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Abstract

In order to better support complex applications, object relational systems provide fea-
tures that are absent in relational systems. The main distinguishing features are abstract
data types and type constructors. The set constructor creates a new type by providing
collections of existing types. It is well known that sets are useful in modeling a great
deal of real world data. However, such powerful modelling comes at a price; without an
efficient implementation, using sets can yield a performance much worse than that ob-
tained using only traditional relational constructs. This dissertation explores novel ways
of implementing set-valued attributes in an object relational system. Specifically, it con-
siders various options for efficiently storing set-valued attributes, and ways of computing
the challenging set containment join operation.

We first address the problem of storing set-valued attributes. Using the orthogonal
attributes of nesting and location we identify four options for representing sets: nested
internal and external, and unnested external and internal. These representations can be
combined with the creation of various indices to create various classes of indexed rep-
resentations. We evaluate each of these representations with respect to conjunctive and
disjunctive queries. Our results show that overall the nested implementations perform
better than the unnested implementations because (a) they exploit grouping semantics
while fetching the members of a set instance and (b) they allow the evaluation of set
predicates directly on the set instance.

Next we consider the problem of efficiently evaluating set containment joins. For
unnested external representation, the set containment join can be expressed directly

in SQL. By contrast, the most obvious algorithm for computing set containment joins



on nested representations is the signature nested loops algorithm, which computes set
signatures and compares each signature in a relation with all the signatures in the other
relation. To improve on the performance of this algorithm we propose a new partitioned
set join algorithm (PSJ), which uses a multi-level scheme of partitioning by replicating
the inner relation. Our performance study shows that for extremely small relation and
small set cardinalities, the SQL query approach and signature nested loops perform
comparably to PSJ. However, as the size of the data sets increase (in both relation and

set cardinality), PSJ clearly dominates.
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Chapter 1

Introduction

The relational model was popularized in the 1970’s and since that time has largely re-
placed the older hierarchical and network data models. Today, relational database sys-
tems are the dominant mainstream approach to database management and have a very
healthy market share. Most recently, with the explosion of the web and e-commerce, the
market for database systems has increased significantly as relational systems are being
used as the backend for these systems. However, as new classes of applications began
to be implemented over relational systems, several shortcomings of these relational sys-
tems were exposed. Object relational systems were developed to solve these problems by
adding extensions to relational systems. These object relational systems can be charac-

terized by starting with a relational system and adding:

e Abstract Data Types: The addition of abstract data types allows the creation
and addition of new data types that a database system can understand. In an object
relation system, these types are seamlessly treated as equivalent to built-in types.
The definition of a new data type describes the data fields and the methods that
operate on these fields. Method invocation can be specified as a part of the query.
Adding a new data type requires the name of the type, storage information about
the type, and routines to convert the data type from the internal representation
to ASCII and back. The data types can be added either at compile-time or at

run-time.



e Type Constructors: Type constructors are used in an object relational system
to construct new types by composing base or abstract data types. The major class
of type constructors included in these systems are composites (records), collections,
and references. The class of collections can be further divided into éets, bags, arrays

and lists.

e Inheritance: Inheritance allows the creation of new data types by derivation from
existing types. For example, data inheritance allows new types to derive their data
elements from their super types. On the other hand, function inheritance derives
methods from the methods of super types. Furthermore, the inheritance mechanism

typically allows the designer to refine the derived data elements and methods.

In this thesis our focus is on the set type constructor.

Set-valued attributes are beginning to appear in commercial O/R DBMSs — all the
major vendor’s universal servers either currently have set-valued attributes or plan to
support them in the future. Furthermore, as set-valued attributes are part of the proposed
SQL4 and OQL [Cat94] standards, it appears that in the future this support for set-valued
attributes will not be optional — a system will provide set-valued attributes or it will not
support the standard. Finally, the rise of XML as an important data standard increases
the need for set-valued attributes, since it appears that set-valued attributes are key in
the natural representation of XML data in relational systems [SHT*99].

While the expressive power of set-valued attributes has long been studied by the data
modeling and query language communities, to date there has been very little published
about the efficient implementation of set-valued attributes in object relational systems.
In this dissertation, we make a first step toward rectifying this lack of information by

implementing and experimenting with several alternatives for set-valued attributes in an




object-relational database system.

1.1 Set-Valued Attributes

To illustrate the usefulness of sets, consider the integration of mining in a database system
that discovers association rules from market basket data. Suppose that the market basket
data consists of sets of products (items) purchased together in a purchase transaction.
An association rule expresses relationships of statistical significance between the presence
of various items in these transactions. Association rules are of the form X =Y, where
X (head) and Y (tail) are sets of items. Statistical significance is expressed in terms of
support (fraction of transactions in which an item-set occurs) and confidence (fraction
of transactions containing X also containing Y'). The following relational schema could

be used for storing the market basket data and rules.

1.1. Example.

Sales(Tid, Cid, Sid, Purchase-Date, Pid, Quantity, Price)
Customer(Cid, Name, Address)

Product(Pid, Name, Manufacturer, Release-Date, Category)
Store(Sid, Name, Address, Region)

Associations-Head(Rid, Pid)

Associations- Tail(Rid, Pid)

Now consider a query that mines the association rules on transactions that contain at

least the products swim-wear and goggles. Such a query can be written using extended

SQL as follows:

MINE RULES Associations-Head, Associations-Tail AS

3



SELECT 1..n S1.Pid AS BODY , l.n S1.Pid AS HEAD
FROM Sales S1
WHERE S1.Tid IN ( SELECT S.Tid
FROM Sales S, Product P
WHERE S.Pid = P.Pid AND P.Name = ’swim-wear’ OR
P.Name = ’goggles’
GROUP BY S.Tid
HAVING COUNT (*) =2)
GROUP BY Tid

HAVING RULES WITH SUPPORT : 0.1, CONFIDENCE : 0.2 (Q.1)

Such a query poses many problems in terms of expressability and performance. First,
it is not very intuitive to express such a query in standard SQL. Second, the mining
query requires a “groupby” operation on the transactions so that items belonging to
each transaction can be operated upon simultaneously. Additionally, the query requires
a join and a group by in order to locate the transactions containing both the specified
items. Third, the correlation between the WHERE clause predicate and the HAVING
clause predicates must be maintained when the query is changed. Finally, storing the
rules (results of the query) requires multiple relations because of the first normal form
limitation of the relational model.

Now consider the object relational version of the schema presented earlier, where
the Sales relation contains a set-valued attribute describing the products bought by a

customer in a transaction:

1.2. Example.
Sales(Tid, Cid, Sid, Purchase-Date, Items-Bought{ Pid, Quantity, Price})
Customer(Cid, Name, Address)




Product(Pid, Name, Manufacturer, Release-Date, Category)
Store(Sid, Name, Address, Region)
Associations(Head:{ Pid}, Tail:-{Pid})

Using this schema, Query (Q.1) can be rewritten in compact form as follows:

MINE RULES Associations AS
SELECT 1---N S.Items-Bought.Pid AS BODY , 1..-N S.Items-Bought.Pid AS HEAD
FROM Sales S
WHERE ( SELECT P.Pid
FROM Product P
WHERE P.Name = 'swim-wear’ OR P.Name = ’goggles’ )
SUBSET OF S.Items-Bought.Pid

HAVING RULES WITH SUPPORT : (.1, CONFIDENCE : 0.2 (Q.2)

Compared to the relational example, Query (Q.2) is more concise and intuitive. It does
not incur the performance overhead of the extra groupby and join in query (Q.1), since
all the products are already stored as a part of a single transaction tuple. Finally, only

a single relation Associations is needed to store the rules.

1.2 Set-Valued Attribute Queries

In this section, we enumerate several types of queries involving set-valued attributes. In
our examples we use the schema in Example 1.2 presented earlier. For the queries, let us

assume that the Pid of the products swim-wear and goggles are 100 and 200 respectively.

e Conjunctive Queries: Conjunctive queries over set-valued attributes check for
the existence of multiple elements in a set. An example that checks for a singleton

member is:



SELECT S.Tid
FROM Sales S

WHERE 100 IN S.Items-Bought.Pid (Q.3)

which retrieves all the transactions that contains the product swim-wear. Multiple
memberships can be easily expressed as a conjunction of singleton membership as

shown in the following query:

SELECT S.Tid
FROM Sales S

WHERE 100 IN S.Items-Bought.Pid AND 200 IN S.Items-Bought.Pid (Q.4)

The above query retrieves the transactions containing both swim-wear and goggles.

e Disjunctive Queries: Disjunctive queries contain predicates that are the disjunc-
tion of set element memberships. An example of such a query that presents the

transactions containing either swim-wear or goggles is given below.

SELECT S.Tid
FROM Sales S

WHERE 100 IN S.Items-Bought.Pid OR 200 IN S.Items-Bought.Pid (Q.5)

e Set Comparison Queries: Set comparison queries are characterized by having
predicates involving set comparisons, where one of the sets involved is explicitly

enumerated or specified by a nested query. Some examples are shown below.

SELECT S.Tid
FROM Sales S

WHERE {100, 200} SUBSET OF S.Items-Bought.Pid (Q.6)




SELECT S.Tid
FROM Sales S
WHERE ( SELECT P.Pid
FROM Product P
WHERE P.Release-Date < S.Purchase-Date )

SUBSET OF S.Items-Bought.Pid (Q.7)

Query (Q.6) finds all the transactions that contain both the products swim-wear
and goggles and is equivalent to a conjunctive query. On the other hand, Query
(Q.7) retrieves the transactions that contain all the products released before the

date of purchase, which is not equivalent to a simple conjunctive query.

Nested Queries: Since the elements of a set can be tuples, sets can be considered
as relations, hence nested SQL queries can be posed. In these SQL queries, the
nested queries can occur either in the projection or predicate lists, or in the FROM
clause. They can potentially contain joins with other tables. We now enumerate a

few examples:

SELECT S.Tid, ( SELECT DISTINCT P.Manufacturer
FROM Product P, S.Items-Bought B
WHERE P.Pid = B.Pid )

FROM Sales S (Q.8)

Query (Q.8) lists all the sales transactions, and for each transaction lists the man-
ufacturers of the products bought in that transaction. Next, as an example of a
query in the predicate list, we consider a query that enumerates the transactions

that contain at least one product bought on its release date:

SELECT S.Tid



FROM Sales S

WHERE EXISTS ( SELECT P.Pid
FROM Product P, S.Items-Bought B
WHERE P.Pid = B.Pid AND

S.Purchase-Date = P.Release-Date ) (Q.9)

e Set Containment Join Queries: Set containment join queries involve joins in

which the join predicate is set containment. Consider the following query

SELECT S1.Tid, S2.Tid
FROM Sales S1, Sales S2

WHERE S1.Items-Bought C S2.Items-Bought (Q.10)

Query (Q.10) computes all pairs of transactions such that one transaction contains

a subset of the items bought in the other transaction.

e Set Intersection Join Queries: Set intersection joins are closely related to set
containment join queries. These queries involve joins in which the join predicate is

intersection between set instances.

SELECT S1.Tid, S2.Tid
FROM Sales S1, Sales S2

WHERE S1.Items-Bought N S2.Items-Bought # ¢ (Q.11)

The above query computes pairs of sales transactions that have at least one item
in common. Another variant of the query selects tuples such that the result of the

intersection equals a given set.

SELECT S1.Tid, S2.Tid




FROM Sales S1, Sales S2

WHERE S1.Items-Bought N S2.Items-Bought = {100, 200} (@Q.12)

e Set Predicate Join Queries: We can generalize the containment and intersection
joins to consider queries in which any set predicate is the join predicate. For

example, consider:

SELECT S1.Tid, S2.Tid

FROM Sales S1, Sales 52

WHERE FOR ALL x IN Sl.Items-Bought AND
FOR ALL y IN S2.Items-Bought

SUCH THAT x.Price > y.Price (Q.13)

This query computes pairs of transactions such that the price of each of the items
from a tuple from S1 is greater than the price of all the items in transactions from

a tuple in S2.

In this thesis we focus on the conjunctive and disjunctive set queries, and set containment

join queries.

1.3 A Note on Modeling

Many real world concepts naturally lend themselves to be best described by sets. In such
cases, set-valued attributes provide conciseness and ease of expression. There are two
distinct possibilities for how sets can be used: as logical collections or as nested relations.
Each of the usages can be best described by an example.

First, we consider sets as logical collections. Consider the following example that

describes the set of movies seen by a person.
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Moviegoer(name, street, city, state, zipcode, { movies})

On such a schema, we think most commonly occurring types of queries on sets will
consider all elements together as a group. An example of such a query on the moviegoer
relation includes finding all the moviegoers who have seen the movies Titanic and As
Good As It Gets. These queries involve predicates containing well-defined set operations
such as subset, superset, intersection and union. The sets proposed in GEM [Zan83|
follow this general usage.

On the other hand, set-valued attributes can be considered equivalent to relations,
as was done in the O2 [LRV88] object-oriented database system. In such a case, nested
SQL queries can be posted over the sets. Consider again, the example schema quoted in
Section 1.1. An example of a nested query is one that gets the set of manufacturers for
the set of items sold in a sales record. Such a query requires examining the individual set
elements rather than considering them as a group (in spite of their underlying grouping.)

In general we suspect that the nature of operations or predicates used in queries for
one usage will differ from that in the other. However, nothing prevents the type of query

that is natural in one usage from being posted on the other.

1.4 Contributions of the Thesis

This thesis proposes solutions to some of the problems described in the previous subsec-

tions. Specifically, the contributions of this research are as follows:

o Set Storage Representations. There are various alternatives for storing sets in

a database. A straightforward approach stores the elements of set-valued attribute
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in one table in a different table, such that each element is a separate tuple. Such
an approach is used in many commercial systems. However, it suffers from the fact
that the set elements are scattered about the new table, and hence predicates that
examine the set as a whole must perform groupings and may pose performance
problems. Hence, we propose a new class of representations that group the set
elements and store them together along with the rest of the attributes, thereby
improving performance. In Chapter 2, we classify the space of representations and
develop a detailed analytical model to evaluate the performance of various queries.
These representations were implemented in an object relational system in order
to explore the issues of ease of integration and also the performance implications
and tradeoffs. The performance results and experience showed that nested repre-
sentations perform better than the unnested representations for conjunctive and
disjunctive queries. However, they have the drawback of extensive additions and
modifications to the storage and query evaluation engine. Since the performance

improvement is quite substantial, these modifications are justifiable.

Set Containment Joins. The introduction of set-valued attributes gives rise to
an interesting and challenging set of joins. One of the most obvious and challenging
joins is the set containment join, which expresses complex queries in a concise way.
Such a join selects pairs of tuples such that the set instance in one tuple is a
subset of set instance in the other. Evaluating these joins is difficult, and naive
approaches lead to algorithms that are expensive. In Chapter 4, we develop a new
partition based algorithm called PSJ. This algorithm divides the input relations
into partitions using a partitioning function on the set elements, and replicating

some of the tuples as required. Each of the corresponding pairs partitions are
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individually joined using another level of partitioning based on set signatures. We
compare the performance of PSJ with various algorithms by implementing in an
object relational database system. The experiments show that PSJ outperforms

other algorithms over a wide range of data distributions.

1.5 Qutline of Dissertation

The remainder of this dissertation is divided into six chapters. Chapter 2 outlines options
for storing sets. A performance evaluation of these storage representations is described in
in Chapter 3. Chapter 4 defines the set containment join and proposes a new multi-level
partition based algorithm called the Partitioned Set Join Algorithm. A detailed perfor-
mance comparison of this algorithm with previously proposed algorithms — signature
nested loops and the SQL approach — is presented in Chapter 5. Chapter 6 surveys the
related work relevant to storage options and set containment joins. Finally, the conclu-
sions and open issues for future work are presented in Chapter 7, which is followed by

bibliography.
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Chapter 2

Set Storage Representations

2.1 Introduction

While the expressive power of set-valued attributes has long been studied by the data
modeling and query language design communities, to date there has been very little
published about the options for implementing set-valued attributes and the performance
implications of these options. In this chapter, we make a first step toward rectifying
this lack of information by implementing and experimenting with several alternatives for
set-valued attributes in an object-relational database system.

Two main options have been proposed for implementing set-valued attributes in
object-relational systems: inlined, and external [Sto96]. In the inlined representation,
the set itself is stored as a variable-length attribute within the tuple to which it belongs.
On the other hand, in the external representation, the elements of a set-valued attribute
are stored as tuples in an auxiliary table, and are connected back to the tuple to which
they belong by a key-foreign key reference. While the O/R DBMS vendors generally
do not publish their future design plans, it appears that at least initially O/R DBMS
vendors will support sets using the external representation. The motivation for this is
clear — the external representation has the overwhelming advantage of being simple to
implement, since to the engine the set appears to be a standard table, and queries involv-

ing set-valued attributes are translated into standard relational operations on standard
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relational tables.

In our implementation we found that the external representation is indeed simple
to implement, requiring no changes to the query evaluation engine. Unfortunately, the
performance of the external representation on some common forms of queries involving
set-valued attributes was abysmal when compared to the performance of our inline rep-
resentation. Perhaps surprisingly, this was true even for large sets, which contradicts
the common wisdom that only small sets should be inline [St096]. The performance ad-
vantage of inline sets was so dramatic that inline would always be the method of choice
but for one major drawback: on queries that reference tables with set-valued attributes,
but do not reference set-valued attributes, the overhead of inline sets can be an almost
intolerable burden. Accordingly, we designed and implemented a third representation,
nested external, which has the advantages of both.

In the nested external representation for sets, like the external representation of sets,
the set elements are stored in an auxiliary table separate from the table with the set-
valued attribute. However, in contrast to the external representation, in the nested
external representation the set elements for a given set are gathered together in a single
tuple. This tuple is “connected” back to the corresponding tuple in the table with
the set-valued attribute by a key-foreign key relationship. Another way of putting this
is that the nested external representation consists of vertically partitioning the inlined
set representation form of the table with the set-valued attribute, with the set-valued
attribute in one partition and the other attributes in the other partition. Although the
nested external representation requires more changes to the query evaluation engine than
the external representation (including new predicate evaluation primitives, and nest and
unnest operators), our experiments show that the performance gain from nested external

makes these changes well worth the trouble.
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Figure 1: Storage Options for Set Valued Attributes

2.1.1 Example

Let us consider a relation R(a,b,c, {d}). As we have mentioned, there are various options
for storing set-valued attributes: store along with the rest of attributes in the relation
(nested internal), vertically decomposed and stored in a separate relation (nested exter-
nal), each element of the set is stored as a tuple in a separate relation (unnested external)
or replicate rest of the attributes for each element in the set (unnested internal). These
storage options are enumerated in Figure 1.

