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Abstract

This thesis addresses open questions regarding high-performance job scheduling policies for
challenging workloads that run on large-scale production parallel systems. As part of this study,
the production workload that runs on the National Computational Science Alliance (NCSA)
Origin 2000 (O2K) system is completely characterized with respect to the policies evaluated.

Trace-driven simulation with six one-month O2K job traces are used to evaluate the fol-
lowing policies: (1) the experimentally tuned NCSA-LSF* multi-class priority scheduler, (2)
two previously proposed First-Come First-Served (FCFS)-backfill and Shortest-Job-First (SJF)-
backfill; (3) two new priority backfill policies: Priority-backfill and LXF&W-backfill, designed
to give short jobs better service without starving long jobs; (4) limited preemption for backfill
policies to give a limited immediate quantum to each new job that cannot be started immedi-
ately due to insufficient resources; (5) the spatial equipartitioning (EQspatial) policy modified
to provide better service for the largest and longest jobs.

Measurements on the O2K validate simulation results for two policies used on the system.
Simulation results show that the backfill policy using current job expansion plus a small weight
for waiting time (LXF&W) to prioritize jobs, with limited preemptive immediate service, is
the most promising if jobs cannot adapt to changing processor allocations during execution or
preemption is not fully supported. On the other hand, EQspatial provides significantly better
95th-percentile waiting time for the O2K workload.

The full workload characterization includes the distributions of job interarrival time, re-
quested number of processors, requested memory, requested runtime, ratio of actual to requested
runtime, ratio of peak memory usage to memory request, as well as the conditional distributions
needed to generate synthetic workloads that have the observed correlation among the key job

characteristics in the O2K workload. Many distributions and conditional distributions have not



ii
been provided in previous studies. Jobs submitted to the O2K are very similar across different
periods of the day (i.e., peak, intermediate, and low arrival rate periods), days of the.‘ week, and
from month to month over an entire year. The workload characteristics are largely similar to

previously reported production parallel scientific workloads, with only a few exceptions noted

in the thesis.
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Chapter 1

Introduction

Many different parallel job scheduling policies have been proposed and evaluated in previous
research. Several policies have been identified that outperform other policies that have been
evaluated. Some of these promising policies are used on production parallel systems. For
example, a FCFS-backfill policy has been proposed and shown to improve the strict FCFS
policy on an SP/1 and is currently used on many SP/2 systems; the Gang Scheduling policy
has been shown to improve FCFS-backfill and has been employed on some Intel Paragon, CM-
5, and SP/2 systems. Other of the high-performance policies are being considered for use on
production parallel systems. For example, the dynamic equal spatial partitioning policy (i.e.,
EQS) is implemented in the Cilk prototype runtime system and is under consideration for use
on the National Computational Science Alliance (NCSA) Origin 2000 (O2K). There are also
a few configurable commercial schedulers that are used on production systems. For example,
LSF, a configurable non-preemptive multi-class priority scheduler, has been used on O2K.

In spite of a large body of prior work, the performance of the scheduling policies is still
not well understood, for at least four reasons. First, some promising policies have not been
compared against each other. For example, the EQS policy has not been compared with FCFS-
backfill; and the non-preemptive multi-class priority policies have also not been compared with
FCFS-backfill. As a result, it is difficult for a high-performance production computing facility,
such as that at NCSA, to decide which of the existing policies to use for their production parallel
systems. Second, most previous policy comparisons use a single performance measure, such as

average waiting time or average slowdown (defined to be the ratio of job response time to actual



runtime). This yields an incomplete understanding of the relative policy performance. For ex-
ample, a policy may have a very low average waiting time and/or average slowdown but a very
high maximum waiting time, and thus may not be the preferred policy by a high-performance
production computing facility. As another example, the overall average wait may be low but
a particular class of jobs may experience high wait. Third, starvation-free priority measures
for backfill policies that favor short jobs may improve the overall performance of FCFS-backfill
but have not been proposed or studied. The fourth problem is that of the workloads used to
evaluate policies in previous work. Many previous studies have evaluated policies experimen-
tally using a set of benchmark applications, or by simulation using job traces from particular
production systems, but have not provided a detailed enough workload characterization data to
know whether the results are applicable for a given other workload. Other previous simulation
studies use synthetical workloads, based on hypothetical distributions that have not been shown
to match observed distributions and do not apply for production workloads in general. Fur-
thermore, key workload features are missing in the previous synthetic workloads. For example,
several previous studies have used the actual runtime as the requested runtime or a hyperexpo-
nential distribution is proposed for the observed actual runtime without providing data to show
the fit of the distribution. Conditional distributions of requested runtime capturing observed
correlation with the key job characteristics, such as requested number of processors and the
requested memory, are missing in previous workload models.

The goal of this thesis is to provide a better understanding of the relative performance
of parallel scheduling policies by more completely comparing promising existing policies and
by proposing and comparing important new policies, with a key goal of providing sufficient
information for organizations such as NCSA to choose a policy that is appropriate for their
production parallel systems. We evaluate policies by simulation, using six one-month O2K job
traces from late 1999 and early 2000. Complete characterization of the workloads is provided

so that further workloads can be compared and the policy evaluation results can be applied as




appropriate. Furthermore, the workload characterization helps in designing the proposed new
policies, and provides a model that can be used to generate synthetic workloads that have the
distributions and observed correlations among key job measures in the O2K workload.

Section 1.1 further provides background for the scheduling policies. Section 1.2 lists the
contributions of this thesis. Section 1.3 lists the key results of this thesis. The organization of

the remainder of this thesis is given in Section 1.4.

1.1 Background: Job Scheduling

Parallel job scheduling policies can be classified into non-preemptive and preemptive policies.
Under non-preemptive policies, each job runs to completion without interruption. The ad-
vantage of non-preemptive policies is that they are simpler to implement and incur minimal
scheduling overhead. Under preemptive policies, a job may be preempted during execution.
With this flexibility, preemptive schedulers can give prompt service to each new arrival job
even at high system load, by reassigning processors from executing jobs to the new job and/or
by time sharing processors among current executing jobs and the new job. Thus, preemptive
policies provide better turnaround for short executing jobs, if scheduling overhead is appropri-
ately kept small. The costs of preemption are more complex implementation of schedulers and
the requirement of special system support for processor repartitionings and/or for time sharing.

