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Characteristics of Network Delays in Wide Area
File Transfers

Paul Barford, David Donoho, Ana Georgina Flesia and Vinod Yegneswaran

Abstract— In this paper we present an analysis of over
236,000 file transfers between 10 widely distribufed Internet
hosts. The goal of this work is to broaden the understanding
of how network path and congestion properties contribute
to delays in TCP file transfers. The first part of our analy-
sis investigates how end-to-end path properties (eg. physical
distance, router hops, autonomous system hops, or botile-
neck bandwidth) relate to file transfer latency and variabil-
ity. We evalaate end-to-end path properties as a predictor
of file transfer latency, and employ dimensionality-reducing
techniques to identify clustering in path space. We find that
expected transfer latency can be effectively predicted by a
number of path properties and that the relationship between
paths and latency is strongly linear with some intense out-
liers. The second part of our analysis employs critical path
techniques to break down the network component of file
transfer latency info three categories: propagation, queu-
ing and loss. We compare the contribution of each of these
components to delays along particular paths, and their ef-
fect on variability of total delay. We find that propagation
delay is the dominant aspect of expected total delay for most
paths and that queuing and loss are substantial effects typ-
ically for a minority of paths. On these paths, queuing con-
tributes most significantly fo periodicity in total delays while
loss contributes most significantly to variability in total de-
lay. Finally, we show that path properties can also be effec-
tive predictors of both queuing and loss.

I. INTRODUCTION

Many aspects of current Internet infrastructure and pro-
tocols have been developed or enhanced as a direct result
of careful analysis of network measurement data. Exam-
ples include application-level protocols such as HTTP [1],
[2], transport protocols such as TCP [3], [4] and TFRC
[5], and distributed caching mechanisms such as [6], [7].
While the body of measurement-based work upon which
these and other developments have been founded is sig-
nificant, many of the complexities of Internet interactions
(which if understood could lead to future improvements)
remain unstudied.

P. Barford and V. Yegneswaran are members of the Computer
Science Department at the University of Wisconsin, Madison. E-
mail: pb,vinod@cs.wisc.edu. D. Donoho and G. Flesia are mem-
bers of the Statistics Department at Stanford University. E-mail:
donohio,flesia@stat.stanford.edu.

The general objective of our study is fo broaden under-
standing of the factors that contribute to delays in wide
area TCP data transfers, using a large data set collected in a
distributed Internet measurement infrastructure. The data
set consists of measurements of over 236,000 data trans-
fers taken over the period of 45 days along 90 distinct In-
ternet paths in the WAWM infrastructure [8]. Our analysis
of this data is focused on understanding the details of end—
to—end delays caused by the network itself. In particular
we address the question, “how does the network compo-
nent of delay! in wide area TCP transfers break down into
sub-components of propagation, queuing and loss?” Con-
siderafion of this question led us to consider the influence
of the properties of the network paths between end hosts
and how network delays break down info the different sub-
components for different paths. To that end, we also col-
lected over 79,000 £ raceroute [9] measurements taken
along the same set of paths during the same time as the data
transfer measurements.

The challenges in this work arose in two principal ar-
eas in addition fo the typical difficulties associated with
wide area measurement-based study [10]. The first was
the task of breaking down data transfer delays into sub-
components. We addressed this by developing a robust,
kemnel-level implementation of critical path analysis of
TCP transfers [11]. Our kernel-level implementation has
two important benefits: it enables the calculation of sub-
components of data transfer delays in real time and ex-
pands the number of sub-components of delays from the
six described in [I1] to nine. The details of the new sub-
components are described in Section III.

The combination of path property measurements and
detailed data transfer delay measurements over 90 paths
for 45 days led to a very large and highly dimensional
data set. Our second challenge was organizing and reduc-
ing this data set to extract key results. We addressed this
initially through visualizations of the time series of data
transfer delays for each path. This enabled us to not only
focus on the important bebaviors that make up the key re-
sults of the paper but also on out-lier data points which
represented pathological behaviors and required closer at-

1End Rosts would be the other primary component of delay.
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tention. Next, we systematically employed a number of
multivariate analysis techniques to understand details of
behavior along different paths and to identify path proper-
ties which are predictive of transfer delay sub-components.