While set-valued attributes have been considered in the past, our work differs from
the existing body of work in many aspects. We specifically focus on the issues related to
storing set-valued attributes. We classify the space of representations based on certain
characteristics and analyze each of them in detail using an analytical model. The nested
internal representation is similar to Normalized Storage Model (NSM) [HO88] in terms
of storage structure. On the other hand, the nested external representation is a variation
of the Decomposed Storage Model(DSM) [CK85] where only the instances of set-valued
attributes are stored in a separate relation. Neither model has been considered specif-

ically in terms of supporting set-valued attributes. In our work we focus on set-valued
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attributes, and quantify the performance of these representations under various queries

on an operational object-relational system.

2.1.2 Chapter Organization

This chapter is organized as follows. The individual representations are described in
Section 2.3. The general analytical framework is described in Section 2.4. A description
of the implementation of the nested internal representation and evaluation of queries
over the representation are presented in Section 2.5. Similarly, Section 2.6 describes the
unnested external representation and queries over that representation, while Section 2.7
covers the nested external representation. Finally, Section 2.8 concludes by summarizing

the chapter.

2.2 Desirable Characteristics of a Set Representa-
tion

A set representation provides storage for the set-valued attributes of a relation. In addi-
tion to providing storage, it requires other properties to be practical. In this section, we

identify the properties an ideal representation should have.

o Composability: From the data modeling perspective, “set” is considered to be a
type constructor, and hence it should be composable with any arbitrary type. The
composability property requires that such orthogonality also be maintained at the
storage level. To be more concrete, consider object relational systems that provide
type extensibility by allowing the user to declare and define their own types in the

form of ADTs. Each ADT has its own database and memory representation that
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is optimized for storage and computation. Also, the size of these representations
can vary widely. A set representation should honor the properties of these ADTs
and seamlessly convert the ADTs into their required representation when required.
It should provide uniform performance irrespective of the size of its element, and

further provide evaluation mechanisms to invoke methods on the element ADTs.

User defined ADTs might need support for aggregate properties when they are
contained in a set. These aggregate properties can be either user-defined as a part
of the ADT definition, or system defined. An aggregate property is a characteristic
of the entire set. For example, an aggregate property of a set of polygon ADTs
might be a bounding box encompassing all the polygons. An example of a system
defined aggregate property is the cardinality of set. A set representation should

efficiently support storage and retrieval of these properties.

Handling Varying Set Cardinality and Sizes: A set can vary in size as new
elements are added and existing elements are deleted. A single set representation
should uniformly handle variations in the number of elements as well as the size of
the elements. It should lend itself for queries to be evaluated efficiently irrespective

of whether the sets are considered as logical collections or as relations.

Nesting: Since set is a type constructor, and set of an arbitrary type is a new type,
one can declare a set-valued attribute that is a set of sets. Such a recursive definition
can lead to an arbitrary depth of nesting. A single set representation should be able
to store such recursive structures and also provide reasonable performance when

queries are posed.

Updateability: A set representation should provide capabilities for adding, delet-

ing and modifying its elements. In an ideal representation, the effect of these
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modifications should be localized. In other words, modifying an element should
not affect other elements or other attributes. In addition to individual element
updates, modification should allow efficient addition and deletion of the entire set.

Such operations are required when an entire base tuple is added or deleted.

e Ease of Integration: Most of the commercial vendors of relational systems are
now moving to the object relational market. As Stonebraker [Sto96] puts it, vendors
have multiple options for building object relational products. The option of rewrit-
ing a relational engine from scratch requires a lot of effort, in terms of investmer}t,
and may have a negative impact on timely delivery as well as reliability. Hence
relational vendors have resorted to incremental evolution of their existing systems.
Any object relational feature not only should easily integrate with existing code
with minimal modifications but should have the ability to meet the performance
requirements set forth by standard benchmarks. Any set representation added to

the system should have this feature.

Addressing all of these concerns is a large task. In this thesis we focus on the efficient

support of operations over set-valued attributes.

2.3 Taxonomy of Set Organizations

The efficient evaluation of queries involving set-valued attributes depends on how these
attributes are stored in the database and the characteristics of the predicates evaluated
against them. In this section, we enumerate the feasible representations and classify them

depending on their characteristics, as shown in Figure 2.
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2.3.1 Homogeneous Vs Heterogeneous

Set representations can be broadly classified as homogeneous or heterogeneous. Systems
with homogenous representations use the same representation to store all the set instances
in a relation, whereas systems with heterogenous systems may use different representa-
tions for the sets in different tuples of the relation. Homogenous representations provide
a uniform view to the system and hence are amenable for representation specific opti-
mizations that an optimizer can take advantage of during query transformation or query
rewrite. However, the representation might not be the right choice for some instances of
sets, for example, when some instances are much larger than others.

In heterogeneous representations, one could consider schemes in which the tuples of
the table each use the representation that is most appropriate for their instance of the
set-valued attribute depending upon its size, access frequencies and other characteristics.
However, adopting such a heterogeneous scheme significantly increases the complexity
of query optimization and evaluation. Query optimization becomes hard since each rep-
resentation generates different plans, thereby exploding the search space, while query
evaluation becomes hard because the query evaluation engine must now be prepared to
execute different plans on a per-tuple basis. For this reason we have not considered
heterogeneous schemes in our research, although they represent an interesting topic for

future work.

2.3.2 Nesting Vs Location

Set storage representations can be further classified based on two orthogonal characteris-
tics: nesting and location. The characteristic of nesting describes whether the elements in

the set are grouped together or scattered. On the other hand, location specifies whether
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Figure 2: Taxonomy of Set Representations

the set elements are stored along with the rest of the attributes in the relation or vertically
decomposed and stored separately. Hence, the four feasible representations are Nested
Internal, Nested External, Unnested Internal and Unnested External. This classification
is shown in Figure 2. We concentrate on all the representations with the exception of
Unnested Internal. There are two reasons for not considering this representation. First,
unnested internal replicates the rest of attributes for each set element, thereby consuming

a large amount of storage. Second, this replication leads to update anomalies.

2.3.3 Indexed Representations

All the aforementioned representations can be augmented with indices to speed up the
evaluation of predicates. Specifically, the indices could potentially improve the perfor-
mance of membership testing and gathering the elements of set. Again, the indices for
sets can be either nested or unnested. Nested indices treat each set as a single entity,
whereas unnested indices treat each set element as an indexable entity. Some exam-
ples of nested indices include signature files and RD-Trees, whereas B-Trees can serve

as unnested indices. We restrict ourselves to unnested indices because unlike the other
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indices, all relational systems support some index like a B-Tree, and one focus of our
work is to try to answer the basic question of how effective an existing relational system
can be in storing sets.

For the nested internal representation, the index on the set-valued attribute decom-
poses the sets to individual elements and maps a given set element to the set of tuple
identifiers where that element occurs. Depending on the type of representations, two
different types of indices can be created. Since external representations store sets in a
different relation, we can create a single relation index or a join index [Val87] connecting

the base relation and the set relation.

2.4 Analytical Model

To predict the cost of query evaluation and the space requirements of the representations,
we develop a detailed analytical model. The purpose of this model is not to predict
absolute performance, but rather to identify the trends and characteristics in the relative
costs of the representations. We consider each representation in turn and derive equations
describing the cost of evaluation of queries and the overall space requirements for each
representation. The query evaluation cost is furthermore broken down into I/O cost and
CPU cost. To describe the model, we consider a relation R(a,b, ¢, {d}), which contains
the set-valued attribute d. The model takes as input, different parameters for different
representations. Table 1 describes the analytical parameters used in all representations.

The queries we chose represent the main classes of set-valued queries: conjunctive
queries and disjunctive queries. For external representations, to simplify the analytical
modeling, we assume that the base relation fits in memory. The queries we consider are

defined using the schema R(a,b,c,{d}). The following queries are evaluated using the



Notation | Description
| R | Number of tuples in relation R
| R || Number of pages in relation R
kr Average number of elements per set (cardinality) in relation R
As Average size of each set element in relation R
Agpe Average size of the attributes a, b and c in relation R
S System space overhead for storing a tuple
K Space required for a key for external representations
By CPU cost of accessing a tuple from the buffer pool
TID, Size of the tuple identifier
PID; Size of page identifier
IO0;eq Cost of a sequential I/0O
IO;4na | Cost of a random I/0O
P Page size
o Selectivity of a predicate on set
N Number of elements in the predicate
TA; Tuple assembly cost if the tuple is scattered across multiple pages
hi Cost of inserting an element into hash table
hey Cost of computing the hash function on an element
hp, Cost of probing an element in the hash table
Cp; Cost of comparing two set elements
M Amount of memory available in the system

analytical model.

Table 1: Description of Notation Used
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e Conjunctive Queries: In this class, we ran two queries: one in which the set-

valued attribute does not appear in the result and the other in which it appears in

the result.

SELECT R.a, R.b, R.c

FROM R

WHERE ( “pred-elem-17, ...

“pred-elem-N") SUBSET OF R.d

SELECT R.a, R.b, R.c, R.d

FROM R

WHERE (“pred-elem-17, ... “pred-elem-N”) SUBSET OF R.d

(Q.14)

(Q.15)
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e Disjunctive Queries: Again in this class, we ran two queries: one in which the
set-valued attribute does not appear in the result and the other in which it appears

in the result.

SELECT R.a, R.b, R.c
FROM R

WHERE “pred-elem-1" IN R.d OR ... OR “pred-elem-N” IN R.d (Q.16)

SELECT R.a, R.b, R.c, Rd
FROM R

WHERE “pred-elem-1” IN R.d OR ... OR “pred-elem-N” IN R.d (Q.17)

2.5 Nested Internal Representation

In this representation, the set elements are grouped together and stored along with the
rest of the attributes. Typically, in an RDBMS, a relation is stored as a set of tuples
in a file that contains a collection of slotted pages. Each tuple contains instances of all
attributes in the relation as specified in the schema. Since a set-valued attribute is of
variable length, it can be either expanded in place or stored “at the end” of tuple. With
multiple variable length attributes things are still more complex, since they cannot all be
“at the end” of the tuple. The standard solution in this case is to store variable length
attributes in a heap area at the end of the tuple, with offsets into this heap stored in the
body of the tuple. This allows one to extract any variable length attribute of the tuple
without scanning other variable length attributes. We have adopted this approach for
the internal set-valued attributes; an instance of the internal representation in a tuple is

shown in Figure 3.
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Figure 3: Nested Internal Representation of a Set in a Tuple

The internal representation of a set consists of a header and a body. The header
describes the meta information of the set: its cardinality and its length in bytes. The
reason for storing the cardinality is that it serves as a signature for subset, superset and
equality operations on sets, and it marks the end of the set during iterator operation.
For the indexed nested internal representation, the set-valued attribute is unnested and
an unclustered index is created that maps the individual set elements to a collection of

tuple identifiers.

2.5.1 Handling Large Sets

Since sets are generic collections, there is no upper bound on the number of elements
a set can hold, so the internal representation can potentially become large and a tuple
containing such a set might overflow to multiple pages. Hence, a mechanism is required
to handle large tuple sizes. There are various well-known approaches to handle large
tuples. A simple and straightforward approach is to move the tuple to a list of chained

pages and replace the tuple in the original page with a forward record pointing to the first
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page in the chain. Another approach includes a directory structure such as B-Tree on
the multiple data pages of the tuple. The root page identifier of the directory structure
is stored in the forward record. The directory structure maps the start offset of the
page relative to the tuple to the page identifier. We chose the later approach since it
is already available in the system and also our work does not focus on the tradeoffs of
various approaches for large tuples. Such large tuples incur the additional cost of multiple
disk seeks and assembling the tuple together contiguously in memory before submitted
to an operator. If the sets are too large too fit in memory, then individual fragments are

brought into memory depending on the access pattern.

2.5.2 Evaluation of Set Predicates

A set predicate expresses a boolean condition over the domain of sets. A set instance
should satisfy the condition in order to qualify. Set predicates are expressed using set
operations described in Chapter 1. Since the nested internal representation groups the
set elements together, we can take advantage of this property during the evaluation of set
predicates. A naive approach for evaluation builds a hash table for the entire set, with
predicate elements probed into this hash table. The problem with this approach is that
individual sets might be larger than memory, which requires specialized operators to be
written. In the refined approach, the predicate elements are staged in a hash table and
the individual set elements are probed. This approach has the advani;age of not bringing
the entire set in memory during evaluation and also enables premature termination of
the scan of the set once it can be determined whether predicate has been satisfied or
will not be satisfied (e.g., with “short-circuit” evaluation of AND and OR operations),

thereby saving I/O cost. Both the approaches have a linear predicate evaluation cost
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proportional, to the number of elements in the set, which is O(n).

2.5.3 Analytical Evaluation

In this section, we compute the space requirements and the cost of query evaluation for
nested internal and indexed nested internal representations.

Case 1: Nested Internal Representation

The total space requirements for the nested internal representation NIspacg is given by

S, | R
NISPAC’E:HRH"I'[ ][3 I] (1)

assuming that the tuples are tightly packed. However, in a real system, there would be
fragmentation causing the space requirement to go up slightly.

Query evaluation using the nested internal representation is straightforward. The set
predicate is applied to each tuple in relation R, and the qualified tuples are stored in the
result relation. The 1/O cost NICQ;0, and CPU cost NICQcpy for conjunctive query
with no set in the result is given by
( :
(|[ R+ Pfl-;i-,?q) IO4e4+ 1/0 cost of reading relation R
[M(—’%‘;%@-l IO0eq+ I/O cost of writing the result tuples

NICQro = <
TAx | R|+ Tuple assembly cost for large tuples
\ (1+0) | R| B Cost of accessing tuples from buffer pool
(2)
_ (hey + hiy) N+ Hash table construction for predicate elements
NICQcpy =

(he; + hpy) * kg | R | Probing hash table with set elements

(3)
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The CPU cost represents the worst case cost since it assumes that all the set elements
are probed into the predicate hash table. The cost of evaluating a conjunctive query with
the set in the result is similar except that the cost of writing the result tuples becomes

higher. Hence the I/O cost NICQW Syo is given by

)
([I R+ [%—,‘-?—ib IO+ 1/0O cost of reading relation R

P'R’(A“”C;kRA“S‘“)] IOgeq+ 1/0 cost of writing the result tuples
NICQWS[O = < )

TAX | R|+ Tuple assembly cost for large tuples

\ (1+0)| R|B: Cost of accessing tuples from buffer pool

(4)
The CPU cost is the same as NICQcpy. In both the cases, we assume that enough
memory is available to hold the result so that it is written in sequential fashion. The

cost of evaluating disjunctive queries with and without the set in the result is identical

to the case for conjunctive queries.

Case 2: Indexed Nested Internal Representation

For the indexed nested internal representation, determining space requirements requires

estimating the number of index pages. Let

P, Py
K= [AS+PIDS+SJ and L= [AS+TIDS+SJ (5)

be the number of entries that fit on a non-leaf page and leaf page respectively. Then the

total number of leaf level pages in the index LPspacg is given by

kRIRI-I
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Consequently, the total space requirements for indexed nested representation INIspace

is the sum of space for the relation and the space for the index.

_ ([I R+ [—S—%{—{-‘D IO+ Total number of pages the relation spans
INIspace =
b lspacy Total size of the index
(7)

assuming that the key is duplicated, since the index is non-unique.

Query evaluation for the indexed nested internal representation requires probing the
index with predicate elements. The TIDs are either ANDed or merged depending on the
whether the query is conjunctive or disjunctive. The result TIDs are sorted to prevent

random disk seeks when the tuples are actually fetched. The I/O cost INICQ;o is given

by
)
Nlogg (LPspacg) IOrana+ Probing predicate elements in the index
0| R| I0randt+ Cost of fetching the tuples
INICQ0 =
o [(ﬁ&%fs—)@-‘ IO eq+ Cost of writing the result
\ 20 | R| B: Fetching tuples from buffer pool
(8)
assuming that each result tuple is in a separate page. The CPU cost INICQcpy is given
by
» Nlog, (K) logk (LPspace)cpi+ Searching index pages using binary search
INICQcpy =

No | R | cp; ANDing or merging TIDs
(9)

assuming that binary search is used in the index page to locate an entry. As stated

earlier, the cost of evaluating a conjunctive query with set in the result is similar except

for the added cost of writing the result as in NICQW Sjo.
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2.6 Unnested External Representation

In external representations, the relation containing the set-valued attribute is decomposed
into multiple relations. If the relation has only a single set-valued attribute, then there
are just two relations, one for the “base tuple,” the other for the elements of the sets.
For simplicity we will assume that there is only a single set-valued attribute. We explore
two variants of the external representation: Fzternal and Nested Ezternal. Because of
the decomposition between a tuple and its set-valued attribute, we need a mechanism
to compose the base tuple and its set elements; we use a key-foreign key relationship for
this purpose.

In this representation, the set-valued attributes are stored separately from the base re-
lation. All the sets are unnested and each element is stored as a separate tuple. Consider
a relation R(a, b, ¢, {d}). This relation is decomposed into two relations: Rp(i,a,b,c) and
Rs(i,d), where Rg contains all the set elements. The set elements and the base tuple
are related by the key attribute 4. During query processing, an equijoin is performed to

associate the base tuple and the set-elements.

2.6.1 User Defined Keys Vs System Defined Keys

The key attribute can be either user-defined or system generated. If a key is being
declared as a part of the base relation definition, the same set of attributes can be used
as the key. In other cases, the system should supply the key. There are pros and cons of
user defined and system generated keys. User defined keys can be composite and become
potentially large in proportion to the average size of the set element. This would result
in a dramatic increase of 1/O cost. User defined keys are also exposed to the possibility

of schema modification for keys, which will lead to the reorganization of the base and set
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relations.

System generated keys are small and immune to modification by the user. The next
key to be used can be stored in the catalog entry for the base relation. When a new tuple
is inserted, this next key is used and updated. However, this approach presents problems
when multiple tuples are being inserted in a single transaction. The catalog has to be
locked for the duration of the transaction, which in turn serializes all the transactions
thereby reducing the concurrency in the system. Possible alternatives that alleviate these
problems are the use of either the physical rid of the base tuple or the time of insertion as
the key. Physical rids can be as long as 32 bytes, which might be unsuitable for smaller
types (integer, float etc.) since the space overhead is 2 to 4 times the size of the type.
The time for insertion also suffers from the same problem. Such an increase in space also

decreases the performance of some types of queries, due to increased I /O cost.