A FCFS policy that allocates each job the number of processors that it requests has a head-
of-line queue blocking problem. That is, the first job in the queue that requests more processors
or memory than currently available blocks those jobs that are small enough to be scheduled
on the free resources but are queued behind the first job. Skipping the jobs that are too large
to be scheduled (i.e., FCFS with first fit) avoids this problem, but creates a different problem;
namely, starving the large jobs.

FCFS-backfill [Lif95] was proposed to improve FCFS without starving large jobs. Under

FCFS-backfill, the first waiting job is given a scheduled start time, while smaller jobs that are
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short enough can be scheduled out of order on the resources that would be otherwise idle. The
requested runtime for each job is required to determine the start time of the first job and which
jobs can be backfilled without delaying the job at the front of the queue.

Three other priority functions for backfill policies have been evaluated [ZK99, PK00, ZFMS00].
SJF-backfill (i.e., shortest job first with backfill) improves the turnaround for short jobs and
may have little effect on most jobs, but may starve jobs that need long running times. The
largest-processors-first and smallest-processors-first policies with backfill have also been evalu-
ated [ZFMS00]. They have been shown to have worse average waiting times at high load, and a
similar average waiting time at low to moderate loads, compared to FCFS-backfill. Alternative
priority measures that favor short jobs without the problem of starving long jobs may improve
the overall performance of FCFS-backfill, and need to be further explored.

Previous analyses of job scheduling policies for uniprocessor systems have identified several
fundamental results [Kle76]. Shortest-remaining-time-first minimizes mean response time if
the execution time is known. Processor sharing achieves same expected ezpansion factor (i.e.,
response time divided by execution time) for any execution time. Furthermore, the mean
response time of processor sharing is insensitive to the coefficient of variation of the process
execution time, Cp, and thus has lower mean response time than FCFS if Cp > 1 (which is
expected for both uniprocessor and multiprocessor workloads). If Cp > 1, multilevel feedback
queueing which gives priority to the process that has so far received the least service can be used
to give higher priority to short jobs and further improve the mean response time of processor
sharing.

These job scheduling policies for uniprocessor systems cannot be directly applied to the
parallel workloads for several reasons. First, frequent preemptions required in these policies
may result in unacceptable high memory overhead for parallel computers. Second, parallel
jobs have widely varying processor requirements. Third, the mean response time is not the

only performance measure for optimization on general-purpose parallel computers, because




providing good service to large jobs is often an important performance goal on the systems at
high-performance computing facilities. However, the idea in these fundamental uniprocessor
scheduling policies can be used to guide the design of the job scheduling policies for the parallel
workloads.

The estimated current job expansion factor, which is similar to the expansion factor defined
above, except that it is computed according to requested runtime and the current wait time of
the job is an example of a job measure that can be used for prioritizing jobs for backfill policies
to give relatively higher priority to short jobs, rather than absolutely highest priority to the
shortest jobs (as in SJF-backfill).

Gang and EQS policies are preemptive policies that give an approximately equal processing
power to each job. They have been shown to have similar performance to each other and better

mean response time than non-preemptive policies [ST91, CMV94, SST93, NSS93b, PD96, PS97].

1.2 Contributions of This Thesis

The contributions of this thesis are summarized below:

e We simulate with six one-month O2K job traces to evaluate the policies. The O2K traces
contain more information than in previous job traces. For example, the job requested
runtime, the requested memory, and the actual processor and memory usage over each
30-second period are available in the O2K traces; some or all of these data are missing in
previous job traces. In addition, the O2K jobs collectively request a higher fraction (i.e.,

90-100%) of the available processing time than the jobs in previous workloads.

e We provide a characterization of the large production parallel workload that runs on the
02K over six one-month periods in early and late 2000. This characterization is more
complete than previous parallel workload characterizations, including: (1) a comparison

of the workload mix from month to month; (2) an analysis of the number of job arrivals



each day and for each hour, to examine the variation in the number of job arrivals across
different days of the week and different hours of the day; (3) new distributions of requested
memory, requested runtime, and the utilization on the requested processors; (4) a more
extensive use of conditional distributions to capture the observed correlations among the
requested number of processors, requested memory, requested runtime, peak memory us-
age, and actual runtime in the workload; (5) sufficient data and a systematic procedure
for creating synthetic workloads that have the characteristics observed in the O2K work-
load; (6) differences and similarities between the O2K workload and previous workloads
(e.g., the Cornell Theory Center SP/2 and Intel Paragon workloads); (7) an analysis
of the characteristics of the fifteen jobs that have the largest processor demand in each
month; and (8) characteristics of jobs that are submitted during periods of approximately

stationary job arrival rate.

o New performance measures are used for evaluating the job scheduling policies, in addition
to the average waiting time and average slowdown over all jobs. These new performance
measures are: the 95th percentile and maximum waiting time over all jobs; the average,
95th percentile, and maximum waiting time versus actual job runtime; the average and
maximum waiting time versus the number of requested processors and requested memory;
and the average and maximum slowdown versus actual runtime. These measures provide
information that is not revealed by a single measure, such as the overall average waiting
time or average slowdown. For example, our performance measures allow us to examine:
whether short jobs have good turnaround; whether the performance of long running jobs

is compromised in order to favor short jobs; and whether large-processor jobs are starved.

o We compare the performance of NCSA-LSF* against FCFS-backfill. These two policies

have not been compared in previous work.

o We propose and evaluate two new backfill policies: Priority-backfill; and LXF&W-backfill.