Our analysis indicates that most paths typically operate
along what we define as an efficient frontier. This is the
data transfer rate which is principally limited by round trip
times (speed of light delay plus aggregate switching time
at routers) and not by network congestion effects. Oper-
ation along the efficient frontier is more common as the
size of transfers decreases. There are however a number of
paths whose normal operating behavior is quite far from
the efficient frontier. Not surprisingly, these are all paths
that contain commodity Internet links (links maintained
by commercial Internet Service Providers). Variability for
these paths is dominated by packet loss and periodicity is
dominated by queuing. We find that for large files, both
queuing and loss are significant effects on overall transfer
times. We also evaluate the predictive capability of path
properties versus delay and each sub-component of delay.
We find that appropriate linear combinations of path prop-
erties can be very good predictors of each of these features.

Our findings have implications for analytic models of
TCP throughput such as [12]. These models provide a sim-
ple mechanism for estimating expected throughput based
on RTT and average packet loss rate as inputs related to
network conditions. We acknowledge the merits of sim-
plicity in these models. However, we show that for our
data, these models can be quite poor at predicting through-
put. We attribute this to two factors: variability in RTT
caused by queuing delays and more complex loss pro-
cesses than are assumed in the model. These results sug-
gest addifional factors in throughput models to account for
a broader range of network conditions.

Our results also have implications in the network oper-
ations domain. The first and obvious is for network engi-
neers to focus traffic engineering efforts on paths in their
networks that do not operate on the efficient frontier. A
second example are efforts to estimate distances between
nodes as a means for directing clients to appropriate mirror
servers such as [13]. Our findings indicate that static path
properties such as physical distance are often as accurate
as more dynamic features like RTT in term of predicting
expected throughput for many paths. However, we find
that both static and dynamic features can be very inaccu-
rate throughput predictors for a minority of paths. Another
related example is in the area of routing overlay networks
[14]. Our results indicate that it may be more appropri-
ate to select an overlay path between client and server that
combines paths on the efficient frontier instead of a more
direct, shorter path that does not operate on the efficient

frontier.

The organization of the remainder of this paper is as fol-
lows. In Section II, we discuss prior work related to our
study. In Section III, we describe our measurement meth-
ods and details of the data collected for this study. In Sec-
tion IV, we describe our analysis methods and the results
of their application to our data. We descuss the implica-
tions of our results in the areas of analytic modeling and
network operations in Section V. We summarize, conclude
and discuss future work in Section VI

II. RELATED WORK

There are a growing number of measurement-based
studies of wide area network behavior that have shed con-
siderable light on factors including performance, stabil-
ity and growth. Examples of these that relate to our
work include studies that investigate basic characteristics
of packet dynamics [15], [16], [17], (18], [19], and studies
that assess Internet routing and path characteristics [20],
[21], [22]. Of these, the work that is perhaps most simi-
lar to ours is that of Zhang et al. [19]. In that study, the
authors use a large measurement data set to define char-
acteristics of network “path constancy” related to packet
Joss, packet delay and TCP throughput. We do not specifi-
cally treat issues of path constancy in our work. However,
results of both their study and ours can be applied to the
problems of TCP performance modeling and distance es-
timation used in systems such as [13].

Estimations of distance have been evaluated extensively
in caching literature. Various techniques for placing con-
tent near clients to improve performance have been con-
sidered including geographical distance [23], topological
distance [24] and latency [25]. End-to-end distance met-
rics are a topic of on-going study. An example is recent
work by Huffaker in [26] who finds that geographical dis-
tance is a reasonable indicator of round trip time within the
US.

Another important aspect of measurement-based study
is fo attempt to establish invariant behavioral characteris-
tics [27] . Perhaps the most successful work in this regard
has been the establishment of self-similarity as a funda-
mental characteristic of network packet traffic [28], [29],
[30]. We do not attempt to establish or advocate invariant
properties for the characteristics that we treat in this paper.

The use of path properties to understand network state
was investigated by Allman and Paxson in [31]. That work
considers path state which can be inferred from TCP traces
as a means for refining RTO and bandwidth estimates. A
variety of tools have also been developed to assess path
properties such as bandwidth and Ioss characteristics: ex-
amples include [32] and [33]. Our work differs from these
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Fig. 1. Deployment of WAWM nodes (2 systems in Boston).
Included are abbreviations used to identify hosts.

in our investigation of more static notions of path proper-
ties (ie. route characteristics) as predictors of TCP data
transfer latency.