2.6.2 Clustering

A relation Rg can be stored in such a way that the set elements belonging a given tuple
in Rp(i,a,b,c) are clustered together. Such an organization has the advantage of fast
retrieval of set elements, especially for queries that output the set in the result. However,
such an organization is not useful unless clustered indices are created on the key attribute
i in Rs. The indexed variant of the unnested external representation creates two indices
on relation Rs: a clustered index on the key attribute 7 to facilitate faster grouping
of elements in a set, and an unclustered index on set elements to speed up predicate

evaluation on set elements.
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2.6.3 Query Rewriting

In this section, we describe how conjunctive and disjunctive queries can be rewritten for
unnested external representation. There are two approaches for rewriting the queries:

disjunctive groupby and cascaded joins.

Disjunctive Groupby

In this approach, we exploit the semantic property that individual elements in a set

instance are distinct. Now the conjunctive query (Q.14) can be rewritten as

SELECT B, B.a, B.b, B.c

FROM Rp B, Rs S

WHERE B.i = S.4 AND (S.d = “pred-elem-1" OR ...S.d = “pred-elem-N°)
GROUP BY B.i, B.a, B.b, B.c

HAVING COUNT (*) = N (Q.18)

This approach has the deficiency that relational systems tend to choose plans involving
sequential scans since it is difficult to estimate the selectivity of a disjunctive predicate.
Hence, this approach might be suited when there are no indices or the selectivity is low,
which precludes the use of indices. Also, the extra CPU cost of group by B.i, B.a, B.b,
and B.c is incurred even though the grouping is required only on B.i.

Conjunctive queries with sets in the result (Q.15) are transformed into two queries:
one for determining the membership, and the other for grouping all the elements of the
set. The intermediate result of membership is stored in a temporary table before it is fed
for grouping the elements in a set. Since the membership query filters the set elements not
satisfying the predicate, we require the second query to group-these remaining elements

of the set. The queries are shown below.

INSERT INTO Temp(s,a,b,c)
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SELECT B.i, B.a, B.b, B.c

FROM Rp B, Rs S

WHERE B.i = S.i AND (S.d = “pred-elem-1” OR ... OR S.d = “pred-elem-N")
GROUP BY B.i, B.a, B.b, B.c

HAVING COUNT (*) = N (Q.19)

SELECT T.a, T.b, T'c, S.d
FROM Temp T, Rs S

WHERE T.i = S.i (Q.20)

The second query shows that the results are not grouped and the attributes a, b and ¢ are
repeated for every set element. This illustrates the major drawback of “lack of grouping”
in the unnested external representation. Because of the lack of grouping, tuple blowup
occurs, which causes an increase in storage as well as in the processing cost up in the

query tree.

Cascaded Joins

In this approach, as outlined in [CDN*97], the base relation is involved with multiple
joins on the set relation each relating a predicate element with the base relation. Hence
the number of joins is proportional to the number of predicate elements. The rewritten

query for the conjunctive query (Q.14) is shown below:

SELECT B.i, B.a, B.b, B.c
FROM Rp B, Rg S1, Rg S2 ..., Rs SNy
WHERE B.i = S;.i AND B.i = Syt ... AND B.i = Sy.i AND

S1.d = “pred-elem-17 AND ... AND Sy.d = “pred-elem-N” (Q.21)

Such a query rewrite might perform well in the presence of indices for limited selectivities.
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For queries that project the set in the result, cascaded joins require an extra join with

Rg, as shown below:

SELECT B.i, B.a, B.b, B.c, S.d
FROM R B, Rg S1, ..., Rs Sy, Rs S
WHERE B. = S.4 AND B. = S1.4,..., AND B. = Sy.4 AND

S1.d = “pred-elem-1” AND ... AND Sy.d = “pred-elem-N” (Q.22)

Disjunctive queries without sets can be rewritten easily as a join with a disjunctive
predicate, as shown below. For the set to be in the result, the projection list should be

augmented with S.d and an extra join is required to assemble all the set elements.

SELECT B.i, B.a, B.b, B.c
FROM Rp B, Rs S

WHERE B.i = S.i AND (S.d = “pred-elem-1” OR ... OR S.d = “pred-elem-N7) (Q.23)

2.6.4 Analytical Evaluation

In this, we derive the space requirements and the cost of query evaluation using the
analytical model for unnested external and indexed unnested external representations.
Case 1: Unnested External Representation

The space requirements for the decomposed relations Rp and Rg is given by

Agpe + K+ S5) | R A, +TID;+ S;)kr | R
S HEI wma R = | e | 2]
PS PS

(10)

Hence the total space requirements for unnested external representation UN Egpack 18
given by

UNEspace =|| Bg || + || Bs || (11)
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As evident from the equations, the total space increases because of the extra space
required for key and system overhead for each set element being stored as a tuple.

As stated earlier, we assume that the relation Rp fits in memory. However, after
the join, the number of tuples could potentially blowup, which will require the partial
intermediate relation being saved to disk and read back. We further assume that a
hash join is used. For conjunctive queries with no set in the result we choose to rewrite
using the disjunctive groupby approach, so the I/O cost UNECQDG|0 and CPU cost

UNECQDGcpy are given by

;

(Il Rg || + || Rs ||)IOseq+ I/0 cost of reading the base

and set relation

(1+kg)|R|B: Buffer pool cost for reading

9 ([(A3+Aabc+ss+K‘s)alle - M ) IO4eq+ Reading and writing the

Ps

partial temp relation

UNECQDGro =4 20| R| B+ Buffer pool cost for reading
and writing temp relation
[(ASJ"A“"“LPi”KS)“‘Rq I1O0;eq+ I/0 cost of writing the result
o|R|B; Buffer pool cost for writing
result

(12)
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[ &
M—'—gﬁuc—p—”r Average cost of evaluating disjunctive
predicate

(hey -+ hiy) | R+  Constructing hash table for R during join

UNECQDGcpy = § (he, +hp)o | R|+ Probing join hash table with qualified tu-
ples
4heio | R | + Computing the hash function for 4 group

by attributes

hpo | R | Probing the hash table for group by
(13)

This I/O cost assumes that the result of join does not fit in memory, since a blow up could
occur by a factor of Rp proportional to number of elements in the predicate, especially

when the selectivity is low.

Case 2: Indexed Unnested External Representation

Total space requirements for the indexed unnested external representation IUNEspacEe
consists of the size of the decomposed relations, the size of the clustered index on the
key attribute 7, and the size of an unclustered index on the attribute d on relation Rg.

The number of keys that fit in a leaf page and an intermediate page are given by

P P
P == g = s
K [Ks T PID, + SJ and  LP [KS Y TID, + SJ (14)

Hence the total number of leaf level pages in the clustered index LK gpacg is given by

kr | R
LKspace = [ R[|P ’] (15)
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Nested Loops
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Nested Loops
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Nested Loops Index Scan
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Nested Loops
index Join

Index Scan

4 =
Scan Index Scan
B S,.d

Figure 4: Execution Plan for Cascaded Joins
and the total space IUN EgspacEk 1s

l| Rg || + || Rs || + Size of the relations

IUNEspace = —255%%1’1&@—% Size of the unclustered index on d (16)

2KPXLKspAcE
KP~-1

Size of the clustered index on ¢
For query rewrites using cascaded joins, we use the plans of the type shown in Figure 4
to simplify modeling. Many plans can be generated from this template depending on the

placement of the join with Rp. The placement strictly depends on the selectivity of the

individual set elements. The 1/O cost UNECQC Jro and CPU cost UNECQC Jcpy are
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given by
|| Rp || 1Oseq+ I/O cost of scanning relation Rg
log(LPspace)IOrana+ Probing unclustered index scan
on Rg.d
o | R|IO;ena+ Fetching qualified tuples (from
unclustered index)
UNECQCJio =

(N — 1)logkp(LKspace)IOrana+ Probing clustered index on Rg.:
(N —1)o || Rs || IOseq+ Fetching qualified tuples (from

clustered index)

(N+1)o | R| B+ Fetching qualified tuples from
buffer pool
\ ((A“A“"CJ”;;”KS)”'R‘] IO I/O cost of writing the result
(17)
)
loga(K)logx (LPspacr)cps+ Searching unclustered index

pages - binary search
N —1)logs(K P)logkp(LKspace)cps+ Cost of searching clustered
UNECQCJCPU — < ( 2 ) P( CE) t
index

o|R|*cp Cost of comparing with tu-

ples in Rp
(18)
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2.7 Nested External Representation

Nested external is similar to nested internal except that set-valued attribute is vertically
decomposed and stored in an external relation. Consider a relation R(a,b,c,{d}). This
relation is decomposed into two relations: Rg(4,a,b, ¢) and Rs(i,{d}), where Rg contains
all the set elements. The elements and the base tuple are related by the key attribute i.
The number of tuples in Rp and Ry is the same as in un-decomposed relation R. During
query processing, an equijoin is performed to associate the base tuple and set-elements.
For the indexed nested external representation, the set valued attribute in Rg is unnested
and an unclustered index is created that maps the individual set elements to a collection
of tuple identifiers in Rg. Most of the issues related with nesting discussed in Section 2.5
are applicable to nested external. Since the set-valued attribute is stored separately from
the base relation, issues about user defined versus system defined keys are relevant in
this representation.

Query rewriting is relatively easy as compared to the unnested external representa-
tion. Queries are rewritten such that the set predicates are evaluated as in the nested
internal representation and satisfying tuples in Rg are related with the relation Fp using
a join. For the indexed variant, the index is probed for each set element in the predicate
and TIDs are either ANDed or merged (depending on whether it is a conjunctive or

disjunctive query) and tuples are fetched before fed into the join.

2.7.1 Analytical Evaluation

In this section, we compute the space requirements and the cost of query evaluation for

nested internal and indexed nested internal representations.




39

Case 1: Nested External Representation

The space requirements for the vertically decomposed relations Rg and Rg are given by

Agpe + 55+ Ks) | R krAs +Ss+ Ks) | R|
| Rp 1= | LRI ana g = [ VI E]
P, P,
(19)

Total space requirements for the nested external representation NEsp4cg is given by
NEspace =|| Rp || + || Rs || (20)

We simplify the analytical modeling for queries, by assuming that the relation Rp fits
in memory. We assume that a hash join is used. Query evaluation cost for conjunctive

queries with no set in the result is given by

.
|| Rp || IOseq+ I/0O cost of reading the base relation for joining

I| Rs || 10seq+ I/O cost of reading the set relation

NECQro =14 TA;|R|+ Tuple assembly cost

(2+0) | R| Bi+ Buffer pool cost reading and writing the result

o|R|(AgbetS5)1Oseq
\ Ps

] writing the result tuples
(21)

hey + hiy) N+ Constructing hash table for predicate elements

NECQcpy = «
hes + hiy)kg | R |+ Constructing hash table for Rp during join

(
(hey + hpy) | R | + Probing hash table with set elements
(
(

hey + hp)o | R | Probing join hash table with qualified tuples
(22)

For queries with the set in the result, the cost is almost the same, except that the
cost of writing the result tuples is included as in nested internal. The cost of disjunctive

queries is almost identical as in nested internal.
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Case 2: Indexed Nested External Representation

The space requirements for indexed nested external INEgpacg is given by

_ || Rg || + || Rs || + Sizes of the relations
INEspace = (23)

2KxLPspace X(IE(P_ pace Total size of the unnested index

Query evaluation cost is very similar to nested internal representation except the

additional cost of the join. The I/O cost INECQjo that includes the cost of reading

the base relation Rp for the join is given by

P

|| Rp || IOseq+ I/0O cost of reading the base relation

Nlogx (LPspack) IOana+ Probing predicate elements in the index

INECQro =1 o|R|I104at+ Cost of fetching the tuples
o [(ﬁ‘l'l%ss—s)iﬂ] I1O0eq+ Cost of writing the result
| 2o+1)|R|B: Fetching tuples from buffer pool

(24)

The CPU cost INECQcpy of evaluating the join and probing the index is given by

( Nlogs (K) logx (LPspace)cps+ Searching index pages

using binary search
No | R | epi+ ANDing or merging TIDs
INECQcpu = (hc; +hiy) | R| + Constructing hash table (25)
for Rp during join

(hey + hp)o | R | Probing join hash table

with qualified tuples

\

As expected, the cost evaluating queries using nested external and its index variant




41

are very similar to nested internal and its index variant except for the additional cost of

a join.

2.8 Summary

We have outlined three representations for storing sets: nested internal (the set elements
are grouped and stored along with rest of the attributes), nested external (set elements
are grouped and stored in a separate relation and connected back to the base tuple using
keys and foreign keys) and unnested external (the set elements are unnested and stored in
separate relation and using a foreign key that connects back to the base tuple). Further,
we gave formulas for the analytical cost of conjunctive and disjunctive queries and their

variants of projecting sets as a part of the result.
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Chapter 3

Performance Evaluation of Set

Storage Representations

3.1 Introduction

In this chapter, we evaluate the performance of various alternatives for representing sets
in database systems: the nested internal, nested external, unnested external, indexed
nested internal, indexed nested external and indexed unnested external representations.
We conducted experiments both with our analytical model and with an implementation
in an object relational system — Paradise [PYK*97]. These experiments confirm the
validity of the analytical model. Further, they conclude that the nested representations
and its indexed variants provide substantial speedup over the unnested representations

for conjunctive and disjunctive queries.

3.1.1 Chapter Organization

This chapter is organized as follows. Section 3.2 describes the data distributions used in
our experiments. Section 3.3 presents the results of the analytical experiments: varying
the average set cardinality, varying the selectivity, varying the number of elements in a
predicate, and varying the size of a set element. Section 3.4 gives a short introduction

to Paradise O/R DBMS. Section 3.5 describes the implementation of set representations
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in Paradise. The experimental schema and queries used in experiments are shown in
Section 3.6. The results of various experiments are presented in Section 3.8. Finally, the

results are summarized in Section 3.9.

3.2 Data Distributions and Experiments

Experiments are carefully chosen to identify the tradeoffs involved in each representation
when different queries are executed. All experiments measure the response time for the
execution of the query. The data distribution and the nature of the query executed
influence the response time. We use the following parameters to characterize the set

data distribution since their impact on response time of the query is more interesting.
e average set cardinality
e size of set element
Similarly, set queries are characterized by the following parameters:
e selectivity
e number of set elements in the predicate
e whether set is projected in the result or not

The set of experiments consisted of varying one of the parameters: the set cardinality,
size of the set element, selectivity and number of elements in the predicate while keeping

the others fixed.



Notation | Description Value
| R | Number of tuples in relation R 10,000
Agpe Average size of the attributes a, b and c in relation R | 68 bytes
S, System space overhead for storing a tuple 16 bytes
K, Space required for a key for external representations 4 bytes
By CPU cost of accessing a tuple from the buffer pool 0.03574 ms
TID, Size of the tuple identifier 12 bytes
PID, Size of page identifier 4 bytes
I0;¢q Cost of a sequential I/O 0.665 ms
10,qn4 Cost of a random I/0 2.39 ms
P, Page size 4096 bytes
TA; Tuple assembly cost if the tuple is scattered 0.2812 ms
across multiple pages
hi Cost of inserting an element into hash table 0.0005 ms
hey Cost of computing the hash function on an element 0.0010 ms
hp; Cost of probing an element in the hash table 0.0005 ms
cpy Cost of comparing two set elements 0.0005 ms
M Amount of memory available in the system 32 MB

Table 2: Values Assigned to Analytical Parameters

3.3 Analytical Experiments

3.3.1 Experiment 1: Varying Set Cardinality

the analytical model using the parameters shown in Table 3.

costs in Paradise. We varied four parameters in our experiments as described earlier.
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In this section, we present results from experiments with the analytical model for conjunc-
tive queries with no sets in the results. Analytical experiments are plots of the equations
for query evaluation cost derived in Chapter 2. Table 2 shows the values for various

parameters used in the analytical model. These values are derived from the observed

In this experiment, we varied the cardinality of the set. Figure 5 shows the prediction of

As the cardinality is varied, the non-indexed representations showed an increase in
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Set Cardinality | Selectivity | Number of Elements | Size of Set Element
in the Predicate
10-100 10% 6 20

Table 3: Analytical Model Parameters for Varying Set Cardinality

Selectivity of 10%
—— Nested Internal -=- |Indexed Nested Internal
--+-- Nested External -=- Indexed Nested External
—x—Unnested External —e— |ndexed Unnested External
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Figure 5: Analytical Model — Varying Set Cardinality for Selectivity of 10%

response time, since the number of pages the relation occupied increases with set size.
Further since cardinality is increased more elements have to be examined to verify the
predicate. Unnested external shows a sharp increase after a set cardinality of 25. This
is because the number of tuples in the set table doubles and hence the cost of fetching,
scanning and evaluating these tuples increases.

The nested indexed representations showed a small increase in response time. This is

because of two reasons:

e The number of pages occupied by the leaf level of the index increases, thereby

requiring longer seeks to get to the same set of elements.
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e The number of pages occupied by the relation also increases thereby reducing the

likely-hood of finding the result tuples in a page.

The performance of indexed unnested external representation is an order of magnitude
slower than the nested ones. This is because the query involves many joins and simulta-
neous probing of the index by all joins. This leads to costly disk seeks.

At smaller cardinalities (< 40), the non-indexed nested representations performed
better. This is because the cost of sequential scanning and evaluating the tuples in the
entire relation is less than cost of random I/Os for probing in the index and fetching the
result tuples from the relation. On the other hand, the unnested external representation

performed better only at cardinalities less than 20.

3.3.2 Experiment 2: Varying Selectivity

In this experiment, we varied the selectivity of the predicate. Figure 6 shows the predic-
tion of the analytical model obtained by varying selectivity using the parameters specified

in Table 4.

Set Cardinality | Selectivity | Number of Elements | Size of Set Element
in the Predicate
100 0.01%-50% 6 20

Table 4: Analytical Model Parameters for Varying Selectivity

As the selectivity is increased, the non-indexed representations shows a smaller in-
crease in response time since the number of tuples written back to disk increases. Indexed
representations do not do as well as non-indexed representations at higher selectivities

since the number of tuples fetched increases and each fetch is a random I/O. However,
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Set Cardinality of 100
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Figure 6: Analytical Model — Varying Selectivity for Set Cardinality of 100

the useful range of selectivities for use with an index is higher for the indexed nested

representations (30%) than for the unnested representation (5%).

