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Abstract— One of the principal motivations for content delivery net-
works, such as those that have been deployed over the past three years,
is to improve performance from the perspective of the client. Ideally, this is
achieved by placing caches close to groups of clients and then routing client
requests to the nearest cache. In the first part of this paper we present a
new method for identifying regions of client demand. Our method uses best
path information from Border Gateway Protocol (BGP) routing tables to
create a hierarchical clustering of autonomous systems (AS’s). The method
iteratively adds small clusters to larger clusters based on minimizing the
Hamming distance between the neighbor sets of the clusters. This method
results in a forest of AS trees where we define each tree root as an Internet
backbone node. This forest representation of AS connectivity is an ideal-
ization of the Internet’s true structure. We test for fidelity by comparing
AS hop distances to the Internet backbone. One of the strengths of our
AS clustering method is that it naturally lends itself to the cache placement
problem. In the second part of this paper, we present two cache placement
algorithms based on a tree graph of demand. The algorithms address the
problems of placing single caches and multiple caches so as to minimize
inter-AS traffic and client response time. We evaluate the effectiveness of
our cache placement algorithms using Web server logs and show that they
can greatly improve performance over random cache placement.

Keywords— Cache Placement, Hierarchical Clustering, Demand Analy-
sis

I. INTRODUCTION

Content Delivery Networks (CDNs) distribute caches in the
Internet as a means for reducing load on Web servers, reducing
network load for Internet Service Providers (ISPs) and improv-
ing performance for clients. In order to effectively deploy and
manage cache and network resources, CDNs must be able to ac-
curately identify areas of client demand. One means for doing
this is by clustering clients that are topologically close to each
other, and then placing caches in the areas where demand is typ-
ically large. This raises two immediate questions: how can clus-
ters of clients be generated and once identified, how can caches
be placed among the clusters so as to maximize their impact?

In this paper, we address the question of client clustering by
presenting a new method that generates a hierarchy of client
clusters. As opposed to recent work on IP client clustering de-
scribed in [1], our method uses autonomous systems (AS’s) as
the basic cluster unit. We argue that clustering at the IP level
results in cluster units which are too detailed, and too numerous
and thus do not readily lend themselves to higher levels of aggre-
gation. In contrast, clustering at the AS level provides a natural
means for not only identifying clients which should experience
similar performance from a given cache but also for aggregating
AS’s into larger groups which should experience similar perfor-
mance.

Our interest in the ability to aggregate AS’s stems from the
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desire to clearly understand demand and to effectively distribute
caches. Our clustering method enables groups of AS’s to be
coalesced into larger groups based on best path connectivity ex-
tracted from BGP routing tables. We use best paths because
these are typically the preferred route between an AS and its
immediate neighbors. The difficulty is that best paths do not in-
dicate anything about quality of a connection beyond immediate
neighbors.

We address this problem by introducing notion of Hamming
distance between a pair of connected AS’s. Hamming dis-
tance was introduced in [2] as the minimum number of ele-
ments which must be changed to move from one string to an-
other. For example, the Hamming distance between {1,3,5,7}
and {1,2,3,4} is four because {2,4,5,7} appear in one but not
both of the sets. In our context, Hamming distance is applied
as a measure of similarity of AS connectivity. Specifically, two
nodes with a short Hamming distance indicate that they have
many neighbors in common and are thus candidates for merging
into a cluster.

Our clustering algorithm removes edges from the AS graph
until all that remains in a forest of trees. The benefits of mak-
ing a forest are: (1) objectively identifying a small number of
vertices that can be treated as the backbone of the Internet and
(2) assigning each AS to one and only one tree so that tractable
algorithms can be used to predict the paths packets will take go-
ing to or coming from the backbone. It is implicitly assumed
that the backbone vertices are tightly interconnected (ideally, a
clique) and that packet transfers between backbone vertices are
very fast.

Our algorithm starts by coalescing nodes whose path to the
backbone is uncontested, forming small clusters of nodes whose
only known path to the bulk of the Internet passes through a
common parent. In the BGP tables we examined, clusters were
seldom that obvious. In order to form larger clusters, the algo-
rithm successively relaxes the Hamming distance requirements
for clustering. If we relax the Hamming distance requirements
too far we would eventually collapse the entire network to a tree
with a single root node. Our intention, however, is to only col-
lapse the topology to a size which readily enables evaluation of
demand and facilitates our cache placement algorithms. The re-
sult of our clustering algorithm presented in this paper is a forest
of 21 root AS trees. These root AS’s consist of many of the ma-
jor ISPs such as BBNPlanet and AT&T, but also some smaller
ISPs such as LINX due to the nature of the algorithm. The root
AS’s connect on average with 7.29 other root AS’s indicating
a high level of connectivity between these nodes. The average
out-degree of the root AS’s (i.e.. the number of AS with whom
they peer) is 198 with a median of 97 indicating that the root
AS’s facilitate Internet access to a large number of other AS’s.

It is also important that the forest minimizes that amount by



which it overstates the path lengths between vertices in the orig-
inal graph. To test that we measured paths in terms of AS hops.
In the original graph, the average number of AS hops to those 21
tree roots is 1.61. The average tree depth in our graph is 1.96.
This gave us confidence that our forest does not misrepresent
AS hop distance significantly. These characteristics indicate that
while a forest is an idealization of the actual AS topology, it does
not abstract away essential details.

One domain in which our tree hierarchy of AS’s naturally
lends itself is cache placement. Since our tree generation al-
gorithm is based on best path information from BGP tables, it
enables caches to be placed on AS hop paths which would ac-
tually be used in the Internet. This study assumes that placing a
cache in a AS is sufficient to satisfy all demand from that AS (as
well as the AS’s children which are part of its cluster). We make
this assumption based on the idea that most performance prob-
lems occur across AS boundaries and that performance within
an AS is generally good. Our analysis of cache placement effec-
tiveness focuses on the reduction of inter-domain traffic. There
is clearly and additional benefit of improving client performance
which is a simple extension of our work.