A series of models for steady-state TCP throughput and
latency have been developed in [12], [34], [35]. These
models require parameters that define TCP’s different op-
erating regimes - two of the most important of these are
RTT and loss. Qur work can serve as a basis for validating
these models and for identifying conditions under which
they are more and less effective.

We employ critical path analysis techniques described
in [I1] to break down total transfer delay into sub-
components. Establishing the critical path in a system
where events happen in parallel enables causes for delays
to be pinpointed. We extend this notion of critical path
analysis for TCP transactions in a number of ways which
are described in the next section.

II1. DATA
A. Measurement Environment

Our data was collected in the WAWM infrastructure
[8]. Currently this environment comprises 10 dedicated
PCs, with 90 end to end paths, spanning 31 distinct Au-
tonomous Systems (AS) across 3 continents. The systems
reside in universities, research institutions and commercial
companies, providing a 34/56 mix of paths in commodity
(commercial service providers) and non- comrnodity (such
and 2 depict maps of deployed WAWM nodes and the
ASs they span. All systems are well connected to their
networks via 10/100Mbps Ethernet cards.

B. Path Data

To assess the relationship between the data transfer la-
tency along a path and that path’s underlying physical
properties we focused on the following six measurable
path characteristics:

Startap (10764)

Maudison (3128)

a

Harvard (1742)

Boston (111)

NUCE (137)
(2390 S
Bol 5541
K’NEIUS'ACOM (3967) ologna (5541)

Fig. 2. Autonomous systems connecting WAWM nodes.

Genuity (1)
Abilene (11537)
GigapopNE (10578)
BACOM (577)
CWUSA (3561)
Sprint (1239)

DANTE (9010) /

Canarie (6509)
Verio (2914)
ATT (7018)
Alternet (701)
QWest (209)

1. Administrative Domain (Admin): We differentiate
between two general categories of administrative domains
in paths. If a path contains any commodity ISP then we
designate that a commodity path. All others are non—
commodity and are made up of the following carriers: In-
ternet2/Abilene, NASA, RIPE, APAN and Canarie.
2. Bottleneck Bandwidth (B-BW): the bottleneck band-
width or the static path capacities were measured using
two tools — pathrate [32] and nettimer [36]. Measured
bottleneck bandwidths ranged from 3 to 80 Mbps.
3. Router Hops(RHops): traceroute was used to
measure the number of router hops for each path. Router
hop counts ranged from 8 to 29.
4. Round Trip Time (RTT): We considered two alterna-
tives to measure the RTT — £raceroute dafa and es-
timates from packet traces. The packet traces from file
downloads are more likely to experience queuing delays.
We were interested in the minimum delays due to propoga-
tion, thus we decided to use the RTTs from tracer-
outes. The average of the median RITs from each
hourly t racerout e was used to obtain typical round trip
time estimates between the paths. These varied from 2ms
to 160ms, and 37ms to 330ms for transcontinental paths
and transoceanic paths respectively.
5. Autonomous System Hops (ASHops): ASRoute [37]
is a tool built on top of traceroute that summarizes
traceroute data at the autonomous system level. Besides
estimating AS-hops, ASRoute also helps distinguish be-
tween InterAS and IntraAS route fluctuations. AS-hop
counts in our data set ranged between 3 to 7.
6. Physical Distance (Dist): corresponds to the road/air
distances between cities as appropriate.  These val-
ues can be obtained from popular mileage calculators.
These ranged from less than 50 miles between Boston
Univ./Harvard Univ. to 6700 miles between Boston
Univ./Tokyo.

Summary statistics for these values organized by admin-
istrative domain (either commodity or non-commodity) is
given in Table L.
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TABLE1
MEAN/VARIANCE VALUES OF PHYSICAL PROPERTIES WITH PATHS IN BOTH ADMINISTRATIVE DOMAINS. Adm: 0 =
Commodity, 1 = Non-Commodity

[ Adm | Num Paths | 17 v AS hops | 27v Router Hops | 7 v Distance(mi) | u/v RTT(ms) | u7vB-BW(Mbps) |
0 34 4.1070.72 17.04716.02 2672.65712,963,849 | 111.0272,581 6.23711.63
I 56 4.4070.84 15.40/18.30 3210.18 75,215,036 | 112.92/6,674 52.02 7 868.02
TABLE I

