understand the performance characteristics of an
SDS, we study the overheads involved with fingerprint-
ing, classification, association, and operation inferencing.
Through microbenchmarks, we quantify costs in terms of
both space and time, demonstrating that common over-
heads are not excessive.

Finally, to illustrate the potential of SDS’s, we have
implemented a number of case studies within our SDS
framework: file-aware caching within the disk as an ef-
fective second-level cache [36], meta-data storage within
a non-volatile RAM disk cache for performance and re-
liability [23, 32], aligning files with track boundaries to
increase the performance of small-file operations [29], a
secure-deleting disk system to ensure non-recoverability
of data [16], and journaling within the storage system to
speed crash recovery [17]. Through these case studies,
we demonstrate that a broad range of functionality can be
implemented within a semantically-smart disk system. In
some cases, we also discuss how an SDS can tolerate im-
perfect information about file-system behavior, whichisa
key to building robust semantically-smart disk systems.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss related work. We then discuss file-
system fingerprinting in Section 3, on-line classification
and association in Section 4, and on-line inferencing in
Section 5. We evaluate our system in Section 6, and sum-
marize our experience with the case studies in Section 7.
Finally, we conclude in Section 8.

2 Related Work

2.1 Smart Disks and RAIDs

The related work on smart disks can be grouped into three
categories. The first group assumes that the interface be-
tween the file and storage systems is fixed and cannot
be changed, the category under which semanticaily-smart
disk systems belong. Research in the second group pro-
poses changes to the storage interface, requiring that file
systems be modified to leverage this new interface. Fi-
nally, the third group proposes changes not only to the
interface, but to the programming model for applications.
Fixed interfaces: The focus of this paper is on the inte-
gration of smart disks into a traditional file system envi-
ronment. In this environment, the file system has a nar-
row, SCSI-like interface to storage, and uses the disk as
a persistent store for its data structures. Loge [11] pio-
neered the concept of placing more processing capacity
in the disk controller, improving performance by writing
blocks near the current disk-head position. Wang ef al.’s
log-based programmable disk [33] extended this approach
in a number of ways, namely quick crash-recovery and
free-space compaction. Neither of these systems assume
any knowledge of which blocks contain what type of file
system data.

When storage system interfaces are more developed
than that provided in the local setting, there are more op-
portunities for new functionality. The use of a network
packet filter within the Slice virtual file service [3] allows
Slice to interpose on NFS traffic in clients, and thus imple-
ment a range of optimizations (e.g., preferential treatment
of small files). Interposing on an NFS traffic stream is
simpler than doing so on a local-disk block stream be-
cause the contents and fields of NFS packets are well-
defined.

High-end RAID products are the perfect place for se-
mantic smartness, since a typical enterprise storage sys-
tem has substantial processing capabilities and memory
(possibly persistent). For example, an EMC Symmetrix
server contains up to eighty 333 MHz Motorola micro-
processors and can be configured with up to 64 GB of
memory [10]. Some high-end RAID systems currently
leverage their resources to perform a bare minimum of
semantically-smart behavior; for example, storage sys-
tems from EMC can recognize an Oracle data block and
provide an extra checksum to assure that a block write
(comprised of multiple disk sector writes) reaches disk
atomically [14]. In this paper, we explore the acquisi-
tion and exploitation of more detailed knowledge of file
system behavior within a smart disk system.

More expressive interfaces: Given that one of the pri-
mary factors that limits the addition of new functional-
ity in a smart disk is the narrow interface between file

systems and storage, it is not surprising that there has
been research that investigates changing this interface. We
briefly highlight these projects. Mime investigates an en-
hanced interface in the context of an intelligent RAID
controller [6]; specifically, Mime adds primitives to allow
clients to control both when updates to storage become
visible to other traffic streams and the commit order of
operations. Logical disks expand the interface by allow-
ing the file system to express grouping preferences with
lists [8]; thus, file systems are simplified since they do not
need to maintain this information. Finally, Ganger sug-
gests that a reevaluation of this interface is needed [12],
and outlines two case studies that span the boundary:
track-aligned extents [29] (which we explore within this
paper), and freeblock scheduling [21].

More radical “active” environments: In contrast to in-
tegration underneath a traditional file system, other work
has focused on incorporating active storage into more rad-
ical environments. Recent work on “active disks” includes
that by Acharya et al. [1], Riedel et al. [27], and Amiri et
al. [2]. Much of the recent work focuses on new program-
ming models for VO-intensive parallel applications, and
thus does not address the issue of retrofitting into existing
systems.

2.2 Reverse Engineering

Reverse engineering techniques have been applied across
a broad range of computer systems. For example, in pro-
gramming language research, Hsieh et al. investigate the
automatic extraction of bit-level instruction encodings by
feeding permutations of instructions into an assembler
and analyzing the resulting machine code [18]. A simi-
lar effort by Collberg automatically generates an efficient
back-end for a compiler [7]. Our fingerprinting tool, dis-
cussed in Section 3, bears some similarity to these sys-
tems.

A specific type of reverse engineering known as finger-
printing has been successfully applied in identifying the
policies of different systems. For example, fingerprint-
ing has shown to be effective for identifying parameters
within the TCP protocol [25], the low-level characteris-~
tics of disks [28], and characteristics of a real-time sched-
uler [26].

3 Inferring On-Disk Structures:
Fingerprinting the File System

For a semantically smart disk to implement interesting
functionality, it must be able to interpret the types of
blocks that are being read from and written to disk and
specific characteristics of those blocks. For SDS’s to be
practical, this information must be obtained in a robust

manner that does not require substantial human involve-
ment.

One approach for obtaining this knowledge is to place
the onus on the developer of the semantically-smart disk
system. In this “white box” approach, the SDS developer
must have direct access to the source code for the file sys-
tem and must directly hard-code the essential information
into the SDS. The obvious drawback of this approach is
that the SDS firmware must be updated whenever the file
system changes. However, this approach may not be un-
reasonable in that production file system layouts do not
change often (if at all). For example, the basic structure
of FFS-based file systems has not changed since its in-
troduction in 1984, a period of almost twenty years [22];
the Linux ext2 file system, introduced in roughly 1994,
has had the exact same layout for its lifetime; finally, the
ext3 journaling file system [31] is backwards compatible
with ext2 layout and the new extensions to the FreeBSD
file system [9] are backwards compatible as well. File
system developers have strong motivation to keep on-disk
structures the same over time, so that legacy file systems
continue to operate without administrator or user interven-
tion.

Although we believe this white-box approach can be le-
gitimate for a semantically-smart storage system, we be-
lieve it is advantageous to have “gray-box” techniques that
automatically infer the file system data structures. The
advantages of this approach are many: no specific knowl-
edge about the target file system is required when the SDS
is developed; the assumptions made by the SDS about the
target file system can be checked when it is deployed,; lit-
tle additional work is required to configure the SDS when
it is installed; the SDS can be deployed in new environ-
ments with little or no difficulty. In this section, we €x-
plore how an SDS can automatically acquire layout infor-
mation with fingerprinting software.