Placement of caches in trees has been treated as a dynamic
programming problem in [3] however the means by which trees
were created was not treated in that work. We address the issue
of optimal cache placement by describing a dynamic program-
ming algorithm in which each subtree calculates the optimal use
for 0 to £ caches in its subtree. Each parent node can then dis-
cover the maximum benefit from £ caches by distributing all of
the caches among its children or by retaining one cache for itself.
We also present a greedy algorithm which iteratively chooses
the AS with largest unsatisfied demand as the next site to place
a cache.

We evaluate the effectiveness of these two algorithms by com-
paring their total cost of traffic when 0 to 50 caches are placed.
We find that optimal placement of a small number of caches
does measurably better than random placement, but that greedy
placement performs surprisingly close to optimal when more
caches are deployed.

The remainder of this paper is organized as follows: Section
II discusses related work; Section III describes our process for
constructing client clusters using BGP routing data; and Section
IV describes the results of evaluating client demand from a Web
log using our clustering results. In Section V we present our
algorithms for optimally placing caches based on client demand
distribution, and in Section VI we demonstrate the effectiveness
of our cache placement methods. In Section VII, we summarize
our results and conclude with directions for future study.

II. RELATED WORK

Our clustering algorithm is analogous to generating a span-
ning tree for the AS graph. Prim’s algorithm [4] is a standard
method for constructing a minimum spanning tree if the root of
the tree is known in advance. Starting at the root, use a breadth-
first search to find all nodes. Each edge that lies on a shortest
path from the root to any other node is a member of the mini-
mum spanning tree. We cannot use Prim’s algorithm since our
graph does not have a pre-defined root. Kruskal’s algorithm [5]
does not require a starting point. It constructs a spanning for-
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est that initially contains a tiny tree for each vertex. Trees are
then combined by coalescing them at the shortest edges first.
Any edge that does not cross between trees is redundant and any
edge left over after all of the vertices have been visited are sim-
ilarly not needed. Although Kruskal’s algorithm serves as the
inspiration for our algorithm, we still had to address the stop-
ping criteria, since declaring a single root for the entire Internet
would have artificially added several hops in the core of the In-
ternet, where a dozen of the biggest transit providers are almost
completely interconnected. Kruskal’s algorithm finds a mini-
mal spanning tree in the sense that the total of the edge lengths
is minimized, even if it makes the tree deep. Our goal was
subtly different, since we want a tree that has maximum fidelity
to the traffic flow in the Internet. In particular, we want a shal-
low tree so that node representations are not mistakenly far from
the backbone. Even outside the core, Kruskal’s algorithm pro-
duces trees that are inappropriately deep when presented with
neighborhoods of completely interconnected vertices.

Initial work on clustering clients and proxy placement was
done by Cuiiha in [6]. That work described a process of us-
ing traceroute to generate a tree graph of client accesses (using
IP addresses collected from a Web server’s logs). Proxies were
then placed in the tree using three different algorithms and the
effects on reduction of server load and network traffic were eval-
uated. Our work differs from this in our use of AS level informa-
tion from BGP routing tables to create a tree which is simpler
and more efficient. Our cache placement algorithms differ in
that the coarser aggregation allows us to use a method that guar-
antees optimal placement. The next significant work on client
clustering was done by Krishnamurthy and Wang in [1]. In that
work, the authors merge the longest prefix entries (i.e.. those
with the most detail) from a set of 14 BGP routing tables. This
creates a prefix/netmask table of approximately 390K possible
clusters. IP addresses from Web server logs are then clustered
by finding the longest prefix match in the prefix/netmask table.
While this approach generates client clusters which are topolog-
ically close and of minimal size, it does not provide for further
levels of aggregation of clusters.

Content distribution companies (e.g.. Akamai, Digital Is-
land) and wide area load balancing product vendors (e.g.. Cisco,
Foundry and Nortel) also use the notion of client clustering to
redirect client requests to distributed caches. These companies
use the Domain Name System (DNS) [7] as a means for both
determining client location and redirecting requests. The as-
sumption made in DNS-redirection is that clients whose DNS
requests come from the same DNS server are topologically close
to each other. Initial work in [8] evaluates the performance of
redirection schemes that access documents from multiple prox-
ies versus a single proxy and shows that retrieving embedded
objects from a single page from different servers is sub-optimal.
Subsequent work in [9] indicates that clients and their name-
servers are frequently neither topologically close nor close from
the perspective of packet latency. However, Myers et al. show
that the ranking of download times of the same three sites from
47 different mirrors was stable [10].

Caching has been widely studied as a means for enhancing
performance in the Internet during the 1990’s. These studies in-
clude cache traffic evaluation [11], [12], replacement algorithm
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performance [13], [14], cache hierarchy architecture [15], [16]
and cache appliance design [17], [18]. A number of recent pa-
pers have addressed the issue of proxy placement based on as-
sumptions about the underlying topological structure of the In-
ternet [3], [19], [20]. In [3], Li et al. describe an optimal dy-
namic programming algorithm for placing multiple proxies in
a tree-based topology. Their algorithm is comparable to ours
although it is less efficient. It places M proxies in a tree with
N nodes and operates in O(N3M?) time where as our algo-
rithm operates in O(N M?2logN). Jamin et al. examine a num-
ber of proxy placement algorithms under the assumption that
the underlying topological structure is not a tree. Their results
show quickly diminishing benefits of placing additional mirrors
(defined as proxies which service all client requests directed to
them) even using sophisticated and computationally intensive
techniques. In [20], Qiu et al. also evaluate the effectiveness of
a number of graph theoretic proxy placement techniques. They
find that proxy placement that considers both distance and re-
quest load performs a factor of 2 to 5 better than a random proxy
placement. They also find that a greedy algorithm for mirror
placement (one which simply iteratively chooses the best node
as the site for the next mirror) performs better than a tree based
algorithm.

Both router level and inter-domain topology have been stud-
ied over the past five years [21], [22], [23], [24], [25]. Our clus-
tering algorithm uses BGP data thus inter-domain topology is
most relevant to this work. In [24], Govindan and Reddy char-
acterize inter-domain topology and route stability using BGP
routing table information collected over a one year period. In
that work the authors describe inter-domain topology in terms
of diameter, degree distribution and connectivity characteristics.
Inter-domain routing information can be collected from a num-
ber of public sites including NLANR [26], Merit [27] and Route
Views [28] (our source of routing information). These sites pro-
vide BGP tables from looking glass routers located in various
places in the Internet and peered with a large number in ISP’s.

