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Abstract

Writing shared-memory multithreaded applications requires a careful trade-off between pro-
gramming ease and performance, largely due to subtleties in coordinating correct access to shared
data. To ensure correctness, programmers rely on conservative locking, often at the expense of
performance. The resulting serialization of threads is a constraining bottleneck to achieving high
performance in multithreaded programs. The growing popularity of multithreaded architectures
and multiprocessors is expected to result in more multithreaded applications. Programmability of
such applications thus becomes an important problem. We investigate architectural support for
improving the programmability, performance, and fault-tolerance of multithreaded programs.

This paper revisits the notion of an optimistic lock-free execution of multithreaded applications.
In a lock-free execution, shared objects are not locked when accessed by various threads. We pro-
pose Transactional Lock Removal (TLR) and show how a program that uses lock-based synchro-
nization can be correctly executed by the hardware in a lock-free manner without programmer
support or software changes even with conflicts. This is done using a key notion of logical time for
conflict resolution, modest hardware, and features already present in many modern computer sys-
tems. In addition to providing non-blocking behavior, the mechanism provides a guarantee of star-
vation freedom without lock-acquisitions and guarantees conditional wait-free execution.

The many benefits of the proposed technique include improved programmability, fault-toler-
ance, and performance. The system achieves benefits of lock-free data structures while allowing
programmers to use the familiar lock-protected critical section for writing programs.

1 Introduction

Programming complexity is the single most significant problem in writing shared-memory multi-
threaded applications. Programmability is a key challenge and its importance will only grow as hardware
multithreaded architectures and shared-memory multiprocessors become more common. Although threads
simplify the conceptual design of programs, care and expertise are required to ensure correct interaction
among threads. Programming complexity is generally higher than for most single threaded programs
because sharing of data objects among various threads requires complex reasoning. Errors in reasoning
about appropriate synchronization among threads results in incorrect program execution, and may be
extremely subtle. The concept of a transaction serves as an intuitive model for writing such programs.

Though the precise meaning of the term transaction varies depending upon the context, a transaction is
the embodiment of the concept of atomicity. Atomicity has two properties: serializability and failure atom-
icity. Serializability is analogous to sequential consistency [22] with regard to memory operations—the
result of executions of transactions is as if there were some global order in which they had executed seri-
ally. Failure-atomicity is the all-or-nothing property—the transaction must either be executed to comple-

tion or it must not appear to have executed at all.
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While a transaction is a fundamental concept in computer science, its implementation depends on a
combination of hardware and software. Processors today provide a restricted form of such transactions in
the instruction set. Examples are atomic read-modify-write operations on a single word such as TEST&SET
and LOAD-LINKED/STORE-CONDITIONAL synchronization primitives. While these instructions cannot pro-
vide general transactional functionality because of their limited size, they can be used to implement criti-
cal sections. Critical sections enforce mutually-exclusive access among threads to shared objects—only
one thread is allowed to operate on the object at any given time—and thus trivially satisfy serializability.

Failure atomicity is achieved by logging modifications performed by the transaction, and then making
these changes visible instantaneously using an atomic operation to commit the transaction. For all but the
simplest transactions, this process is complex. Since achieving failure atomicity is difficult, critical sec-
tions do not provide this capability. The desirability of failure atomicity is however not in question, espe-
cially in highly concurrent systems.

Critical sections are the most popular abstraction for reasoning about correctness and coordinating data
sharing among threads. Locks are most commonly used to implement critical sections. A lock is a software
construct associated with a shared object and determines whether the shared object is currently available.
Nearly all architectures support instructions for implementing lock operations and thus locks have become
the synchronization primitive of chéice for programmers and are extensively used in operating systems,
database servers, web servers, and other software.

Unfortunately, critical sections implemented using locks have two fundamental problems: 1) complex
trade-off between programmability and performance, and 2) inherent limitation of the locking construct.

The complex trade-off between programmability and performance exists because programmers have to
reason about data sharing during code development using static analysis. Often the programmer is unaware
of the critical section’s dynamic behavior. This limitation and the complexity in reasoning about data shar-
ing results in the programmer’s using conservative synchronization to easily guarantee correct execution
under unknown runtime conditions. Such use leads to dynamically unnecessary serialization because such
locks are frequently unnecessary for a correct execution. While conservative use guarantees correctness,
provides stable software, and leads to faster code development, it also masks parallelism. Fine-grain locks
may sometimes help performance but make code fragile and error prone. Coarse grain locks help write cor-
rect code and reduce errors but hurt performance. Additionally, locks can contribute to significant overhead
and degrade overall system performance.

The inherent limitation of the locking construct stems from the notion of the programmer-specified wait
while some thread is in the critical section. A lock marked as held forces other threads to wait for the lock

value to be free. This limitation manifests itself in 2 catastrophic ways:
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a) Poor system wide interactions with thread scheduling. If a thread holding a lock is de-scheduled by the
operating system, other threads waiting for the lock cannot proceed because the lock is not free. In a high con-
currency environment, all threads may wait until the de-scheduled thread runs again. This results in convoying
(a convoy of waiting threads is formed) and may result in a severe problem of priority inversion (no thread
may ever proceed). A non-blocking implementation guarantees some process will complete an operation in a
finite number of steps, regardless of the relative execution speeds of the processes [10]. The non-blocking con-
dition guarantees the system as a whole makes progress despite individual halting failures or delays.

b) Fault-tolerance limitations. If a thread holding a lock terminates due to a fault, other threads waiting for the
lock never complete as the lock is never free again. This problem is catastrophic in a transaction oriented envi-
ronment where threads are largely independent except while accessing some critical shared structures. Data
modified within the critical section are left in an inconsistent state resulting in application failure (critical sec-
tions lack failure atomicity). A wait-free implementation guarantees any process can complete any operation
in bounded number of steps, regardless of the execution speeds of other processes [10]. A wait-free imple-
mentation adds starvation freedom to the non-blocking condition.

In spite of these fundamental problems of locks, a lack of competitive alternatives has led to a nearly
universal use of lock-based critical sections for synchronizing thread accesses. These problems are becom-
ing increasingly important and solutions must be found to enable programmers to exploit hardware thread
parallelism efficiently and robustly while avoiding such limitations.

This paper proposes the use of modest hardware to convert lock-based critical sections transparently and
dynamically into lock-free optimistic transactions and the use of a timestamp-based fair conflict resolution
scheme to provide transactional semantics and starvation-freedom. We believe this approach, called Trans-
actional Lock Removal (TLR), can cleanly and effectively address the problems outlined earlier. By con-
verting critical sections to optimistic transactions, concurrency is exposed independent of lock granularity.
Since the execution is optimistic, data conflicts (of all threads accessing a given memory location simulta-
neously, at least one thread is writing to the location) must be detected. We use existing cache coherence
protocols to detect data conflicts. If the speculative data can be buffered using local caches, all non-con-
flicting transactions proceed and complete concurrently without any serialization or dependence on the
lock. Transactions experiencing data conflicts are automatically ordered appropriately without interfering
with non-conflicting transactions and without lock acquisitions. TLR, like many speculative execution
schemes, relies on the ability to buffer speculative memory state.