Each gives priority to short jobs, with LXF&W-backfill having a higher priority for short

jobs.

e We propose a preemptive quantum of immediate service that provides good turnaround
time for short jobs. Our policy is different from previous proposals. In particular, in
our policy, only processors are preempted but not memory, to avoid memory overhead.
Furthermore, we choose the quantum of processing time based on the workload charac-
teristics; the quantum is large enough to benefit a significant number of jobs, but small

enough to have minimal impact on long running jobs.

e The quantitative performance difference between EQspatial and the best of the priority
backfill policies evaluated is presented. Comparisons between EQspatial and the backfill

policies have not been provided in previous work.

e We evaluate the potential performance improvement for job traces with requested runtime
replaced by actual runtime, and for two scenarios of more accurate estimates for FCFS-
backfill and several priority backfill policies. Our results for FCFS-backfill are compared
against previous results. No previous work has examined the impact of perfect or more

accurate runtime estimates on priority backfill policies that favor short jobs.

1.3 Principal Results

The key results in this thesis are summarized below:

e In most cases, the characteristics of the O2K workload are similar to the characteristics
that are reported for previous production scientific workloads on systems such as the
Cornell Theory Center SP/2, the Intel Paragon, the Los Alamos National Lab CM/5, and
NAS iPSC/860 workloads Exceptions include the following: (1) the coefficient of variation
of the job interarrival time is in the range of 1-2 during each period of approximately

stationary hourly arrival rate. (2) jobs require an average of 50-100 processor hours,



depending on the month. (3) 10-15% of the jobs run for over 20 hours, (4) 15-20% of
the jobs each month request a higher fraction of memory than processors, (5) jobs that
request more processors tend to request and use less memory per processor. and (6) there
is not an appreciable correlation between the number of processors requested and the job

runtime.

Interesting characteristics of the O2K workload not previously studied, include the fol-
Jowing: (1) the fifteen largest jobs in a typical month have an average running time of
over 200 hours, and use an average of 4000-8000 processor hours, (2) most of the fifteen
largest jobs in a typical month arrive during peak arrival rate period (i.e., 8am - 5pm),
similar to other jobs, (3) overall utilization on the allocated processors is fairly high (ap-
proximately 80%) whereas overall utilization on the allocated memory is closer to 50%,
(4) most requested runtimes are default values (i.e., 5, 50, 200, or 400 hours), (5) whether
or not a default runtime is requested, more than 50% of the jobs have actual runtimes
less than 20% of their requested runtimes, and (6) over 20% of the jobs that request 400

hours terminate in more than 5 but fewer than 50 hours.

We show that the Priority-backfill and FCFS-backfill policies significantly improve the
overall performance of NCSA-LSF*. Based on this improvement, NCSA changed the
scheduler on the O2K to a priority backfill scheduler configured with a similar priority
function to that in Priority-backfill. The improvement measured on the O2K is consistent

with the predicted improvement from our simulations.

We show that the estimated current job expansion factor with a very small weight for
the current job waiting time is a starvation-free job measure that favors short jobs and

significantly improves Priority-backfill and FCFS-backfill.

Adding a limited preemptive immediate service for the backfill policies, with an ap-

propriate quantum of processing time and selection of the victim jobs for preemption,




significantly improves the turnaround for jobs that complete in the quantum, without

compromising the performance of other jobs.

e EQspatial policy with a low processor repartitioning overhead has the potential to further
significantly improve the performance (especially the 95th percentile waiting time) of jobs
that don’t complete in the short quantum, even in the best of the priority backfill policies

with limited preemption.

e It may be important to modify EQspatial to reduce the maximum waiting time of the

jobs that have long running time and a large requested number of processors.

e The simulation results of using more accurate requested runtime suggest that the perfor-
mance of several priority policies that favor short jobs can be significantly improved if all

jobs, including short jobs, provide better runtime estimates.

1.4 Organization of this Thesis

The organization of this thesis is as follows. Chapter 2 provides background, including an
overview of the NCSA O2K system, a review of the related previous work on workload char-
acterization, and a review of previous results for parallel job scheduling policies. Chapter 3
discusses the methodology used in this thesis to evaluate the scheduling policies, including the
definition of our baseline policy (i.e., NCSA-LSF*), the definitions of the other policies to be
evaluated, our approaches for characterizing the O2K workload, the performance measures used
to evaluate the policies, the evaluation results for NCSA-LSF*, and validation of our simula-
tions of the schedulers on the O2K (i.e., NCSA-LSF* and the current priority backfill policy,
called NCSA-MS*) against the measured performance on the O2K.

Chapter 4 provides characterization results for the NCSA O2K workload, including: the
system load each month; the characteristics of several large job class and the fifteen largest

jobs for each month; and the distributions of and the relationships among the interarrival time,
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requested number of processors; requested memory, requested runtime, actual runtime, and
peak memory usage. Chapter 4 also gives a procedure for using the provided distributions and
conditional distributions to create synthetic workloads that have the characteristics observed
in the O2K workload.

Chapter 5 presents the results for the backfill policies, including: the comparisons between
NCSA-LSF* versus FCFS-backfill and Priority-backfill; the performance of alternative priority
backfill policies, including LXF&W-backfill and SJF-backfill; the impact of alternative reserva-
tion rules for the backfill policies; and the benefit of adding limited preemption for the best of
the backfill policies. Chapter 6 presents further policy comparison results, including the perfor-
mance of EQspatial versus backfill policies, and an investigation of the potential benefit of using
more accurate runtime estimates for backfill policies. Finally, Chapter 7 provides conclusions

and possible directions for future work.
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Chapter 2

Background

This section provides an overview of the NCSA O2K system used for policy evaluation in this
thesis, and background on workload characterizations and job scheduling policies.

Parallel job scheduling policies can be classified into non-preemptive and preemptive (i.e.,
dynamic) policies. The advantage of non-preemptive policies is that they are simple to imple-
ment and have minimal scheduling overhead, while preemptive policies incur higher scheduling
overhead and are more complex to implement. The advantage of preemptive policies is the
flexibility of reassigning processors by space-slicing or time-slicing in response to changes in
system load. As a result, preemptive policies in general provide higher performance than non-
preemptive policies.