3.3.3 Experiment 3: Varying Number of Elements in Predicate

In this experiment, we varied the number of elements in the predicate. The other pa-
rameters are shown in Table 5. The prediction by the analytical model is shown in

Figure 7.

Set Cardinality | Selectivity | Number of Elements | Size of Set Element
in the Predicate
100 10% 1-6 20

Table 5: Analytical Model Parameters for Varying Number of Elements in the Predicate

When the number of elements in the predicate is varied, the nested representations

and their indexed counterparts showed almost constant response times. This is because in
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Set Cardinality of 100 and Selectivity of 10%
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Figure 7: Analytical Model — Varying Number of Elements in Predicate

the nested representations the entire predicate is evaluated as a group using a hash table.
When the set instance is scanned, each set element is hashed and probed (in most cases,
the probe will fail and hence the comparison with a predicate element will not occur).
The scan is also terminated prematurely if the predicate is satisfied early which leads
to faster performance at higher selectivities. However, in the case of unnested external
representation each predicate element has to be compared with every set element. This
includes the cost of explicity comparing the element with all the predicate elements. If
the predicate evaluation includes short circuiting, then each element will be compared
with half of the predicate elements. Hence the cost of unnested external increases as the
predicate elements are increased. On the other hand, the increase in the indexed unnested
external representation performance is due to additional joins and the associated increase

in the number of traversals of a B-Tree leading to disk seeks.




49

Set Cardinality of 100 and Selectivity of 10%
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Figure 8: Analytical Model — Varying the Size of Set Element
3.3.4 Experiment 4: Varying Size of Set Element

In this experiment, we varied the size of the element. The parameters are summarized

in Table 6. The prediction by the analytical model is shown in Figure 8.

Set Cardinality | Selectivity | Number of Elements | Size of Set Element
in the Predicate
100 10% 6 11-30

Table 6: Analytical Model Parameters for Varying Size of Set Element

When the size of set elements is varied, the indexed versions showed almost constant
(a very small rate of increase) response time since the range of sizes considered did not
increase the height of B-Tree. On the other hand, the response time of the non-indexed
representations increased linearly because of the increase in number of the I/Os as the

number of pages in the relation increased.
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Next, we will discuss the issues that arise when implementing the different repre-
sentations in an O/R DBMS. Further, we will describe our results on each of these

implementations.

3.4 Paradise O/R DBMS

Paradise is a shared nothing parallel object-relational database system developed at Uni-
versity of Wisconsin [PYK*97]. It supports standard attribute types such as integers,
floats, date and time. Paradise deviates from the regular relational systems by providing
a set of built-in spatial types, including point, polygon, poly-line and circle as well as
other additional types for storage and manipulation of images. It also provides a com-
pile time type mechanism for adding new types and extending existing types. All these
types can be used in any arbitrary combination when defining table types. These types
are implemented as abstract data types (ADTs). Paradise ADTs are inherited from a
base ADT, which provides common methods that every ADT must implement. These
common methods provide the functionality for external input and output, conversion
between memory and database representations, and the standard comparison and as-
signment operators. In addition to these common methods, each ADT has its own type

specific methods.

3.5 Implementation

To support nested representations, we implemented a set ADT in Paradise. The set
ADT implements a number of set-oriented methods, including: create-iterator and set

comparison operator. Create iterator returns an iterator over the elements of the set. Set
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comparison operators are implemented by type specific methods that are invoked by the
query engine when comparison and assignment are performed on sets. Specific details on

each implementation are described below.

e Nested Internal Representation: It uses the the set ADT directly. Queries are

issued by invoking the appropriate methods in the set ADT.

e Nested External Representation: We manually created two tables: the base
table and the set table. The set-valued attribute was stored in the set table in
the same way that the set-valued attribute was stored in the nested internal im-
plementation. This shows that nested external representation does not require any
additional effort if the nested internal representation is available. Again, the queries
were issued manually using a combination of method invocation on the set ADT

and relating the base tuples using a join.

e Unnested External Representation: Recall that the unnested external repre-
sentation does not require engine-level changes. For this reason, we were able to
“implement” the unnested external representation by explicitly creating two tables
as in the nested external representation, and then hand “compiling” set-valued

queries into their relational equivalents.

e Indexed Nested Internal Representation: For implementing indexed nested
representations, we implemented an unnested index on the set ADT that first
unnests the set instance using the iterator, next stores set element and TID pairs
in a temporary table, then sorts the temporary table and loads it into B-Tree us-
ing the bulk loading mechanism. We directly created the unnested index on the
set-valued attribute in the base table. 'In this case, the queries are fed into the

execution engine by explicitly specifying the plan.
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e Indexed Nested External Representation: The same nested index is used as
in indexed nested internal representation but the index was created on the set table.

Again, the queries are fed as plans.

e Indexed Unnested External Representation: We created two indices for the
unnested external representation: a clustered index on the foreign key attribute,
and an unclustered index on the set element in the set table. These two indices
are functionally equivalent to a join index on the two tables. The plans for queries

used indexed nested loop join.

3.6 Experimental Schema and Queries

We used the following schema for our experiments. The schema describes people and the

set of mowvies they have watched.
Moviegoer(name, street, city, state, zipcode, movies)

The queries we ran represented three main classes of set-valued queries: conjunctive

queries, disjunctive queries and queries that do not refer the set-valued attribute.

e Conjunctive Queries: In this class, we ran two queries: one that does not contain

set in the result and the other contains set in the result.

SELECT m.name, m.street, m.city, m.state, m.zipcode
FROM Moviegoer m

WHERE ('movieA50061°, 'movieA50062’) SUBSET OF m.movies (Q.24)

SELECT m.name, m.street, m.city, m.state, m.zipcode, m.movies
FROM Moviegoer m

WHERE (’movieA50061’, 'movieA50062’) SUBSET OF m.movies (Q.25)
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e Disjunctive Queries: In this class also, we ran two queries: one that does not

contain set in the result and the other contains set in the result.

SELECT m.name, m.street, m.city, m.state, m.zipcode
FROM Moviegoer m

WHERE ’'movieA50061’ IN m.movies OR ’movieA50062’ IN m.movies (Q.26)

SELECT m.name, m.street, m.city, m.state, m.zipcode, m.movies
FROM Moviegoer m

WHERE ’movieA50061’ IN m.movies OR ’movieA50062’ IN m.movies (Q.27)

e Queries Not Referencing Set Valued Attribute: In this class, we ran a select
and a self join query. These queries do not reference the set-valued attributes
and they are included to investigate the impact of the representations on normal

relational query processing.

SELECT m.name, m.street, m.city, m.state, m.zipcode

FROM Moviegoer m (Q.28)

SELECT ml.name, ml.street, m1l.city, ml.state, ml.zipcode
FROM Moviegoer ml, Moviegoer m2

WHERE ml.id = m2.id (Q.29)

For unnested external, we use the disjunctive groupby approach as specified in Chapter 2.
For indexed unnested external, we use the cascaded joins. The reasoning is that with
cascaded joins unnested external requires multiple joins with set table and hence might
be intolerably slow. The choice of running cascaded joins with indexed nested external

is to understand whether such a plan is useful on a restricted set of selectivities of the

query.
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3.7 Experimental Setup and Data Generation

The data for our experiments was synthetically generated in such a way that each set had
the same number of elements (this number is varied in some of the experiments below). In
addition, the data generator also ensured that it was easy to generate predicates over the
set-valued attributes with any desired selectivity. The data was uniformly distributed.
While it would certainly be interesting to experiment with varying numbers of elements
per set and various distributions over the elements of the set, the main conclusions from
our experiments are so clear that such experiments would be unlikely to significantly
affect them.

The average size of each tuple in the relation Moviegoer was 68 bytes without including
the instance of the set-valued attribute and the average size of each element in the set
movies was 20 bytes. The total number of tuples in the Moviegoer relation was 10,000.
Our experiments were run on Intel 333 Mhz Pentium processors with 128MB of main
memory running Solaris 2.6. We used raw disks providing a measured I/O bandwidth of
5 MB/sec and with an available capacity of 4GB. We used a database buffer pool size
of 32MB. Each query was run against a cold database by flushing the buffer pool before
each experiment.

In the following sections, we present the results of the experiments and interpret them.
We explored a large portion of the performance space. However, here we present only
the representative results. We chose to present the results for only conjunctive queries

with no set in the result since the other queries follow a similar trend.
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3.8 Implementation Experiments

3.8.1 Experiment 1: Varying Set Cardinality

55

In these experiments, we study the effect of varying set cardinality. The parameters for

these experiments are shown in Table 7. The results are shown in Figure 9.

Set Cardinality | Selectivity | Number of Elements | Size of Set Element
in the Predicate
10-100 1% 6 20

Table 7: Experiment Parameters for Varying Set Cardinality

When increasing the number of set elements, all the representations show an increase

in cost. This is expected since an increase in the number of set elements requires ex-

amining more tuples and/or more elements. Among the non-indexed representations,

the nested internal representation provides the best performance since it involves only
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a scan and the cost of predicate evaluation as predicted by the analytical model. The
performance of nested external representation closely followed the nested internal rep-
resentation within a range of 10%. This constant factor is due to the join involved to
connect the qualified nested set table tuples with the base table tuples. On the other
hand, the rate of increase in response time is larger for the unnested external represen-
tation (especially after 50) when compared with the other representations. A detailed
investigation of this behavior is presented later in the section.

In general, the indexed representations performed 50% faster than their non-indexed
counterparts, except for the indexed unnested external representation. Indexed unnested
external increases when the set cardinality is more than 50. This is because the query
contains 6 joins and the index is probed by each join which involves random seeks when
they are executed in a pipeline fashion.

The non-indexed representations perform better than the indexed representation when
the cardinality is low. This is because the number of pages the relation spans is much
smaller and the cost of reading the relation sequentially is less expensive than the disk

seeks involved in fetching the tuples from the index.

Performance of Unnested External Representation

To investigate the deteriorating performance of the unnested external representation, we
measured the individual costs that contributed to the overall response time. The results
are plotted in Figure 10. The cost break down for nested internal representation is plotted
in Figure 11 for comparison.

As can be seen from the figures, the unnested external representation suffers from
the “cardinality explosion” problem. When the cardinality of the set is increased, the

number of tuples in the set relation is increased by the product of the number of base
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tuples and the cardinality of the set. Further the number of tuples entering the join is
increased since the evaluated predicate is a disjunction. This disjunction passes up tuples
belonging to sets which might not contain all the predicate elements to qualify in the

final result. Such an increase in tuples adds the following costs:

e The cost of fetching more tuples from buffer pool while scanning the set table. This
cost includes the cost of pinning the page, locating the record in the slotted page

and extracting it.

e The cost of predicate evaluation during scanning the set table, joining of the base

table tuples with set table tuples and the final “groupby”.

On the other hand, the nested internal representation had fewer tuples that needed to
be fetched from buffer pool. Further, the cost of predicate evaluation is not as high
since the predicate is evaluated on the whole set. In order for the unnested external
representation to be more competitive, the cost of fetching tuples from buffer pool and

the cost of predicate evaluation cost have to be improved.

3.8.2 Experiment 2: Varying Selectivity

These experiments varied the selectivity of the predicate on the set. The parameters used
in these experiments are summarized in Table 8 and the results are plotted in Figure 12.
A closer version of this figure is shown in Figure 13 which excludes two data points of
indexed unnested external.

The non-indexed nested representations showed a very small increase in time. This
is to be expected since more tuples must be written out as part of the result. However,
the unnested external representation showed a larger increase in response time above a

selectivity of 1%. This increase is due to the increase in the number of tuples feeding
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Set Cardinality

Selectivity

Number of Elements
in the Predicate

Size of Set Element

100

0.01%-50%

6

20

4

Table 8: Experiment Parameters for Varying Selectivity
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the join. This increase also affects the cost of “group by” since more tuples have to

be examined. Further, the number of result tuples written to disk is also higher and

contributed to the increase in response time.

The indexed representations provided fast performance at lower selectivities. How-

ever, the indexed representations catch up on their non-indexed counterparts at higher

selectivities. As the selectivity increases, more probe of the index is required and more

tuples are fetched from disk, causing increased random I/Os. The indexed unnested

external starts increasing sharply at about 3%. This is due to the following factors:

e The query executes 6 joins and each join is probing the index simultaneously with

other joins. Further each join filters only a subset of the predicate. Hence the

number of tuples entering the lower most join is more. Because of this increased

tuples, subsequent joins also see more tuples.

e The base table is joined early with set-table so the attributes in the result are

passed to subsequent joins. This increases the cost substantially since at every join

the tuples have to be split for predicate evaluation. At the end of join, they have

to be assembled again and passed to the next join.

Because of aforementioned overheads, the usability range of indices in the unnested

external representation is limited. The usability range of index on nested representations

extends to 50% because the individual tuples are large and occupy a page on their own,

causing scan time to go up as compared to their non-indexed counterparts.
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Elements in the Predicate

Figure 14: Varying Number of Elements in the Predicate with Selectivity of 1%

3.8.3 Experiment 3: Varying Number of Elements in Predicate

These experiments studied the effect of increasing the number of elements in the selection

predicate. The parameters chosen for these experiments are shown in Table 9. The results

are plotted in Figure 14.

Set Cardinality | Selectivity | Number of Elements in the Predicate | Size of Set Element
in the Predicate
100 1% 1-6 20

Table 9: Experiment Parameters for Varying Number of Elements in the Predicate

Varying the number of elements in the predicate does not affect nested representations

since the entire predicate is evaluated as a group, by examining all the set elements. When

the predicate fails, the entire set would have been scanned. If the predicate is satisfied

early, then the scan of the set elements is terminated immediately. Since the selectivity

is 1%, the number of tuples that satisfy the predicate will be less and hence the impact
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of early termination is less. Hence, there is not much change in response time. Further,
since a hash table is used for predicate evaluation, explicit comparison of elements is not
required unless the hash values are equal. It provides substantial savings especially if the
compared elements are large types — strings, images, documents etc.

On the other hand, the unnested external requires comparing every element in the
predicate with all the tuples in the set table since the query rewrite contains a disjunction.
If the evaluation of disjunction is short-circuited, then on the average every tuple in the
set table is compared with half the number of elements in the predicate. Hence as the
number of elements in the predicate increases, the response time increases linearly.

Since there is no short circuited evaluation across elements as in nested representation,
one might argue that the set-table in unnested external could be sorted. Sorting ensures
that elements from a single set are clustered. The predicate evaluation takes advantage
when the set predicate is satisfied early, it can skip rest of the elements and proceed to
the next set. However, this will require changes in the engine to implement a skipped
sequential scan and a specialized predicate evaluator.

The indexed nested representations showed a very small increase in response time.
This increase is due to the increased number of probes and the “anding” of the rids
of the tuples. For indexed unnested external, increasing the number of elements in the
predicate adds more joins to the query and the operators heavily use both the indices

thereby increasing the disk seeks.

3.8.4 Experiment 4: Varying Size of the Set Element

In this experiment, we study the impact of varying the size of the set elements. The

experiment parameters are shown in Table 10. The results are plotted in Figure 15.
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Set Cardinality | Selectivity | Number of Elements | Size of Set Element
in the Predicate
100 1% 1-6 11-30

Table 10: Experiment Parameters for Varying Size of the Set Element
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Figure 15: Varying Size of the Set Element for a Selectivity of 1%

All of the non-indexed representations show a gradual increase in response time since
the number of pages the relation occupies increases as the size of the set element increases.
However, there is an increase for nested representations from 11 bytes to 20 bytes since
the number of pages increase by a factor of two. But from 20 to 30 bytes the performance
of the nested representations is almost constant, because the number of pages remained
the same. This is because a single tuple with elements of either 20 or 30 bytes can
fit in a single page with the rest of the space remaining unused. All of the indexed
representations showed constant performance since the number of probes and number of

tuples were the same in all cases.
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3.8.5 Experiment 5: Comparing Conjunctive Query Variants

In this section, we compare conjunctive queries both with the “set in the result” and “not
in result”. The parameters used in the experiment are shown in Table 11. The results

are shown in Figure 16.

Set Cardinality | Selectivity | Number of Elements | Size of Set Element
in the Predicate
100 1% 6 20

Table 11: Experiment Parameters for Comparing Conjunctive Query Variants

This graph shows that the percentage increase for grouping the base tuples and its
set elements (projection) is slightly high for the unnested external representation and its
indexed variant, while for the nested representations and their indexed variants it is lower.
The increase in the nested internal representation is due to the CPU cost associated with

fetching tuples from a sequential scan and writing the projected set-valued attribute.
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However, the write cost is small, since for indexed nested internal representation, this
comes only from writing the tuple. The increase in unnested external representation is
due to an additional join that involved a scan of the large set relation and the cost of
writing more tuples.

On the other hand, for the nested external representation, the increase is much lower
in spite of almost the same amount of data being passed through the join as in the case
for the unnested external representation. This is because in this representation, many

fewer tuples carry the same amount of data. However, the join cost is very low.

3.8.6 Experiment 6: Overhead

These experiments were run in order to measure the overhead associated with the nested
internal representation. This is of interest especially if the predominant query workload
does not use the set-valued attribute. For these experiments, we used the parameters
shown in Table 12. We ran the simple select and self join queries as described in Sec-

tion 3.6, and the results are plotted in Figure 17 and Figure 18.

Set Cardinality | Selectivity | Number of Elements | Size of Set Element
in the Predicate
100 100% NA 20

Table 12: Experiment Parameters for Queries that do not refer the Set Valued Attribute

For the select query, the time for the nested internal representation is dominated by
the extra 1/O cost, which is proportional to the total size of all instances of the set. For
the join query, the extra cost is linear in the combined cost of the set instances from both
relations. For the unnested external and nested external representations, the cost is the

same independent of the size of the set since only the base relation was examined.
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3.9 Summary

The efficient implementation of set-valued attributes is an important challenge facing
the developers of “Universal Servers” or other systems that support SQL4. We analyzed
the space of representations available for storing set-valued attributes and developed a
detailed analytical model. We verified the analytical model with an implementation in
Paradise. In all, the experiments conclude that the nested representations perform better
than the unnested representations.