Automatically inferring layout information for an arbi-
trary file system is a challenging problem. Therefore, in
this section, we describe an important first step: a util-
ity, called EOF (“Extraction Of Filesystems”), that can
extract layout information for FFS-based file systems. In
this paper, we focus exclusively on Linux ext2. However
by making only high-level assumptions within EOF, we
believe that porting it to handle other FFS-based file sys-
tems will not be overly difficult; our preliminary experi-
ence with NetBSD FFS confirms this belief. In the fu-
ture, we plan to explore automatic identification within a
broader class of file systems.

3.1 Assumptions

In targeting file systems that are based on FFS, EOFmakes
the following assumptions about the layout of file system
data structures on the disk:

General: Disk blocks are statically and exclusively as-
signed to one of five categories: data, inodes, bitmaps
for free/allocated data blocks, bitmaps for free/allocated
inodes, and summary information (e.g., superblock and
group descriptors). EOF identifies the block addresses on
disk allocated to each category.

Data blocks: A data block may dynamically contain ei-
ther file data, directory listings, or pointers to other data
blocks (e.g., may be an indirect block). Data blocks are
not shared across files.

Inode blocks: An inode block may contain multiple in-
odes; if N inodes fit in one inode block, then each inode
consumes -jlv—th of the space and no inode spans more than
one block.

Inode structure: EOF identifies the presence (or ab-
sence) of the following fields within an inode: size, blocks
(the number of data blocks allocated to this inode), ctime
(the time at which the inode was last changed), mrime (the
time at which the corresponding data was last changed),
drime (the deletion time), links (the number of links to
this inode), data pointers (any number and combination
of direct pointers and single, double, and triple indirect
pointers) and dir bits (bits that change between file and
directory inodes) All of the fields that we identify, with
the exception of dir bits are assumed to be 32 bits. Indi-
rect blocks are assumed to contain 32-bit pointers. EOF
assumes that the definition of each inode field is static over
time.

Bitmap blocks: Bits in the (data /inode) bitmap blocks
have a one-to-one linear mapping to the data blocks/ in-
odes. The last bitmap block may not be entirely valid and
is allocated last by the file system.

Directory data: Each record in a directory data block
contains an entry name, the length of the record, the length
of the file name, and the inode number of this file; each
record may have other fields, including the type of the
entry name (e.g., file or directory).

3.2 Algorithm

The EOF software is used as follows. When a new file
system is made on a SDS partition, EOF is run on the par-
tition so that the SDS understands the context in which
it is being deployed. The basic structure of EOF is that
a user-level probe process performs operations on the file
system, generating controlled traffic streams to disk. The
SDS knows each of the high-level operations performed
and the disk traffic that should result. By observing which
file blocks are written and which bytes within blocks
change, the SDS infers which blocks contain each type of
file system data structures and which offsets within each
block contain each type of field. The SDS can then ei-
ther use this knowledge to configure itself or to assert that
certain data structures are used.

The EOF algorithm has two distinct tasks: classifying
blocks and identifying fields within the inode. Each task
is divided into a number of phases: in phase 0, EOF iso-
lates the summary blocks; in phase 1, EOF identifies data
blocks and data bitmaps; in phase 2, EOF looks for in-
odes and inode bitmaps; in phase 3, EOF isolates most
inode fields; in phase 4, EOF identifies the dir bits field
in the inode; in phase 5, EOF identifies fields within a di-
rectory entry. The steps for classifying blocks are shown
in Table 1, and the steps for identifying inode fields are
shown in Table 2. Phases 0 and 5 are not shown due to
space constraints.

After each step, the probe process performs a sync to
flush data structures to disk so that the SDS can associate
disk blocks with particular operations; however, sync is
used sparingly since it increases the running time of EOF.
An out-of-band channel between the EOF and the SDS
(e.g. an ioctl) is used to communicate step and phase
boundaries. Each table shows the block traffic or inode
fields that the SDS expects to observe written or changed
on each operation. To classify data blocks, the SDS looks
for a known pattern that the probe process writes to all
files. To classify all other blocks and all inode fields, EOF
employs the general technique of isolation, in which the
SDS looks for a unique, unclassified block that was writ-
ten within a step, across a set of steps, or in some steps but
not others. For example, the only type of block expected
to be written in both step 2 and step 3 is the file inode;
therefore, the block that appeared in both steps must be
a file inode. The table captions describe more details of
EOF.

3.3 Assertion of Assumptions

The EOF algorithm implicitly relies on a set of assump-
tions at each step. To be robust to file systems that do not
meet these assumptions, EOF has mechanisms to detect
when any of the assumptions fail, and to identify the file
system as non-supported, instead of conveying erroneous
information to the SDS. For example, if more than two
blocks are written during step 3 of phase 1 in Table 1, EOF
would detect it as a violation of assumptions. We tested
EOF on a range of file systems like msdos, vfat, reiserfs
and ext3 and EOF identified violations in each case.

4 Exploiting Structural Knowledge:
Classification and Association

The key advantage of an SDS is its ability to identify
and utilize important properties of each block on the disk.
These properties can be determined through direct and in-
direct classification as well as through association. With
direct classification, blocks are easily identified by their

Traffic
[=% [~V g .“-;
@ & g 38 £
gz o of s % oS3 oe s
& | @ | Probe operation N AE o B8 B I (i New Inferences
1 1 | create small file X Xpl X X Xn X File data: Content (Known pattern)
2 | rename file X X/P X None
3 | rewrite file contents i X/P X/i | Fileinode: Isolate (3)
Dir data: Elimination in (2)
4 | append large data X X XA X/P | Many data blocks: Content
- | repeat 1-4 until all Most data blocks on disk: Content?
data blocks filled
4’ | repeat of append XN X/ XA X/P | Bitmaps: Blocks written by several files
Indirect data blocks:
Blocks written by only one file?
5 | cleanup (delete files) None
2 1 | create empty files X X Xp X X None
2 | chmod files X/1 X/ Inodes: Isolate (2)
3 | rename files Xi X/ 1 X/P | Dir data: Isolate (3)
Inode Bitmap: Isolate (1)
4 | cleanup (delete files) None

Table 1: Steps performed by EOF to identify static structures on disk. The Traffic column indicates the block traffic generated
and inferred by this operation: an X indicates that a block of that type is written; an i shows that a block of this type is identified
in this step; an | is used when all blocks of that type are identified; a P is used when the block was previously identified. Traffic 10
summary blocks is ignored for simplicity. The last column explains how the SDS component of EOF makes the inferences; when
isolation is used to identify a block, the numbers in parenthesis indicate the steps of the traffic involved. Notes are as follows. 1) The
directory inode block of the root inode is obtained in phase 0 by observing traffic during a mount 2) Not quite all data blocks are
identified: additional data blocks allocated to the parent direciory remain unclassified. 3) Care is taken 10 use small enough files
such that no single file can fill a bitmap block; the last bitmap block is a more involved special case since a smaller than expected

file can completely fill it.