III. TOPOLOGICALLY-GUIDED CLUSTERING

A study of sources and destinations of traffic in the Internet
quickly becomes a search for a productive way to summarize
large bodies of traffic into meaningful categories. Categoriza-
tions based on geography are natural, but they are an increas-
ingly inaccurate representation of the topology of the Internet.
Our algorithm discovers the topology of the Internet by reading
the best path data from BGP routing tables [29]. BGP tables
[29] contain a great deal of information about connections be-
yond the next hop. This enables us to construct an AS graph
without having to query every BGP router in the world.

We simplify the graph of AS connectivity into a forest of
trees to facilitate our analysis. We found clusters of nodes with
high mutual affinity by comparing their neighbor sets. We then
iteratively applied the same technique to identify clusters of
clusters(super-clusters), and so on until there were only a few,
very large clusters left. Our algorithm identified 21 such super-
clusters. They form the first level of the forest of trees. As of
2001, a dozen of them are almost completely interconnected.
Since the tree representation loses information about cross-links
between branches of the tree, it is important that our algorithm

minimize the impact on distance calculations using the trees.

Our work extends the IP clustering work done by Krishna-
murthy and Wang [1] showing how BGP routing tables can be
used to gain 99 percent accuracy in partitioning IP addresses into
non-overlapping groups. All IP addresses in a group are topo-
logically close and under common administrative control. Their
client clustering paper shows other more involved techniques for
gaining even higher accuracy and validating the results.

The basic unit of clustering used by our algorithm is the com-
bination of all of the IP ranges that share a common AS number.
Although clustering by AS is less specific than IP clustering, the
IP addresses in our clusters share common routings. Without
common routing, applications of clusters such as cache place-
ment may not be meaningful.

A. Definitions

The following definitions are used throughout the paper:
o AS, is a neighbor of AS,, if it immediately follows or pre-
cedes AS,, in any best path. To simplify the algorithm, AS, is
always added to its own list of neighbors.
« The set of neighbors of AS, is denoted by N,,. The parent
of AS,, is p(n), initially 0.
« The outdegree, outdegree(n) is the initial |N,|. Although
the neighbor set changes during the coalescing of clusters, it is
important to note that outdegree always refers to the original
outdegree, before any clustering. The outdegree of a cluster de-
fined to be the outdegree of its exemplar AS.
o AS, is said to dominate AS,, if N, D N,,. In particular,

dom(n,m) = (N \ N = 0) A (N \ Ny, # 0)

+ The Hamming distance between AS,, and AS,, is the num-
ber of neighbors exclusive to only one of them.

hdist(n,m) = |Np U Npp| — [Ny N Ni |

e The overhang of AS, over AS,, is the size of the set of
Neighbors of n who are not also Neighbors of m.

overhang(n,m) = |N, \ Nn|

B. Clustering AS’s using BGP routing data

To construct hierarchical trees of AS’s we needed to find the
best assignment of small clusters (AS’s with small out-degree)
to larger clusters. For this study, we extracted “best path” data
from a routing table acquired from Oregon Route-views [28]
dynamically on Feb. 20, 2001. BGP routers typically receive
multiple paths to the same destination. The BGP best path algo-
rithm decides which is the best path to install in the IP routing
table and to use for forwarding traffic. These paths tend to use
a highest-throughput lowest-latency link. Our algorithm has no
other means to discover that information directly.

C. Why just use best paths?

Our study includes only best paths, thus some feasible routes
are ignored. In particular, routes that connect AS’s far from the
backbone to other small AS’s won’t be seen. We investigated
using all paths and found that low-bandwidth paths for fault tol-
erance and historical paths with comparatively low bandwidth



made the clustering results volatile. Routing tables from dif-
ferent sources would significantly change the computed cluster-
ing.

D. Multiple passes across the graph

Clustering is performed by successive passes through the
graph building large clusters by visiting small clusters and merg-
ing them into an existing larger cluster.

For each clustering pass, each node, n, without a parent
(i.e. p{n) = 0) tries to find a suitable parent. Conceptu-
ally, the candidate parents are the nodes which dominate it,
Cn = {m € Nyp|dom(m,n)}. In practice, this is too strict a
requirement and we will define Cy, more correctly below. Now,
find the nearest among the candidate parents, m € Cy,. The best
parent is
min {hdist(n,m)}

nearest(n) = nin
m n

If C,, # 0, Node n is merged into the cluster of the best parent,
m. Now p(n) is set to m and 7 is removed from Np,. Note that
n is not removed from other neighbor lists, since n might later
be chosen as a parent by an even smaller cluster.

An interesting design decision happens in situations where
N, = Np,, neither neighbor list is a proper superset of the other
and neither dominates. We defined domination in this way so
both nodes are free to become siblings under some other parent,
keeping the tree comparatively shallow. If n or m had been
arbitrarily chosen as parent, the other (and her subtree) would
appear to be one AS hop farther from the backbone.

It would also have been meaningful to define the best par-
ent as the farthest candidate parent. This would cause AS’s to
choose AS’s with very high out-degree as their preferred parent.
The result would have been a shallower tree that more closely
matches the distance to the backbone, but it also would have lost
the useful categorization of AS’s into clusters with very similar
sets of neighbors.