C. Data Collection Method

Measurements were taken hourly across the full mesh
of systems for a period of 45 days from December, 2001
through January, 2002. Each measurement consisted of
a fraceroufe (from server to client) followed by file
transfers using wget [38] of 3 distinct files. For unbiased
measurements, an exponentially distributed delay with a
mean value of 6 seconds was introduced between the in-
dividual file downloads and their order was randomized
[39]. File sizes used in downloads were 5KB, I00KB and
IMB. Our intention in choosing these file sizes was in an
attempt to exercise TCP in a variety of operating regimes
that might be considered "typical” [40]. The IMB and to a
lesser extent the I00KB file transfers should be dominated
by TCP’s congestion avoidance regime while connection
set up and tear down should have a significant impact on
the SKB file transfers. A summary of the data we collected
for this study is given in Table II. There are slight varia-
tions in the total number of files transferred due to outages
and/or out-lier samples during the measurement period.

We used two tools different tools to assess the static bo-
tleneck bandwidths for each path in our measurement en-
vironment: pathrate [32] and nettimer [36]. Our
decision to use both was based on the fact that there is lim-
ited, wide-spread deployment of these tools and our expe-
rience with both was minimal. An important issue with
both tools is that they exert significant load on the network
and as such we decided to limit their use in our study. Our
approach was to take daily measurements along all paths
for a week and to then average the results for each tool.

Our assessment of the data revealed high variability in
the values returned by nettimer, as well as a few no-
ticeable discrepancies. For example, on a path from Madi-
son to Italy with a bottIneck of 10Mbps, net £ imer con-
sistently produced B-BW between 60-200Mbps. Hence
we decided to restrict our analysis to be based on the val-
ues obtained from pathrate. The values shown for B-
BW in Table I reflect the summary statistics for commod-
ity and non-commodity paths. Of course there were many
route changes measured (ranging between 3 and 47 for in-

SUMMARY OF MEASUREMENT DATA USED IN THIS STUDY

l Data Type ! Total transfers | Transfrs with loss I
5KB File 80,870 1,205
100KB File 77,299 8,702
IMB File 77,986 16,194
Traceroute 79,358

dividual paths) over the course of our entire study which
could potentially Iead to possibly significant differences
in B-BW for individual paths. The B-BW measurements
returned by patHrate for our paths were in fact quite
stable over the course of the measurement period. We at-
tribute this to most of the fluctuations being minor intra-
AS route fluctuations (often happening far away from the
endpoints), that usually have little or no effect on the bot-
tlenecks.

D. Extracting Components of Transfer Delay

The original method of applying Crifical path analysis
(CPA) to TCP transaction is described in [11]. That work
develops an algorithm for applying CPA to packet traces
collected at end hosts. The algorithm extracts the exact
sequence of packets that determines the total file transfer
delay. It then uses this sequence of packets to decompose
the total transfer delay into six distinct sub-components:
server delay, client delay, packet loss delay (time-out and
fast retransmit), network variation delay and propagation
delay. A conceptual diagram of this process is shown in
Figure 3.

We made the following enhancements fo the original al-
gorithm for applying CPA to TCP transactions:

« ability to monitor critical path from a single end point

« ability to establish critical path and delay breakdowns in
real time

« relaxed requirement for tightly synchronized clocks

« separation of coarse timeouts and exponential back-off
delays

« separation of queuing and network variation delays
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Fig. 3. Conceptual diagram of the breakdown of an original
packet fbw (left) into the critical path (center) then decom-
posed into subcomponents of network and host delay (left).

To facilitate these enhancements we implemented CPA
for TCP via kernel instrumentation. Linux-2.2 kernels run-
ning on the measurement hosts were instrumented fo add
an extra TCP option for CPA and SACK was disabled. The
modifications to the sender, receiver and timers were rel-
atively minor. Unlike the original critical path algorithm,
our kernel implementation allows construction of the crit-
ical path in a single pass. This is because the critical path
options recorded by the packet traces allow to us unam-
biguously match an acknowledgment with the packet that
triggered it. An additional benefit of our kernel-level im-
plementation of CPA is that details of transfer latency can
now be evaluated for any application which uses TCP as
its transport. The implementation in [11] was specific to
HTTP transactions.

Once the critical path has been constructed, critical path
profiling involves assigning the total delay in each round to
9 different latency categories. While critical path analysis
enables delays caused by end hosts to be isolated, we do
not consider them in this study?. Our focus was on delays
caused by the network and the sub-components consist of:
1. Propagation Delay: Sum of minimum transit times for
packets in each direction on the critical path.