Traffic
@2
§ B 15 g E E aE) 2 E g
=1 &8 . N 2 B 2 R E <) -]
f | w | Probe operation L I S & o = & 'S | New Inferences
3| 1| create small file! X X X X X X X X | None
2 | overwrite data X X None
3 | append byte X/ X X Size: Isolate (3, not 2)
4 | create link X/1 I X/ Ctime: Isolate (3,4)
Links: Isolate (4)
Mtime: Isolate (3, not 4)
5 | repeatedly seek + append? | X/P X1 XP XP X Blocks: Changes each time
Pointers: Change for one append
Indirection Level:
Size of next append for new pointer
6 | delete both links XPp XP X/P XN X/P Dtime: Isolate (6)
4 1 | create many files X/P X/P X/P X/P X/P X/P X/P X | None: Track identical bits in all files
2 | create many dirs X/P X/P X/P XP X/P XP X/P X | None: Track identical bits in all dirs
- | repeat 1,2 if necessary X/P X/P X/P X/P X/P XP XP 1 | Dirbits: Look for different bits
across files and dirs

Table 2: Steps performed by EOF to identify fields within inodes. The Traffic column indicates fields in the inode that are
changed from the previous time the inode was written. Notes are as follows. 1) Small files are created until there is one that does
not share an inode block with the parent directory. 2) The seek amount is grown progressively rather than writing every block in
order 10 improve performance. The seek distance starts at one block; each time a new indirection level is detected, the distance is
increased by the size handled by that indirection level. The detection of the version number field in the inode is not shown due to

space constraints.

location on disk. With indirect classification, blocks are
identified only with additional information; for example,
to identify directory data or indirect blocks, the corre-
sponding inode must also be examined. Finally, with as-
sociation, a data block and its inode are connected.

In many cases, an SDS also requires functionality to
identify when a change has occurred within a block. This
functionality is implemented via block differencing. For
example, to infer that a data block has been allocated, a
single-bit change in the data bitmap must be observed.
Change detection is potentially one of the most costly op-
erations within an SDS for two reasons. First, to compare
the current block with the last version of the block, the
SDS may need to fetch the old version of the block from
disk; however, to avoid this overhead, a cache of blocks
can be employed. Second, the comparison itself may be
expensive: to find the location of a difference, both blocks
must be scanned and each byte compared with the corre-
sponding byte in the other block. We quantify these costs
in Section 6.

4.1 Direct Classification

Direct classification is the simplest and most efficient
form of on-line block identification for an SDS. The SDS
determines the type of the block by performing a simple
bounds check to calculate into which set of block ranges
a particular block falls; of course, these ranges can be ob-
tained with either white-box or fingerprint information.
For example, in an FFS-based file system, the superblock,
bitmaps, inodes, and data blocks are identified using this
technique.

4.2 Indirect Classification

Indirect classification is required when the type of a block
can vary dynamically and thus simple direct classification
cannot precisely determine the type of block. For exam-
ple, in FFS-based file systems, indirect classification is
used to determine whether a data block is file data, direc-
tory data, or some form of indirect pointers (e.g., a sin-
gle, double, or triple indirect block). To illustrate these
concepts we focus on how directory data is differentiated
from file data; the steps for identifying indirect blocks ver-
sus pure data are similar.

4.2.1 ldentifying Directory Data

The basic challenge in identifying whether a data block
belongs to a file or a directory is to track down the in-
ode that points to this data and check whether its type is
a file or a directory. To perform this tracking, the SDS
observes all inode traffic to and from the disk: when a
directory inode is observed, the corresponding data block

numbers are inserted into a hash table. The SDS removes
data blocks from the hash table by observing when those
blocks are freed (e.g., by using block differencing on the
bitmaps). Thus, when the SDS must later identify a data
block as a file or directory, in general, its presence in this
table indicates that it is directory data. We now discuss
two complications.

First, the SDS cannot always guarantee that it can cor-
rectly identify blocks as files or directories. Specifically,
when a data block is not present in the hash table, the SDS
infers that the data corresponds to a file; however, in some
cases, the directory inode may not have yet been seen by
the SDS and as a result is not yet in the hash table. Such
a situation may occur when a new directory is created or
when new blocks are allocated to existing directories; if
the file system does not guarantee that inode blocks are
written before data blocks, the SDS may incorrectly clas-

‘sify newly written data blocks. This problem does not

occur when classifying data blocks that are read. In this
case, the file system must read the corresponding inode
block before the data block (to find the data block num-
ber); thus, the SDS will see the inode first and correctly
identify subsequent data blocks.

Whether or not transient misclassification is a problem
depends upon the functionality provided in the SDS. For
instance, if an SDS simply caches directory blocks for
performance, it can tolerate temporary inaccuracy. How-
ever, if the SDS requires accurate information for correct-
ness, there are two ways it can be ensured. The first op-
tion is to guarantee that the file system above writes inode
blocks before data blocks; this is true by default in the
original FFS and is true in Linux ext2 when mounted in
synchronous mode. The second option is to buffer writes
until the time when the classification can be made; this
deferred classification occurs when the corresponding in-
ode is written to disk or when the the data block is freed,
as can be inferred by monitoring data bitmap traffic.

Second, the SDS may perform excess work if it oblivi-
ously inserts all data blocks into the hash table whenever
a directory inode is read and written since this inode may
have recently passed through the SDS, already causing
the hash table to be updated. Therefore, to optimize per-
formance, the SDS can infer whether or not a block has
been added (or modified or deleted) since the last time
this directory inode was observed, and thus ensure that
only those blocks are added to (or deleted from) the hash
table. This process of operation inferencing is described
in detail in Section 5.

4.2.2 Identifying Indirect Blocks

The process for identifying indirect blocks is almost iden-
tical to that for tracking directory data blocks. In this case,
the SDS tracks new indirect block pointers in all inodes

being read and written. The SDS maintains another hash
table of all single, double, and triple indirect blocks num-
bers and uses it to quickly identify if a data block is an
indirect block.

4.3 Association

The most useful association is to connect data blocks with
their inodes; for example, this allows the size or creation
date of a file to be known by the SDS. Association can
be achieved with a simple but space-consuming approach.
Similar to indirect classification, the SDS observes all in-
ode traffic and inserts the data pointers into an address-
to-inode hash mapping table. One concern about such a
table is size; for accurate association, the table grows in
proportion to the number of unique data blocks that have
been read or written to the storage system since the system
booted. However, if approximate information is tolerated
by the SDS (as we explore in Section 7), the size of this
table can be bounded.