Section 2.1 gives an overview of the NCSA O2K system and workload. Section 2.2 reviews
related previous workload study results. Non-preemptive parallel job scheduling policies are
reviewed in Section 2.3, and preemptive policies are reviewed in Section 2.4. A summary of the

previous results on scheduling policies is provided in Section 2.5.

2.1 Overview of NCSA Origin 2000 System

This section gives a brief overview of the O2K system, including the host configuration, the job
schedulers, and the job logs available on the system. The NCSA O2K is a large shared-memory
multicomputer based on the MIPS R10000 processor with non-uniform memory access, The
system studied consists of 1520 processors and 616 GB of memory, which is partitioned into

twelve unequal-size hosts. Table 1 summarizes the number of processors, available memory,
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Table 1. NCSA 02K Batch Hosts Configuration

Host Number Memory Jobs
Proces- Total | Per Processor

Name sors (GB) (MB) Served

eir 128 64 512

nerthus 128 64 512

hod1 128 | 64 512

jordl 128 32 256 space-

sagal 128 32 256 shared

huldra 128 32 256

mimir 128 32 256

modi2 64 16 256

aegir 128 64 512

forsetil 128 76 608 dedicated*

balder 256 128 512

* can also run very short space-shared jobs (under 5 hours).

and the types of jobs served on each of the eleven hosts that run batch jobs.

Eight hosts, with 960 processors and 336 GB of memory in total, are used for running batch
jobs in a space-shared mode. Another three hosts, with 512 processors and 268 GB of memory
in total, give priority to batch jobs that request a dedicated host. These 3 hosts also run jobs
that request less than 5 hours of runtime in a space-shared mode when no dedicated jobs are
waiting. The remaining host (not shown) with 48 processors and 12 GB of memory, is used for
interactive jobs only.

Each space-shared job, when submitted to the O2K, requests a number of processors (up
to 64), an amount of memory (up to 16 GB), and a runtime (up to 400 hours). Each job that
requests a dedicated host specifies either 128 or 256 processors, and a runtime (up to 50 hours).

Prior to July 2000, the LSF Scheduler from Platform Computing [Pla] was used to dispatch
the O2K jobs. In July 2000, a higher-performance priority backfill job scheduler (derived
from the Maui scheduler [Mau] on an SP/2 at MHPCC [MHP]) replaced LSF for dispatching

purposes, although LSF still records the information about the jobs.
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Information about each job is recorded by the LSF Scheduler and by a JMD ’daemon’
(implemented by NCSA). LSF records the submission time, start time, and completion time,
and the requested number of processors, memory, and runtime. JMD monitors the execution
of each job and records the actual number of processors and memory in use by each job once
every 30 seconds. Appendix A shows the format of the job logs, and explains how we extracted

the required information from the job logs for our analysis.

2.2 Previous Production Workload Characterizations

Previous production workload studies provide characterization results for the workloads on:
the 128-processor Intel iPSC/860 at the NAS Facility of NASA’s Ames Research Center; the
96-processor Intel Paragon at ETH Zuerich; the 128-processor SP/1 at Argonne National Lab
(ANL); the 128-processor Butterfly at Lawrence Livermore National Lab (LLNL); the 512-
processor SP/2 at Cornell Theory Center (CTC); the 400-processor Intel Paragon at San Diego
Supercomputing Center (SDSC); the Cray T3E at SDSC; the 512-processor Cray T3D at Pitts-
burgh Supercomputing Center (PSC); the 1024-processor CM-5 at Los Alamos National Lab
(LANL); the 100-processor SP/2 at the Royal Institute of Technology (KTH) in Stockholm,
Sweden; the 64-processor SGI Origin2000 at NAS; the 320-processor ASCI Blue-Pacific at
Lawrence Livermore National Lab (LLNL); and the Lewis network of workstations at NASA. &
Section 2.2.1 summarizes two partial workload models. Section 2.2.2 reviews the results of

further workload characterization efforts, each focusing on one or two job characteristics.

2.2.1 Two Partial Workload Models

Table 2 summarizes two partial workload models provided in previous work; i.e., Feitelson96
model and the CTC SP/2 model, each of these models is further discussed below.

The Feitelson96 model [Fei96] is derived from the workloads that run on the following six
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‘Workload Model

Time

Zipf for # repeated
submissions of each application

Job Feitelson’96 CTC SP/2
Characteristic [Fei96]
Interarrival Poisson job arrivals + hyperErlang for each P [JPF*97]

# Requested
Processors (P)

harmonic
(hand-tuned to emphasize
small #, interesting #)

log-uniform [Dow97b]

Actual
Runtime (T)

2-stage hyperexponential
(smaller P: higher probability
choosing the smaller mean)

(1) observed avg runtime for 15
equal-number sets of jobs partitioned
according to #processors [Hot96]

(no clear relation between T & P)
(2) observed distributions for four
equal-number sets of jobs partitioned
according to s#processors [DF99]
(smaller P: weight on shorter time)

PxT

(1) hyperErlang for each P [JPF*97]
(2) log-uniform [Dow97b, DF99]

Requested Memory
Per Processor

five-ranged distribution [Hot96]
(85% of the jobs: the smallest size)

production systems: iPSC/860; SP1; CTC SP/2; ETH Paragon; SDSC Paragon; and Butter-

fly. This model provides the job arrival process, the distribution of the requested number of

processors, and the distribution of the actual runtime conditioned on the requested number of

processors, as given in Table 2. Results are based on the following observations:

o Users have the tendency to submit sequences of the same job, one after another (observed

in the iPSC/860 and SP1 traces, the only two traces that have job names). The maximum

observed is 402 runs of the same job in the SP1 workload.

e There is a positive correlation between the actual runtime and the requested number of

processors (observed in the iPSC/960 and SDSC Paragon workloads).

o Small numbers of requested processors are more common than large numbers of requested

Processors.

o The number of requested processors is most commonly a power of two; perfect squares;
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multiples of ten, the maximum number of processors, etc., also stand out in many of the

workloads studied.