The performance of the unnested representations suffers from the high cost of eval-
uating queries even for simple conjunctive and disjunctive queries. This is because the
cost of fetching the tuple from buffer pool and processing the predicate is much expensive
since each set element is stored as a separate tuple. These costs are proportional to the
number of set elements, unlike nested representations, in which it is proportional to the
number of sets.

The indexed variants of these representations facilitated faster probing for disjunctive
and conjunctive predicates, however, the usability of indices is limited to particular range
of selectivities. Even though the nested representations perform better for set queries,
they have the drawback of requiring additions and modifications to the storage and query
evaluation engine of a relational database system. However, the modifications translate

into large improvements in performance.
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Chapter 4

Set Containment Join Algorithms

4.1 Introduction

We now turn away from set representation alternatives to consider the implementation of
a particularly challenging operation over set-valued attributes, the set containment join.
Many real world queries can be easily expressed using set containment joins. Consider

the following example that involves two relations.

4.1. Example.

Student (sid, {courses})

Courses (cid, {pre-requests})

where the attributes {courses} and {pre-requests} are set-valued attributes. A frequently

asked query on this data set might be to find the courses that the students are eligible

to take. Such a query can be easily expressed as a set containment join as follows:

SELECT s.sid, c.cid
FROM Student s, Courses ¢

WHERE c.pre-requests C s.courses (Q.30)

Another motivating example arises from the web. Consider a simple relation that de-

scribes documents and the set of hyper-links that point to them:




69

4.2. Example.

Document(did, {hyper-links-in}, actual-document)

Suppose document dy is defined to be more important than ds if d; is linked-to by a
superset of the documents that link to d;. We can find pairs of documents (d;, ds) for

which d; is more important than d, with the following query:

SELECT d;.did, dy.did
FROM Document d;, Document ds

WHERE dy.hyper-links-in C d;.hyper-links-in (Q.31)

The algorithms available for implementing set containment joins depend upon how set-
valued attributes are stored in the database. As described in Chapter 2, sets can be stored
in the nested internal representation (set elements are stored together along with the rest
of the attributes) or the unnested external representation (set elements are scattered and
stored in a separate relation).

To the best of our knowledge, current commercial O/R DBMS use the unnested exter-
nal representation. Since the unnested external representation reduces to standard SQL2
relations under the covers, set containment joins on the unnested external representation
can be evaluated by rewriting the queries into SQL2 (with no sets) and evaluating these
rewritten queries. On the other hand, with the nested internal representation, the most
obvious algorithm for evaluating set containment joins is nested loops. Two questions
immediately arise: (1) Are there better algorithms than nested loops? (2) How do these
algorithms compare in efficiency with the “rewrite in SQL2” approach that is most logical
for the unnested external representation?

This chapter attempts to answer these questions by proposing a new partition-based

join algorithm for set containment joins, which we call PSJ. Partition-based algorithms
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certainly dominate join algorithms in scalar and spatial domains, so it is natural to sus-
pect that a partition-based algorithm will be the algorithm of choice for set containment
joins.

In this chapter, we present the new algorithm PSJ for set containment joins. The next
chapter includes an extensive performance study of three set containment algorithms:
the traditional SQL approach on the unnested external representation, and signature
nested loops and PSJ on the nested internal representation. Our experience with an
implementation in the Paradise object-relational database system [PYK*97] shows that
PSJ yields significant speedup over both the SQL-based approach and signature nested
loops. An added benefit of this algorithm is that, like all partition-based algorithms,
it is trivially parallelizable. Finally, our results present more ammunition in the case
for storing sets in the nested internal form, since PSJ and even signature nested loops

outperform the rewritten queries over the unnested external representation.

4.1.1 Chapter Organization

The rest of the chapter is organized as follows. Section 4.2 defines the problem of set
containment and the notation used in the chapter. The SQL approach and signature
nested loops joins are explained in detail in Section 4.3. The need for partition based
algorithms is justified in Section 4.4. The partition based set join algorithm is outlined

in Section 4.4.2. Our conclusions are presented in Section 4.5.

4.2 Problem Definition and Notations

For the rest of the chapter, we consider the two relations R(a, {b}) and S(c, {d}) contain-

ing the set-valued attributes {b} and {d} respectively. Since set is a type constructor,
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attributes b and d can be of an arbitrary type, and we assume that these types provide
an equality predicate that determines the equivalence of two set elements. Also, we do
not assume any order among the set elements. The set containment join R t<pycia) S
pairs tuples in relation R and S such that {b} is subset of {d}. Table 13 describes the

notation used in the rest of the chapter.

Notation | Description
|| R|| | Number of pages of R
[] S| Number of pages of S
| R | Relation cardinality of R (# of tuples)
| S| Relation cardinality of S (# of tuples)
kg Average set cardinality of R
ks Average set cardinality of S
TR Replication factor of R
Ts Replication factor of S
o Selectivity of R t<gpyciay S '
f False drops as a percent of o | R || S |
TID; Size of an rid (bytes)
Ps Size of the data page (bytes)
he CPU cost of hash computation
Sc CPU cost of comparing signatures
IO, Cost of a sequential 1/0
IO;4ng | Cost of a random I/0

Table 13: Description of Notation Used

4.3 Previously Proposed Algorithms

4.3.1 Join Algorithms for Unnested External Representation

If sets are stored in the unnested external representation, set containment joins can be
expressed and evaluated using standard SQL2 constructs. This approach is important
to study, because (a) it is the simplest to add to any RDBMS, and (b) perhaps because

of (a), to our knowledge the commercial O/R DBMSs all use this approach. As we
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R(a{b}) ===  R.(ai) Rib)

S(cfd))  m—— Syci)  S¢id)
SELECT Rg., Sg.j

FROM Ry, S
SELECT * WHERE Rg.b = Ss.d
FROMR, § == GROUP BY Rq.i, Sj
WHERE R.{b} < S.{d} HAVING COUNT(*) = (SELECT COUNT(*)
FROM Rg NR;
WHERE NR;.i = Rg.0)
Original Query Transformed Query

Figure 19: Original and Transformed SQL Queries (excluding final joins for a and c)

INSERT INTO R Tmp(i,count)  INSERT INTO RS Tmp(i,j.count;) SELECT RS Tmp.i, RSTmp.j

SELECT Rg.i, COUNT(*) SELECT R.i, 8¢j, COUNT(*) FROM RS Tmp, R;Tmp
FROM Rg FROM R, S WHERE RS Tmp.i = R;Imp.i
GROUP BY Rg.i WHERE R..b = Sgd AND RgSsTmp.count; = RsTmp.count;

GROUP BY Ry.i, Sgj

Count Query Candidate Query Verify Query

Figure 20: Magic Sets Rewriting

discussed in Chapter 2, in this representation, a relation with a set-valued attribute is
decomposed into two relations. A set containment operation can then be expressed using
SQL over these decomposed relations. If R and S are the two relations being joined, and
Rg and Sg are the corresponding decomposed auxiliary set relations, then the original
and transformed queries are shown in Figure 19.

The rewritten query joins the set relations and groups the pair of sets that have at
least one element in common. Then, for each group, it checks whether the size of the
group (which is the number of elements in common between the R set and the S set) is
the same as the cardinality of the set in R. This query, as written, returns in the answer
tuples only the pair of set ids that satisfy the containment. If any other attributes were

included in the answer, additional joins would be required to extract them from the input
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relation.

The main problem with this approach is the efficiency of evaluation of this query.
Since this is a correlated nested query, the nested query must be evaluated for each group.
Since the number of groups is proportional to | R | x | S |, the cost of evaluating the
nested query naively can be prohibitively large. A possible optimization is to use magic-
sets rewriting [SPL.96] and transform the original query into the set of queries shown in
Figure 20, thus evaluating the inner query only once (as opposed to once for every tuple
produced by the outer block). Even after this transformation, each set element in Ry is
compared with every other set element in Ss. Hence the evaluation of the block (join
followed by group-by) is likely to be the dominating cost.

Our experiments show empirically that even this approach performs very poorly unless

the set sizes and relation sizes are small.

4.3.2 Signature Nested Loops Algorithm for Nested Internal

Representation

Nested loop algorithms for set containment fall into two broad categories: naive nested
loops and signature nested loops. In naive nested loops, the set containment predicate is
evaluated on pairs of sets for the entire cross product of R and S. As shown in [HM97],
naive nested loops performs poorly, since it is very expensive to compute the set contain-
ment predicate for every pair of tuples. Hence we do not consider naive nested loops in
the remainder of this chapter.

The signature nested loops algorithm proposed by [HM97] attempts to reduce the
cost of evaluating the containment predicate by approximating sets using signatures and

evaluating the join predicate by comparing these signatures. A signature is a fixed length
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bit vector that is computed by applying a function M iteratively to every element e in
the set, and setting the bit determined by M(e). If the containment predicate s C ¢ is to
be satisfied for two signatures s and ¢, then the following condition is necessary: For all
bit positions that are set to 1 in signature s, the corresponding bits in signature t should
be set to 1.

However, this condition, while necessary for determining that two tuples join, is not
sufficient, since signatures are only an approximate representation for the set (unless the
signature length is equal to the size of the domain of the set). Hence, using signatures
to evaluate a predicate will yield false drops. That is, two sets may have signatures
that indicate containment, while the actual sets do not really satisfy the containment
predicate. The actual sets must be examined to eliminate these false drops.

We are now ready to describe the signature nested loops algorithm. This algorithm
operates in three phases: the signature construction phase, the probing phase, and the
verification phase. During the signature construction phase, the entire relation R is
scanned, and for every tuple t; € R, a signature s; is constructed. A triplet (c;, s;, OID;)
is computed and stored in an intermediate relation Rg;,; here c; is the set cardinality and
OID; is the physical record identifier (rid) of the tuple. The same process is repeated
for the relation S and an intermediate relation Sy, is created.

Next, the algorithm proceeds to the probing phase, where the tuples of Ry, and S,
are joined. For every pair (¢;, 8;, OID;) € Ry, and (cj, 55, OID;) € Sy, two conditions
must be verified (i) ¢; < ¢; and (ii) s; A s; = s;, where A represents the bit-wise “and” of
the two signatures. If both the conditions are satisfied, then the pair (OID;, OID;) is a
possible candidate for the result. During the final verification phase, the tuples referred
to in the candidate (OID;, O1D;) pairs are fetched and the subset predicate is evaluated

on the actual set instances, producing the final result.
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The main issue in the signature nested loop join algorithm is reducing the number
of false drops to minimize the cost of the verification phase. The false drop probability
depends on the number of bits used in constructing the signature. The greater the
signature length, the smaller will be the false drop probability. However, larger signatures
lead to more bit comparisons per signature, thereby increasing the execution time of the
probing phase. Hence, it is necessary that the chosen signature size be such that further

increases in the number of bits do not significantly reduce the false drop probability.

4.3.3 Estimation of Signature Size

Estimating the signature size requires the computation of the false drop probability. The

false drop probability Prp is defined in [IKO93] and is given by

_ [falsedrops
Prp = N — actualdrops (26)

where N is the total number of comparisons and actualdrops is the total number of

qualified pairs of tuples (including the false drops.) Equation (26) can be rewritten as

falsedrops
N — resultsize — falsedrops

Prp = (27)

Now resultsize can be expressed as o | R || S |, where o is the join selectivity. The
falsedrops can be expressed as a percentage of resultsize as fo | R || S |, where f is

the tolerable false drop percentage. Now Prp can be expressed as

_ fo | RIS
[RIST-0 RS-0 RIS

Prp (28)

The false drop probability Prp of a subset predicate between two sets of size kg and kg

is derived in [IKO93] and is given by

Pep=(1- e—ks/FSNL)kR (29)



76

Using equations (28) and (29), we can determine the the optimal signature length (Fsnz)

as
"kS

fo 1/kr
In (1‘_ (T:;agqj) )

Note that even with the signatures of an ideal length, this algorithm compares signatures

Fsnp = (30)

for every pair of tuples in the cross product of R and S. If R and S each has one million

tuples, there are one trillion comparisons.

4.4 Partition Based Algorithms

In this section, we propose a new algorithm for set containment joins over the nested
internal representation that is based upon partitioning. In general, partition based algo-
rithms for joins (scalar and spatial) attempt to optimize join execution by partitioning
the problem into multiple smaller subproblems using a partitioning function. First, the
relation R is partitioned into k partitions, R;, Ry, ..., Rg. Similarly, the relation S is
partitioned into Si, S, ..., Sk using the same function. Note that we are using a gener-
alization of the classical definition of partitioning in that one tuple may be mapped to

multiple partitions. An ideal partitioning function has the following characteristics:
e Fach tuple r of relation R falls exactly in one of the partitions R; (1 < i < k)
e Fach tuple s of relation S falls exactly in one of the partitions S; (1 <17 < k)
e The join can be accomplished by joining only R; with S; (1 < i < k)

It is hard and expensive to satisfy the three conditions in non-scalar domains.
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4.4.1 Will Partitioning Improve Speedup?

Partitioning algorithms have been shown to outperform other algorithms in scalar and
spatial domains. In this section, we explore how partitioning speeds up set containment
join. We analyze the speedup using a very simple analytical model. Let us assume that
both the relations R and S have N tuples and that joins within the partitions are done
using signature nested loops. (We relax this assumption later in this section). Also
consider the class of partitioning functions in which only tuples of S are replicated. If rg
is the replication factor and P is the number of partitions, then the overall cost of the

partition-based algorithm, ignoring constants, is given by

(7) (%) o1

On the other hand, the cost of the nested loop algorithm, again ignoring constants, is
N2, Hence the speedup of the partition-based algorithm is proportional to P/rg, where
rg depends upon P.

To investigate this dependence, we make the assumption that the set instances draw
their elements from the domain uniformly. Furthermore, we assume that the partitioning
algorithm works by partitioning the elements of the domain from which the set is drawn.
If a set has an element e, and e maps to a partition p, then the set itself must be mapped
to partition p. From statistics [Fel57], assuming a large domain size (greater than set
cardinality), the expected number of partitions to which a tuple is replicated (essentially

rs) when its set instance has cardinality of k is then given by
k—k(1-1/k)" (32)

According to equation (32), when the number of partitions is increased, the expected

number of partitions approaches the value of &k asymptotically (thereby bounding the
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replication to k). Hence the speedup of partition-based algorithm can be rewritten as

P
k— k(1 — 1/k)P

Speedup = (33)

If kg is the average set cardinality of relation S, the speed up can be easily rewritten as

P
ks — ks(1 — 1/kg)?

Speedup = (34)

A plot of equation (34) for various values of kg is shown in Figure 21. The graph
shows that as P increases the speedup increases. Consider the individual effects of the
two terms in equation (34): P and ks —ks(1—1/ks)F. Increasing P tends to increase the
speedup. However, increasing P also increases ks — ks(1 — 1/ks)?, which has the effect
of decreasing the speedup. Since the rate of increase is greater than the rate of decrease
of the denominator, overall the speedup increases. Replication is bounded as a tuple
cannot be replicated to more partitions than its set cardinality. Once the replication has
reached the maximum of kg, the rate of increase is purely dominated by increase in P.
Also, observe that for a given speedup to occur, higher cardinality sets require a larger
number of partitions, since the decreasing effect of replication is extended in large sets.
In order to counteract this effect, more partitions are required.

The number of partitions is bounded by the domain size. Hence the speed up is
bounded by | D | /k. Of course, this analysis is greatly oversimplified and in practice
such a speedup is not attainable, because increasing the number of partitions causes
overhead of its own. However, the intuition from this simple model is valid: because
there is a bound on the replication factor, increasing the number of partitions beyond a
certain level will not cause any more replication.

Finally, we return to the assumption that each pair of partitions is joined using nested

loops. Relaxing this assumption and considering faster algorithms for joining partitions
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Effect of Speedup with Partitions
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Figure 21: Theoretical Variation of Speedup with Increase in Partitions

does change the predicted speedup factors, but it does not affect the general conclusion

of the model (that partitioning is beneficial).

4.4.2 Partitioned Set Join Algorithm (PSJ)

Now we are ready to describe the Partitioned Set Join Algorithm (PSJ), which uses a

two level partitioning scheme. It operates in three phases:

e Partitioning Phase: Each tuple of R is sent to exactly one partition based on the
first level partitioning function h. Each tuple of S, in general, is replicated across

multiple partitions using (the same) h.

e Joining Phase: Each partition of R is joined with its counterpart in S using a

second level partitioning function that operates on signatures. Hence false drops

are possible.



80

e Verification Phase: The tuple pairs that the join phase indicates could join, are

compared to remove any false drops.

The subsequent sections describe each of the phases in detail.

4.4.3 Partitioning Phase

This phase uses a partitioning function h that operates on the set elements. The parti-
tioning phase begins by reading the relation R. For each tuple 7 of R, the following steps

are executed

1. A 3-tuple (c;, 8;, OID;) is computed, where c; is the set cardinality, s; is the signa-

ture of the set instance, and OID; is the OID of the tuple.
2. A random element ep is picked from r.{b}.
3. The 3-tuple is sent to the partition determined by h(er).

Observe that the 3-tuple for each tuple of R is sent only to one partition. Now the

relation S is read. For each tuple s of S, the following steps are executed
1. A 3-tuple (¢, s;, OID;) is computed.

2. For each element es € s.{d}, the 3-tuple is sent to the partition determined by

h(eS).

Note that if .{b} C s.{d}, then the partition determined by h(er) will contain the

3-tuples corresponding to 7 and s. Hence the algorithm computes containment correctly.
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4.4.4 Joining Phase

During the joining phase, each partition of R is joined with its counterpart in S. There
are various algorithms that could be used in this phase. However, at this point, the tuples
in each partition do not carry the actual set instances, since they are approximated by
signatures. Hence the join algorithm in this phase has to operate directly on signatures.
In this phase, we use a partition based in-memory algorithm using signatures.

The joining algorithm works in two steps: the build step and the probe step. In the
build step, an array A of size equal to the number of bits in the signature is constructed.
Now the partition R; is scanned and each 3-tuple (c;, s;, OID;) is read. A bit position m
that is set to 1 is chosen randomly from the signature. The 3-tuple is inserted into A[m].
At the end of first step, the signatures from partition R; have been partitioned.

During the probe step, partition S; is scanned. For each 3-tuple (c;, s;, OID;), the
chain of signatures in A[n] is examined whenever bit n is set to 1 in s;. The containment
predicate is evaluated (as in Section 4.3.2) for each signature encountered in the chain
and the candidate pairs (OID;,OID;) are inserted into a temporary relation. These
candidate pairs potentially satisfy the containment relationship.