In practice, many AS’s connect to more than one major
provider. These AS’s are not strictly dominated by any one of
the nodes they have links to. To relax the domination require-
ment, a tolerance factor grows with each pass through the nodes
without parents. The tolerance, J, allows a node to become a
child of any node with a higher out-degree if the overhang is
less than the current tolerance. § drives the speed at which the
clustering completes. So the actual computation for the set of
candidate parents is:

C’nz{meNn

overhang(n,m) <& A
outdegree(m) > outdegree(n)

E. Cluster generation example

A simple example demonstrates how the clustering operates
in practice. In Figure 1, AS 2, AS 3, and AS 6 are connected to
many other nodes. In this example N7y = {4,7} is dominated
by Ny = {4,5,7} so dom(4,7) = true. For each pass, each
node makes a list of candidate parents. During the first pass, AS
7 coalesces with AS 4. AS 4 is now the exemplar for a cluster
and AS 7 is removed from Ny reducing it to {4,5}. The parent
of AS 7, p(7), is set to 4. Similarly, AS 8 is dominated by AS
5. During the second pass, AS 4 coalesces with AS 5 to form an
even bigger cluster with AS 5 as the exemplar.
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In the third pass, the algorithm has nothing to coalesce, since
no node is dominated by any single neighbor. In this case Ny =
{1,2,3,5} is not dominated by AS 2, AS 3, or AS 5. Since
AS 1 connects to one node (AS 2) missing from the AS 5 list,
overhang(1,5) = 1. Similarly, overhang(5,1) = 1 because
of AS 6.

In a later pass, the tolerance grows above 1.0 and the candi-
date parent set of AS 1 becomes C7 = {3,5}. The nearest of
these is AS 35, so AS 1 coalesces with AS 5. During the same
pass, the candidate parents of AS 5 becomes Cs = {3}. Note
that AS 1 is not a candidate parent of AS 5 because it originally
had a smaller outdegree.

In the example, AS 7 would be denoted as AS3.5.4.7. The
name shows the relationship that AS 7 is a child of the progres-
sively larger super-clusters. Clients in AS 7 would benefit (albeit
progressively less) from caches on the path to the backbone.

F. Results of AS clustering

For this study a § tolerance growth of 0.25 per pass was cho-
sen. Figure 2 shows the number of clusters at the end of each
pass through the list of AS’s. The first four passes cluster all
of the easily-classified AS’s with small out-degree. Passes five
through ten found a large number of national, government, and
educational transit AS’s. After the pass 37, further reduction in
the number of clusters takes much longer. To avoid excess lay-
ers at the top of the tree, we stopped the algorithm at pass 40
and declared the 21 remaining exemplars to be the roots of the
forest of 21 trees.

Figure 2 compares the cumulative distribution of distances to
the backbone in both the original full graph and the tree left at
the end of clustering. The maximum distance from the backbone
was 3 in the full graph but rose to 8 in the forest. There were only
56 nodes in the forest farther than 5 hops from the backbone.
This matched our goal for the backbone since over 90 percent
of the 6395 nodes are within 2 hops of a backbone node in the
graph and within 3 hops of a backbone node in the forest. The
average node is 1.61 hops away from the 21 “backbone” nodes
in the full graph, and 1.96 hops away from those same 21 nodes
in the computed forest.

The resulting clustering contains 21 large trees, each headed
by a particular AS. Table III-F shows the names of those Au-
tonomous Systems. The list does not contain some of the AS’s
with high out-degree. Presumably, this is because they were
dominated (at some small tolerance) by an AS that is on the list.
Alternet had the largest number of immediate children at 492, a
little over half of its out-degree (878) in the full graph. There
were 2515 AS’s at the second level of the tree, making the av-
erage number of children per backbone node 120. The top three
levels include a total of 4833 AS’s that are within 2 hops of the
backbone.

G. AS clustering limitations

BGP routing tables don’t show peering relationships that of-
ten permit packets to take shortcuts through the Internet. This is
because routers will intentionally NOT advertise peers if they do
not want to provide transit services for those peers. We have not
studied the extent that these relationships improve global traffic
statistics.
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Fig. 2. Results of AS cluster formation. The left graph shows how the number of clusters declines as clusters are coalesced. The right graph shows how the path
length in the derived tree compares to the path length in the original graph of best paths.

TABLE 1
CLUSTERS IDENTIFIED AS BACKBONE BY THE ALGORITHM. PEERS ARE THE NUMBER OF CONNECTIONS THE EXEMPLAR HAS TO OTHER EXEMPLARS
ALSO IN THIS LIST.

Clstr # | Exemplar AS Members | OutDegree | Peers | Depth
11 2914: Verio 150 235 13 5
2 | 1: BBNPlanet 171 284 12 4
3 | 701: Alternet 492 878 12 8
4 | 7018: AT&T 281 374 11 4
5 | 2828: Concentric 30 85 9 5
6 | 3549: Globalcenter 33 60 9 2
7 | 3561: Cable&Wireless 287 482 9 5
8 | 6453: Teleglobe 57 124 9 6
9 | 293: ESnet 41 112 8 5

10 | 1239: Sprint 407 645 8 5
11 | 2497: INIC 45 82 8 6
12 | 3356: Level3 33 60 8 3
13 | 209: QWest 83 112 7 4
14 | 3300: Infonet-Europe 21 40 6 3
15 | 702: UUNet-Europe 56 80 5 5
16 | 1221: Telstra 27 61 5 1
17 | 1755: EBone 59 97 4 6
18 | 5378: INSNET 32 59 4 8
19 | 1849: PIPEX 26 47 3 5
20 | 2548: ICIX 158 189 2 3
21 | 5459: LINX 26 49 1 4




Other complications can make the AS path less accurate. In
RFC 1772 [30], Route Aggregation allows an AS to advertise
an aggregate route in which contiguous IP addresses can be col-
lapsed to a single entry. The rules of BGP4 require that the
aggregated route contain all of the AS numbers for any portion
of the aggregation. This sometimes overstates the length of the
AS path. It is also possible to use an atomic aggregate, thus
effectively hiding some AS numbers from appearing in the AS
path.

Our algorithm also depends on the AS path being a sequence,
an ordered list of the AS numbers traversed to deliver a packet to
a given IP address range. The BGP4 specification allows an AS
path to be an unordered AS set, but requires that it become an AS
sequence before it is passed as a advertisement to a neighboring
AS. In theory, this means that any BGP4 AS path farther than 1
hop away from its ultimate destination must be an AS sequence
and our algorithm assumes this to be true.

Route Views [28] is a standard source for timely, compos-
ite BGP information. It collects BGP information from routers
widely distributed throughout the Internet. Nonetheless, initial
investigation indicates that adding other routing tables would be
likely to affected our clustering.