Speculative Lock Elision (SLE) [30] is a recent hardware proposal for eliding lock acquires from a
dynamic execution stream, thus breaking a critical performance barrier by allowing non-conflicting critical
sections to execute and commit concurrently. SLE showed how lock-based critical sections can be exe-
cuted speculatively and committed atomically without acquiring locks if no data conflicts were observed
among the critical sections. While SLE provided concurrent completion for critical sections accessing dis-
joint data sets, data conflicts result in threads restarting and acquiring the lock serially. In the presence of
conflicts, SLE experiences locking overhead and cannot provide failure atomicity because it acquires

locks. Thus, SLE still suffers from the key problems of locks.
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TLR uses SLE to elide locks and construct an optimistic transaction, and uses a timestamp-based con-
flict resolution scheme to guarantee lock-free execution. A single, globally unique, timestamp is assigned
to all memory requests generated for data within the optimistic lock-free critical section. On a conflict,
some threads may restart (employing hardware speculative execution) but the same timestamp determined
at the beginning of the optimistic lock-free critical section is used for subsequent re-executions until the
critical section is successfully executed. A timestamp update occurs after a successful execution. This
mechanism guarantees each thread will eventually win any conflict by virtue of having the lowest times-
tamp in the system and thus will succeed in executing its optimistic lock-free critical section.

Unlike SLE, TLR does not suffer from the limitations of locks because it uses timestamps to provides a
guaranteed lock-free execution even in the presence of conflicts. Programmers can use coarse-grain and
conservative locks while obtaining the behavior of fine-grain synchronization without locking overhead.
Since locks are not acquired, the inherent software wait for a lock variable is eliminated and a non-block-
ing execution is achieved along with failure-atomicity. Further, the timestamp-based conflict resolution
scheme guarantees all threads eventually succeed in a bounded number of steps, thus providing a condi-
tionally wait-free behavior. The proposed hardware is modest and the scheme does not require changes to
the underlying cache coherence protocol except requiring additional payload in some messages.

Software lock-free schemes using lock-free data structures have been proposed to address the inherent
limitations of locking [11, 5, 39, 3]. Lock-free schemes optimistically provide concurrent data structure
implementations without requiring a critical section or software wait on a lock. These schemes often
require more complex operations than critical sections and rely on programmers to write appropriate code.
Programmers have to reason about correctness in the presence of complex data structures. These alterna-
tives commonly suffer from difficulty of use, complex programming methodologies, and often high soft-
ware overheads, thus aggravating the complexity/performance trade-off. With TLR, programmers continue
using the familiar lock-based critical section while automatically obtaining the benefits of lock-free data
structures.

In Section 2 we discuss the concepts behind Transactional Lock Removal and show how lock-free trans-
actional semantics of lock-based programs are transparently obtained. Section 3 provides details of the

mechanism. Implementation strategies are discussed in Section 4 and experimental results in Section 6.

2 Transactional Lock Removal: Concepts

We first describe the basic idea of extracting a lock-free optimistic execution from lock-based codes. In
Section 2.2, we discuss the role of cache coherence protocols in TLR. Then we give the concepts for pro-
viding liveness in an optimistic execution in a protocol independent manner. We list implementation-inde-

pendent invariants in Section 2.5 to help implement TLR on systems.
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2.1 Transparently executing critical sections as lock-free optimistic transactions
Proposals for providing generalized transactional semantics for multithreaded programs exist in the

form of architectural support [12, 37] or complex software mechanisms [34]. Architecture proposals have
required extensions to instruction sets and new programming methodologies while software proposals suf-
fer from high overhead of coordinating transactions in software. Both approaches suffer from complexity
in using the provided transaction mechanisms. Programmers must learn new programming styles and cor-
rect programming becomes difficult because of complex usage. Programmers can no longer use the conve-
nient critical section abstraction for reasoning. Further, existing applications employing lock-based critical
sections for synchronization cannot benefit. These techniques do succeed in addressing the inherent limita-
tions of locks by avoiding use of locks.

SLE demonstrated how a lock-based critical section can be predicted, and then committed atomically
without lock acquires (without even requesting exclusive permissions for the lock) if no data conflicts were
observed and the data is cached. Temporal silence of locks enables one to avoid writing the lock itself. The
idea behind SLE involves using the cache coherence protocol to obtain appropriate permissions on neces-
sary cache lines, modifying data speculatively if needed, and then providing the appearance of instantly
executing the critical section by making updates visible to other processors at a single commit point. Criti-
cal sections are predicted by observing the dynamic instruction stream and identifying patterns for possible
lock operations, and the lock operations are elided by exploiting properties of temporal silence [30]. The
elision can be applied even to nested locks as long as their temporal silence holds. Properly nested locks

are trivially handled this way and improper nesting can be handled subject to temporal silence conditions.

Our approach is different from the earlier approaches in two significant ways.

1. Rather than change the programming model to obtain transactional semantics, we change the hardware
implementation to transparently provide such semantics. A critical section is treated as a transaction and
optimistically executed without lock operations. The intuition lies in treating locks as defining the scope
of a transaction, using a conflict resolution scheme to correctly order conflicting transactions, and using a
technique such as Speculative Lock Elision to commit the transaction atomically.

2. Our conflict resolution scheme provides starvation-freedom and thus can provide conditionally wait-free
behavior of lock-based codes. The behavior is conditional only because of potential resource limitations.

By maintaining the programming interface of a familiar lock-protected critical section, programmers do
not have to learn new ways to write programs. Additionally, existing legacy code using critical sections can
directly benefit from this. By treating critical sections as lock-free optimistic transactions, inherent concur-
rency in the transactions is exposed, independent of lock granularity. By using a fair conflict resolution
scheme, we guarantee high-performance lock-free and conditional wait-free executions.

Figure 1 shows the idea of inserting all memory operations within a critical section (without locks)

atomically into a global memory ordering (appropriately interleaved with other memory operations) thus
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Figure 1. While critical section executions (without lock acquires) overlap in physical time (with or without data con-
flicts), each logically appears to be inserted atomically and instantly in a global memory ordering.

automatically satisfying the transactional requirements of serializability. Failure atomicity is guaranteed

because failing transactions do not expose their updates.

2.2 Exploiting hardware cache coherence protocols

When a data block not present in the cache is read, the cache coherence protocol is triggered and the
block brought into the cache. Writing the data block requires exclusive permissions block. This is done by
invalidating all shared copies of the block in other caches. Once other caches have been invalidated, the
local copy can be modified if necessary. Exclusive permissions force other processors to request the latest
architecturally correct data copy from the exclusive owner of the block. This is how all invalidation-based
cache coherence protocols work.

The above protocol functionality provides us with two capabilities. First, accessed data is easily tracked
by local caching. Second, data conflicts are detected trivially—writes to shared data trigger invalidation
messages to sharers, and accesses to exclusively owned blocks automatically go to the exclusive owner.

During speculative execution of an optimistic transaction, processors track all speculatively accessed
blocks using their local caches. A data conflict occurs if either a speculatively accessed block receives an
invalidation message from another processor (the other thread is writing data the current thread has
accessed), or an external request from another thread is received for data exclusively owned and specula-
tively modified by the current thread (the other thread is accessing data the current thread has speculatively
written). On a data conflict, appropriate recovery action is performed. Speculatively written data is buff-
ered and not exposed to other processors until the speculating processor successfully completes. If another
thread requests data that has been speculatively written by the current processor, the non-speculative data
must be provided in response and the speculation is terminated/restarted.