5 Detecting High-Level Behavior:
Operation Inferencing

Block classification and association provide the SDS with
an efficient way for identifying special kinds of blocks;
however, operation inferencing is necessary to understand
the semantic meaning of the changes observed in those
blocks. In this section, we outline how the SDS can
identify logical file system operations by looking at the
changes made to those blocks.

One challenge with operation inferencing is that the
SDS must distinguish between blocks which have a valid
“old version” and those that do not. For instance, when a
newly allocated directory block is written, it should not be
compared to the old contents of the block since the block
contained arbitrary data. To identify when to use the old
versions, the SDS uses a simple insight: when a meta-
data block is written without being read, the old contents
of the block are not relevant. To detect this situation, the
SDS maintains a hash table of meta-data block addresses
that have been read sometime in the past. Whenever a
meta-data block is read, it is added to this list; whenever
the block is freed (as indicated by a block bitmap reset), it
is removed from the list. For example, when a block allo-
cated to a data file is freed and reallocated to a directory,
the block address will not be present in the hash table, and
therefore the SDS will not use the old contents to detect
changes.

For illustrative purposes, in this section we examine
how the SDS can infer file create and delete operations.
Our current approach is tailored to identifying operations

in the Linux ext2 file system; we plan to explore opera-
tion inferencing across a broader range of file systems in
the near future.

5.1 File Creates and Deletes

There are two steps in identifying file creates and deletes.
The first step is the actual detection of a create or delete;
the second step is determining the inode that has been af-
fected. We briefly describe three different detection mech-
anisms and the corresponding logic for determining the
associated inode.

The first detection mechanism involves the inode block
itself. Whenever an inode block is written, the SDS ex-
amines it to determine if an inode has been created or
deleted. A valid inode has a non-zero modification time
and a zero deletion time. Therefore, whenever the modifi-
cation time changes from zero to non-zero or the deletion
time changes from non-zero to zero, it means the corre-
sponding inode was newly made valid, i.e., created. Sim-
ilarly, a reverse change indicates a newly freed inode, i.e.,
a deleted file. A second indication is a change in the ver-
sion number of a valid inode, which indicates that a delete
followed by a create occurred. In both cases, the inode
number is calculated using the physical position of the in-
ode on disk; note that the on-disk inode structure does not
contain the inode number.

The second detection mechanism involves the inode
bitmap block. Whenever a new bit is set in the inode
bitmap, it indicates that a new file has been created cor-
responding to the inode number represented by the bit po-
sition. Similarly, a newly reset bit indicates a deleted file.

The update of a directory block is a third indication of a
newly created or deleted file. When a directory data block
is written, the SDS examines the block for changes from
the previous version. If a new directory entry (dentry)
has been added, the name and inode number of the new
file can be obtained from the dentry; in the case of are-
moved dentry, the old contents of the dentry contain
the name and inode number of the deleted file.

Given that any of these three changes indicate a newly
created or deleted file, the choice of the appropriate mech-
anism (or combinations thereof) depends on the function-
ality being implemented in the SDS. For example, if the
SDS must identify the deletion of a file, immediately fol-
lowed by the creation of another file with the same inode
number, the inode bitmap mechanism does not help, since
the SDS may not observe a change in the bitmap if the two
operations are grouped due to a delayed write in the file
system. In such a case, using modification times and ver-
sion numbers is more appropriate. Similarly, if the name
of the newly created or deleted file must be known, the
directory block-based solution is the most efficient.

5.2 Other File System Operations

The general technique of inferring logical operations by
observing changes to blocks from their old versions can
help detect other file system operations as well. We note
that in some cases, for a conclusive inference on a spe-

cific logical operation, the SDS must observe correlated _
changes in multiple meta-data blocks. For example, the o
semantically-smart disk system can infer that a file has= g0 |

been renamed when it observes a change to a directory
block entry such that the name changes but the inode num-
ber stays the same; note that the version number within
the inode must stay the same as well. Similarly, to dis-
tinguish between the creation of a hard link and a normal
file, both the directory entry and the inode of the file must
be examined.

6 Evaluation

In this section, we answer three important questions about
our SDS framework. First, what is the cost of fingerprint-
ing the file system? Second, what are the time overheads
associated with classification, association, and operation
inferencing? Third, what are the space overheads? Be-
fore proceeding with the evaluation, we first describe our
experimental environment.

6.1 Platform

To prototype an SDS, we employ a software-based in-
frastructure. Our implementation inserts a pseudo-device
driver into the kernel, which is able to interpose on traffic
between the file system and the disk. Similar to a software
RAID, our prototype appears to file systems above as a
pseudo-device upon which a file system can be mounted.

The primary advantage of our prototype is that it ob-
serves the same information and traffic stream as an actual
SDS, with no changes to the file system above. However,
our current infrastructure differs in two important ways
from a true SDS. First, and most importantly, our proto-
type does not have direct access to low-level drive inter-
nals; using such information is thus made more difficult.
Second, the performance characteristics of the micropro-
cessor (a Pentium-1IT) and memory system may be differ-
ent than an actual SDS; however, high-end storage arrays
already have significant processing power, and over time
this processing capacity will likely trickle down into less-
expensive storage systems.

We have experimented with our prototype in both the
Linux 2.2 and NetBSD 1.5 operating systems, underneath
of the ext2 and FFS file systems, respectively; however,
our focus is on the Linux platform. All experiments in this
paper are performed on a 550 MHz Pentium-III processor
with either an IBM 9L.ZX or Quantum Atlas 10K III disk.

The Costs of Fingerprinting

T T Y T

Other
Phase 2
| Phase 1

1400 -

1200

1000 |

800

400

200

0
0 1 2 3 4 5 6 7 8

Partition Size (GB)

Figure 1: The Costs of Fingerprinting. The figure presents
the time breakdown of the fingerprinting on the Linux ext2 file
system on an IBM 9LZX disk. Along the x-axis, we vary the size
of the partition that is fingerprinted, and the y-axis shows the
time taken per phase.

6.2 Off-line: Layout Discovery

In this subsection, we show that the time to run the finger-
printing tool, EOF, is reasonable for modern disks. Given
that EOF only needs to run once for each new file system,
the runtime of EOF does not determine the common case
performance of an SDS; however, we do not want the run-
time of EOF to be prohibitive, especially as disks become
larger. One potential solution is parallelism: we believe
that the EOF has many parallelizable components, which
could be exploited to reduce run-time on disk arrays.

Figure 1 presents a graph of the time to run EOF on
a single-disk partition as the size of the partition is in-
creased. The graph shows that Phase 1, which determines
the locations of data blocks and data bitmaps, and Phase
2, which determines the locations of inode blocks and in-
ode bitmaps, dominate the total cost of fingerprinting. The
time for these two phases increases roughly linearly with
the size of the partition, requiring approximately 150 sec-
onds per gigabyte. The other phases of EOF, which deter-
mine the fields within an inode and directory entry, require
the same time regardless of the partition size.