Finally, our algorithm creates a forest that sometimes makes
an AS appear farther from the backbone than it really is. This
most often occurs because the cluster with the least overhang
over a subject cluster is preferred when the subject cluster picks
a parent. The average depth of the cluster tree was 1.961,
whereas the average number of hops to the backbone in the full
graph was 1.595. The right-hand graph in Figure 2 shows how
these two metrics compare.

IV. CLIENT DEMAND ANALYSIS

To map demand into our AS hierarchy, we needed to know the
quantity and the composition of client requests that come from
each leaf cluster. A simple case is a web server with a single
host name. To demonstrate our cache placement techniques, we
analyzed a single commercial web server log.

A. Converting IP addresses to AS numbers

The process of converting IP addresses to AS numbers is anal-
ogous to the way an IP routers match the longest prefix of the
IP address contained in the composite routing table obtained in
the prior step. The demand summary [31] for each web server
log is a compact file, suitable for sending across the network to
a collection point. Each demand summary file contains one line
for each AS number that had non-zero requests. The line con-
tains the AS number, the count of successful requests, and the
number of bytes in replies.

B. Web server log

For this study, we use a log from a commercial web server
collected in February, 2001. The log contained 18 hours of re-
quests that were globally diverse containing 402,955 requests
making up 3.69 Gigabytes. There were requests from 791 differ-
ent autonomous systems. The 50 AS’s with the highest demand
accounted for 232,991 requests and 2.19 Gb. To avoid complex
error scenarios, we filtered out all of the requests except HTTP
GET requests with successful result (codes 200 to 203).
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C. Demand Aggregation

Figure 3 shows the aggregate demand from each of the 21 ma-
jor clusters in both bytes and byte-ASHops. The graphs show
that the commercial web server had clients that were concen-
trated in certain areas of the Internet. The 3 busiest were the
clusters whose exemplars were Verio, Alternet, and AT&T with
64 percent of the bytes and 63 percent of the byte-ASHops in
replies. The BBNPlanet cluster was particularly interesting be-
cause it was also one of the best trees for delivering the test
data in the fewest ASHops (2.752 ASHops including 1 for BBN-
Planet and 1 for the root). The clusters with averages above 3.5
ASHops were those represented by ESNET, UUNET-Europe,
LINX and EBONE.

V. CACHE PLACEMENT

The result of our clustering algorithm is a forest of trees con-
taining clusters of AS’s in increasingly detailed groups. The
fundamental assumption is that analysis of a load pattern against
this model will yield a useful, objective measure of the value of
placing caches into this forest. The problem is similar to that
posed by Li, et al. [3], but we simplified it by setting the deliv-
ery cost to be the number of Autonomous Systems that the reply
entered times the number of bytes in the reply.

To do this, we assign a weight to each leaf node equal to the
number of bytes given to it in successful replies. Parent clus-
ters of that leaf are responsible for finding the optimal use of
m proxy caches for each value of £ up to the total number of
proxy caches we can afford to place. Each node can choose to
distribute those £ caches in any amounts among its children and
can choose to keep one for itself. We visualize this as pebbles
placed onto the tree wherever a proxy cache is indicated. Our
cache placement study assumes that any proxy cache will com-
pletely satisfy all requests sent to it. We assume that all requests
are sent to web servers on the backbone. The cost of each reply
is the number of AS’s that see the reply (including the originat-
ing AS) multiplied by the size in bytes of the reply. The cost of
the requests is ignored.

Figure 4 shows a subtree near the bottom of a large tree. In the
absence of caches, the 600 bytes of replies for AS 4 would be
seen by k + 3 systems as they traveled from the backbone. Plac-
ing a pebble at AS 4 will satisfy its 600 byte demand locally. If
that were the only pebble placed, the other 900 bytes of demand
would escape and their cost would be (500(k+1)+400(k+3)).
So, the total cost of the AS 3 subtree given only a single pebble
(and placing it at AS 4) is 600 + (1700 + 900k).

From the point of view of AS 3, the cost of the traffic he will
be different depending on how many pebbles are used. We will
use £ to represent the number of pebbles available. If £ = 0, AS
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Fig. 3. Demand aggregated to the 21 backbone nodes

3 can place 0 pebbles and its cost is 0+ (3500 -+ 1500k). If AS 3
can place £ = 4 pebbles, the cost of its subtree is 1500, although
in this case, the pebble placed at AS 5 is not valuable.

An interesting problem lies in comparing the options AS 3
has if offered only 1 pebble. Atk = 0, £ = 1, AS 3 should place
the pebble at AS 4 for a total cost of 2300. But at k& = 100, AS
3 would choose to put the only pebble on AS 3 for a total cost
of 3500. Clearly, cost is not a simple function of k.

A. Simultaneous placement algorithin

Given a rooted tree with . vertices. Every leaf v is associated
with a non-negative weight w[v]. There are m pebbles, where m
is at most the number of leaves. Consider any placement of up to
m pebbles on any vertices of the tree. A placement of pebbles is
called feasible if every leaf with a non-zero weight w(v] > 0 has
an ancestor which has a pebble on it. Here the ancestor relation
is the reflexive and transitive closure of the parent relation, in
particular every vertex is an ancestor of itself. The cost of any
feasible placement P is defined as follows:

where the sum is over all leaves v, and the cost associated with
the leaf v, denoted by ¢(v), is (A + 1) - w[v], where A is the
distance from v to the closest pebbled ancestor of v. Here the
distance between two vertices of the tree is the number of edges
on the unique shortest path between them. For technical reasons
we define the cost of an infeasible placement to be co.

The goal is to find a feasible placement P with at most m
pebbles such that ¢(P) is minimized.

B. Binary tree case

We first consider the case of binary trees, where every vertex
has at most two children. Of course it is a leaf when there are no
children. Thus for non-leaves, there are either a unique child, or
there are two children, in which case we order them as left and
right arbitrarily.

For any vertex v of the tree T', denote the subtree rooted at
v by T,. Generically, if v has a unique child then we denote
that child by v;, and if there are two children then we denote
them v, and v respectively. For k > 0 we consider a fadpole
graph (T, k) defined as T appended by a single path extending

upwards from the root of T with & extra vertices. Note that
(T,0)=T.