If sufficient cache resources do not exist, processors cannot use cache coherence protocols for tracking
data accesses and for detecting data conflicts. Insufficient cache resources trigger a misspeculation and the
lock must be acquired for correct execution. In this case, we cannot apply our optimistic lock-free transac-

tion transformation. Similarly, uncached memory operations also trigger a misspeculation. Any operation
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that cannot be undone (in the event of a misspeculation), cannot be speculatively executed. However, a cor-
rect execution can always be guaranteed by turning off speculation and acquiring the lock.

The issue of sufficient buffering resources is an engineering decision involving a trade-off. While more
resources can be provided, caches today are sufficiently large to buffer most critical sections. Another con-
straint is the duration of the critical section execution in terms of the scheduling quantum. While this again
is an engineering decision, most critical sections we are aware of typically access a handful of cache lines
and easily execute within a scheduling quantum (threads may still be de-scheduled within the critical sec-
tion). A correct execution is always guaranteed independent of the resource availability because the lock
can always be acquired.

2.3 Analogy with database concurrency control
We draw an analogy between our use of hardware coherence protocols and concurrency control con-

cepts in database systems. Two conventional lock modes in database systems for lockable objects are
shared mode and exclusive mode. An object locked in shared mode can be read by multiple transactions
while an object in exclusive mode can be read and/or written by a single transaction that exclusively owns
the object. If a transaction needs to write a shared-lock object, the lock must first be upgraded to an exclu-
sive lock. Similarly, cache lines are generally of two types: shared lines (Owned and Shared) and exclusive
lines (Modified and Exclusive). A shared state line to be written must first be upgraded to an exclusive line.

A shared object, protected by a lock, has multiple data fields, each field corresponding to the cache line
the field resides in. Each cache line can be viewed as another finer-grain lock and the cache coherence pro-
tocol as a hardware lock manager. TLR takes such an object, splits it automatically into the data fields
(cache lines), and then performs concurrency control on the individual cache lines (the fields). The mecha-
nism acquires appropriate permissions (exclusive or shared) on the lines and executes the transaction. The
object lock is automatically converted into multiple fine-grain locks with each lock per cache line itself.
However, no lock overhead exists now because each cache line behaves as a lock itself.

2.4 Guaranteeing liveness of a lock-free optimistic transaction
For guaranteeing liveness, forward progress must occur. In the absence of data conflict, TLR behaves

same as SLE and liveness of a lock-free transaction is trivially guaranteed because of no misspeculation. A
data conflict triggers a misspeculation and the processor restarts executing the speculative lock-free critical
section. SLE trivially guarantees liveness in the presence of conflicts by acquiring locks if necessary but
we want to avoid lock acquires. This paper concerns transactions accessing conflicting data sets at the
same time and with forward progress techniques that do not rely on lock acquires..

Example of livelock of a lock-free optimistic transaction
Figure 2 shows livelock. Two processors, P1 and P2, write shared memory locations, A and B, in their

critical sections and each does so in reverse order. Initially, P1 has block A in exclusive state (M) and P2
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Processor 1 Processor 2
Proc. 1 code sequence Proc. 2 code sequence
LOCK®WQ) LOCK(Q)
Store A Store B
Store B Store A
UNLOCK(Q) UNLOCK(®WQ)

Figure 2. Livelock in a lock-free execution of a critical section in the absence of any conflict resolution scheme.

has block B in exclusive state (M) and both blocks have been speculatively accessed within the critical sec-
tion. At t;, P1 issues a request for exclusive permissions (rd_x) for B and at t, P2 issues a xd_X for A.
The blocks transition to pending (P) states because data is unavailable. P1 receives P2’s rd_X for A at time
t4. This is detected as a data conflict because another processor is writing the block P1 speculatively
accessed. P1 processes P2’s request, invalidates the local copy, and responds with the architecturally cor-
rect non-speculative data for A. P1 restarts speculative execution because the data conflict prevents a suc-
cessful atomic execution. A similar sequence of events occurs at P2 for block B. This sequence can happen
indefinitely with no processor making forward progress because each processor repeatedly restarts the
other processor. Forward progress cannot be guaranteed and the lock must be acquired.
Ensuring successful atomic execution

A successful atomic execution of a transaction is ensured by using the cache coherence protocol to
acquire exclusive ownership of memory locations accessed by the transaction. If the thread executing the
transaction does so for all required memory locations, the thread can execute, modify the locations and
make all updates visible atomically to other threads. In Figure 2 no thread can acquire exclusive ownership
of all necessary memory locations (A and B) simultaneously and threads repeatedly restart. Once exclusive
permissions are obtained, they must be retained until the transaction executes successfully.

The following conditions must be met if exclusive permissions are retained:

1. To ensure liveness, deadlock must be avoided. Deadlock can occur because threads acquire and retain exclu-
sive ownership of different cache lines. Deadlock freedom is achieved by using a uniform conflict resolution
scheme and by ensuring a thread does not retain exclusive ownership of any memory location if the thread
cannot acquire exclusive ownership of some other required location.

2. To ensure starvation freedom, all threads must eventually succeed. This is achieved by using an appropriate
conflict resolution scheme guaranteeing all conflict losers eventually become winners.

We discuss these conditions in three steps. First, we discuss distributed conflict resolution. Second, we
show how to provide starvation-freedom by using an appropriate and simple conflict resolution scheme.

Third, we present one way to retain exclusive ownership of cache blocks and provide deadlock freedom
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independent of the cache coherence protocol. We will then show how all of this fits together to provide a

starvation-free and lock-free execution of the example of Figure 2.

2.4.1 Distributed arbitration for conflict resolution
A distributed arbitration mechanism determines priorities among conflicting requests that enable a win-

ner to continue executing and losing threads may misspeculate and restart the transaction. We use the
cache coherence protocol for performing distributed arbitration because the protocol already provides
mechanisms for communicating data conflicts automatically to all concerned processors. All requests sent
to the coherence protocol within the optimistic transaction carry a globally unique identifier associated
with the requesting node. The identifier can be as simple as the static processor identifier itself. The identi-
fier helps resolve conflicts by determining priorities among conflicting transactions. Conflict resolution is
performed locally by processors involved in the conflict and involves a comparison of the local node iden-
tifier with the incoming conflicting request identifier.
2.4.2 Starvation-free conflict resolution using timestamps
For starvation freedom, the conflict resolution mechanism must guarantee all contenders eventually suc-
- ceed, for example by ensuring a first-come first-serve arbitration with losers retaining their positions in pri-
ority. A static identifier, such as a processor identifier, is inherently unfair and cannot provide starvation
freedom. We use timestamps for fair arbitration—the contender with a lower timestamp wins the conflict.
Timestamps inherently capture the notion of progressing time and easily provide dynamically changing
priorities. Qur timestamps are taken from the local real-time system clock. The timestamps are made glo-
bally unique by appending processor identifier bits to the bits extracted from the system clock. Our times-
tamps are loosely synchronous: exact synchronicity is not required. This is one way of locally generating
unique timestamps and other schemes exist [21].

Importantly, a timestamp is assigned to the entire critical section execution instance; all memory opera-
tions within the critical section are assigned the same timestamp. If speculative execution fails due to los-
ing a conflict arbitration, the same timestamp is retained and reused for re-execution and a new timestamp
is assigned only after a successful execution. The forward running clock guarantees the new timestamp is
larger than the earlier one. In any execution, some processor always wins all its conflicts and a failing pro-
cessor will eventually have the lowest timestamp by virtue of it being re-used. This processor will then win
all its conflicts in its transaction and thereby successfully complete the transaction. Lamport [21] used
timestamps derived from logical clocks to implement distributed mutual exclusion with a starvation-free-
dom guarantee. Our use is similar to Lamport’s use of logical clocks but we only require timestamps for
conflict resolution while Lamport used timestamps for explicitly ordering the execution of mutual exclu-

sion regions among different processors. Note this implies that with TLR, transactions that conflict in their
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data sets but do not actually observe any detected conflicts during their execution can execute in any order,

independent of the timestamps of the transactions.