This phase of the algorithm is similar to signature hash join (SHJ) proposed in [HM97].
We use a single bit in the signature to determine the array index for R. SHJ in general
uses more bits (a partial signature) to determine the array index. For S, SHJ requires
all possible subset signatures to be enumerated for a given partial signature to determine

the chains to be probed. This enumeration is exponential in the size of the signature.
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4.4.5 Verification Phase

In the verification phase, we examine the actual R and S tuples to determine whether
they satisfy the join condition. The main issues involved in this phase are speeding up
set containment verification and avoiding random seeks while fetching the tuples.

The set elements in the tuples of R and S retrieved from the storage manager are
stored in the nested internal representation (as described in Chapter 2). Such a storage
representation is not very efficient for evaluating the containment predicate for the OID
pair (OID;gr,OID;s). This is because it requires examining all the set elements of the
tuple corresponding to OI D;g for every set element of the tuple corresponding to OID;g.

In order to speed up the containment verification, the set elements of each tuple of
R are inserted into a hash table to facilitate faster probing. Observe that each tuple
has a hash table of its own. The set instances of each tuple in S can either be directly
scanned in the nested internal representation sequentially or can be converted into an in-
memory array representation and accessed. The former approach is expensive since each
set element has to be converted into an in-memory representation before probing into the
hashed set instances of R. Hence it is not efficient if the same tuple is accessed repeatedly.
On the other hand, the array representation is advantageous since it amortizes the cost
of conversion into an array over multiple accesses, thereby improving the overall time.
Using these combinations, we get the best speedup for set containment checking.

In order to minimize the disk seeks we employ a strategy described in [Val87]|. The
OID pairs relation is already in sorted order with OID;g as the primary key. This
makes the access to R tuples sequential. Now as many S tuples as possible are fetched
such that the available memory holds (i) tuples of R and its hashed set instances, and

(ii) tuples of S and its set instances in array form and (iii) the corresponding array of
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(OID;g,0IDjs) pairs. The OIDs of R are swizzled to point to the R tuples in memory
and then the array is sorted on OID;s so that the access to the tuples of S is sequential.
The nested set instances present in the swizzled tuples of R are converted into efficient
hashed representations in memory. Then the S tuples are read sequentially into memory
and their nested set-valued attribute is converted into an array representation. The join
condition is evaluated for each OID pair by scanning the set instances in S in array
representation and probing into the hashed instances of R till all set elements of R are
accounted for. We chose to build a hash table for set instances of R rather than S since

they are smaller, reducing the cost of building the hash table.

4.4.6 Estimation of the Number of Partitions

As seen in Section 4.4.1, the number of partitions has a critical impact on the performance
of PSJ. The desirable number of partitions depends on two parameters: the average
set cardinality, and the relation cardinality of the relations involved. Even though the
speedup is expected to increase as the number of partitions is increased, in practice, the
overhead associated with each partition prevents such unbounded speedup.

In order to estimate the desired number of partitions (Ppgs) and the signature size
(Fpss), we employed a detailed analytical model to predict the execution time of the

algorithm. Using the model, the cost of each phase is calculated.

Cost of Partitioning Phase

The cost of partitioning (Cpp) includes the cost of reading the relations, cost of deter-

mining the partitions and the partitioning overhead. It can be calculated as



84

|| R|| IOseqt || S || IOseq+ 1/0O cost of reading the relations R and S

Prg; [M-l 10, 4nq+ I/O cost of writing the partitions of R

— PsxPpsy
Cpp = <
Ppg; [é‘%] 10, 4na+ 1/0 cost of writing the partitions of S
| e | R| +hcks | S | CPU cost of computing the hash function

(35)
where T is the size of 3-tuples. It is equal to (T Ds+ [ Fpss/8] +1) where 4 is the number
of bytes requires to store the set cardinality. The cost of partitioning assumes that at

least a page of each partition fits in memory.

Cost of Joining Phase

The cost of the joining phase (Cyp) is a summation of the joining cost of the individual
partitions. The joining cost in turn depends on the cost of reading the partitions, the
number of signature comparisons, and writing the result. Estimating the total number
of signature comparisons depends on (i) length of the chain and (ii) expected number of
chains examined for each signature of a partition of S. Assuming a uniform distribution,
one can determine the length of the chain Cf as

__ IRl
FpsjPpsy

Cr (36)

Now we have to determine the expected number of chains examined for a signature from
a tuple of S. It depends on the number of bits set to 1. The probability that a bit
position b is set to 1 is given by 1/Fpgy. If m is the expected number of bits set to 1,

then we have

szszxProb{b;‘;:l} (37)
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Now m can be rewritten as

m = Fpgy (1 - (1 _ F;J)’“) (38)

Since m also equals the number of chains examined, the total number of comparisons N,

required for each partition is given by

m|R| S|
N, = ———5— 39
g FpsiP IZDSJ (39)
Now the total cost of joining can be calculated as
{
Ppsj [P—Sl%g—;?] I0geq+ 1/O cost of reading the partitions of R
Crp = | Ppsy [7,%](%2%.‘ IO+ 1/0O cost of reading the partitions of .S (40)
%—-ﬁ% CPU cost of comparing the signatures
\ ’—Elﬁgflfl IOgeq I/O cost of writing the result

where V is the size of the OID pairs which is 2 x T'ID;.

Cost of Verification Phase

The cost of verification (Cyp) includes the I/O cost of fetching the tuples and CPU cost

of evaluating the containment. It is calculated as

]
2 [5'—}%]-5‘—9—&] IO;eq+ 1/0 cost of sorting the result

c o | R|| S |edog(¥E2)+ CPU cost of sorting the result
VP = g
20 | R|| S| IO;seq+ I/0 cost of fetching the tuples in the worst case

o | RI|| S| hekr+ks) CPU cost of verifying the set containment
(41)

The overall cost of the algorithm is the sum of the cost of these individual phases. The

cost of the algorithm is minimum when the number of partitions is optimal. In order to
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derive an equation for the partitions, we differentiate the total cost with respect to Ppgs
and equate to zero and solve for Ppg;. However, if we differentiate directly the overhead
for fragmentation in the partitions will not be taken into account. This is because of the
presence of the ceiling functions in various phases. Fragmentation and other partitioning
overhead heavily depends on the implementation of the system. They depend on the size
of the page, the overhead per tuple, the time to create and delete partitions, the cost of
pinning and un-pinning a page in the parﬁition.

In order to model the partitioning overhead for our system, we tried a few experiments.

Based on these observations we modeled the overhead as follows:

e Approximate the fragmentation effect as a quadratic function in Pps; as 0.5P2¢ ;10,44
in the partitioning phase for each relation and 0.5P3 ;IO for reading the parti- .

tions again in the joining phase.

e The overhead of creating and destroying partitions is again approximated by a
quadratic function in Ppg; and modeled by a term of the form HP2g; where H is

a system dependent constant.

Even though the replication factor of S relation is related to Ppgs, as described Sec-
tion 4.4.1, it is substituted by its average set cardinality for simplification. After these
additions and substitution for m, the overall cost of the algorithm is differentiated with
respect to Ppgy. We get

dC/dPpgy =

Fpsy

. . ks
2Ppss(I0rana + [05eq + H)— | R|| S | (1 - (1- %) ) s¢/Plsy
Setting dC/dPpg; = 0 and solving for Pps; gives

R|IS|(1-(1-1%)
b 171 1(Z( 5" )

1/3
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where 7 = 21O,qng + 21Ogeq + H

The fudge factor H accounts for various system dependent factors including the cost
of creating and destroying partitions and other overheads. The fudge factor is likely to
vary across systems. For a given system, H can be determined as follows: for a set of
sample data, run PSJ for various number of partitions and measure the partition creation
and deletion times. For each of the time, divide by P3g; for various number of partitions
and calculate the average value of H.

If the number of buffer pool pages available is less than the estimated value, whatever

is available is committed to the algorithm.

4.4.7 Estimation of Signature Size

The performance of PSJ depends on the size of the signature used for approximating sets.
Since partitioning avoids many redundant comparisons, one can expect the signature
size (Fpsy) to be lower (when compared to Sig-NL). Also, as the number of partitions
is increased, the signature size is expected to get lower. We derive an equation for
approximately estimating the signature size based on desirable number of false drops.
In order to compute the total number of false drops, first the number of false drops per
partition has to be determined. The false drop probability equation (26) can be rewritten

as
falsedrops,

Prp, = 57 (43)

» — resultsize, — falsedrops,

where Ppp, is the false drop probability per partition, falsedrops, is the number of
false drops per partition, resultsize, is the size of the result after joining corresponding
partitions of R and S and N, is the total number of signature pair comparisons for joining

the partition. N, is given by equation (37).
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Expressing the false drops f, as a percentage of the result size of the partition and

substituting for m, the equation (43) can be rewritten as
— foop | R |75 | S|
= L
(RUISI(1=(1=55%)") —os | BIrs | S| ~fr0p | R ks | S|

Fpsy

P

FDyp

(44)

where o, is the selectivity of the join per partition. Assuming a uniform distribution, the
partition selectivity can be computed by observing that the total result is the summation

of the results from individual partitions.
o|R|| S |=Ppss | R|ks|S|0p/Phsy (45)
Rearranging, we get
op = 0Ppgy/rs (46)
Because of uniform distribution we can further assume that f, = f and Prp, = Prp

where f is the overall percentage of false drops and Ppp is the overall false drop proba-

bility. Now the equation can be rewritten as

foP

Ppp = i (47)
1
(1 - (1 — Fps.z) ) —oP — foP
Combining equations (29) and (47) we get
(1- e—ks/FPSJ)kR - foP =0 (48)

(1 - (1- F;SJ)kS) — 0P~ foP

We use the bisection method to solve this equation. There is a cyclic dependency between
equations (42) and (48) Hence both the equations have to be solved simultaneously. We
use these equations to determine the appropriate combination of partitions and signature
size in our experiments for PSJ. As we shall see in Chapter 5 (Section 5.5 and Section 5.6),
fortunately the performance curves as a function of the number of partitions and signature
size are rather flat. So these equations do not have to be exact to obtain reasonable

performance.
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4.5 Summary

This chapter investigated algorithms for computing a set containment join. These algo-
rithms cover two possible implementations of set-valued attributes: the unnested external
representation, and the nested internal representation. The unnested external represen-
tation is used by commercial O/R DBMSs for implementing set-valued attributes. In
this case, the set containment join is implemented using a standard SQL2 query. For
the nested internal representation, this chapter considers two algorithms. The first is a
variation of nested loops (Sig-NL) that uses signatures to speed up the evaluation of the
join predicate. The second algorithm is PSJ, a new partition based algorithm that is
proposed in this chapter. This algorithm is based on a two-level partitioning scheme by
using set elements to partition relation R and replicate relation S. Within each partition,

it uses an in-memory algorithm based on partitioning of signatures.
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Chapter 5

Performance Evaluation of Set

Containment Join Algorithms

5.1 Introduction

In this chapter, we evaluate the performance of the three set containment algorithms: the
SQL approach for the unnested external representation (SQL), and the signature nested-
loops (Sig-NL) and PSJ algorithms for nested internal representations, by implementing
them in an object relational system. As a special case, we also ran PSJ with one partition,
which we call PSJ-1. The special case of one partition is important when applicable,
because it has no partitioning overhead. We first describe our implementation of these
algorithms and then present results from various experiments designed to investigate the

performance of these algorithms under various conditions.

5.1.1 Chapter Organization

The rest of the chapter is organized as follows. Section 5.2 describes the implementation
of various algorithms in an O/R DBMS. The set distributions we used in our experiments
are described in Section 5.2.2. The effect of varying relation cardinalities is described
in Section 5.3. An investigation of the SQL approach is presented in 5.3.1. Section 5.4

studies the effect of varying set cardinality. Sections 5.5 and 5.6 describe in detail the
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impact of signature size and number of partitions on the performance of PSJ. Intermediate
disk space requirements for PSJ are shown in Section 5.7. Finally, Section 5.8 summarizes

the results of the performance evaluation.

5.2 Implementation

Paradise is a shared nothing parallel object-relational system developed at the University
of Wisconsin-Madison [PYK*97]. We implemented sets using the ADT mechanism in
Paradise. As mentioned in Chapter 3, the set ADT implements a number of set-oriented
methods, including: create-iterator, which returns an iterator over the elements of the
set; and set operators which are implemented by type specific methods invoked by the
query engine when comparison and assignment are performed on sets.

We implemented signature-nested loops (Sig-NL) and PSJ as join algorithms in the
system, and extended the optimizer to recognize set containment join operations in
queries so that it can schedule the appropriate operator for execution. For the SQL
approach, the magic set optimization was used to rewrite the correlated nested query as
shown in Section 4.3.1. In order to ensure that the optimizer did not choose bad plans,
optimal physical plans for each query were fed into the system rather than the queries

themselves. The plans are shown in Figure 22.

5.2.1 Experimental Setup and Data Generation

In our experiments, the total size of the non set-valued attributes in a tuple was 68
bytes. The average size of each set element was 30 bytes. We ran the experiments on
an Intel 333 MHZ Pentium processor with 128 MB of main memory running Solaris 2.6.

We used a 4GB disk for storing the database volume. The disk was mounted as a raw
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Figure 22: Physical Plans for Count, Candidate and Verify Queries Respectively

device. It provided an I/O bandwidth of 6 MB/sec. Paradise was configured with a
32MB buffer pool. Though this buffer pool size may seem small compared to current
trends in memory, we used this value since we wanted to test data sets that were much
larger than the buffer pool. As will be seen in the following sections, with this buffer
pool size, some experiments take many days to run. Each experiment was run against a
cold buffer pool to eliminate the effect of caching.

The data generator for the BUCKY benchmark [CDN*97] was modified to generate
data for our experiments. The data generator takes as input the cardinality of the
relations R and S, the average cardinality of the set-valued attributes in the two relations,
the size of the domain from which the set elements are drawn, and a correlation value.
For each tuple, the set-valued attribute is generated as follows. First, the data generator

divides the entire domain into 50 smaller sub-domains. The set elements are drawn from
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these sub-domains. Set elements are correlated if they are drawn from the same sub-
domain. Correlation of a set instance is defined as the percentage of the set elements that
are drawn from a single sub-domain. For example, if the set cardinality is 10, a correlation
of 90% implies that 9 set elements are picked from one sub-domain and 1 element is
randomly chosen from one of the remaining 49 sub-domains. All the experiments used
a correlation of 10% unless otherwise specified. Joining tuples were generated such that
every R tuple joins with exactly one S tuple. Finally, we chose the response time as our

performance metric.

5.2.2 Set Distributions

There are many distributions involving set-valued attributes because there are many

degrees of freedom:
e average set cardinality of relation R and S,
e relation cardinality of R and S,
e size of domain from which the set elements are drawn, and
e the degree of correlation among the elements.

Each parameter can influence the performance of the containment join algorithm. In an
effort to reduce the problem space, we restricted ourselves to varying the relation and set
cardinalities. Based on these two parameters, we have four possible quadrants, as shown
in Figure 23.

Here we give an example for each quadrant. If sets are mainly used as a logical
collection (e.g, a set of courses, a set of pre-requisites, a set of hobbies, a set of outgoing

links in a web page) the average set cardinality is likely to be small (typically in the range
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Figure 23: Taxonomy of Set Distributions

of 5-10) while the relation cardinality might be potentially large (number of students,
number of employees). On the other hand, if each set instance is considered as a relation
(e.g., the set of employees working for a department), then the average set cardinality
can be large, however the relation cardinality might be small (number of department in
a company). In the XML world since anything can be represented as sets, it is possible
that the average set cardinality and relation cardinality potentially. become large (e.g.,

the number of documents).

5.3 Experiment 1: Varying Relation Cardinality

In this set of experiments, we investigated the effect of varying the relation cardinality.
The domain size was fixed at 10,000. Since the containment join was not symmetric, we

further refined the experiments based on different cardinalities of R and S :
e The relation cardinalities of R and S were varied together

e The relation cardinality of S was kept constant at a large value and that of R was

varied.
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Figure 24: Varying Relation Cardinality for Set Cardinality of 20

e The relation cardinality of R was kept constant at a large value and that of S was

varied.

Varying Relation Cardinalities of R and S

In this experiment, the relation cardinality was varied for two values of set cardinality:
20 and 120. The results of these experiments are plotted in Figure 24 and Figure 25.
The numbers for the SQL approach for relation cardinalities greater than 20,000 are not
included in the figure since these runs took more than 24 hours. The main observation
is that PSJ outperforms (or performs as well as) the other algorithms consistently over
the entire space of relation cardinality. On the other hand, the SQL approach starts
getting worse from 10,000 tuples onwards. Section 5.3.1 discusses why the SQL approach

performs poorly. Sig-NL and PSJ are analyzed in Section 5.3.2.
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Figure 25: Varying Relation Cardinality for a Set Cardinality of 120
5.3.1 Performance of the SQL Approach

As may be seen from Figure 24, the SQL approach performs reasonably well at very small
relation and set cardinalities. However, as the relation sizes increase (note the peak at
10,000), the response time increases rapidly. The cost breakdown of the SQL approach is
shown in Figure 26. The figure shows the times taken for running each of the component
queries. It is evident that most of the time is dominated by the candidate generation

query. The candidate generation query is expensive for the following reasons:

e The input to the joins are two large set relations Rg and Ss. These relations suffer
from cardinality explosion (their cardinality is the product of average set cardinality

and relation size of the base relations). Such an explosion makes the join expensive.

e The number of intermediate tuples that are generated as a result of the join is
also large. The output of the join generates a tuple for every element in Rg and

its intersecting set in Ss. Essentially, it is computing an intersection which is a
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Figure 26: Cost Breakdown for SQL Approach
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superset of the actual result. Note that the probing phase of the join and the

aggregate phase were run in a pipelined fashion so that there is no intermediate

I/0O cost.

e The number of groups generated from the aggregate operator is also large. The

number of groups is proportional to | R | x | S | and it is equal to the number of set

pairs that have at least one element in common. The number of intermediate tuples

(groups) actually generated is plotted against relation cardinality, in Figure 27.

The figure confirms the enormity of the number of tuples (groups) generated. This

number is large even for smaller set and relation cardinalities.