For £ > 0, We will consider the optimal placement of at most
£ pebbles in T, and denote the minimal cost by f,(0, £). More
generally, for k > 0 and £ > 0, we will consider the optimal
placement of one pebble at the tip of the sperm graph (75, k)
which has distance k from the root v of T}, and at most £ pebbles
within T,,. We denote by f,(k, £) the minimal cost ¢(P) of all
feasible pebbling P of (T, k) with at most £ pebbles in T, and
where if £ > 0 we stipulate that one additional pebble is placed
at the tip of the external path from v. If & = 0 and £ = 0 then
we have a feasible pebbling if and only if all weights in T, are
zero, in which case f,(0,0) = 0. Note that for any k,¢ > 0
and k + £ > 1, a feasible pebbling exists. For k = £ = 0,
and if some non-zero weights exist in 7, and thus no feasible
pebbling exists, we denote f,(0,0) = oo.

We will compute f,(k, ¢) for all k,£ > 0, inductively for v
according to the height of the subtree T, starting with leaves v.

More formally, let L, be the number of leaves in T5,. Let d,, =
dy(T') be the depth of v in T, i.e., the distance from the root of
T to v (note that by our definition of distance, the depth of the
root is 0). Let h(T},) be the height of the tree T;,, which is the
maximum depth of all leaves in Ty, i.e., h{T},) = max, d..(T,),
where u ranges over all leaves in 7. Note that a tree with a
singleton vertex has height 0. Inductively for 0 < h < A(T),
starting with h = 0, we compute f,(k,£), for all v € T such
that the subtree T}, has h(T}) = h, and for all 0 < k < d,, and
forall0 <4< L,.
Base Case hh = 0:
In the base case h = 0 and we are dealing with a singleton leaf,
together with an extension of a path of length £ if & > 0, and no
extensions if k& = 0.

Thus, for k = 0,

O A
and for £ = 1, (note that h(T},) = h = 0 implies that L,, = 1),
fu(0,1) = wlv].
Now for k > 1,

fu(k,0) = (k+1) - wlv],



and for £ =1,
fulk, 1) = wv].
Inductive Case h > 0:
For the inductive case h > 0, we have some v with h(T}) = h,
and we assume we have computed all f,/(k, £) for children v’ of
v. There are two cases, v has either one or two children. First we
consider v has a unique child v;. For either k = 0 or k > 0, we
can consider either placing a pebble at v or not placing it there.
But we claim that without loss of generality we don’t need to
place it there. This is because v has only one child, and if an
optimal pebbling places a pebble at v, we can obtain at least as
good a pebbling by moving the pebble from v to vy, and if v;
is already pebbled we can remove one pebble. Thus, we have
an optimal pebbling of (T}, k) using at most £ pebbles in Ty,
without a pebble at v. Hence,
fv(oa E) = fur (07 Z)a
and for k > 0,
fv(kve) = fv'(k + 1a€)

Suppose now v has two children v1 and vo. Basically we must
decide how to distribute £ pebbles in the subtrees T, and T,
with £; and ¢; pebbles each. There is a slight complication as to
whether to place a pebble at v, the root of T, which affects how
many pebbles there are to be distributed, either £; + £» = £ or
£—1.

First k = 0. If we place a pebble at v, (which of course
presupposes £ > 0), then there are £; + £» = { — 1 pebbles to be
distributed in T, and T5,,, but with respect to these two subtrees
the “k” values are both 1, i.e., we have fy, (1,41) + fu,(1,42),
minimized over all pairs {1 + £2 = £ — 1. (To be precise, all
pairs (£1,£2), such that 0 < £y < L,,, 0 < £ < Ly, and
£y 4 £ = £ — 1; but we will not specify this range explicitly in
the following.)

If we don’t place a pebble at v, then there are £; + £, = £
pebbles to be distributed in T,,, and T,,, and since k = 0 for T,
with respect to these two subtrees we still have the “k” values
0. So we have f,,(0,41) + fu,(0,£3), minimized over all pairs
El 4 ly = 4.

The optimal cost f, (0, £) is the minimum of these two mini-
mizations, i.e.,

min

21*‘“2?”“1 {fvl (17 el) + fvz (17 e?)} ’

exbtane {fur (0,01) + £, (0,62)}
(It is understood that in case £ = 0, the first minimization is
vacuous and should be omitted. This is the standard convention,
a minimization over an empty set (no non-negative £; sum to
—~1) is co. Also the second minimization is merely f,, (0,0) +
fu,(0,0) which is typically co unless all weights in T}, are zero,
in which case it is 0.)

We consider the case k& > 1 next. For £ = 0 we have

fu(kvo) = fv1(k+l)0) +fv2(k+170>-

Suppose £ > 0. Again we have the possibilities of placing a
pebble at v or not. Thus,

"-15?2135_1 {fvl (1, @1) + fvz(l’ 32)} )

vyt {fo (R +1,01) + fop (b +1,62)}

fv(0,£) = min

fu(k,£) = min
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This completes the description of the computations of
fu(k,£). The final answer is f,(0,m), where r is the root of
T and m is the number of pebbles. If m is given, (typically
much smaller than the number of leaves), in the above compu-
tations one never needs to compute for £, the number of pebbles
allowed, beyond m, i.e., all £ < m.

We estimate the complexity of the algorithm. Let H =
h(T) be the height of the tree. Typically H ~ O(logn).
For leaves, the algorithm spends O(d,) = O(H) time
per leaf. For each vertex with one child the time is
O(d, min{L,, m}) = O(Hm). For each vertex with two chil-
dren it is O(d, min{L,,m}?) = O(Hm?). Hence the total
running time is at most O(nHm?), which is only O(nm? log n)
with H =~ O(logn).

It is also clear that the above algorithm can be easily modi-
fied to compute the actual optimal algorithm in addition to the
optimal cost.

Theorem 1: There is a polynomial time algorithm that com-
putes the optimal pebbling placement as well as the optimal cost
of the pebbling placement. The running time is O(nHm?), for
a binary tree of n vertices, height H, and m pebbles.