2.4.3 One way to mask conflicts and retain acquired exclusive ownership
As discussed earlier, a successful lock-free atomic execution requires a processor to acquire and retain

exclusive ownerships of appropriate cache blocks if necessary. As per the underlying coherence protocol, a
processor with an exclusively-owned block receives and must respond to subsequent requests for the
block. The processor can retain exclusive ownership by sending a negative acknowledgement (NACK) to
the requestor thus forcing the requestor to retry at a future time. However, many modem coherence proto-
cols do not support NACKs.

For a general solution independent of coherence protocols, we describe one mechanism to retain exclu-
sive ownership. To retain exclusive-ownership, the processor buffers the incoming request and does not
apply it right away. Thus, while the system assumes the request has been applied, the processor masks any
conflict by deferring the request for a bounded time.

In modern coherence protocols (both snooping and directory), the request phase is split from the
response phase. The data response from the responder (memory or current block owner) may appear an
arbitrary time later than when the request is ordered by the coherence protocol. The protocol transitions its
state machine based on requests received at the coherence point. If two processors P1 and P2 both issue
rd_X requests for the same block and P1’s request is ordered first, P2’s request is sent to P1. However, P1
may not have the data yet and its block state is pending. P1 buffers P2’s request and services it when P1
receives the data response. This can be visualized as a chain of processors linked together.

We use the same concept of buffering requests but generalize it by also deferring lower priority requests
for blocks exclusively-owned and stable (i.e., the data is available). Note, in the base protocol, only
requests to pending blocks (i.e., the data is unavailable) are buffered.

If the speculating processor acquires all necessary blocks in exclusive owned state, wins all conflicts and
retains permissions on the blocks by deferring incoming requests to these blocks, the processor can appear
to execute its transaction instantly. Once successful, speculation is committed and all deferred requests are
applied in a first-in first-out manner. If the speculating processor loses any conflict and cannot acquire
ownership of a cache block, the processor must relinquish all retained ownership of other data blocks and
service all deferred requests. This ensures deadlock freedom—a losing processor cannot forcibly retain
any exclusive ownership. A requestor losing a conflict and being deferred must be informed about the deci-
sion as the requestor must relinquish any retained exclusive ownership. This process, while not requiring

coherence protocol transition changes, does require additional messages (Section 3.3).

10
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2.5 Implementation-independent invariants
Based on our discussion above, we outline three implementation independent invariants. If these invari-
ants are provided by a system, TLR can be implemented.

Invariant 1; The same timestamp is used for all requests within a given transaction. The timestamp must be
retained following an unsuccessful speculation and must be updated in a strictly monotonic order
following a successful optimistic transaction execution.

Invariant 2: The lowest timestamp request must never be deferred

Invariant 3: On being deferred, a processor must release all its retained exclusive ownerships

Invariant 1 provides conditions for construction of fair conflict resolution guaranteeing all losing con-
tenders eventually become winners. Invariant 2 guarantees the contender with the lowest timestamp will
eventually complete. By not being deferred, the contender can retain exclusive ownership on the necessary
blocks and will eventually acquire all necessary blocks. Invariant 3 guarantees deadlock freedom. On being
deferred, the processor must release all retained ownerships (by simply servicing any deferred requests)
before re-executing the transaction.

The precise implementation for providing these invariants is a function of the coherence protocol imple-
mentation. In Section 2.4.3 we gave one way to enforce invariants 2 and 3 without requiring coherence
protocol changes nor any assumptions about the protocol. We revisit these invariants in Section 3 where we
present details of one way to implement our scheme.

The three invariants collectively provide the following two guarantees:

1. A processor will eventually have the lowest timestamp in the system
2. A processor with the lowest timestamp in the system eventually has a successful transactional execution

In summary, in a bounded number of steps, a node will eventually have the lowest timestamp for all

blocks it accesses and operates upon within its optimistic transaction and is thus guaranteed to have a suc-

cessful starvation-free lock-free execution.

2.6 Example revisited

We now put together the three steps discussed above to ensure starvation-free conflict resolution and a
lock-free execution by revisiting the earlier example of Figure 2. Figure 3 shows two processors, P1 and
P2. P1 has block A in exclusive-owned (M) state and P2 has block B in exclusive-owned (M) state, similar
to Figure 2. Additionally, each processor P1 and P2 now has a unique identifier ID1 and ID2 respectively
where ID1 < ID2 (P1 has higher priority). All memory operations within the optimistic transaction are
assigned the same unique identifier. Therefore, P1’s rd_X for B has ID1 appended and P2’s rd_X for A
has ID2 appended. On receiving P1’s request, P2 compares its identifier ID2 with the incoming request

identifier ID1. Since the incoming request has higher priority, P2 services the request without delay and

11
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Pracessor 1, ID1 Processor 2, ID2
Proc. 1 code sequence Proc. 2 code sequence AM EEER 4
B:P | ]
LOCK(©Q LOCK(Q) request is deferred 3ty
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Store A Store B 2L g N—
t
Store B Store A
N N P1 completes
critical section i3
UNLOCK(Q) UNLOCK(Q) >

Figure 3. Live-lock free execution in the presence of conflicts using a fair conflict resolution scheme.
responds with block B (the non-speculative value). On applying the request, a data conflict is triggered and
P2 restarts execution of its optimistic transaction. Now, at P1 a different sequence of events occurs. P1
receives P2’s rd_X for A at ty. Since ID1 < ID2, P1 wins the conflict and buffers the request. The cache
block state for A stays M. For the protocol, P2 owns the block but P1 has locally masked the conflict and
will guarantee an atomic execution thus maintaining any memory consistency model requirements. P1 also
sends a marker message along with its identifier informing P2 of the deferral and P2’s conflict loss. At tg,
P1 receives data for block B from P2. Note, P1 has acquired and retained permissions on both blocks A and
B and can execute the optimistic transaction successfully. At tg, when P1 finishes the transaction and archi-
tecturally commits its speculative state, P2’s buffered request is serviced and P1 responds with the latest
architecturally correct data. Meanwhile, P2 has restarted and is re-executing its transaction. P1 on success-
fully committing its transaction updates the local timestamp to a value greater than what it was (and >
ID2). This update is similar to Lamport’s logical clock construction and guarantees a fair conflict resolu-
tion scheme. The key difference between Figure 2 and Figure 3 is P1’s ability to retain exclusive permis-

sions in Figure 3.

3 Transactional Lock Removal: Details
We now discuss details of a way to implement our scheme. We discuss it in four parts: a) initiating spec-
ulation, b) generating outgoing requests, c) handling incoming messages, and d) committing speculation.

We also revisit the invariants outlined earlier and show ways to enforce them.