2. Queuing Delay: Sum of differences between propaga-
tion delay and actual delay for packets on the critical path.
3. Network Variation Delay: A simple way to detect route
fluctuations is to look for changes in the TTL field in the IP
header. This suffers from the weaknesses that is not possi-
ble to detect route fluctuations where the number of hops
don’t change. We contend that the effects of this possi-
bility would be minimal and that our methodology would

2WAWM hosts used for this work were not used for any other pur-
poses thus end Host delays were minimal.

tend to detect almost all route fluctuations that would have
a significant impact on delay.

4. Fast Retransmit Delay: Sum of delays of packet losses
recognized by the TCP fast retransmit mechanism.

5. Coarse Timeout Delay: Sum of delays of packet losses
recognized by the TCP coarse-grained timeout mecha-
nism.

6. Exponential Back-off Delay: Sum of delays of packet
losses recognized by the TCP coarse-grained timeout
mechanism which were then followed by a loss of the same
packet resulting in the use of TCP’s exponential back-off
mechanism.

7. DNS Delay: Total delay caused by name resolution pro-
cess.

The task of critical path profiling is complicated by the
fact that the hosts are not synchronized. This is handled
through the use of GPS clocks in [11], however that re-
quirement significantly restricts wide spread deployment
of CPA capabilities. We treated this problem in our new
CPA implementation. For every packet on the crifical path,
except for the last packet there is an acknowledgment that
is also on the critical path. By calculating latencies for ev-
ery round (as opposed to every packet), it is possible to ac-
count for clock synchronization problems3. Qur assump-
tion is that although the clock offset is non-zero, the clock
skew is negligible during the course of a single download
which is the only clock synchronization pathology that
would affect our implementation.

To reduce the dimensionality of our data, we consider
three sub-components of total delay: propagation, queuing
and loss. We observe that network variation delay almost
never occurs (we observed changes in TTL values during
only 53 transfers). We do not consider DNS delay as a
focus of this work. Loss delay in our study is the sum
of fast retransmit, coarse timeout and exponential back-off
delays measured in each transfer.

IV. RESULTS

Our consideration of both the transfer delay properties
and path properties resulted in a highly dimensional data
set. We systematically employed different statistical tests
to evaluate characteristics of network delays and how they
relate to path properties. In this section, we describe five
specific focus areas of our study, the analysis methods we
use and the results of the evaluations.

Throughout this section we refer to individual paths us-
ing abbreviations that consist of two letters. The first in-
dicates the client and the second indicates the server. The

3See [41] for a treatment of clock synchronization problems in wide
area measurernents
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Fig. 4. Network delay time series for two paths over a 4
week period — (top: Boston-San Jose) (bottom: Saskatoon-
Denver). The delay in the y-axis ranges from 0-20 seconds
for thie top fi gure and from 0-400 seconds for the bottom

abbreviations used for each host are shown in Figure 1.
It is clearly better to investigate distributional characteris-
tics. However the dimensionality of this data significantly
complicates this approach. Hence all of our analysis fo-
cuses on mean and variance values for each property under
consideration for each path (unless otherwise specified).

A. Path Properties

Simple qualitative assessment of the total network de-
lay data showed distinctly different characteristics for dif-
ferent paths. Examples of the time series for two different
commodity paths can be seen in Figures 4. The figure on
top illustrates the typical behavior of a path on the efficient
frontier, one that is highly predictable and where delays are
dominated by propogation. This is in contrast to the path
on the bottom that experiences significant variability, often
associated with queuing and loss.

Our first step in attempting to evaluate network delay
characteristics was to assess similarities in path properties.
Establishing similarities based on path properties may help
explain variability in data transfer measurements and may
also serve as a basis for operational application of our re-
sults. The difficulty in assessing similarities in path prop-
erties was that there were six features which could be con-
sidered (Dist, RTT, RHops, ASHops, Admin, B-BW) and
we needed to reduce dimensionality to determine whether
or noft there were natural groupings among paths.

Our solution was to apply Principal Components Anal-

oy

4.

Gomponam 1

Fig. 5. Clustering results using fi rst two components from PCA

ysis (PCA) to the mean values of our path property data.
PCA is standard a method for combining features to eval-
uate groups. PCA constructs linear combinations of fea-
tures in order to project high—dimensional data into lower
dimensional (component) space. It seeks the best repre-
sentation of the components from the least squares per-
spective. Following PCA we apply cluster analysis to the
first two components using the Partition Around Medoids
(PAM) method [42]. While PAM is applied in the full
6-dimensional space, it is displayed in graphically in 2~
dimensional space. This is why some subclustering that
seems visually evident in the 2—dimensional display does
not end up being reflected in the full 2—dimensional solu-
tion.