Because of the aforementioned problems and consequent performance degradation, the

SQL approach is not considered in the remaining sections.
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Figure 27: Intermediate Tuples Generated

5.3.2 Sig-NL vs PSJ

The individual cost breakdown of Sig-NL is shown in Figure 28 and Figure 29 for a set
cardinality of 20 and 120 respectively. Similarly for PSJ-1 and PSJ they are illustrated
in Figures 30, 31, 32 and 33.

In general, the cost of these algorithms consists of three components: the partitioning
cost, the comparison cost and the verification cost. Sig-NL and PSJ-1 do not incur any
partitioning cost. The comparison cost is high in Sig-NL. It decreases in PSJ-1 and is
least in PSJ.

The first observation is that PSJ outperforms PSJ-1 and Sig-NL consistently as may
be seen from Figure 24 and Figure 25. The basic insight is that if PSJ is to perform well,
the reduction in the number of comparisons should be significant and the partitioning cost
should not be too high. The reduction in number of comparisons is dominant at higher

relation cardinalities, as may be seen in Figure 30 and Figure 32. Hence PSJ consistently
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performs better at higher relation cardinalities. For lower relation cardinalities, the cost
gained by avoiding unnecessary comparisons is not high. The gap between PSJ and the
rest is smaller for set cardinality of 120. This is because the partitioning cost is higher.
In addition, the comparison cost also increases because of replication.

Another contributing factor is the requirement of large signature sizes for lower set
cardinalities of R in Sig-NL and PSJ. This might seem counterintuitive. However, a closer

look at the false drop probability equation (29) reveals the following characteristics:

e For a given number of false drops and for a constant set cardinality of S, as the
average set cardinality of R increases, the size of the signature decreases. For a
given signature size, when the set cardinality increases, more bits get turned to 1
in R tuple signature. Hence the probability of a false drop is now reduced since for
a tuple to match this signature it must match with the signature in all these bit

positions in S tuple signature. As the false drops are kept constant, the effect of




101
Cost Breakdown for PSJ-1
Set Cardinality of 120
R-build & S-probe # Sort N Verify

16000 -
14000 -
12000 -
10000 -
8000 -

6000 -

4000 -

2000 - i/“
0 T T m H ///A T 4 H

5000 10000 25000 50000 75000 100000 125000
Relation Cardinality

Figure 31: Cost Breakdown of PSJ-1 for a Set Cardinality of 120

Response Time (sec)

T

increasing cardinality decreases the signature size.

e For a given number of false drops and for a constant set cardinality of R, as the
average set cardinality of S increases, the size of the signature increases. As more
bits are turned to 1 in a .S tuple signature, the probability of a false drop is increased.
Because it highly likely that bits turned to 1 in R tuple signature will also be
turned to 1 in S tuple signature. Since the false drops are kept constant, the effect

degenerates into increase in signature size.

Because of the above two opposing effects, an increase in set cardinality decreases the
signature size initially reaching a minimum before starts increasing again. Hence in order
to keep the false drops to a minimum, an increase in the signature size is required for
smaller set cardinalities. For example, in Sig-NL when the relation cardinality of R (and
S) was 25000, the required signature size was 181 bits for a set cardinality of 20 while it

was 104 bits for a set cardinality of 120. Note however that as the average set cardinality
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of S increases, the signature size increases as expected.

The second observation is that PSJ-1 outperforms Sig-NL consistently. This is ex-
pected since several unnecessary comparisons are eliminated. Quantitatively, for a set
cardinality of 20 and relation cardinality of 25000, Sig-NL requires 625 million compar-
isons whereas PSJ-1 requires only 80 million comparisons. When the set cardinality is
120, the number of comparisons increases since the expected number of bits set to 1 in
the signature increases thereby causing more chains to be examined for a given set of S.
Hence the performance gap between the two decreases.

We also conducted experiments where the cardinality of one relation was fixed and

the other was varied. The trends observed were the same.
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5.4 Experiment 2: Varying Set Cardinality

In this experiment, we varied the set cardinality for two different relation cardinalities,
20,000 and 100,000 to explore the quadrants of small and large relation cardinalities. The
signature size for Sig-NL and PSJ-1 and the number of partitions for PSJ were chosen
using equations (42) and (48). The domain size was set at 10,000. The results are plotted
in Figure 34 and Figure 35 for relation cardinalities of 20,000 and 100,000. The individual
cost breakdown of Sig-NL is shown in Figure 36 for a relation cardinality of 20,000 and
Figure 37 for relation cardinality of 100,000. For PSJ-1, individual costs are shown in
Figure 38 for a relation cardinality of 20,000 and Figure 39 for relation cardinality of
100,000. Figure 40 and Figure 41 shows the same for PSJ.

For a given relation cardinality, as the set cardinality increases, the gap between
PSJ and the rest diminishes. In fact, for a relation cardinality of 20,000, when the set

cardinality is 160, PSJ-1 outperforms PSJ. This is because the partitioning cost increases
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with set cardinality as shown in Figure 40. This happens because more partitions are
required and replication is higher. At the larger relation cardinality of 100,000, the set
cardinality threshold beyond which PSJ-1 outperforms PSJ increases as expected as in

Figure 41.

5.5 Experiment 3: Effect of Signature Size

In this experiment, we study the effect of signature size on the performance of Sig-NL
and PSJ. Both algorithms use signatures for producing an intermediate candidate set
of result. As noted in Section 4.3.2, the number of false drops in the candidate set is
influenced by the size of the signature. Hence the choice of signature size is important
both in Sig-NL and PSJ. For this experiment, we used a relation cardinality of 20,000
for both R and S, an average set cardinality of 10 for R, and average set cardinality of
20 for S. The size of domain was fixed at 10,000. For PSJ, we used the optimal number
of 42 partitions, as predicted by equation (42). The result of this experiment is plotted
in Figure 42.

The first observation is that for smaller signature sizes, Sig-NL is very expensive.
This is because many elements in the domain hash to the same bit, thereby increasing
the false drops. Such an increase in the false drops increases the time of the verification
phase. As the signature size increases, the number of false drops reduces and hence the
performance of Sig-NL improves. However, after a signature size of 80, increasing the
signature length does not cause any significant improvement in the performance of Sig-
NL. The second observation is that PSJ is relatively immune to the signature size. This
is because partitioning reduces the number of false drops.

For this data set, the signature size for Sig-NL predicted by equation (30) was 173
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bits. For PSJ with 42 partitions, the signature size predicted by equation (48) was 116
bits. Given the flatness of the PSJ curve, it is not important to get the signature size

exactly right.

5.6 Experiment 4: Effect of Increasing Partitions in

PSJ

In this experiment, we study the effect of the number of partitions on the performance of
PSJ. The relation cardinality of both relations was set at 20,000 and set cardinalities at
20 and 120. The set elements are drawn from a domain size of 10,000. An appropriate
combination of partitions and signature size was used as determined by equations (42) and
(48). The results of these experiments are shown in Figure 43 and Figure 44. Both the

figures show the breakdown of total cost: partition time, partition creation and deletion
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times, join time, sort time and verification time. From the figures, we observe that the
graphs have three phases: the first phase, in which the total cost decreases gradually
as the number of partitions is increased; the second phase in which the total cost is
approximately constant; and the third phase in which the total cost starts increasing
as the number of partitions becomes very large. In the first phase, when the number of
partitions is 1, the join is essentially a signature based partition algorithm with the added
overhead of partitioning. As the number of partitions increases, partitioning begins to
pay off. However, this improvement in performance is not unbounded. This is when we
move into the third phase. In this phase, the partitioning cost starts rising sharply, and
this has an unhealthy effect on the overall join performance.

In order to further investigate the sharp increase in partitioning overhead, we plot
both the total number of pages generated by the algorithm and the actual number of pages
the system uses in Figure 45 and Figure 46. They show that as the number of partitions

increases, there is a corresponding increase in the size of the data generated. This is
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because the replication of S tuples increases. However, the replication of each tuple is
bounded by the set cardinality. Hence the increase in the amount of data generated
flattens after 64 partitions. The actual number of pages required is substantially higher
than the generated data pages. This difference is caused by per-tuple overhead and
fragmentation. In addition to increasing fragmentation, the number of pins and un-
pins, the cost of creating and deleting the partitions also increase with the number
of partitions. Thus, the partitioning overhead increases sharply when the number of
partitions is large. These experiments show that the number of partitions has a critical
impact on the performance of PSJ. The equation (42) can be used to estimate a reasonable
number of partitions. For set cardinality of 120, the number of partitions chosen by the

equation was 70.
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5.7 Experiment 5: Disk Space Requirements

Here we investigate the size of the intermediate space required for Sig-NL and PSJ.
We do not consider PSJ-1 since it is an in-memory algorithm. We ran experiments by
varying the set cardinality for a relation size of 100,000 and also by varying the relation
cardinality for a set cardinality of 120. The results are plotted in Figure 47 and Figure 48
respectively. The graph plots the number of pages generated by each algorithm and the
actual number of pages used in disk. The main observation is that Sig-NL requires
much less storage than PSJ as expected. The number of pages required by Sig-NL varies
slightly because of the variation in signature size. Since the number of pages required by
Sig-NL is so low, there is a high probability that these pages will remain in the buffer pool
during the operation of the algorithm. Hence Sig-NL can be assumed to be immune from
I1/0 cost except during the signature construction and verification phases. On the other
hand, PSJ requires a large amount of intermediate storage that steadily increases as the
cardinality increases. This is because a) the number of times the 3-tuple (as described
in Section 4.4.3) is replicated increases as set cardinality increases and b) the number of
tuples per partition increases as the relation cardinality increases.

For large data sets, the memory requirement for PSJ-1 is very high since the entire
set of R signatures has to be accommodated. On the other hand, Sig-NL and PSJ adapt
themselves to available amount of memory. Hence they are well suited to a multiuser

environment.

5.8 Summary

This chapter investigated algorithms for computing a set containment join. These algo-

rithms cover two possible implementations of set valued attributes: the unnested external
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representation and the nested internal representation. The unnested external representa-
tion is used by commercial O/R DBMSs for implementing set-valued attributes. In this
case, set containment join is implemented using a standard SQL2 query. For the nested
internal representation, this chapter considers two algorithms. The first is a variation of
nested loops (Sig-NL) that uses signatures to speed up the evaluation of the join pred-
icate. The second algorithm is PSJ, a new partition based algorithm that is proposed
in this chapter. This algorithm is based on a two level partitioning scheme by using set
elements to partition relation R and replicate relation S. Within each partition, it uses
an in-memory algorithm based on partitioning of signatures.

We presented a detailed performance study of the three algorithms. The performance
space of these algorithms is summarized in Figure 49. For small data sets and small set
cardinalities, PSJ works well. The SQL approach and Sig-NL performs reasonably well
for extremely small data sets and small set cardinalities; however, as the relation or the set
cardinality size increases the performance degrades very rapidly. PSJ with one partition
is usable at higher set cardinalities provided there is enough memory. Elsewhere, PSJ is

the algorithm of choice.
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Chapter 6

Related Work

6.1 Introduction

Sets have been studied under the context of nested relational and object oriented data
models. Most of studies revolve around data modeling using sets and various kind of
operations on them. There are a few implementations and performance studies that in-
corporate set-valued attributes. However, none of these studies consider sets under the
context of object relational databases. These studies are not focused on how declarative
queries using set-valued attributes can be efficiently evaluated and how their efficiency
depends on the underlying organization of sets in the storage. Further most of the mod-
eling studies outline operations on the set-valued attribute but only a few only consider

how efficiently to evaluate them.

6.1.1 Chapter Organization

Related work on sets from modeling perspective are described in Section 6.2. Sec-
tion 6.3 summarizes modeling and implementation under the context of nested relational
databases. Section 6.4 outlines the various implementations of object oriented databases
and their understanding of sets. Object relational databases are discussed in Section 6.5.
Published work related with set storage organizations is described in Section 6.6. Sec-

tion 6.7 discusses the reported work in signatures used in set containment algorithms.
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Finally, Section 6.8 summarizes the reported algorithms for evaluating set containment

joins.

6.2 Data Modeling

Sets have been studied in detail by the data modeling community. Some of the earlier se-
mantic data models incorporate sets and collections of entities. These semantic data mod-
els have had a strong influence on nested relational and object-oriented databases. The
semantic data model (SDM) [HM81] was designed for implementation as more expressive
interface over a relational system. The designers attempted to distill their experience in
designing databases to select the most common data semantics, and to incorporate them
into a single data model. The SDM defines classes that can be related to each other
through a class hierarchy. The model supports various interclass connections, which is a
relationship between two classes. One of the interesting interclass connection is created
by the grouping class. A grouping class on a class C defines a new class G with elements
that are sets of elements drawn from C and establishes a relationship between C' and G.
This notion of grouping is applied at the type level. The collection of entities were at
the top level and the relationships represented whether one is a part of the other.

DAPLEX [Shi81] is another semantic database model that uses the notation of math-
ematical functions as the basis upon which higher-level semantic concepts can be built.
The DAPLEX considers everything as a function. Collection of entities are defined and
the relationships characterize the collections. The DAPLEX query language is cast in
terms of a built-in set iterators that apply a predicate to a set of values. The main
operators were existential and universal quantifications.

A further discussion on the data modeling of sets can be found in [Bro81], [Bro84],
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[HK87], [Gil94]. These studies discuss how sets can describe semantic notions of the real

world with ease.

6.3 Nested Relational Databases

The nested relational model was introduced in [Mak77]. This work relaxes the assump-
tion that relational attributes must be atomic and extends it to incorporate nested at-
tributes (each attribute can be a relation). It studies the implications of such extensions
to the standard relational normal forms. It introduces new definitions of functional de-
pendencies to accommodate non INF forms and outlines a new definition for normal
forms based on extended multivalued dependencies. A nested relational model is also
proposed in [JS82]. It enriches the relational algebra with nest and unnest operations
that transform between N F? relations and the usual ones. The algebraic properties of
these operations are defined and proved. It also outlines rules which occur in combination
with these operations of the usual relational algebra. Both the studies, however, never
incorporated the notion of sets that require the uniqueness semantics.

Various algebraic query languages are presented in [FT83], (Zan83], [AB84], [Bid87],
[DL87], [OOM87] and [Guc87]. In [Zan83] a query language called GEM was proposed in
an attempt to extend the relational database model minimally. GEM adds sets as a data
type, generalization, and a new data type called instance of a tuple in another relation. It
extends QUEL with a range of new constructs to support operations on the data model
extensions. Here the sets are viewed as a logical collection and the set operations of
equality and containmenf are defined as part of the query language. It also notes that
set operators are very expensive to support in standard relational systems. Hence it solves

the problem by a two-fold approach. First, it maps subset relationships into equivalent
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aggregate relationships that are more efficient to support. Then it exploits the fact that
set-valued attributes can be used in this capacity, so that substantial improvements in
performance can be achieved by specialized storage organizations. Further, it observes
that performance improvements can be obtained by declaring set-valued attributes rather
than expressing using key-foreign key. Another major contribution of GEM is the clean
definition of the “nested dot” notation which has been generalized and followed by several
others.

[AB84] defines the VERSO model where data is organized in non First Normal Form
relations. VERSO induces a hierarchical organization of data and the implicit specifica-
tion of join dependencies. The nested attributes follow a recursive structure of alternating
record and collection types. It also allows one to represent some simple type of incom-
plete information. Further, VERSO introduces four binary operations (fusion, difference,
join and cartesian product) and four unary operations (projection, selection, restriction
and renaming) on VERSO instances. These operations are natural extensions of rela-
tional operations and the operations of nest and unnest are very primitive sub-cases of
the restricting mechanism presented. It also observes that queries which would require
joins in the relational model can be realized by a filter if the joins are implicit in the
VERSO format. It also shows the completeness of the VERSO algebra by showing that
given a relational database schema R and its corresponding VERSO schema V, each
relational query on R can be equivalently expressed by a VERSO query on V. [Bid87)
further describes an algebra that takes advantage of the semantic connection among at-
tributes implicitly specified by a VERSO schema. It shows the equivalence of VERSO
and relational algebra by an extension of the tableau technique.

Extension of relational models with set-valued attributes with reference to Statistical

Databases (SDB) have been studied in detail in [OOM87]. SDB applications usually
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contain aggregated data (e.g AVERAGE SALARY) qualified by set-valued attributes
(e.g, JOB-GROUPS, AGE-GROUPS). Moreover, queries requesting aggregates almost
always are specified over set-valued attributes. SDB extends the relational model and the
associated relational algebra and relational calculus languages with set-valued attributes
and aggregate functions and show that the extended languages have the same expressive
power. Their study restricts relations with only simple- or set-valued attributes (i.e.,
set-valued relations), which are subset of NINF relations. Their main contribution is
extending [Klu82] (which discusses translating calculus expressions into algebra expres-
sions) with set-valued attributes, which is to obtain algebraic expressions for calculus
objects and then recursively combine these expressions until a final algebraic expression
equivalent to the original calculus expression is obtained. They also define a new set
of operators called “pack”, “unpack” and “aggregation-by-template.” Pack is similar to
nest, except that it performs a set union operation, while nest adds another level of
nesting to the attributes.

Query optimization for the nested relational algebra is discussed in [Sch86], [DG87],
[Col89)], and [KP90]. Design and normalization issues are discussed in [OY87] and [RK87].

There are various implementations of nested relational database systems. [DKA™86]
and [PD89] describe the implementation of Advanced Information Management Pro-
totype at the IBM Heidelberg Scientific Center. This implementation supported type
constructors (lists, sets and tuple), support for user-defined types, and functions. It also
supported the standard set of nested algebra operations. The database server consisted
of various components such as: buffer and segment manager — for managing the mem-
ory and disk, sub-tuple manager — allows access to data in terms of records, complex
object manager — for assembling complex objects from tuples and the query processor.

 The complex object manager is aware of the physical structure of the complex objects
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and provides a uniform view of them independent of physical representation. The nested
structures are stored in separate table for each instance and tuple identifiers are used as
pointers to reflect the nested nature.

The DASDB project at the Technical University of Darmstadt [SS89] supported the
nested relational algebra with nest and unnest operations. The complex objects or nesting
structures are stored in hierarchical cluster fashion. A complex object is stored in as few
pages as possible and stored sequentially so that disk seeks are minimized. Motivation
for such a storage scheme arises from the fact that one can do better than just storing
tuples of a relation one by one and external storage devices provide a block structured
linear address space. Hierarchies are the most general structures that can be linearized
(without introducing redundancy or using pointers). DASDB supports algebraic and
physical optimization and an SQL-like query language.