3.1 Initiating speculation and speculative execution
The first step involves identifying a critical section as an optimistic transaction for execution. This
allows us to identify the sequence of memory operations that may constitute a transaction. We use SLE for

doing so. A critical section is predicted by matching instruction sequence patterns and looking for special
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synchronization primitives. On a lock acquire prediction, the lock acquire is elided, a checkpoint of the
architected register state is created, and speculative execution mode is entered. Cache blocks speculatively
accessed within the optimistic transaction are tracked using an access bit associated with each line in the
cache. On initiation of speculation, the local timestamp is generated (Section 2.4.2). This timestamp is
appended to all misses generated within the predicted optimistic transaction and is re-used until a success-
ful execution. Invariant 1 is partially met by doing so—the same timestamp is used for all misses generated
within the given transaction instance. In speculative execution mode, instructions are speculatively retired
and store operations are sent to a speculative write buffer. While exclusive ownership requests are sent to
the memory system, speculatively written data is not exposed until a successful commit. On a misspecula-
tion, speculative write buffer entries are discarded and the architected register state is restored. Within an

optimistic transaction, writes to the same cache line and even same memory location can be combined.

3.2 Generating outgoing requests

In a cache supporting multiple outstanding misses, when an access misses in the local cache, a miss sta-
tus handling register (MSHR) [18] is allocated and the request sent to the memory system. The block tran-
sitions to a pending state (i.e., a data response has not been received). Later, the data response is matched
with the corresponding MSHR and data sent to the processor. The MSHR is freed and the block transitions
to a stable state (i.e., the block is not pending and data is available). We use this existing buffer and func-
tionality and add fields to the MSHR to track whether the request has been deferred. The local timestamp

calculated above is appended to the outgoing request.

3.3 Handling incoming messages

Incoming messages from the coherence network detect all conflicts. When a processor receives a
request from another processor for a cache block with its access bit set (that is part of the optimistic trans-
action), the block can be in a stable state or in a pending state. If the block is in a stable state, the request
can be immediately serviced if necessary whereas a block in a pending state cannot be serviced as the sta-
ble copy is somewhere else. The pending state is guaranteed to transition into a stable state at some point in
the future as guaranteed by any correct base coherence protocol.

Processing incoming requests and performing arbitration among conflicting nodes is specific to the
implementation of the coherence protocol. Techniques for enforcing invariants 2 and 3 differ based on the
underlying protocol. Implementations for NACK-based protocols (where the coherence protocol allows
only one outstanding intervention for a given block in the entire system at any time and additional inter-
ventions for that block are sent a negative acknowledgement) is straightforward. The conflict winner can
simply NACK the requestor and use the same mechanism to inform the loser of the conflict resolution.

Implementations that support multiple outstanding interventions for a given block simultaneously require a
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slightly different algorithm because the processor with the only exclusive valid copy of the block may not
see the latest request for the block. This may happen because a chain of pending intervention requests for
the block get constructed by the coherence protocol. The only requirement is that the invariants must be
maintained by the algorithm.

In our implementation, our base protocol supports multiple outstanding interventions to the same block
and does not support negative acknowledgements. We have implemented our algorithm on top of this pro-
tocol without changing the protocol but rather using the chains formed by the protocol itself to perform
distributed arbitration. The algorithm makes no assumptions about the coherence protocol other than the
protocol being an invalidation-based coherence protocol. Two messages are required, informing the
requestor whether it has been deferred or not deferred. These messages have no coherence interaction and
may use any network. For sake of brevity and because the algorithms depend on the coherence protocol
itself, we do not discuss it further. However, the Appendix has an example of how such arbitration is per-
formed for a coherence protocol using the above two messages.

An incoming message generates a misspeculation only if a conflict occurs for blocks that have been
accessed in an optimistic critical section. Requests to other blocks do not experience any conflict.

3.4 Ending/Committing speculation

When a transaction end is successfully reached, SLE is invoked to commit speculative state appropri-
ately. At this point, all appropriate permissions must be available in the local cache. Once all permissions
are available, the speculative data buffered in the speculative write-buffer is exposed to the memory sys-
tem. All deferred requests are serviced in a first-in first-out order and the local timestamp takes a new value
(satisfying invariant 1). The register checkpoint taken earlier is discarded and execution continues. If nec-
essary, the access bits in the cache are also cleared. In addition to a successful execution, speculation may
end because of events such as resource constraints, certain non-speculative instructions, and operatingéys—
tem thread de-scheduling. If resource constraints force speculation end, the elided lock can be written and
once the write is complete, all speculative cache state can be committed and execution proceeds normally
without misspeculation. For other events, a misspeculation recovery is performed by restoring the register
checkpoint, discarding speculatively written data, and servicing any buffered requests.

Handling the shared cache state
A processor strictly executing exclusive ownership requests for a transaction can defer all requests. A

cache block in shared state is not owned exclusively by any node and a write operation to such a block
requires the state to be upgraded to an exclusive ownership (Section 2.3). External exclusive-ownership
requests to shared blocks cannot be deferred and trigger a misspeculation. However, a shared block can

always be upgraded to an exclusive block and subsequent requests can be deferred. Thus, the shared cache
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Figure 4. Additional hardware support is shown shaded. No protocol or interconnect assumptions are made.

state is trivially handled by upgrading it if necessary. A common optimization employed collapses a read

followed by a write request into a single write request. This minimizes upgrade-induced violations.

4 An Implementation

Consider a shared-memory multiprocessor where every processor has a local cache hierarchy and the
processors are connected together via an interconnection network. The interconnection network provides
the functionality for maintaining invalidation-based cache coherence and transfer data. We make no
assumptions regarding the memory consistency model of coherence protocol. The protocol may be snoop
broadcast (on an ordered or un-ordered interconnect) and may be directory based (on a ordered or un-
ordered interconnect).

We assume a processor with Speculative Lock Elision capability: support for predicting critical sections
for lock-free optimistic transactions, local speculative buffering capability, and ability to locally detect data
conflicts.

Figure 4 shows additional hardware structures as shaded regions in the local node. A local timestamp
generator (involves extracting bits from a loosely synchronous system clock) is added. An access bit per
block tracks data accessed during a predicted optimistic transaction. This set of blocks is conservative and
may be larger than the actual set because the processor does not have precise information regarding
whether the access was indeed from within the critical section because of out-of-order processor execution.
Misses generated in this mode carry with them the local timestamp. An additional deferred coherence
input queue is present. This queue buffers incoming requests that have been deferred by the local proces-
sor. Two messages sent only within the local cache hierarchy (start_defer and end_defer) from the proces-
sor to the cache controller are needed. The start_defer is sent when the processor transitions into

speculative lock-free transaction mode and end_defer is sent on exiting such a mode. The end_defer mes-
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sage may clear the access bits in the local cache hierarchy if necessary. These messages are ordered with
respect to each other and multiple pairs of messages may be present in the local hierarchy. The MSHR is
augmented with additional fields to track status of pending requests that may be deferred (and enforcing
invariants of Section 2.5).

Since we do not change the coherence protocol (e.g., no need for NACK messages), additional marker
messages are required for distributed concurrency control. These messages have no coherence interactions,
can use any point-to-point network (e.g., data network), and do not require any ordering and are only used
to perform distributed concurrency control. These messages carry sufficient information to enforce invari-

ants outlined earlier. An example demonstrating their use is provided in the Appendix.