The Feitelson96 model captures the correlation between actual runtime and the number
of requested processors as follows: the actual runtime is generated by the two-stage hyperex-
ponential distribution with the probability for choosing the stage that has the higher mean
monotonically increasing with thé number of requested processors. This correlation model has
been used in at least two papers ( [LKK99, Aid00]) to create synthetic workloads for evaluating
the parallel job scheduling policies.

Note that some characterization data for several of the above systems are also provided in
other papers; they are the iPSC/860 in [FN95], the SDSC Paragon in [WLF*+96, WMKS96],
and the ETH Paragon in [SGS96].

The CTC SP/2 model is a collection of characterization results for the CTC SP/2 system
studied in [Hot96, JPF*97, Dow97b, DF99]. This model includes hyper-Erlang distributions
conditioned on the number of processors for both the interarrival time and the total processing
time (i.e., the product of the requested number of processors and the actual runtime), proposed
in [JPF+97]. The model parameters are chosen so that the hyper-Erlang distribution matches
the first three moments of the observed distribution for each number of processors. At least
two papers [FIM 199, ZFMS00] use this model to generate the interarrival time and the total
processing time or actual runtime for synthetic workloads. Most jobs in the SP/2 workload
request power-of-two numbers of processors, and a significant fraction of the jobs are serial,
as in the Feitelson96 model; however, [Dow97b] uses the log-uniform distribution to model the
requested number of processors because they believe that requesting powers of two is due to the
user habits and the interface to the queueing system. Note that [Dow97b] uses the log-uniform
distribution to model the requested number of processors in the SDSC Paragon workload, for the
same reasons. For the distribution of actual runtime in the SP/2 workload, the study in [Hot96]

does not find a clear correlation between the mean actual runtime and the requested number
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of processors; on the other hand, [DF99] finds that the cumulative distribution of the actual
runtime for jobs with fewer nodes has more weight at the short runtimes, and suggests that
the model for the correlation between actual runtime and the number of requested processors
defined in the Feitelson96 model could be used for the SP/2 workload. The difference in these
two results could be due to different granularity in partitioning the jobs according to number
of requested processors; [DF99] has a coarse partitioning only (4 categories of jobs, compared
to 15 in [Hot96]). Finally, the observed fraction of jobs requesting each of five different ranges
(ie., < 128, 129-256, 257-512, 512-1024, and 1024-2049 MB) of requested memory per processor
is provided for the SP/2 [Hot96] workload; about 85% of the jobs request under 128 MB, and
these jobs account for 96% of the total processor demand. Note that the scheduler places these
jobs on the 128 MB nodes if there are free 128 MB nodes; otherwise, they can be placed on free

nodes with more memory per node. Thus, the 128 MB nodes are over-requested.

2.2.2 Further Previous Workload Characterizations

This section reviews further previous workload characterization results, which provide one or
two specific job characteristics that are not included in the two workload models discussed in
the previous section. Four papers [FN95, WLF 96, HS096, Gib97a] report the number of job
arrivals for each hour on the iPSC/860, the SDSC Paragon, the CT'C SP/2, and the Lewis
network of workstations at NASA. Except for the Paragon workload [WLF196], the other
systems all have similar job arrival patterns; that is, a peak arrival rate period between 8am
and 6pm, a low arrival rate period before 8am, and an intermediate arrival rate period after
6pm on weekdays. The number of arrivals for each hour between 8am and 6pm on weekends
is significantly lower than that during weekdays. They notice the peak and low arrival periods
on weekdays, but not the intermediate arrival period. The arrival rate for each hour in the
Paragon workload differs in that there is only a two-hour peak arrival rate period (2-4pm) on

weekdays, and no particular pattern for the number of jobs during other hours. Furthermore,
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the number of jobs for each hour on weekends is similar to that on weekdays, except during the
two-hour peak period.

Two previous papers focus on the peak memory usage for CM-5 [Fei97a] and T3E [SSN99].
Both papers report the observed distribution of peak memory usage per processor for each job
and find that a large fraction (20-50%) of the jobs use a small fraction (< 15%) of the total
memory available on each processor (i.e., 32 MB for the CM-5, and 128 MB for the T3E). They
also attempt to characterize the relationship between the peak memory usage and the actual
runtime. [Fei97a] reports that the average peak memory usage for jobs, partitioned according
to their actual runtimes, increases with the actual runtimes. [SSN99] reports the average peak
memory usage per processor for sets of jobs that have particular ranges of actual runtime, and
find that average peak memory usage per processor is larger for jobs that have longer actual
runtimes. [Fei97a] also report the observed cumulative distributions of memory usage (both
per processor and in total) for each number of requested processors. Their results show that
the weight of the distribution moves to higher total memory usage values for larger numbers
of processors. In addition, they report the observed distribution of the memory usage as a
fraction of the requested memory. A significant fraction (about 15%) of the jobs use more
memory than requested; the distribution for the remaining jobs is approximately uniformly
distributed between 0 and 100%.

[LKK99] provides the only information on the job memory usage for shared-memory work-
load. They report the distribution of the memory usage as a fraction of the total memory
available on the system; a large fraction (> 40%) of the jobs use less than 1% of the total
memory available on the two NAS O2K systems.

[FW98] provide the only information on job requested runtime. They plot the distribution
of the ratio of the actual runtime to requested runtime of all jobs. They find that about 16%
of the jobs use 99-100% of the requested runtime, but nearly all of them are killed due to

exceeding the requested runtime; for the remaining jobs, the actual runtime as a fraction of the
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requested runtime is approximately uniformly distributed between 0 and 99%. They provide a
hypothetical model in which the value of the requested runtime divided by the actual runtime
is generated by the uniform distribution (with the lower bound equal to 1 and a given upper
bound). This model is also used in another paper [ZFMS00] for generating the requested runtime
from the actual runtime. The relationship of the ratio of the actual runtime to the requested

runtime with other job measures for creating synthetic workloads has not been examined.