Our application of PCA showed that the first two prin-
cipal components were sufficient to explain 73.3% of the
variability in the path property data. This suggests that lin-
ear combinations of properties are quite effective in iden-
tifying paths with similar characteristics. We then used
the agglomerative hierarchical method suggested in [42]
to cluster paths using the first two principle components.
Qualitative assessment of this result indicates that there are
three or four distinct clusters in the path properties. Figure
5 shows the clusters of paths that arise using these meth-
ods. Closer evaluation of these clusters shows that they
generally separate based on administrative backbone and
by distance (between client and server) where any measure
of distance works well as a discriminator.

B. Data Transfer Latency and Path Properties

We considered mean transfer times for IMB to begin the
process of characterizing the relationships between path
properties and data transfer delays. An additional objec-
tive of this analysis was to understand the predictive ca-
pability of path properties vis-a-vis data transfer delay.
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Once again, the number of the different path properties
was a complicating factor.

Our approach to this analysis was to use robust re-
gression analysis for mean values of four path properties
(RHops, ASHops, Dist. and RTT) versus mean total delay
(we omit B-BW from consideration due to the limited size
of that data sef). Robust regression (MM-—estimator) per-
forms high breakdown point and high efficiency regression
with a test for bias according to the method proposed in
[43]. This algorithm results in estimates that are strongly
consistent and asymptotically normal.

In assessing the results of the robust regression analysis,
we find a strong linear relationship between each of the
path properties and mean total delay. We also find that
there are a number of significant outliers — not surprisingly
these are all from paths over commodity networks. The
best fit comes from the comparison of mean total delay and
RTT shown in Figures 6 and 7. We note two interesting
findings. Almost all of the path properties (except for B—
BW) lead to virtually identical relationship. Even the most
static property — physical distance — is a good indicator
of typical transfer time for most paths as can be seen in
Figure 8. Secondly, the shortest (HB - Harvard, Boston)
and longest paths (AP, PA - Japan, Italy) seem to fall at the
two extremes of our linear fifs.

The absence of a similar linear fit with respect to B—
BW is quite apparant from Figure 9. We believe that this
is an artifact of TCP window size limitations (default 64
KB in our installations) that prevent connections from ex-
ercising the full bandwidth of the end to end path. Al-
though we considered increasing the buffer size, it seemed
to be in conflict with our desire to measure latencies ex-
perienced by typical file transfers. This lack of correlation
seems to indicate the need for a critical reexamination of
existing window sizes and also illustrates opportunities for
dynamic window scaling algorithms [44].

These plots highlight the fact that most of the paths typ-
ically operate very close to their maximum performance
capability (ie. data transfer latency is limited by speed of
light delays, router switching delays and receive window
size). We call this regime the efficient frontier. Smaller
files demonstrate this property most strongly as we will
see shortly. However, there are some paths along which
large files typically are transferred with great difficulty ie.
their typical behavior is quite far from the efficient fron-
tier. These observations suggest that for most paths, re-
peated probing to determine “distance” may be unneces-
sary. Likewise for paths which do not operate along the
efficient frontier, these results suggest that no path prop-
erty is a good indicator of data transfer delay.

Robust regressions for transfer times of I00KB and

AD

8

meanTD1MB
&

Fig. 6. Robust regression results comparing mean total delay for
IMB data transfers (meanTDIMb in seconds) versus RTT
(seconds)
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Fig. 7. Residuals (reg$residuals) for robust regression compar-
ing mean fotal delay (seconds) for IMB versus RTT (sec-
onds)

5KB files versus path properties reveal an even stronger
linear relationship with fewer intense outliers than the
1MB files. Once again, all of the path properties are good
indicators of transfer delay with fewer distinct outliers. We
show the results when comparing delay for these smaller
file to RTT in Figures 10 and I1. These results indicate
that predictive capability for throughput increases as file
size decreases.