5 Evaluation methodology

We evaluate our scheme using three microbenchmarks and seven applications chosen from the SPLASH/
SPLASH2 suites. We compare our proposal of Transactional Lock Removal to two schemes—the base case
with the popular TEST&TEST&SET locks, and SLE, which provides lock-free execution only in the absence

of conflicts and requires lock acquisitions in the presence of conflicts

5.1 Synthetic benchmarks

The shared counter benchmark consists of one counter protected by a lock where n processors incre-
ment the counter 21%/n times. Updates are short and no inherent parallelism exists. The multiple unique
counter benchmark consists of n unique counters protected by a single lock. Each processor updates only
one of n counters. The increment is performed 216/, times. This benchmark is the converse case of the first
benchmark. While a single lock protects the counters, there is no dependence across the various critical
sections for the data itself. The doubly-linked list benchmark consists of a doubly-linked list with head and
tail pointers and protected by a single lock. Each processor dequeues an item by removing the item pointed
to by the head, and then enqueues it by adding it to the fail. A process that removes the last item sets both
head and tail to NULL, and a process that inserts an item into an empty list sets both head and tail to point
to the new item. The benchmark finishes when 2'/n enqueue/dequeue operations have completed. Con-
currency exists in the benchmark. A non-empty queue can support concurrent enqueue and dequeue opera-
tions. This potential concurrency is difficult to exploit by conventional means. When the queue is non-
empty, each transaction modifies head or tail, but not both, so enqueuers can potentially execute without
interference from dequeuers, and vice versa. When the queue is empty, transactions must modify both
pointers. This behavior is not realizable in any simple way using locks, since an enqueuer does not know if
it must lock the tail pointer until after it has locked the head pointer, and vice-versa for dequeuers [12, 34].
The critical section in this benchmark is non-trivial and involves extensive pointer manipulations and mul-

tiple cache line accesses. Additionally, the same lock is accessed by two different critical sections.
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Table 1: Benchmarks

Application Suite Type of Simulation Inputs Type of Critical Sections
Barnes SPLASH N-Body 2K bodies cell locks during tree building (nested)
Cholesky SPLASH Matrix factorization tk14.0 task queues, column locks
Mp3D SPLASH Rarefied field flow 24000 mols, 25 iter. cell locks
Radiosity SPLASH2 3-D rendering -room in batch mode task queues, object locks (nested)
Water-nsq SPLASHZ2 Water molecules 512 mols, 3 iter. global structure
Ocean-cont SPLASHZ2 Hydrodynamics x130 conditional updates
Raytrace SPLASH2 Image rendering teapot counters, work queue

5.2 Applications

The applications listed in Table 1 have been selected because they display varying lock behavior, mem-
ory access patterns, and critical section behavior including nested critical sections. Mp3d does frequent
synchronization to largely uncontended locks and lock access latencies cannot be hidden by a large reorder
buffer. Cholesky and radiosity have contended work queues that are accessed frequently. Ocean-
cont has a conditional update code sequence. Raytrace has contended memory buffer queues and
counter updates. Barnes has varied locking behavior and high contention including nested locks, while
water-nsq has little contention. Importantly, these benchmarks have been optimized for sharing and
employ fine-grain locks. They thus have little communication in most cases for low thread counts. We are

interested in determining the robustness and potential of TLR even for these well-tuned benchmarks.

5.3 System configuration

Our target system configuration is shown in Table 2. Our multiprocessor system is a MOESI broadcast
snooping system modeled after the Sun Gigaplane [35]. The broadcast is performed over an ordered net-
work supporting high bandwidth snooping. We use SimpleMP, an execution-driven simulator for running
multithreaded binaries. The simulator accurately models out-of-order processors and a detailed memory

hierarchy in a multiprocessor configuration. To model coherency and memory consistency events accu-

Table 2: Simulation parameters

Processor
Processor speed 1 GHz (1 ns clock)
Reorder buffer 128 entry with a 64 entry load/store queue {64-entry PC-indexed silent store-pair predictor [30])
Fetch mechanism 16 entry instruction fetch queue, 3-cycle branch mispredict fetch redirection penalty
Issue mechanism out-of-order issue/commit of 8 instructions per cycle, loads issue as soon as ready
Branch predictor 8-K entry combining predictor, 8-K entry, 4-way BTB, 64 entry return address stack

Read-modify-write predictor |128-entry PC indexed predictor for collapsing read-modify-write sequences into a single request
Functional units Pipelined 8 integer alus, 2 multipliers, 4 floating point units, 3 memory ports

Instruction cache Single level, 64-KByte, 2-way associative, 1-cycle access, 16 pending misses
Data cache Single level, 128-KByte, 4-way assoc., write-back, dual-ported, 1-cycle access, 16 pending misses,
64-byte lines
Write buffer 64-entry (each entry 64-byte wide)
Memory ordering Total Store Ordering (similar to the Pentium 4, and Ultrasparc III)
Coherence protocol Sun Gigaplane XB-type MOESI protocol, 120 outstanding requests.

broadcast snoop latency: 20 cycles, Perfect L2: 12 cycle access, data transfer latency:16 cycles
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Figure 5. How a queue is maintained and data transfer occurs

rately, the processors operate (read and write) on data in caches and write-buffers. Contention is modeled
in the memory system. To ensure correct simulation, a functional checker simulator executes behind the
detailed timing simulator only for checking correctness. The functional simulator works in its own memory

and register space and can validate total store ordering (TSO) implementations.

6 Results

Before discussing results, we provide an intuition behind the expected behavior of TLR. We then use
this intuition to discuss the performance of microbenchmarks and then discuss application results.
6.1 Performance intuition

With TLR, processors request data without acquiring the lock and the data request is appropriately
queued by the coherence protocol based on the conflict resolution policy using timestamps and some arbi-
tration rules. Figure 5 shows four processors P1, P5, P9 and P7 requesting the same cache line A thus
exhibiting true data conflict. For simplicity, let us assume the conflict resolution scheme has ordered the
priorities in the following order: P1, P5, P9, and P7 as shown in the figure itself. Any other ordering would
not change the basic performance intuition being demonstrated here. P1 is currently executing its optimis-
tic lock-free transaction and has accessed cache line A. P1 defers (and buffers) P5’s request for A. P9’s
request is buffered by P5 and P7’s request is buffered by P9. P1 operates on A, complete its critical section
and then respond to P5’s request with the latest data for A. Subsequently, P5 operates upon the data, exe-
cute its own transaction, and on completion, respond to P9’s request with the latest data for A, and so on.
Thus, while processors attempt to execute the same transaction, they are automatically ordered on the data
request itself and no explicit lock requests are generated. This direct transfer of data, coupled with the
absence of lock requests and overhead, provides the intuition for high-performance in the presence of data
conflicts. Further, while P1 is operating on A, other processors wait for the latest copy rather than introduce
contention in the system by requesting locks and data. The behavior is similar to hardware queue locks [8]
but now the queueing is occurring on the data itself and no lock requests are generated. Removing explicit

lock requests and locking overhead under contention reduces network contention and latency.

6.2 Microbenchmarks
We first discuss microbenchmark behavior. The y-axis shows wall-clock time for completing the execu-

tion of the program. The x-axis shows varying processor count. Each data point in the graphs represents the
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Figure 6. a) Shared counter microbenchmark. TLR outperforms both base case and SLE. b) multiple counter
microbenchmark. TLR and SLE perform the same and both outperform the base case.

same amount of work done by the system. Thus, in a 16 processor system, each processor does lesser work
than in a 8-processor system but the total work done in the system is the same. Figure 6 shows two count-
ing microbenchmarks. Three lines are plotted on each graph: base scheme with TEST&TEST&SET locks,
SLE, and our proposal of TLR.