2.2.3 Summary of Previous Workload Studies

There are many previous workload characterization results for production systems. However,
these results do not provide sufficient data for generating synthetic workloads. In particular, the
distribution of requested runtime conditioned on other job measures is missing; the distribution
of requested memory for shared-memory workloads is also missing; and there is inconsistency in
the results provided by two papers (i.e., [Hot96, DF'99]) that examine the relationship between
the actual runtime and the number of requested processors in the CTC SP/2 workload.
Furthermore, all previous workload studies aggregate the jobs from multiple days and
months, without investigating (or providing data to show) whether such aggregation is sta-
tistically sound. For example, jobs submitted on Mondays may have different characteristics
from jobs submitted on Fridays. Two papers [FN95, WLF*96] delineate the workload into
system-defined day and night time periods, but do not examine whether aggregation within

each period is statistically appropriate.

2.3 FEvaluation of Non-Preemptive Scheduling Policies

Parallel job scheduling policies can be classified into non-preemptive and preemptive policies.
This section reviews non-preemptive policies. Preemptive policies are reviewed in Section 2.4.
The simplest scheduling policy is perhaps the non-preemptive strict FCEFS (i.e., first-come-

first-serve), which allocates each job as many processors as it requests, and stops scheduling if
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the first waiting job can’t be started due to insufficient free processors. The strict FCFS suffers
from a serious problem; i.e., the first large waiting job could potentially block jobs that arrive
later for a long time. On the other hand, FCFS with firstfit [Aid00] (i.e., in which jobs can be
started out of order), has the problem of starving large jobs.

One solution to the problem with strict FCFS is to use adaptive initial processor allocations,
Under such policies, the number of processors allocated to each job is determined when the job
is started rather than at the compilation time. This added flexibility allows a job to start as long
as there are free processors and sufficient memory, thus avoiding the head-of-line queue blocking
problem. Another solution is to use backfilling, which has been proposed and implemented to
improve strict FCFS on an SP/1 at ANL [Lif95]. FCFS-backfill is widely used on many SP/2
systems (e.g., [Lif95, SCZL96, AANT98]).

Non-preemptive policies with adaptive initial processor allocations are further reviewed in
Section 2.3.1. The results for backfill policies are reviewed in Section 2.3.2. Finally, Sec-
tion 2.3.3 reviews non-preemptive policies that use limited preemption and restart to provide

better turnaround time for short jobs.

2.3.1 Space Partitioning with Adaptive Initial Processor Allocations

The requirement for adaptive initial processor allocations is that each job be configured so that
it can run on different numbers of processors initially. Such jobs are called moldable in [Fei97b].
The key question under such policies is how many processors to allocate to each job.

Several papers have suggested or assumed that it is beneficial to allocate each job a number
of processors based on job execution characteristics, such as the average parallelism [Sev89], the
knee of the execution time and efficiency profile [EZL89, MEB91], or equivalently the processor
working set (independently derived in [GST91]). The efficiency of a job running on a particular
number of processors is defined to equal the speedup achieved on the processors (relative to

the time for the job to complete if allocated only one processor), divided by the number of
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processors. The speedup is assumed to be 1 on one processor, and the efficiency on more
than one processor is generally < 1. The measures of both average parallelism and processor
working set for each job provide the information of cost-efficient operating points for the job. In
particular, [EZL89] prove that allocating each job a number of processors equal to the average
parallelism or processor working set of each job achieves at least 50% of the maximum possible
speedup and at least 50% of efficiency A key conclusion from these studies is that policies that
allocate each job no more than its processor working set or average parallelism outperform
policies that do not have such constraints at moderate to high loads. Another key conclusion is
that the initial number of processors allocated to each job should decrease as the load increases.

Setia and Tripathi [ST91, ST93] propose an adaptive static partitioning policy (ASP), which
does not use job execution characteristics, but adapts the initial processor allocations to the
load by partitioning the free processors as equally as possible among the waiting jobs (under the
constraint that no job is allocated more than it requests). Several papers [SRDS93, RSD*94,
DY98] propose variants of ASP, including adding a maximum number of processor allocations
for each job (i.e., ASP-max). In our previous work [CMV94], we show that ASP-max has
lower mean response time than particular processor-working-set and average-parallelism based
policies for moderate to high loads under particular workloads where the coefficient of variation
of the total processing time is greater than 1. The key conclusion of these studies is that
when there is a high variation in the job execution time, it is more important to adapt the
initial processor allocations to the load than to allocate the number of processors based on
job execution characteristics. On the other hand, [Dow97a] shows that policies with adaptive
initial processor allocations in which the processor allocations have an upper bound equal to
the processor working set (or average parallelism) outperform ASP for a particular workload

model. Their explanation is that ASP is sensitive to short-term fluctuation in the system load.
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2.3.2 Space Partitioning with Backfill

As mentioned earlier, FCFS-backfill has been proposed as an improvement to strict FCFS [Lif95].
Specifically, FCFS-backfill schedules jobs in order of the job arrival times, and allocates each
job as many processors as requested. The backfill comes into play when there are not enough
free processors to start the first waiting job. The scheduler then reserves the free processors for
the waiting job, while backfilling the smaller jobs (with lower priority) on the idle processors as
long as they will not interfere with the expected start time of the first job. Backfill scheduling
will be illustrated and further explained in Section 3.2.1.

The backfill scheduler requires each job to submit an estimated runtime, in order to com-
pute the expected start time for the highest-priority waiting job and determine whether a job
can be backfilled on the idle processors. However, most papers that study backfill policies
assume that the actual runtime is known to the schedulers. FCFS-backfill is shown to im-
prove the performance of FCFS in terms of the average wait time [SGS96, Gib97b], average
slowdown [FW98, ZK99], and processor utilization [JN99].