Next, we consider broader aspects of the distributions
of transfer times of 1MB files. In Figure 12, we show
cumulative distribution function (CDF) graphs of the five
paths furthest from the efficient frontier along with five
paths with approximately the same RTT measurements.
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Fig. 9. Scatter plot comparing mean fotal delay for IMB
data transfers (meanTDIMBb in seconds) versus Bottleneck
Bandwidth(Mbps)

Contrasts in distributional characteristics are obvious with
the paths furthest from the efficient frontier showing much
greater variability. Another way to consider variability is
seen in Figure 13 which compares the standard deviation
of transfer times to the mean (and includes a robust regres-
sion line). This figure shows a reasonably linear relation-
ship for all but a few paths indicating that the distributional
shape of most paths is similar but scaled by physical dis-
tance. Paths which do not have this property are, not sur-
prisingly, the same paths which typically operate far from
the efficient frontier. Another approach to assessing vari-
ability is shown in Figure 14. This figure which shows the
CDF of the difference between mean latency and measured
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Fig. 10. Robust regression results comparing mean total delay
for 100KB data transfers (meanTD 100K in seconds) versus
RTT (seconds)

1.0

08 -

meanTD5K
o
o
L

©
s
L

0.2 4

0.0

T T T T u
] 50 100 150 200 250 300 350

Fig. 11. Robust regression results comparing mean fotal delay
for 5KB data transfers (meanTD3K in seconds) versus RTT
(seconds)

latency for all IMB data transfers along all paths. This fig-
ure indicates that only a very small percentage (about 5%)
of measurements of mean transfer times vary greatly from
their mean. Variability for smaller files is considerably less
than the 1MB file.

C. Effects of Propagation, Queuing and Loss on Transfer
Latency

To characterize the contributions of propagation delay,
queuing delay and loss delay to total data transfer latency,
we create triangle plots for each of the three file sizes
shown in Figures 15, 16 and I7. The triangle plots repre-
sent the contribution of the mean of each sub—component




SUBMITTED TO ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2002 9

Fraction of Downlosds (%)

Total Batay in Secands

Fig. 12. Cumulative distributions of transfer times of IMB fi les
for 5 paths which operate on the effi cient frontier and the 5

which are Turthest from the effi cient fronfier.
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Fig. 13. Robust regression of standard deviation (stdTD1Mb)

versus mean (meanTDIMBb) for IMB data transfers
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Fig. 14. Cumulative distribution of difference between mean
latency and measured latency for all IMB data transfers
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Fig. 15. Triangle plot comparing relative contribution to mean
total transfer delay of propagation (meanPDIMDb), queuing
(meanQDIMb)and loss (meanLDIMb) for IMB file

meanPD100K

meantD100K meanQD100K

Fig. 16. Triangle plot comparing relative confribution to mean
total transfer delay of propagation (meanPD100K), queuing
(meanQD100K)and loss (meanL.D100K) for I00KB fi le

normalized to the mean of the total transfer delay. If a path
point is near a corner in these diagrams that means that
transfer delays along that path are strongly influenced by
one of the three sub-components. Likewise a path point in
the middle of the triangle means that there is equal contri-
bution of each sub—component to total transfer delay.

The triangle plots show that propagation delay is the
most significant sub—component of mean total delay for
most paths and for all three file sizes. This reinforces the
observations about operation along the efficient frontier;
namely that data transfers are typically limited by speed of
light considerations for most paths. Closer examination of
the IMB data transfers indicates that the effects of queuing
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Fig. 17. Triangle plot comparing relative contribution to mean
total transfer delay of propagation (ineanPD5K), queuing
(meanQD5K)and loss (meanCDSK) for 5KB fi le

and loss are roughly equivalent and may, in fact, be biased
toward queuing for paths that are less dominated by propa-
gation. Once again, the paths that have the Jargest queuing
and loss components are almost all commodity.

Paths with significant loss and queuing components for
100KB and 5KB files are also almost all commodity, how-
ever their characteristics are quite different that the IMB
data transfers. For the smaller files, loss appears to be a
more important component of total mean delay - espe-
cially for the 5K files which seem to typically unaffected
by queuing delay.

Another consideration is the effect that queuing and loss
have on the variability of mean total delay. We evaluate
this question by assessing plots of standard deviation of
total delay for IMB data transfers versus mean loss and
queuing delays in Figures 18 and 19. These figures in-
clude robust regressions of standard deviation of total de-
lay versus mean loss and queuning delays and indicate, not
surprisingly, that paths with higher loss and queuing have
higher variability in delays.