Figure 6a shows shared counter results. The counter is successively incremented by all processors. This
example has no exploitable concurrency because of true data conflicts in each critical section execution.
The base TTS scheme degrades performance with increasing threads because of severe contention for the
lock. The SLE scheme behaves similar to the base TTS scheme because SLE detects frequent data conflicts
and falls back on the lock-acquisition sequence. Following our performance intuition discussion in
Section 6.1, we get good queued behavior for TLR and increasing concurrent threads does not degrade per-
formance the way the base schemes do.

Figure 6b shows results for N counters protected by a single lock where each counter is accessed
uniquely by a given processor. Although lock contention exists, this example has exploitable concurrency
because no data conflicts exist among different critical sections—the data protected is disjoint among mul-
tiple processors. The TTS scheme degrades performance as more threads run concurrently because of
severe contention for the lock. TLR and SLE behave identically because of the absence of any data con-
flicts (Section 2.4). They experience no lock overhead and true concurrency is exploited.

Figure 7 shows results for the doubly-linked list benchmark. Processors repeatedly enqueue and
dequeue elements from a queue. An enqueue and dequeue operation can occur in parallel. However, con-
current enqueues need serialization and so do multiple concurrent dequeues. This benchmark has difficult
to exploit concurrency. The base TTS scheme degrades performance similar to the other microbenchmarks
because of severe lock contention. SLE does not perform well either (and performs similar to the base TTS
scheme) because determining when to apply speculation is difficult due to the dynamic concurrency of the

benchmark. More often than not, SLE falls back to the base case of lock acquisitions because of detected
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Figure 7. Doubly-linked list microbenchmark. TLR outperforms both SLE and base case..
data conflicts. Any concurrency SLE exploits is offset by locking overhead when SLE needs to acquire the

lock. TLR performs quite well and at times can exploit enqueue/dequeue concurrency.

6.3 Applications

Figure 8 shows application performance. The y-axis is normalized execution time. Each benchmark has
three bars: the first bar corresponds to the performance of the base case employing TEST&TEST&SET locks.
The height of this bar is always 1. The second bar corresponds to SLE [30] with a restart threshold of 1.
This scheme can remove lock overhead if no true data conflicts occur else the lock acquire needs to be per-
formed. The third bar corresponds to our proposal of TLR using timestamps for conflict resolution in a
lock-free execution. Both, the second and third bars are normalized to the first bar. Further, each bar is
divided into two parts: contributions due to lock variable accesses and the remaining contributions. The
breakup is approximate since accounting for stall cycles due to individual operations is difficult but they
give an idea of the amount of performance one could potentially gain.

In all runs for the given benchmarks and configuration, TLR achieves a lock-free execution of all critical
sections, in other words: the data accessed within a critical section fit in our local cache hierarchy. Addi-
tionally, with no programmer involvement and without any knowledge of the actual data structures used,
we provide a lock-free execution transparently, a significant advance.

The benchmarks with infrequent lock contention for the base case are Water-nsq and MP3D. Our
scheme behaves very similar to SLE because SLE works quite well in the absence of any data conflicts.
Ocean-cont has lock-contention but has infrequent data conflicts because of conditional code sequences
within the critical section. Because of infrequent data conflicts, SLE and our scheme behave similarly.
MP3D has a large number of fine-grain locks and thus suffer cache misses. The lock-portion for MP3D thus
is due to long latency read misses to the lock. When the cache is made larger, the lock accesses do not
undergo cache misses (by not writing the lock, thef lock variable is kept cached in shared state). This is an

example where very fine-grain locks can add substantial overhead in terms of poor cache behavior.
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Figure 8. Application performance for 16 threads. Y-axis is normalized parallel execution time. Three bars shown
for each benchmark. The first bar is the base case using TEST&TEST&SET locks. The second bar is using SLE. The
third bad is our proposal for TLR. For each bar, the upper portion is contribution due to lock-variable accesses (lock-
portion), and the lower portion corresponds to the rest (non-lock-portion). The lock-portion also contains time spent
waiting for a lock. The two rights bars are normalized with respect to the base case.

Benchmarks with frequent lock contention and frequent data conflicts are radiosity, raytrace,
barnes, and cholesky. Only radiosity and cholesky benefit a little from SLE because SLE can
sometimes remove locking overhead for some critical sections but requires lock acquisitions for the
remaining critical sections. Thus a substantial portion of lock memory operation contributions remains.
Barnes and raytrace do not benefit from SLE because of high contention for data as well as the lock.

TLR removes all locking overhead even in the presence of data conflicts, provides a lock-free execution,
and performs better than both SLE and the base case for these benchmarks. By removing lock requests
under contention, network contention and traffic is dramatically reduced. Further, since the data is directly
being requested and the request is automatically queued for an appropriate time, the control transfer of a
critical section among two different processors is on the order of a data transfer latency and the requesting
processor gets the latest correct data. Thus the request/response sequence of a lock acquire is eliminated
and the request for the data itself forms as an ordering mechanism. As we can see, for these benchmarks,
nearly all lock overhead is removed (the small portion left is the contribution due to the execution of lock
instructions by the processor itself because they nevertheless consume some processor execution band-
width and only the actual writes to lock variables are removed). The non-lock-portion gets larger at times
because there is inherent communication for the shared data itself even though the locking overhead has

been removed. This communication accounts for some of the stalls in the processor core.

7 Related work
Lock-free and non-blocking methods. Lamport introduced lock-free synchronization to allow multi-

ple threads to work on a data structure concurrently without a lock [20]. Herlihy gave a theoretical frame-
work for constructing wait-free objects [11, 10]. Software only lock-free schemes have been shown to
perform poorly as compared to lock-based schemes because of excessive data copying to allow roll-back

[1, 5]. Hybrid hardware/software schemes have been proposed. The LOAD-LINKED/STORE-CONDITIONAL
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(LL/SC) instructions allow for an optimistic atomic read-modify-write on a single word [14]. Transactional
memory [12] and the Oklahoma update [37] were generalization of the LL/SC primitives outlined above.
Both schemes required special instructions, hardware support, and coherence protocol extensions to pro-
vide mechanisms to write transactional code. Transactional memory is strictly not non-blocking and relied
on software back off to guarantee forward progress. Oklahoma update did not provide starvation freedom
although it did provide liveness by relying on a two-phase commit process and sorting memory addresses
in hardware to order their request. Software transactional memory [34] uses software primitives to imple-
ment transactions but performs poorly with respect to its lock-based counterparts. Software-only proposals
suffer from difficulty of use and a lack of generality and often poor performance. Speculative Lock Elision
[30] dynamically elides lock acquire and release operations from an execution stream but requires lock
acquisitions in the presence of conflicts. Extensive work has been done in improving performance of soft-
ware non-blocking schemes [25, 3, 39, 28]. Software proposals have been made to make lock-based criti-
cal sections non-blocking [38] and thread scheduling that is aware of blocking locks [17, 26].

Database concurrency control and deadlocks. Transactions are well understood and well studied in
database literature [9]. The use of timestamps for resolving conflicts and ordering transactions in database
systems has been well studied [4, 33]. Holt [13] provides a good framework for reasoning about deadlocks
in computer systems. Extensive work has been done in optimistic concurrency control (OCC) for database
systems [19]. OCC was proposed as an alternative to locking in database management systems. In spite of
extensive research, OCC techniques have not been popular because of key limitations [27]. Our proposal is
not intended to replace database transactions because of different characteristics and requirements. The
requirements placed on critical sections are far less strict than those on database transactions.