The VERSO database machine [SAB*89] was attempted to justify the approach con-
sisting in relegating tasks to a processor close to the mass storage device and checking
whether an automaton-like mechanism for this on-the-fly filtering capability is useful.
The major motivation was to speedup the performance of a relational DBMS. However,
as described earlier, it implemented a nested relational model. The VERSO system con-
tained three layers: the top level recognized the VERSO relations, the second level was
the physical representations of the VERSO relations in terms of files and indices and the
final level was the disk block characterized by its address. The index is a non-dense index
which stores for each block, the smallest tuple of the block (not its key) followed by the
block address. The stored information is compacted through a trie structure. The query
processor uses this index to efficiently access the data.

The ANDA project at Indiana University is described in [DG88] and [DG89]. They

describe a single tree index which is used as a storage structure for the entire database.
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Typically, indices are built on all or some of the attributes that maps the values to list of
tuple identifiers. ANDA uses a domain based approach (VALTREE) in which an atomic
value maps to a list of tuple identifiers of tuples in all relations in the database that
contain that value. This is generalized to include the list of identifiers in all structures
and sub-structures. The VALTREE is made up of five different levels: domain, value,
attribute, structure and identifier levels. A cache was used to speedup the operations in
this tree. The advantage of the VALTREE is that given a value, it provides fast access to
tuple identifiers containing all occurrences of the value throughout the entire database.
It also supports the regular data manipulation and maintenence operations.

SQL-like languages for nested relational queries are presented in [Bra83], [PA86],
[PT86], [RKB87] and [RK87]. The use of the relational and nested relational models to
describe text databases, user interfaces, and operating system is discussed in [HSW83],
[SWHS3], [BHH*84], [KKS88], and [Kor86]. A collection of recent papers on nested

relations appears in [AFS89].

6.4 Object Oriented Database Systems

As object oriented languages were getting popular, there were lot of attempts to add
persistence to these languages. The argument for this approach was that some appli-
cations just need to manage permanent data, and would be happy with the imperative
programming model of such a language only if its type system were available for use in
constructing complex persistent structures. Since programming languages support rich
collection constructs, there was a need to support full-fledged collections. But they were
restricted to just storage and retrieval of collections with the exception of Objectstore

that supported declarative querying. A good survey of such related work can be found
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in [AB87].

Another approach to satisfying the need for non-traditional database applications
combines all the features of a modern database system with those of an object oriented
language, yielding an object-oriented database (OODB) system. Such a system supported
many collection types including sets. Three early OODB projects laid the foundation in
this area - Gemstone [CM84] [MS87] which was based on Smalltalk, Vbase [AH87], which
was based on a CLU-like language, and Orion [BCG*87], which was based on Common
LISP Object System (CLOS). Such systems supported various features like complex
objects, object identity, encapsulation, inheritance and substitutability, late binding,
computationally complete methods, an extensible type system, persistence, secondary
storage management, concurrency control, recovery, and ad hoc queries. New SQL-like
languages were designed to support powerful querying. These querying constructs use
collections as first class type. These query languages allowed nested queries, universal,
and existential quantification queries.

The Iris Object-oriented database management system [FBC*90] provided support
for object, object properties, object operations and rules, types and type hierarchies.
Type extents provided the collection semantics but typical collection operations were not
supported. Iris supported an Object SQL interface that provided direct references to
objects and the ability to invoke user defined functions anywhere in the SELECT and
WHERE clauses. It used a relational storage engine and provided a translation interface
mechanism for converting the records into complex objects.

O, [LRV88] is an another object oriented database system. The O, data model
consisted of objects that have identity and can encapsulate data and behavior. They

supported types and classes and the types are recursively constructed using atomic types
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and type constructors (sets, list and tuple constructors). O, makes a distinction be-
tween values and objects. Objects have identity while values do not. A value can be
embedded in another value or in an object. A type describes a minimal behavior for an
object. Subtypes (and their relationships) are defined explicity by the user. The query
language supported two modes: one accessible from a programming language in which
encapsulation is enforced; and the other for ad hoc querying using declarative language
(an extension of SQL) in which encapsulation is relaxed. It is functional and first order.
SQL syntax was used to filter lists and sets with an option for specifying predicates using
universal and existential quantifiers. The object manager used WiSS [CDKK85]. The
tuples were stored as records in a page. Lists were implemented as ordered trees. Sets
were stored as objects which have a set of pointers. Indices are allowed to be created in
sets to speedup the membership tests. O objects cannot be deleted explicity; instead
references to them are deleted and the objects are garbage collected.

ORION was a series of object-oriented dafabase systems that were prototyped at
MCC. The implementation is described in detail in [BCG*87], [BKKK87], [BKK88],
[Kim89], [Kim90] and [KGBW90]. The first version of ORION provided persistence
to CLOS. The second version of ORION provided support for objects, object identity,
classes and collections. However, collection operators were never defined. The relation-
ship among objects were explicitly qualified by the nature of dependency (shared vs.
exclusive). The query language was SQL-like but used a CLOS syntax. The major dis-
tinction between other systems and ORION is that it supported an excellent framework
for dynamic schema evolution. Objects are stored in a storage format that contained the
unique identifier of its class and its own unique identifier. Collections were stored as a

set of references within each object.




125

Gemstone [MSOP86], developed at Servio, belongs to the class of systems that pro-
vided persistence to object oriented languages. It added persistence to Smalltalk. Gem-
stone incorporates object identity and encapsulation via data abstraction which defines
an external interface as a set of messages. It supports single inheritance and collection
types. Also, it is a disk based and provides regular database features (concurrency con-
trol, recovery, index, and querying). Gemstone supports a query language but queries
are formed over the instance variables of an object. Gemstone supported various index-
ing strategies over collections: single step and multi-step. Collections were implemented
using references to allow sharing. Objects in collections can be one of the descendants of
the type, the collection is made of.

Further overviews of object oriented databases can be found in [Kim95] and [ZM90].

6.5 Object Relational Database Systems

Object-relational database systems belong to the class of extended relational systems,
which try to subsume both relational and object features. The manifesto of [Aea89)
provided the main tenets: provide support for rich object structures and rules, subsume
second generation (i.e., relational) DBMS, and to be open to other subsystems, e.g.,
tools and multi-database middleware products. The manifesto further elaborates the
features such a system should support: a rich type system, inheritance, functions and
encapsulation, optional unique ids, and rules/triggers; a high level query-based inter-
face, stored and virtual collections, updatable views, and separation of data model and
performance features; accessibility from multiple languages, layered persistence-oriented
language bindings, SQL support, and a query-shipping client/server interface. These

systems typically start from a relational model and its SQL language and build from
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there. Early systems supported two types of objects ADTS, row types and collection
types. Thus, the top level of an object-relational database schema is still a collection
of named relations. However, the objects in the relations can now be as rich as those
supported by OODB systems.

In order to support the optimization of object relation queries, traditional relational
optimizers have to be extended to accommodate the new set of features required. [Sto96]
provides an enumeration of the desired set of extensions. The majority of them allow the
user to specify properties about the newly added types: user-defined selectivity functions,
user-defined comparison operators, and user-defined commutators and algebraic rewriting
for sets. One of the important issue is the optimization of expensive functions. Predi-
cate migration [HS93] is a cost based technique that allows the placement of expensive
functions in the join trees such that the query is least expensive to compute. Runtime
optimization techniques such as re-optimizing the query in the middle of execution is
proposed in [KD98]. The motivation for this kind of optimization is that statistics for
user defined methods are impossible to maintain, and if maintained could get outdated
leading to potentially expensive plans. Statistics collectors are added in the query plans
at various points. A re-optimization takes place when the size of the intermediate results
is far apart from the estimated set of results at that stage. This technique might be
useful if there is a cascade of set containment joins since the statistics for containment
joins is a hard problem.

The best known research implementations of O/R DBMS are POSTGRES [SK91]
[Sto87] from University of Berkeley and Paradise [PYK*97] from University of Wisconsin.
POSTGRES was further commercialized as Illustra which was bought by Informix. It
supported the dynamic addition of new types, support for complex objects including

set-valued attributes, inheritance and rules support and provides an extension of QUEL




127

as the language. Further, POSTGRES allows for addition of new index types for new
user defined data types and allows for addition of various comparison operators. It also
provides a fast path to directly interface the query in parse-tree to the optimizer. The
storage manager uses the idea of “no-overwrite” rather than the typical write-ahead-log
(WAL). Using this technique, the old record remains in the database when an update
occurs. Consequently, POSTGRES has no log and it is simply two bits indicating whether
each transaction committed or aborted or in progress. The nice features of such a system
is instantaneous crash recovery and time travel. In such systems, the sets were still stored
as standard relation types.

Paradise departs from POSTGRES in that it is a parallel object relational database
system. The main contribution of Paradise is to explore the parallelization of object
relational features in a shared nothing environment. As required, it supports a subset of
SQL with object relational extensions. It provides facilities for compile time addition of
user defined types with support for arrays, image, audio and video data types. In addi-
tion, Paradise supported a full set of spatial data types and built-in spatial operations to
speedup spatial queries. The impact of large objects on parallelization lead to the hybrid
model of “push” for tuples and “pull” for assembling large objects. The storage manager
used by Paradise is SHORE [CDN*94] which supports object storage, transactions and
recovery and a full set of indices ranging from B-Tree, R-Tree and bitmap indices.

Commercial implementations of such systems are available from IBM (IBM-UDB),
Oracle 8 & 9 and Informix. A nice survey of the evolution of object oriented and object

relational systems is presented in [CD97].
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6.6 Set Storage Representations

Relational systems store the data in a Normalized Storage Model (NSM) where all the
attributes constitute the structural representation of the tuple. Early research on de-
composing a tuple into multiple attributes and storing them independently for relational
systems is described by Copland [CK85]. The Decomposition Storage Model (DSM) ver-
tically partitions a relation and stores each attribute in a file of its own. To facilitate the
reconstruction of a tuple, a surrogate value is assigned and is replicated for every instance
of attribute of the tuple. The DSM has been compared with NSM using various criteria:
relative complexity, storage requirements, and update and retrieval performance. How-
ever, such an approach is impractical since it provides dismal update performance. Such
a feature is not desirable in a relational system where updates are frequent.

Valduriez [VKC86] describes a hybrid storage scheme called partial DSM (P-DSM)
that vertically partitions a relation based on access patterns and the frequency of accesses
of the attributes. Thus the storage structures are organized by exploiting the query work-
load presented to the system. The P-DSM scheme leads to replication when attributes
are stored in multiple partitions, leading to update penalties. The focus of their work
is to characterize the performance issues of these storage schemes under the context of
programming environments that manipulate complex objects. In such environments, the
predominant type of access is to assemble the sub-objects of a given complex object.
Related work on the quantitative evaluation of the number of disk 1/Os for a complex
object application can be found in [TRSB93]. The measurements are reported from the
DASDBS storage system for complex objects [SPSW90]. The set of queries considered
for the benchmark includes the retrieval of a complex object, and insertion and update

of sub-objects. It concludes that a variation of DSM that clusters sub-objects belonging
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to the same object performs the best.

6.7 Signatures

Signatures have been studied in detail in [FC84] and [ZMR98] under the context of fast
retrieval of documents matching a query predicate. [IKO93] studies the application of

signatures for evaluating conjunctive and disjunctive predicates over set-valued attribute.

6.8 Set Containment Joins

Since join is one of the most important operators in relational database system, it has
received major attention in the literature. In the relational domain, various algorithms
for join have been proposed. Initially sort merge join [BK76] was proposed as an im-
provement over naive nested loops. Later, partition based hash joins [Bra84] [DKO*84]
were proposed to improve upon a sort merge join. All the above algorithms tackle the
problem when the join predicate is an equality between atomic values. Non-equality
joins have been considered in detail in [DNS91]. Pointer joins for efficiently traversing
path expressions in object oriented databases have been studied in [DLM93] and [SC90].
Various joins have been proposed in the spatial domain for computing join predicates
that check whether the objects overlap or are contained one within the other. Partition
based spatial joins are investigated in [LR96], [PD96].

There is very little attention given to set containment joins in the literature. The
only reported work on set containment joins the author is aware of are: [HM96] and
[HMO7]. These papers investigate in detail naive nested loops and signature nested loops

and proposes a new algorithm called signature hash join. Signature hash join operates by
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splitting the signatures of relation R into a set of partitions based on a subset of bits in
the signature. Using a subset capable hash function, for every tuple in S, it generates all
possible subset signatures (exponential in nature) and probes the signature hash table to
find the joining pairs. Furthermorte, it proposes how to identify this subset of bits such
that the hash table will be able to fit in memory and the false drops are kept to minimum.
Even though it provides excellent speed up, the main drawback of this algorithm is that
it requires the entire signature hash table to fit in memory. Hence it does not scale
very well to larger data sets. However, it can serve as an excellent candidate for joining
individual partitions in a partition based set containment algorithm where the partitions

are small enough that they can be held in memory.
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Chapter 7

Conclusion

This dissertation explored a range of issues that rise in incorporating set-valued attributes
in object relational databases. The major issues studied in detail are the efficient options
for storing set valued attributes and faster evaluation of set containment joins. We
showed that the nested form of storage representations are compelling by demonstrating
the faster performance of conjunctive and disjunctive queries over these representations.
We further showed that with the addition of new operators set containment joins can be

efficiently evaluated on the nested representations.

7.1 Contributions

The contributions of this dissertation are (a) a detailed performance evaluation of storage
representations for sets, and (b) an efficient algorithm for set containment joins. In
Chapter 2, we analyzed the space of representations by classifying them based on two
orthogonal directions: nesting and location. Based on this classification, we evaluated
the storage representations nested internal, unnested external and nested external under
the context of conjunctive and disjunctive queries. We also evaluated their indexed
variants by augmenting each of the representations by either a simple index for unnested
representations or an unnested index for nested representations. We developed a detailed

analytical model in order to compare the cost of evaluation of conjunctive and disjunctive
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queries.

In Chapter 3, we verified the analytical model with an implementation in Paradise.
While common “folk wisdom” suggests that small sets should be stored internal with
their containing tuples and large sets should be stored externally, experiments with our
implementation show that the decision is not that simple. All the experiments conclude
that nested representations are better than unnested representations. This is because the
cost of bringing the tuple into memory and processing it is amortized over all set elements
for nested representations. Also, evaluation of set predicates can prematurely terminate
without looking all the elements. Indexed representations provide faster lookup; how-
ever, the usability of indices is limited to a particular range of selectivities. The usable
selectivity range of indexed unnested representation is much lower than the nested ones.
Even though the nested representations provide faster performance, the major drawback
is that they require additions and modifications to the storage and query evaluation
engine.

In Chapter 4, we proposed various algorithms for evaluating the operation of set con-
tainment — the SQL query approach and signature nested loops. Further, we developed
a new algorithm called Partition Set Join Algorithm (PSJ) for efficiently computing set
containment joins. The partition set join algorithm (PSJ) operates on nested represen-
tations while the SQL query approach operates on unnested external representations.
Further, the settings for the required parameters of the number of partitions and signa-
ture size were examined in detail.

The performance of these algorithms are evaluated by an implementation in Par-
adise. Our performance study shows that for small relation cardinalities and small set
cardinalities, PSJ works well. The SQL approach and Sig-NL perform reasonably well in

comparison with PSJ for extremely small data sets and small set cardinalities; however,
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as the relation or the set cardinality increases, the performance degrades very rapidly. A
variation of PSJ with one partition performs better at higher set cardinalities if sufficient
main memory is available to hold the signatures of relation R. In the rest of performance

space, PSJ outperforms the other algorithms.

7.2 Future Work

There exists a lot of room for further research in the area of set valued attributes. This

work can be broadly categorized as follows:

7.2.1 Heterogenous Representations

In Chapter 2, we restricted our attention to the homogenous representations, in which
the set instances of all tuples in a relation use the same type of representation. However,
such restriction can be relaxed, and each set instance can choose their own choice of
the representation. The choice can be based on various characteristics: set cardinality,
the nature of operations performed, and access frequency of the set instance. It will
be important to analyze whether such representations are required for practical data
sets. Also, it will be interesting to explore the issues that arise in storing set instances
in heterogenous form and study in detail the related issues in query evaluation and

optimization.

7.2.2 Set Intersection Joins

The PSJ algorithm for set containment can be easily extended to evaluate set intersection.

The major extensions required are that, instead of replicating a single relation both the
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relations need to be replicated. The number of partitions and the chosen signature sizes

might play a more critical role here than in set containment joins.

7.2.3 Declustering of Set Valued Attributes

Our work explored the various possibilities of storing sets in a single server environment.
However, the tradeoffs could be different when sets are implemented in a parallel shared
nothing environment. The problem of declustering tuples with set-valued attributes needs
to be addressed. There are various approaches for declustering with various tradeoffs and

pros and cons. Some of the declustering strategies include

e Signature Declustering — Compute the signature of the set and, based on the
signature value, a node is chosen. For conjunctive and disjunctive queries, a query
signature is formed using the predicate. This query signature is used to compute
the potential set of nodes that requires to be searched. The disadvantages of this
approach are (a) many nodes have to be searched even for singleton queries (b)
in a multiuser environment the set of nodes used in search might overlap, thereby

increasing execution skew in the overlapping nodes.

¢ Unnested Declustering — This is a straight forward approach in which the
sets are stored in unnested form and one of the traditional declustering methods
of round robin, hash and range partitioning can be used. This simple approach
might be attractive since all the queries potentially translate into joins and have
to be executed across all the nodes. Hence the load would be balanced across
all the systems. However, the potential disadvantage is that response time might
be affected because of the huge joins even for simple disjunctive and conjunctive

queries.
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As a consequence of parallel declustering, it will be interesting to see how the set

containment and intersection join algorithm adapt in these parallel environments.

7.2.4 Result Size Estimation for Queries with Set Predicates

The third area of research involves estimating the result size of a query when the predicate
involves set valued attributes. Histograms and sampling have been traditionally used for
estimating result size. The main idea in histograms is to capture the occurrence frequency
of attribute values and decide which attribute values had to stored in the statistics. With

set-valued attributes, things get much more complicated.

7.3 Summary

This dissertation considers the implementation of set-valued attributes in object rela-
tional database systems. We have focused on the options for representing sets, and on
a particularly challenging operation over sets, the set containment join. We have shown
that the implementation of the nested representations for set storage, along with our new
algorithm for set containment joins, can provide substantially better performance than

that given by the currently popular ”translate to standard relations” approach.
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