D. Queuing, Loss and Path Properties

As with total delay, we investigate the use of path prop-
erties as means for distinguishing between paths that have
significant quening and loss delay. From the triangle dia-
grams in the prior section we can see clear discrimination
between paths dominated by propagation and those that
have larger queuing and loss components.

Using scatter plots, we qualitatively assess the sum of
queuing and loss (to enhance differences between paths
that are dominated by propagation) versus four path prop-
erties (RTT, RHops, ASHops and Dist). We find that there

FC

60
i

DC

g2 31 4B
En RE
w % C
& %}?z-p FH
OB 5 H, AH
PH
G AHFA
0 : 10 15
meanCD1MD
Fig. 18. Robust regression of standard deviation of tofal
delay for IMB file (stdIDIMb) versus mean loss delay
(meanCD1MB in seconds)
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19. Robust regression of standard deviation of mean total
data transfer delay for IMB file (stdTDIMBb) versus mean
queuing delay (meanQDIMB in seconds)

Fig.

is clear discrimination between paths with and without
queuing and loss using any of the four path properties.
Figures 20 and 21 illustrate this effect using RTT and
Dist. Once again, there are paths that clearly operate near
an efficient frontier and a small set of outliers that do not.

E. Periodicity in Network Delays

A well known phenomenon of network traffic is its char-
acteristic diurnal behavior. We expected fo see similar
effects in data transfer delays and the sub-components;
specifically that delays would tend to increase during the
day and subside to the efficient frontier at night. How-
ever, qualitative assessment of the time series of delays for
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TABLE 111
MEAN/VARIANCE OF R? VALUES OF PERIODICITY OF DELAYS IN BOTH ADMINISTRATIVE DOMAINS.
| Adm I w1 vTotal Delay | 1/ v Propagation Delay | i/ v Queuing Delay | /v Loss Delay |
Both 0.052170.0018 0.048870.0017 0.0644/0.0043 0.0593/0.0056
Commodity 0.0681/0.0022 0.0578/0.002 0.0814/0.0059 0.0577/0.0054
Non-Commodity | 0.0435/0.0018 0.0432/0.0014 0.0538/0.0031 0.0603/0.0057
5 Non-Efficient 0.115/0.0028 0.170.0047 0.18170.0048 0.08170.0014
5 Efficient 0.047/0.001 0.04/0.001 0.033/0.0003 0.016/0.0001
paths showed that in many instances this was not clearly
the case.
To investigate this we developed a sum of squares
w method for evaluating periodicity of data transfer delays
= e for each path as follows:
. o y'(i) = Average Queuing in Hour(7) [i = 1...24]
o e o(i) = Std. Dev of Queuing in Hour() [i = 1...24]
o157
5 " D NL0)
© o . o Y = S5y
© #3 ° SSDiurnal = E?il(y’(z) - y”)2
57 FHap I 24 )
o o HOES 4y AR, " o SSResidual = Z':I O”(Z)
0 HF?FIX @%‘v{f ; T DEQ&'M;: ~ o R2 — SSD:urnal
T 7 T T g T T T - (SSResidual+SSDiu7nal)
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Fig. 20. Scatter plot for sum of queuing and loss delays (OD in
seconds) versus RTT (seconds) for IMB data transfers
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Fig. 21. Scatter plot for sum of queuing and loss delays (OD
in seconds) versus physical distance (miles) for IMB data
transfers

In this case, 0 < R? < I. Here R? is a measure of
periodicity and not accuracy and hence any value of R?
greater than 0 is an indication of periodicity in the data. It
makes sense that R? values are low, because most paths
operate in the efficient frontier where paths do not exhibit
diurnal behavior. Our purpose was to identify the Ievels to
which individual delay components affected periodicity.

The results of running this algorithm on the IMB trans-
fer data are given in Table III. The summary statistics in-
dicate a lower periodicity in total mean delay in the non—
commodity paths. Interestingly, they also show that the
strongest periodic sub~component was in queuing delay in
commodity paths and loss delay in non—commodity paths.

V. DISCUSSION

A critical aspect of any measurement study is it’s rele-
vance fo important network design questions. In this sec-
tion we discuss the implications of our results in the areas
of analytic modeling of TCP throughput and operational
aspects of wide area networking.

A. Implications for TCP Throughput Modeling

A series of models have been developed which attempt
to predict throughput of TCP Reno beginning with [34]
and culminating with [12]. A recent application of the