C. General trees

We now generalize the above algorithm to an arbitrary tree.
First, for a leaf node v, we define f,(k, £) to be the minimal cost
¢(P) of all feasible pebbling P of (T, k) with at most £ pebbles
in T, and where if £ > 0 we stipulate that one additional pebble
is placed at the tip of the external path from v. Note that in the
case of leaf node, T}, is a singleton, and if £ > O then (T, k) isa
single path of length k. Also0 < £ < L, =1,and 0 < k < d,,.

Thus, the computation for the leaves are identical to that in
the binary tree. If k = 0, then

fo(0,0) = { o(i) gt;::a[rl\))]vise,o
and forf =1,
£5(0,1) = wlu].
Fork >1,
Fulk,0) = (k+ 1) - wh,
andforfl =1,

fulk,1) = wv].

We now consider non-leaf nodes v. Let A be the number
of children of v, let vi,vg,...,ua be its children from left
to right, and let the subtrees rooted at the children of v be
To,1, T2, - ., Ty, A respectively. Denote by T, |4 the subtree of
T, induced by the vertex set of {v} U ULI Ty forl <d <A
Denote by L, 4 the total number of leaves in T}, [g).

Define ffj’d(k,f), whereb=00r1,1 <d< A0 L
L,q4,and 0 < k < dy, as follows. Firstlet k = 0. If b = 0,

Syd((),é) is the minimal cost of a pebbling placement of the
subtree Tv,[d], where we use at most £ pebbles in Tv,[d], and no
pebble is placed on v. (When no feasible pebbling placement
exists with this constraint we have f0 ;(0,£) = o0.) Ifb = 1,

+.4(0, £) is the same as above except v is placed with a pebble
out of £ pebbles.
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This definition is generalized for k > 0. For f% ;(k,£), we
consider (7,4}, k) in place of T, g and for k£ > 0 we stipulate
that one additional pebble is placed at the tip of the external path
from v of distance k from v. As before this additional pebble is
not counted in £.

We then define

fo(k,0) = £3 Ak, 0),

and

fv(kve) = lnin{fz?(kvg)v fz}(kae)}

Again we will compute f,(k, £) for all k,£ > 0, inductively
for v according to the height of the subtree T, starting with
leaves v. The base case h = 0 having already been taken care
of, we assume h > 0 and h(T,) = h.

First we consider the left most subtree (T,,; with d = 1, i.e,,
we compute [ ; (k, £) for (T, ), k).

If k = 0 and b = 0, then

0.(0,£) = £, (0,0).

Note that h(Ty,) < h and thus inductively f,, (k, £) have been
all computed already.
Similarly for £ = 0 and b = 1, then

1 _ o0 if =0
v‘l(o’e)‘{ Fo(1,6—1) if£>1.

Note that in the last equation the “k” value in f,, is 1 due to the
stipulation that by b = 1 we placed a pebble on v.
Now we consider k > 1. Againif b =0,

o1 (kr0) = fur (k+1,2).
Similarly fork > 1and b =1,

) _ o0 if£=0
v»l(o’@“{ fo(l,e=1) if£> 1.

We proceed to the case of 1 < d < A. This time we in-
ductively assume that we have already computed not only all
for(k,£) with h(T,) < h, but also the relevant quantities for
(Tv,[d—1]7 k)

Thus, fork = 0and b = 0,

fz(z),d(ow f) = e,}&i,pze{fz?,d—l(o’ el) + .fvd (O, e”)}.

To be precise the minimization is over all pairs (£, £”), such that
0<l < Lyg-1,0< o< Ly,and g + 0, =L < Lv,d-
Fork=0andb =1,

5a(0,0) = min (£551(0,€)+ fo, (1€},

Note that in f,, we had the “k” value 1 since by b = 1 we have
stipulated that a pebble is placed on v. The range of (¢, £") are
the same as before except in fact £ must be > 1, otherwise the
value oo will appear. (In particular, for £ = 0 the minimization
is 00.)

Finally we consider the case d > 1 and 1 < k < d,,. For
k > 1and b = 0, we have

va(k,0) = min {fo4 (k&) + fou(k+ 1,07}

Andfork > 1and b = 1, we have

fl:ll,d(k’ Z) = efﬂif}l:e{f‘}’d—l(k’ el) + f'Ud(17 gll)}'
Note that in the last equation, in fact the minimization is over all
pairs (£/, 0"y with £/ > 1,as wellas &/ < L, 41,0 <" < Ly,
and {1 + £ = £ < L, 4. But we do not need to explicitly state
that ¢/ > 1, since for ¢/ = 0, fg,d_l(k,O) = co can be shown
by an easy induction. Also note that the “k” value in f,, is 1,
due to the stipulation by b = 1 that v is pebbled by one of the ¢/
pebbles.

We have completed the description of the algorithm. The final
answer is f(0, m), where r is the root of 7" and m is the number
of pebbles. Again, no need to compute for any value £ > m, if
m is the total number of pebbles given.

The complexity of the algorithm can be easily estimated as
before. For leaves, the algorithm spends O(d,) = O(H) time
per leaf. Thus the total work spent on leaves is at most O(nH).
For any non-leaf v, suppose the degree of v is AA,,, then the com-
putation work spent for v is O(A, Hm?). Thus the total amount
of work spent for non-leaves is O}, Ay Hm?) = O(nHm?).
Hence the total running time is at most O(nHm?), which is
again only O(nm?log n) with H ~ O(log n).

Theorem 2: There is a polynomial time algorithm that com-
putes the optimal pebbling placement as well as the optimal cost
of the pebbling placement. The running time is O(nHm?), for
any rooted tree of n vertices, height H, and m pebbles.

D. Implementation

Our simultaneous placement algorithm is a dyramic program-
ming algorithm that visits each node exactly once to determine
the best use of m caches in its subtree. The algorithm discovers
the optimal placement of all values of £ caches from 0 to m so
as to minimize the total cost of traffic.

The result of running the evaluation on any node visa k x m
matrix f,(k,{) containing the total costs of the subtree where
0 < £ < m is the number of caches and k is the distance to
the nearest source of the data. For each element of the matrix,
the node must choose how many pebbles to give to each of its
children and whether or not to keep a pebble for itself.