6.3 On-line: Time Overheads

Classification, association, and operation inferencing are
potentially costly operations for an SDS. In this subsec-
tion, we employ a series of microbenchmarks to illustrate
the various costs of these actions. The results are pre-
sented in Table 3. For each action and microbenchmark
we consider two cases. In the first case, the file system
is mounted synchronously, ensuring that meta-data oper-
ations reach the SDS in order and thus allowing the SDS
to guarantee correct classification with no additional ef-
fort. In the second case, the file system is mounted asyn-

Indirect Block-Inode Operation Indirect Block-Inode | Operation

Classification Association Inferencing Classification | Association | Inferencing
Syn Asyn Syn Asyn Syn Asyn NetNewsso 5,880 104,265 6,258
Createg 1.7 3.2 1.9 33 33.9 3.2 NetNewsigo 7,203 139,419 7,875
Createzz | 606 3.8 | 3244 16.4 | 279.7 3.8 NetNews150 7,959 166,761 8,988
Deletep 4.3 3.6 6.7 39 | 509 3.6 PostMarkap 294 38,619 1,071
Deletegz | 37.8 6.9 | 801 288 | 91.0 6.9 PostMarkso 294 56,385 1,386
Mkdir 56.3 86 [63.6 11.1 | 2319 8.6 PostMark40 294 79,905 1,701
Rmdir 499 1062 | 578 1085 | 2894 1062 Andrew 30 302 114

Table 3: SDS Time Overheads. The table breaks down Table 4: SDS Space Overheads. The table presents the space

the costs of indirect classification, block-inode association, and
operation inferencing. Different microbenchmarks are applied
(one per row), 1o stress various aspects of each action. The Cre-
ate benchmark creates 1000 files, of size 0 or 32 KB, and the
Delete benchmark similarly deletes 1000 such files. The Mkdir
and Rmdir benchmarks create or remove 1000 directories, re-
spectively. Each result in the table presents the average cost
per operation in microseconds. Across all experiments, the IBM
917X was used, with the Linux exi2 file system mounted in either
synchronous (Syn) or asynchronous (Asyn) mode.

chronously; in this case, to guarantee correct classification
and association the SDS must perform operation inferenc-
ing.

From our experiments, we make a number of obser-
vations. First, most operations tend to cost on the order
of tens of microseconds. Although some of the opera-
tions do require more than 100 us, most of this cost is
due to a a per-block cost; for example, operation infer-
encing in synchronous mode with the Creates; workload
takes roughly 280 ps, which corresponds to a 34 s base
cost (as seen in the Createg workload) plus a cost of ap-
proximately 30 ps for each 4 KB block. Thus, although
the costs rise as file size increases, the SDS incurs only
a small overhead compared to the actual disk write. Sec-
ond, in most cases, performance when the ext2 file sys-
tem is run in asynchronous mode is much higher than
when run in synchronous mode. In asynchronous mode,
numerous updates to meta-data are batched and thus the
costs of block differencing are amortized; in synchronous
mode, each meta-data operation is reflected through to the
disk system, incurring much higher overhead in the SDS.
Third, we observe that in synchronous mode, classifica-
tion is less expensive than association which is less ex-
pensive than inferencing; an SDS should take care to em-
ploy only those that are needed to implement the required
functionality.

6.4 On-line: Space Overheads

SDS’s require additional memory to perform classifica-
tion, association, and operation inferencing; in particu-
lar, hash tables are required to track mappings between
data blocks and inodes whereas caches are needed to help
with block differencing. In this subsection we quantify
the memory overheads induced in an SDS for a variety of
workloads.

Table 4 presents the number of entries in each hash ta-

overheads of the structures used in performing classification, as-
sociation, and operation inferencing, under three different work-
loads (NetNews, PostMark, and the modified Andrew bench-
mark). Two of the workloads (NetNews and PostMark) were run
with different amounts of input, which correspond roughly to the
number of “transactions” each generates (i.e., NetNewsso im-
plies 50,000 transactions were run). Each number in the table
represents the maximum number of hash-table entries recorded
during the benchmark run. In this experiment, we used the Linux
ext2 file system (asynchronous mode), and the IBM 9LZX.

ble to support classification, association, and operation in-
ferencing; each hash table entry requires approximately
eight bytes. The sizes are the maximum reached during
the run of a particular workload: NetNews [30], Post-
Mark [20], and the modified Andrew benchmark [24]. For
NetNews and PostMark, we vary workload size, as de-
scribed in the caption.

From the table, we see that the dominant memory over-
head occurs in an SDS performing block-inode associa-
tion. Whereas classification and operation inferencing re-
quire table sizes that are proportional to the number of
unique meta-data blocks that pass through the SDS, asso-
ciation requires information on every unique data block
that passes through. In the worst case, an entry is required
for every data block on the disk, corresponding to 1 MB
of memory for every 1 GB of disk space. Although the
space costs of tracking association information are high,
we believe they are not prohibitive.

Block differencing requires that a cache of “old” blocks
is maintained. Thus, the performance of the system is
sensitive to the size of this cache; if the cache is too small,
each difference calculation must first fetch the old version
of the data from disk. To avoid the extra I/O, the size
of the cache must be roughly proportional to the active
meta-data working set. For example, for the PostMarkgo
workload, we found that the SDS cache should contain
approximately 650 4 KB blocks to hold the working set.

7 Case Studies

In this section, we describe five case studies, each imple-
menting new functionality in an SDS. These SDS’s are
ordered roughly in increasing complexity, from a rela-
tively straightforward caching SDS to an intricate jour-
naling SDS. Because of space limitations, we cannot fully
describe each of the case studies in this paper; instead, we

Re-Read Small Files
18.3 MB/s
85.8 MB/s

Read Small Files
18.3 MB/s
18.3 MB/s

FFS
+Caching SDS

Table 5: File-Aware Caching. The table shows the time it took
1o read and then re-read 64 64-KB files; between the read and
re-read, a scan clears the OS buffer cache. We compare NetBSD
FFS on a standard IBM 9LZX disk or on an SDS.

highlight the functionality each case study implements,
present a brief performance evaluation, and then analyze
the complexity of implementing said functionality within
an SDS-based system. One theme we explore within this
section is the usage of “approximate” information: when
can an SDS afford to be wrong about its view of the file
system?