A different style of backfill, called ’conservative’ backfill, is proposed for FCFS in [FW98].
This policy gives a scheduled start time to each waiting job, rather than only to the first job.
The motivation is to ensure that the scheduling of a job will not delay the expected start time of
any jobs that have an earlier arrival time, and to provide a predicted waiting time for each job.
They show that conservative backfill does not affect the overall average slowdown for several
job traces where the requested runtime is not available and thus the actual runtime was used,
and also a job trace where the requested runtime is available and was used in the simulation.
However, we note that in general, users make poor estimates for the job runtimes, as also
noted in [FWO98]. In fact, [PK00] provides data showing that under FCFS with conservative
backfill, the predicted waiting time (given by the initial scheduled start time) is more than 16
times longer than the actual waiting time on average. Furthermore, only 15% of the jobs have

predicted waiting times within 167% of the actual waiting times. They conclude that scheduled
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start times are inaccurate as a predictor of when jobs will run.

Many papers propose different approaches to improve FCFS-back{ill, including using non-
FCFS priority functions, allowing more flexible deadlines for the scheduled start times, and
using more accurate requested runtimes. These approaches are reviewed below.

Only three non-FCFS priority functions for the backfill policies have been compared with
FCFS-backfill in the previous work. They are shortest-job-first (SJF), largest-processors-first,
and smallest-processors-first.

SJF-backfill has been shown to improve FCFS-backfill, with 50% lower average slowdowns [ZK99,
PKO00] for several production workloads. On the other hand, [ZFMS00] did not find such im-
provement for a particular synthetic workload model. Specifically, they show that the system
under either SJF-backfill or smallest-processors-first (called "worst-fit” in their paper) with
backfill saturates at a cpu load of about 85%, while that under FCFS-backfill does not. Fur-
thermore, at high load (> 90%), FCFS-backfill has significantly (more than 50%) lower average
waiting time than largest-processors-first (called best-fit in their paper) with backfill. Except
for [PK0O], the other two studies assume that schedulers have information of the actual runtime.

One study [LKK99] takes the job memory requirement into account, and proposes to extend
FCFS-backfill by choosing the next job for backfilling so as to achieve the most balanced
allocation of processors and memory. For a real trace and several synthetic workloads, they
show that a particular resource balancing priority algorithm called backfill-balanced improves
on FCFS-backfill not only for the mean response time (by at least 15%) but also for the mean
response time weighted by the product of the job execution time and the number of processors,
They also assume that information on the actual runtime and actual job memory usage is known
to the scheduler.

The paper in [TF99] proposes a version of FCFS-backfill that allows a non-zero upper-bound
on the delay in the initially assigned scheduled start time for each job. The idea is to allow a

larger number of small jobs to be backfilled. They show that using a flexible deadline improves
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the average waiting time for FCFS-backfill by 10-20% for most of the twelve one-month traces
studied. The user-supplied requested runtime is used in their simulation. Their paper also
studies priority schedulers based on political considerations (e.g., favoring users who pay more
for the use of the computers) for backfill policies.

Finally, several papers study the impact of more accurate runtime estimates for backfill
policies. [FW98] shows that FCFS-backfill using the actual runtime results in about 25% lower
average slowdown than FCFS-backfill using the user-supplied requested runtime, for a partic-
ular one-year trace. On the other hand, using a hypothetical model for the overestimation
of runtimes results in a similar average slowdown to that obtained using the actual runtime
under FCFS-backfill, for most of the workloads they study. In particular, they use the uniform
distribution to model the overestimation in the runtime (i.e., the ratio of the requested runtime
in excess of the actual runtime, divided by the actual runtime); overestimation by as much as
300 times the actual runtime is simulated. [ZFMS00] shows that this hypothetical model of
requested runtime for FCFS-backfill results in similar average waiting time, compared to that
obtained using actual runtime; nevertheless, jobs that have more accurate runtime informa-
tion incur lower waiting times than jobs with larger overestimation. [JJSO01] shows that the
utilization for a particular priority backfill policy is improved by 10% when the accuracy in
the requested runtime is increased from 10% to 40%, but no further improvement is achieved

beyond 40% accuracy. Note that, however, the accuracy is not defined in that study.

2.3.3 Limited Preemption and Restart

One serious drawback to the non-preemptive space sharing policies discussed in the previous
two sections is that if there are not enough free resources to satisfy the job resource requests,
a new job may have to wait for a long time in the queue, even if the job runs for only a
short time (e.g., under 1 minute). Backfill policies may not be able to backfill these short

jobs soon, because of generally overestimated requested runtimes. This motivates the use of
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limited preemption for ASP in [CMV94] and a non-preemptive 15-minute test run and restart
for FCFS-backfill and SJF-backfill in [PK00]. Related work in [HBOO] proposes multi-level
queueing with restart, in the context of more specialized distributed-server systems. This work
is motivated by the heavy-tail property in the distribution of job execution times observed on
Unix sequential systems [HBD96]. No prior work has proposed the use of limited preemption

for backfill policies.

2.4 Dynamic Scheduling Policies for Parallel Systems

The uniprocessor processor sharing policy, as discussed in Section 1.1, can be applied for parallel
systems to achieve high performance. In particular, previous work shows that equi-allocation
policies that allocate an equal processing power per job outperforms the policies that allocate
equal processing power per process when the coefficient of varion of the execution time >
1 [LV90, GL99].

Parallel equal allocation can be implemented through either time-sharing (i.e., EQT) or
space-sharing (i.e., EQS). For efficient interprocess communication, EQT requires support for
scheduling and preempting cooperating processes running on different processors at the same
time. EQS with runtime support for jobs to adapt to changes in processor allocations ensures
that different processes of the same job are always scheduled simultaneously.

Here we use the term EQT to refer to any preemptive policy that gives an approximately
equal quantum of time to each job by time slicing the computer among the jobs, and has
support for co-scheduling processes that must be scheduled at the same time for interprocess
communication. Similarly, EQS refers to any preemptive policy that partitions the processors
among the jobs as equally as possible, and has runtime support for processor repartitioning.
Thus, the above definitions exclude those preemptive policies that time-share or space-share
the machine among jobs, but do not have the required runtime support for efficient execution

of parallel jobs.
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Section 2.4.1 below reviews EQT policies. Section 2.4.2 then reviews EQS policies.