Leaf nodes can compute their cost matrix f,(k, £} easily. If
they are given one or more pebbles, their cost is simply the num-
ber of bytes of replies needed by that AS. Assume £, is that
number of local traffic bytes at node v. If a leaf is given zero
pebbles, his cost is & * ¢,,. In the implementation, we used a ma-
trix that is 15 rows high, representing values of k from 0 to 14.
In our study, the maximum number of pebbles, m, is set to 50
but could be increased at the cost of running time and memory
consumed by the algorithm.

Define fﬁ” 4(k,2) to be the cost of a daughter subtree of T,
where 1 < d < A is one of the A daughters of node v.

Each row k of f0(k, £) is computed using row k + 1 from the
daughters. Start with the first daughter’s k + 1 row intact. Then
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for each subsequent daughter, test all distributions of £' +£" = £
pebbles in which ¢/ pebbles are given to the prior daughters and
£ pebbles are given to the new child.

S,d(kv Z) = e,ﬂ%}l_g{fz()),d—l(k, e,) + fvd (k + 11 E”)}'
When all A children have been combined, the resulting
£2 Ak, £) matrix is £ (k, £).

Now we construct f!(k,£). The first element, f;(0,0) is oo,
because no pebble is available. To find the rest of f} (k, £), take
the first row of fO(k, £) and shift it down by 1 pebble because
the children will only have £ — 1 pebbles to distribute. Note that
all other rows of the matrix are copies of row 0.

fok,0) = £(0,£-1)

Finally, each element f, (k, £) is the minimum of f} (k,£) and
fo(k, ).

To compute the best placement for the whole tree, we com-
pute the cost matrix of the root, froot(k,£). The row k = 0
contains the minimum cost for the whole tree for values of
0<L<m.

E. Practical computational cost

Let i be the number of interior (non-leaf) nodes in the tree
(1594 in our study). Let H be the height of the tree, the max-
imum number of AS-hops for any path (15 in our study). Let
m be the maximum number of proxy caches placed (50 in our
study).

Each AS is visited exactly once to compute his cost matrix.
The total number of cost matrices computed is 4.

Each cost matrix has K rows. The total number of cost rows
computed is ¢ x K.

Each of those rows is a combination of the contributions from
all of the children of the node. Let § be the number of children
of node v. As previously noted, there will be K rows at node v.
Each of those rows will have m + 1 items representing values
from 0 to m pebbles. The initial local cost matrix of the parent
will be combined § times with other matrices (once for each
child).

After several simple optimizations, our test run with a tree of
21 backbone nodes totaling 6395 nodes had 69,486 row combi-
nations in the 6395 matrix combinations.

VI. EVALUATION OF CACHE PLACEMENT IMPACT

To measure the benefit of each new cache added to the tree,
we compute the total traffic seen by the sample web server log.
Figure 5 shows the total traffic normalized to the traffic that
would result if O caches are used. In our test data, 3.41 Gi-
gabytes of replies came from 790 of the 6395 clusters. Using
the tree produced by the clustering algorithm, on average traf-
fic touched 3.07 AS’s including the AS at the backbone and the
originating AS. The total cost of traffic in this test data was 10.46
Gigabyte-ASHops.

A. Random Placement

For comparison, we compute costs for a placement algorithm
that more closely matches the way caches might be placed op-
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Fig. 5. Performance versus random and greedy placement

portunistically in a practical case. We randomly chose 50 lo-
cations out of the top 200 demand sites. The results in Fig-
ure 5 show that an occasional good guess causes a noticeable
decrease in traffic. The random algorithm took 193 caches to
reduce the normalized traffic below 7 Gigabyte-ASHops. Av-
eraging a number of random runs would smooth the curve, but
would be unlikely to lower it.

B. Greedy Placement

Figure 5 also shows the results of a greedy placement algo-
rithm that incrementally places each cache at the hottest remain-
ing site in the forest. Two greedy algorithms were attempted
with very similar results. Assume p caches have already been
placed. Incremental placement is accomplished for the (p+1)
cache by pre-defining locations for the prior p pebbles. The al-
gorithm is then run with only one pebble allocated to the entire
Internet. In fact, figure 5 shows an even simpler algorithm to de-
termine the placement of a single, new cache. It chooses the un-
cached AS with the highest local demand. We were surprised to
see how well the greedy algorithms performed and how closely
their performance matched each other. The greedy algorithm
reduced the total traffic below 7 Gigabyte-ASHops by using the
10 AS’s with the highest local demand. In fact, the first 11 loca-
tions chosen by the greedy algorithm matched the first 11 loca-
tions chosen by the simultaneous placement algorithm (albeit in
a different order).

Moreover, these incremental placement algorithms (random
and greedy) more closely model the financial reality that moving
a cache from one location to another is typically not economic.

C. Simultaneous Placement

Running the dynamic programming algorithm discovered
ways to cut the total traffic gigabyte hops by half using 42
caches. This is 10 fewer caches than a greedy placement and
it is also a point at which extra caches give little benefit. With
200 caches, the simultaneous placement algorithm was able to
reduce the traffic to 4 Gigabyte-ASHops.

Perhaps the most benefit of the simultaneous placement algo-
rithm is the shape of the graph. Figure 5 clearly shows diminish-
ing returns beyond placing 11 caches. By running the algorithm
once, the analyst can see what the optimal result is for the entire
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range of 0 to m caches and compare the benefits to the cost per
cache.

VII. CONCLUSIONS

In this paper we have described methods for creating AS clus-
ters based on BGP routing data. The algorithm for creating a
forest of AS numbers objectively discovers the AS’s that form a
highly interconnected backbone for the Internet. The resulting
forest slightly overstates the average number of hops from any
point in the Internet to a common backbone, but is close enough
to allow the study of client demand and cache placement.

We have also presented a new, optimal method for placing
caches in the AS hierarchy generated by our clustering method.
We compared the effectiveness of our algorithm to two incre-
mental techniques using a commercial Web log. We found that
greedy placement of caches worked nearly as well as the sophis-
ticated, optimal technique when the number of caches was small
or large.
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