7.1 The Case Studies

File-Aware Caching:

Simple LRU management of the disk cache is likely
to cache only data already present in the file system
cache [34, 36], and thereby waste memory in the storage
system. This waste is particularly onerous in storage ar-
rays, due to their large amounts of memory. To illustrate
the ease with which an SDS can implement a comple-
mentary replacement policy, we target a common work-
load in which accesses to small files are interleaved with
an occasional scan of a large file; it is well-known that
this workload performs poorly with LRU caches since the
large file completely removes the many small files from
the cache. The Caching SDS exploits knowledge of file
size to selectively cache only “small” files and their in-
odes, where a small file is defined to be one that only uses
direct block pointers; given that we have implemented this
case study on NetBSD, this corresponds to files that are
less than 96 KB. Of course, other more sophisticated poli-
cies targeted for different workloads, such as the Multi-
Queue second-level cache management policy [36], may
instead be implemented within the SDS.

To implement file-aware caching, the SDS identifies
which blocks belong to small files using indirect classi-
fication; in this case, the classification hash table holds
blocks corresponding to small files. As described previ-
ously, when the file system is mounted asynchronously,
this may cause the SDS to misclassify blocks in those rare
cases when the file inode is written to disk after the data
blocks. However, in this case study, it is acceptable for
the SDS to occasionally not recognize blocks belonging
to small files. Table 5 shows that for this workload, the
Caching SDS substantially improves the performance of
multiple reads to small files, since the small files stay in
the disk cache.

Non-volatile Memory: In this case study, we demon-
strate how an SDS can exploit battery-backed memory
to provide improved performance and reliability. An

LFS Benchmark PostMark
Create Read Delete
FFS 10.0 0.04 11.0 230.0
+NVRAM SDS 0.14 0.04 0.1 19.0

Table 6: NVRAM. The left three columns of the table show the
time in seconds to complete each phase of the LFS microbench-
mark (the LFS benchmark creates, reads and deletes 1000 1K
files). The right column shows the total time in seconds for the
PostMark benchmark, run with 5000 files, 5000 transactions,
and 71 directories. This experiment took place on the IBM 9LZX
running NetBSD.

NVRAM SDS can use knowledge of the file system to
store meta-data and some file data in memory, improving
the access time of meta-data intensive workloads while
preserving file system reliability. In contrast to the Con-
quest [32] and Hermes file systems [23], which both stipu-
late large changes to the file system to exploit non-volatile
memory, no changes to the file system are needed in the
semantically-smart disk system approach.

The NVRAM SDS keeps all meta-data (bitmaps, in-
odes, indirect blocks, and directories) in NVRAM. In-
odes and bitmaps are identified by their location on the
disk. Pointer blocks and directory data blocks are iden-
tified with indirect classification, which can occasionally
miss blocks. Here again we exploit the fact that approx-
imate information is adequate; the SDS writes unclassi-
fied blocks to disk and not NVRAM, until it observes
the corresponding inode. To track meta-data blocks, the
NVRAM SDS uses a map to record their in-core loca-
tion. The NVRAM SDS also periodically flushes meta-
data from NVRAM to disk, increasing overall reliability
since disks are likely to be more reliable than battery-
backed RAM [13]. Table 6 shows that an unmodified
NetBSD file system can achieve performance orders of
magnitude greater, by using the NVRAM SDS.
Track-Aligned Extents: As proposed by Schindler e
al. [29], track-aligned extents (traxtents) can improve disk
access times by placing medium-sized files within tracks
and thus avoiding track-switch costs. Given the detailed
level of knowledge that a traxtents-enabled file system re-
quires of the underlying disk (i.e., the mapping of logical
block numbers to physical tracks), traxtents are a natural
candidate for implementation within an SDS, where this
information is readily obtained.

The fundamental challenge of implementing traxtents
in an SDS instead of the file system is in adapting the poli-
cies of the file system outside of the file system; specifi-
cally, a Traxtent SDS must influence file system alloca-
tion and prefetching, e.g., mid-sized files must be allo-
cated such that consecutive data blocks do not span tracks
boundary and accesses to aligned files must be in track-
sized units.

There are three components of interest within the Trax-
tent SDS implementation. First, when the bitmap blocks
are first read by the file system, the SDS marks the bitmap

10

No SDS Prefetching + SDS Prefetching
exi2 10.3 MB/s 10.2 MB/s
+Traxtent SDS 12.2 MB/s 14.2 MB/s

Table 7: Traxtents. The table shows the bandwidth ob-

tained when reading 100 random files of size 328 KB. We ex-
amine default and track-aligned allocation combined with and
without prefeiching at the SDS. This experiment took place on
the Atlas 10K Il running Linux 2.2, with ext2 mounted asyn-
chronously.

corresponding to the last block in each track as allocated,
(a similar technique is used by Schindler et al.). Although
this wastes a small portion of the disk, this “fake” al-
location influences the file system to allocate files such
that they do not span tracks. Second, if the file system
still decides to allocate a file across tracks, the SDS dy-
namically remaps those blocks to a track-aligned locale,
similar to the block remapping of Loge and other smart
disks [11, 33]. One major difference is that the SDS only
remaps blocks that are a part of mid-sized files that bene-
fit from track-alignment, whereas non-semantically aware
disks cannot make such a distinction. Third, the Traxtent
SDS performs additional prefetching to ensure accesses
are not smaller than a track. Linux ext2 prefetches very
few blocks when a file is initially read; therefore, when
the traxtent SDS observes a read to the first block of a
track-aligned file, it requests the remainder of the track
and places the data blocks in its cache.

The Traxtent SDS relies upon one piece of exact in-
formation for correctness: the location of bitmap blocks,
which it marks to “trick” the file system into track-aligned
aliocation. However, given that this information is static,
it can be obtained reliably with EOF and with little per-
formance cost at runtime. The indirect classification of
file data as belonging to medium-sized files can be occa-
sionally incorrect, since their remapping is only for per-
formance and not correctness. Table 7 shows that the
Traxtent SDS results in a modest improvement in band-
width for medium-sized files, especially when these files
are prefetched by the SDS.

Secure Deletion: With advanced magnetic force scanning
tunneling microscopy (STM), a person with physical ac-
cess to a drive (and a lot of time) can potentially extract
sensitive data that the user had “deleted” [16]. In this case
study, we explore a “secure-deleting” SDS, that is, a disk
that guarantees that file data from deleted files is truly un-
recoverable. Previous approaches have placed such func-
tionality within the file system by over-writing deleted file
blocks multiple times with various patterns [5]. However,
this does not guarantee that the data is removed from the
disk; as pointed out by Gutman [16], other copies of var-
jous data blocks may exist, due to bad-block remapping
or storage system performance optimizations [35]. An
SDS is the only locale where a secure delete can be imple-
mented, since it can ensure no stray copies of data exist.