Speculative execution and parallelization. Speculative execution for aggressive implementation of
memory consistency models was proposed by Gharachorloo et al. [6] and later extended [32, 7]. Similarly,
work has been done in speculative parallelization of programs [16, 36]. While the buffering and specula-
tive execution mechanisms they use are similar to ours, these proposals do not provide lock-free execution
of lock-based code and do not address critical section serialization and thus are orthogonal to our scheme.

Efficient synchronization and lock acquire latency tolerance. Efficient synchronization has been
extensively studied in literature. These techniques attempt to optimize the lock and data transfer operations
[8, 2, 24, 15, 31]. Other work attempts to overlap latency of lock acquisitions with other computation if
possible [29, 23]. The techniques are not lock-free and are orthogonal to our proposal but form part of the
literature in dealing with the inefficiencies of lock-based synchronization and lock acquisition latencies.
All these techniques suffer from the inherent locking overhead and serialization due to lock acquisitions.
Our proposal is aimed at completely removing any serialization on the lock by not requiring any lock

acquisitions, removing any locking overhead, and addressing the key limitations of locks.
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8 Concluding remarks and future work

We have proposed Transactional Lock Removal (TLR), a hardware mechanism to convert lock-based
critical sections transparently and optimistically into lock-free optimistic transactions and a timestamp-
based fair conflict resolution scheme to provide transactional semantics and starvation-freedom, if the data
accessed by the transaction can be locally cached and subject to some implementation specific constraints

(Section 2.2). TLR provides both serializability and failure atomicity.

We summarize the contributions of our mechanism under 3 categories:

+  Programmability. Reasoning about granularity of locks is not required because serialization decisions are made
at run time based on actual data conflicts and independent of lock granularity. Thus, a critical problem in reason-
ing about writing multithreaded programs is solved. Cache lines are the coherence unit and thus represent the fin-
est granularity possible and we provide this granularity without programmer involvement.

«  Fault tolerance. Since the software wait on locks is done away with among conflicting threads, properties of
lock-free and wait-free execution are achieved transparently. This translates to improved system wide interac-
tions, no convoying or priority-inversion dangers, and robust execution in the presence of failing threads.

«  Performance. Independent of lock granularity, because serialization decisions are made only in data conflict
conditions, the performance of the finest granularity locking is automatically obtained. Further, since a queue of
requestors is constructed in the hardware by using the coherence protocol, the data transfers are efficient and low
overhead. Programmers can focus on writing correct code while hardware automatically extracts performance.

TLR is the first to combine these properties and provide a robust solution to the synchronization prob-
lem. While TLR does trade-off hardware for these properties, we believe the hardware cost is modest and it
not complex. Additionally, we address the inherent limitations of the locking construct automatically while
maintaining the well understood critical section abstraction for the programmer. Subject to resource con-
straints, our scheme is the first to provide a wait-free execution of a lock-based program transparently.

Although our proposal is a hardware-only scheme, we believe software developers can use such func-
tionality in several ways. The size of transactions can be architecturally specified thus guaranteeing pro-
grammers a lock-free atomic execution of a sequence of memory operations. Such functionality helps
programmers write simpler high-performance wait-free algorithms. Some of the hardware support,
required for example in identifying critical sections, can be reduced by using appropriate compiler support.

Future work involves exploring how software wait-free algorithms can benefit from our proposal and

achieve high performance. Further, operating systems can exploit the notion of transactional execution to

provide strong guarantees and appropriate operating systems involvement can prevent software failures

(that affect one thread) to interact negatively with other concurrent threads and allow other threads to con-

tinue execution.

We view our proposal as a step in the direction towards high-performance and highly reliable concurrent

multithreaded execution. Enabling reliable, high performance, and easy programming is an important

problem and much work needs to be done in that direction.
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The appendix demonstrates the role of marker messages in avoiding deadlocks when request
deferral is allowed in a cache coherence protocol .

Appendix: Role of marker messages

We give an example to show the role of marker messages in a general protocol and how deadlock is
avoided. The discussion here simply demonstrates how deadlock can be avoided appropriately using
marker messages. In the example, we show how deadlock can happen in a base protocol if requests can be
deferred. We then show how marker messages can be used to prevent a deadlock from occurring.

Consider the left half of Figure 9. It shows 4 processors, PO, P1, P2, and P3. For simplicity, assume the
timestamp values among these processors is as follows: PO < P1 < P2 < P3. In other words, PO has the
highest priority. For brevity, assume all requests are requests for exclusive ownerships. The arcs are labeled
as “Event number/Message/Block”. For example, “1/rd_x/A” from P3 to PO means, at time t; a request
for A is sent from P3 to PO. Further assume processor PO has block A in stable exclusive owned state
(shown as a solid box) and P1 has block B in exclusive owned state. The sequence on the left is as follows.
Att;, P3 sends a request for A to P0. PO buffers the request and does not respond because PO has higher
priority. At t,, P2 sends a request for another block B to P1. P1 buffers the request and does not respond
because P1 has higher priority. Note, P1 is unaware of PO’s request and vice-versa. Now, at t3, P1 sends a
request to P3 for block A because P3 is the current owner as per the cache coherence protocol. P3 does not
have data because the block is pending and its own request has been buffered by P0. At t4, PO sends a

request to P2 for block B because P2 is the latest owner of B. Again, P2 does not have the block because
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2def/A/O

4/def/B/1 P1 receives a defer
Thus, P1 cannot hold
6/B_dota onto any resources and
must service B

Figure 9. An example demonstrating the use of marker messages for deadlock freedom. Marker mes-
sages are shown as dotted lines and the base protocol messages are shown as solid lines.

P1 buffered P2’s request. As can be seen, we have a cycle. PO is waiting for block B from P2, P2 is waiting
for block B from P1, P1 is waiting for block A from P3, and P3 is waiting for block A from PO and this
results in deadlock. This happened because although a pending chain is formed for each block (for A,
PO—sP3—P2, and for B P1—P2—P0), P1 is unaware of PO’s request and P0 is unaware of P1’s request.
Marker messages are used to resolve this. Consider the right half of Figure 9. The marker message is
shown as a dotted arc and is labeled as follows: “Event number/Message/Block/Timestamp”. The sequence
is the same as above except now when PO defers P3’s request of t;, PO sends a marker message to P3 along
with its own timestamp 0. Thus P3 knows the timestamp of the processor that deferred it. Similarly, P1
sends a marker message to P2 with its own timestamp 1. When P2 receives P0’s request for block B, P2
cannot defer the request because P0’s timestamp < P1’s timestamp. Recall that P1 sent its timestamp to P2
in the marker message. P2 sends a message to PO informing it that PO is not deferred for this block. There-
fore, PO knows it has the lowest timestamp in the chain P1—P2—P0. Now when P1 sends a request for
block A to P3 at t,, P3 compares P1’s timestamp with the timestamp of the processor that deferred P3, i.e.,
PO. Since P1 < PO, P3 sends a message to P1 informing it of the transitive deferral (intended to force a
node to give up retained exclusive ownership to other blocks) along with P0’s timestamp. When P1
receives a defer message, it knows it is not the lowest timestamp in the chain for A: PO—»P3—P1. Thus, P1
must give up its exclusive ownership on block B. P1 applies P2’s request by sending a data message back
to P2. P2 then services PO’s request and PO receives data for block B. Thus, a cycle was prevented from
being constructed. We believe the above is a general case and other cases can be reduced to this case.
While a formal proof of deadlock-freedom is out of the scope of the paper, we hope the sketch above

should provide intuition as to why the scheme is deadlock free.
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