11

Delete PostMark
ext2 24.0 103.0
+Secure-deleting SDS2 46.9 128.0
+Secure-deleting SDS4 56.9 142.0
+Secure-deleting SDSg 63.6 192.0

Table 8: Secure Deletion. The table shows the time in seconds
10 complete a Delete microbenchmark and the PostMark bench-

mark on the Secure-deleting SDS. The Delete benchmark deletes
1000 files, whereas the PostMark benchmark performs 1000
transactions. Each row with the Secure-deleting SDS shows per-
formance with a different number of over-writes (2, 4, or 6). This
experiment took place on the IBM 9LZX with Linux 2.2, with ext2
mounted synchronously.

Because of the nature of this case study, approximate
or incorrect information about which blocks have been
deleted is not acceptable. The Secure-deleting SDS rec-
ognizes deleted blocks through operation inferencing and
then overwrites those blocks with different data patterns a
specified number of times. Since the file system may re-
allocate these blocks to a different file and possibly write
the block with fresh contents in the meantime, the SDS
tracks deleted blocks and queues writes to those blocks
until the overwrite has finished.

Table 8 shows the overhead incurred by an SDS, as

a function of the number of over-writes; the more over-
writes performed, the less likely the data will be recover-
able. Although a noticeable price is paid for the secure-
delete functionality, this loss may be acceptable to highly-
sensitive applications requiring such security. Perfor-
mance could be further improved by delaying the secure-
overwrite until the disk is idle, instead of performing it
immediately; freeblock scheduling may further minimize
the performance impact [21].
Journaling: The final case study is the most complex -
the SDS implements journaling underneath of an unsus-
pecting file system. We view the Journaling SDS as an
extreme case which helps us to understand the amount
of information we can obtain at the disk level. Unlike
most of the other case studies, almost all of the informa-
tion about the file system required by the Journaling SDS
is exact.

Due to space limitations, we only present a brief sum-
mary of the implementation. The fundamental difficulty
in implementing journaling in an SDS arises from the fact
that at the disk, transaction boundaries are blurred. For
instance, when a file system does a file create, the file
system knows that the inode block, the parent directory
block, and the inode bitmap block are updated as part
of the single logical create operation, and hence these
block writes can be grouped into a single transaction in
a straight-forward fashion. However, the SDS sees only
a stream of meta-data writes, potentially containing inter-
leaved logical file system operations. The challenge lies
in identifying dependencies among those blocks and han-
dling updates as atomic transactions.

LFS Benchmark

Create Read Delete
ext2 (2.2/sync) 63.9 0.32 20.8
ext2 (2.2/async) 0.28 0.32 0.03
ext2 (2.4/async) 0.25 0.13 0.05
ext3 (2.4) 0.47 0.13 0.26
ext2 (2.2/sync)+SDS 0.95 0.33 0.24

Table 9: Journaling. The table shows the time to complete
each phase of the LFS microbenchmark in seconds with 1000
32-KB files. All data is the average of 30 runs; deviations were
low (less than 5%). This experiment took place on the IBM 9LZX
running Linux.

As a result, the Journaling SDS maintains transactions
at a coarser granularity than what a journaling file system
might. The basic approach is to buffer meta-data writes in
memory and write them to disk only when the in-memory
state of the meta-data blocks constitute a consistent meta-
data state. This is logically equivalent to performing in-
cremental in-memory fsck’s on the current set of dirty
meta-data blocks and writing them to disk when the check
succeeds. When the current set of dirty meta-data blocks
form a consistent state, they are treated as a single atomic
transaction, thereby ensuring that the on-disk meta-data
contents either remain at the previous (consistent) state
or are fully updated with the next consistent state. One
benefit of these more coarse-grained transactions is that
by batching commits, performance may be improved over
more traditional journaling systems.

To guarantee bounded loss of data after crash, the Jour-
naling SDS limits the time that can elapse between two
successive journal transaction commits. A journaling dae-
mon wakes up periodically after a configurable interval
and takes a copy-on-write snapshot of the dirty blocks
in the cache and the dependency information. After this
point, subsequent meta-data operations update a new copy
of the cache, and therefore cannot introduce additional de-
pendencies in the current epoch.

For correct operation, the current Journaling SDS im-
plementation assumes the file system has been mounted
synchronously. To be robust, the SDS requires a way to
verify that this assumption holds and to turn off journal-
ing otherwise. Since the meta-data state written to disk
by the Journaling SDS is consistent regardless of a syn-
chronous or asynchronous mount, the only problem im-
posed by an asynchronous mount is that the SDS might
miss some operations that were reversed (e.g., a file cre-
ate followed by a delete); this would lead to dependencies
that are never resolved and indefinite delays in the journal
transaction commit. To avoid this problem, the Journaling
SDS looks for suspicious multiple changes in meta-data
blocks when only a single change is expected (e.g., mul-
tiple inode bitmap bits change as part of a single write)
and turns off journaling in such cases. As a fall-back, the
Journaling SDS also monitors the elapsed time since the
last meta-data commit; if dependencies prolong the com-

12

EOF Fingerprinting
Probe process 1463
In-SDS component 2453

SDS Infrastructure Case Studies
Initialization 395 File-aware cache 45
Hashtable/cache 260 NVRAM 95
Direct classification 195 Traxtents 1320
Indirect classification 75 Secure delete 80
Association 15 Journaling 2440
Operation inferencing 1105

Table 10: Code Complexity of SDS’s. The number of lines of
code for various aspects of the SDS are presented.

mit by more than a certain time threshold, it suspects an
asynchronous mount and aborts. To check correctness,
we ran £sck on a file system recovered by the Journaling
SDS after a crash and verified that no inconsistencies are
reported.

The performance of the Journaling SDS is summarized
in Table 9. Although this SDS requires the file system
to be mounted synchronously, its performance is similar
to the asynchronous versions since the semantically-smart
disk system delays writing meta-data to disk. In the read
test the SDS has similar performance to the base file sys-
tem (ext2 2.2), and in the delete test, it has similar per-
formance to the journaling file system, ext3. It is only
during file creation that the SDS pays a significant cost
relative to ext3; the overhead of block differencing and
hash table operations do have a noticeable impact. Since
the purpose of this case study is to demonstrate the range
of functionality that can be implemented in an SDS we
feel the performance penalty is not severe.

7.2 Complexity Analysis

We briefly explore the complexity of implementing soft-
ware for an SDS. Table 10 shows the number of lines of
code for each of the components in our system and the
case studies. From the table, one can see that most of
the complexity is found in the EOF tool and the opera-
tion inferencing code. Most of the case studies are trivial
to implement on top of this base infrastructure; however,
Traxtent SDS and Journaling SDS require a few thousand
lines of code. Thus, we conclude that including this type
of functionality in an SDS is quite pragmatic.

8 Conclusions

“Beware of false knowledge; it is more dangerous
than ignorance.” George Bernard Shaw

In a recent article on “Wise Drives”, Dr. Gordon
Hughes, Associate Director of the Center for Magnetic
Recording Research, writes in favor of “smarter” drives,
stressing their great potential for improving storage sys-
tem performance and functionality [19]. However, he

believes a new interface between file systems and stor-
age is required: “For widespread uses, its [a drive’s] in-
put/output and command requirements need to appear in
the interface specification. In short, there must be an in-
dustry consensus that the task is of general interest and of-
fers market opportunities for multiple computer and drive
companies.” Hughes’ comments illustrate the difficulty of
new interfaces — they require wide-scale industry agree-
ment, which eventually limits creativity to only those in-
ventions that fit into an existing interface framework.

With information about how the file system uses the
disk and low-level knowledge of drive internals, an SDS
sits in an ideal location to implement powerful pieces of
functionality that neither a disk nor a file system can im-
plement on its own, enabling innovation behind existing
interfaces. In this paper, we have demonstrated that un-
derneath of a particular class of FFS-like file systems,
file-system information can be automatically gathered and
then exploited to implement functionality in drives that
heretofore had to be implemented in the file system or
could not be implemented at all.

Many challenges remain, including understanding the
generality and robustness of SDS-based techniques across
a broader range of file systems. Can more sophisti-
cated file systems, including journaling and log-based ap-
proaches, be probed to reveal their inner workings? Can
approximate information be exploited more fully to im-
plement interesting new functionality? We believe the an-
swer is yes, but only through further research and experi-
mentation will the final answer be elicited.

References

[1]1 A.Acharya, M. Uysal, and J. Saltz, Active Disks. In ASPLOS VI,
San Jose, California, October 1998.

{2] K. Amiri, D. Petrou, G. R. Ganger, and G. A. Gibson. Dynamic

Function Placement for Data-intensive Cluster Computing. In

USENIX, June 2000.

D. Anderson, J. Chase, and A. Vahdat. Interposed Request Routing

Scalable Network Storage. TOCS, 20(1), 2002.

A. Arpaci-Dusseau and R. Arpaci-Dusseau. Information and Con-
trol in Gray-Box Systems. In SOSP 01, Oct. 2001.

S. Bauer and N. B. Priyantha. Secure Data Deletion for Linux File
Systems. In USENIX Security, August 2001.

C. Chao, R. English, D. Jacobson, A. Stepanov, and J. Wilkes.
Mime: A high performance paraliel storage device. Technical Re-
port HPL-CSP-92-9, HP Labs, 1992.

C. S. Collberg. Reverse Interpretation + Mutation Analysis = Au-
tomatic Retargeting. In PLDI '97, June 1997.

W. de Jonge, M. F. Kaashoek, and W. C. Hsieh. The Logical
Disk: A New Approach to Improving File Systems. In SOSP "93,
Asheville, NC, December 1993.

1. Dowse and D. Malone. Recent Filesystem Optimisations on
FreeBSD. In FREENIX, June 2002,

EMC Corporation. Symmetrix Enterprise Information Storage
Systems. http:/www.emc.com, 2002.

R. M. English and A. A. Stepanov. Loge: A Self-Organizing Disk
Controller. In USENIX, Jan. 1992.

G. R. Ganger. Blurring the Line Between Oses and Storage De-
vices. TR SCS CMU-CS-01-166, December 2001.

3]
(4]
[5]
[6]

(71
[8]

[10]
(1
(12]

13

[13]

(14]
(15]

(16}
[17]
(18]

19
[20]

(21
[22]

(23]

[24]
[25)
[26]
[27]
(28]

[29]

(30]
[31]

(321

(331

[34]

[35]

[36}

G. A. Gibson and D. A, Patterson. Designing Disk Arrays for High
Data Reliability. JPDC, 17(1/2), Jan./Feb. 1993.

). Gray. Personal Communication, 2002.

1. Gray. Storage Bricks Have Arrived. In Invited Talk: FAST 02,
Monterey, California, January 2002.

P. Gutmann. Secure Deletion of Data from Magnetic and Solid-
State Memory. In USENIX Security, July 1996.

R. Hagmann. Reimplementing the Cedar File System Using Log-
ging and Group Commit. In SOSP '87, Nov. 1987.

W. C. Hsieh, D. Engler, and G. Back. Reverse-Engineering In-
struction Encodings. In USENIX, June 2001.

G. F. Hughes. Wise Drives. IEEE Spectrum, August 2002.

J. Katcher. PostMark: A New File System Benchmark. NetApp
TR-3022, October 1997.

C. Lumb, J. Schindler, and G. Ganger. Freeblock Scheduling Out-
side of Disk Firmware. In FAST '02, January 2002.

M. K. McKusick, W. N. Joy, S. I. Leffler, and R. S. Fabry. A Fast
File System for UNIX. TOCS, 2(3), August 1984.

E. Miller, S. Brandt, and D. Long. HeRMES: High-Performance,
Reliable MRAM-Enabled Storage. In HotOS VIlI, Schloss Elmau,
Germany, May 2001.

1. K. Ousterhout. Why Aren’t Operating Systems Getting Faster
as Fast as Hardware? In USENIX, June 1990.

3. Padhye and S. Floyd. On Inferring TCP Behavior. In SIGCOMM
*0], San Deigo, CA, August 2001. .

J. Regehr. Inferring Scheduling Behavior with Hourglass. In
FREENIX, Monterey, CA, June 2002.

E. Riedel, G. Gibson, and C. Faloutsos. Active Storage For Large-
Scale Data Mining. In VLDB, 1998.

J. Schindler and G. R. Ganger. Automated Disk Drive Characteri-
zation. TR CMU-CS-99-176, 1999.

1. Schindler, J. L. Griffin, C. R. Lumb, and G. R. Ganger. Track-
aligned Extents: Matching Access Patterns to Disk Drive Charac-
teristics. In FAST '02, January 2002.

K. Swartz. The Brave Little Toaster Meets Usenet. In LISA '96,
pages 161-170, Chicago, Illinois, October 1996.

T. Ts’o and S. Tweedie. Future Directions for the Ext2/3 Filesys-
tem. In FREENIX, June 2002.

A. Wang, P. Reiher, G. Popek, and G. Kuenning. Conquest: Better
Performance Through a Disk/Persistent-RAM Hybrid File System.
In USENIX, June 2002.

R. Wang, T. E. Anderson, and D. A. Patterson. Virtual Log-Based
File Systems for a Programmable Disk. In OSDI '99, February
1999.

T. Wong and J. Wilkes. My Cache or Yours? Making Storage More
Exclusive. In USENIX, June 2002.

X. Yu, B. Gum, Y. Chen, R. Wang, K. Li, A. Krishnamurthy, and
T. Anderson. Trading Capacity for Performance in a Disk Armray.
In OSDI 00, 2000.

Y. Zhou, J. Philbin, and K. Li. The Multi-Queue Replacement Al-
gorithm for Second Level Buffer Caches. In USENIX, June 2001.