2.4.1 Dynamic Time Sharing Policies

Coscheduling is proposed in [Ous82], and subsequently refined and called Gang Scheduling pol-
icy in [FR90]. These policies give each job as many processors as requested, and time-slice each
processor among the processes from different jobs. To facilitate interprocess communication,
these policies require coordinated context switching of processes across different processors, so
that processes of the same job are scheduled and preempted at the same time.

Many papers propose specific implementations or extensions of these policies. Specific
implementations for efficiently coordinating the scheduling of processes on different processors
are proposed in [MCF*98, SS99]. Implicit (or dynamic) coscheduling policies, achieved by the
detection of message exchanges between the cooperating processes, are proposed and studied
in [SW95, DAC96, SPWC98, YJ01]. These policies differ from Gang Scheduling in that only
those processes that communicate with each other must be scheduled at the same time. Several
papers extend Gang Scheduling to take job memory requirements into account [Set97, SSN99,
BF00, PF00].

Many papers study the impact of different factors on the performance of Gang Scheduling, in
an attempt to further improve the performance of Gang Scheduling. A major problem in Gang
Scheduling is that of processor fragmentation; i.e., some processors are left idle in some time
slice(s), because there are not enough processors to schedule any other job in another time slice.
Note that each process also makes slower progress as the number of time slices increases. To
reduce fragmentation, previous papers study alternative job packing schemes [Fei97a, ZJWB98],
the benefit of using process migration [Fei97a, Set97, WPS97, SSN99, ZFMS01], and the benefit
of employing backfill for Gang Scheduling [ZFMS00, ZFMS01]. [GL99] studies the effect of
the quantum allocation for each time slice, and shows that making quantum length inversely

proportion to the number of processes that are running in a given time slice results in lower mean
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response time than allocating an equal quantum to each time slice under particular workloads.
Several papers [FJ97, WPS97, FIM+99, ZFMS00] show that Gang Scheduling policies im-
prove on FCFS-backfill. However, these studies do not take job memory requirements into

account.

2.4.2 Dynamic Space Sharing Policies

Tucker and Gupta [TG89] proposed the first dynamic equal space sharing policy (i.e., EQS),
which partitions the processors among jobs as equally as possible upon each job departure and
arrival. To allow coscheduling of the processes of each job, they propose an implementation
called ”Process Control”, in which each job is informed when processor allocations change, so
that the job can adapt the number of processes to match the number of allocated processors.
Thus, EQS requires that each job adapt to changes in processor allocations, and therefore
incurs processor repartitioning overhead. One advantage of EQS over time-sharing policies is
that EQS does not have the problem of processor fragmentation. Another advantage of EQS
is that the system may have a higher processor efficiency because the jobs may be given fewer
processors under EQS than under EQT. Most applications have higher execution efficiency (i.e.,
the speedup achieved on the processors divided by the number of processors) when running on
a smaller number of processors, due to a smaller interprocess communication overhead.

In addition to Process Control, particular implementations of EQS have been proposed
to improve performance, or to accommodate special requirements in the workloads. [ZM90]
proposes more dynamic EQS policy, which not only responds to the load but also responds to
the change in job parallelism by reassigning processors among jobs as needed (i.e., taking away
extra processors from a job that has reduced parallelism, and reassigning to another job that
can use more processors). In the case where each job can run only on power of two processors,
[MZ94] propose Folding, which always allocates each job numbers of processors equal to power

of two and, achieves equal sharing by rotating small and large partitions among jobs. In
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the context of distributed-memory systems, they propose an EQS that implements minimum
processor allocations imposed by job memory requirements to avoid memory overhead [MZ95].

Many run-time support systems for the processor repartitioning required under EQS have
been implemented. These include Cilk [BJK*95, BL97], DRMS [MNK96, JEM97], Octo-
pus [IPS*97, TPSG97], automatic self-allocating threads [SE97], WoDi [PL95], and data re-
distribution [CNSW97].

When the coefficient of variation of the total processing time is greater than 1, many pa-
pers show that EQS has better performance than non-preemptive policies, such as ASP [ST91,
CMV94, SST93, NSS93b, NSS93a, PD96, PS97], and policies that allocate a number of proces-
sors based on processor working set [ST91, CMV94, SST93] or average parallelism [ZM90].

EQS policies have been shown to have higher performance than EQT policies for workloads
where jobs have poor execution efficiency when running on a large number of processors [GTU91,
MVZ93, YL95]. This is because under EQS, each job may be allocated a number of processors
smaller than requested at moderate to high loads (as discussed above), resulting in better
execution efficiency both for the jobs and for the system under such workloads. However, we
note that for workloads where most jobs can efficiently use the number of processors requested,
such as in the O2K workload (to be characterized in Chapter 4), the performance of EQT is
expected to be comparable to that of EQS. Other high-performance parallel computer systems
are likely to have similar characteristics, as users have an incentive to request numbers of
processors that their jobs can efficiently use, in order to get better turnaround time and to

spend their quota for using the computers wisely.

2.5 Summary of Previous Policy Studies

The FCFS-backfill policy is widely used on SP/2 multicomputers. Only three priority functions
have been compared with FCFS-backfill. None of these priority backfill policies has been

shown to outperform FCFS-backfill overall. Specifically, SJTF-backfill has been shown to provide



28

significantly lower average slowdown of FCFS-backfill [ZK99, PK00]. However, SJF-backfill has
the potential of starving jobs with long requested runtime, and attempts to avoid starvation
by placing a limit on the waiting time of each job compromise the performance [ZK99]. The
smallest-processors-first and the largest-processors-first policies with backfill have been shown to
have significantly worse average waiting time than FCFS-backfill. A few previous papers [FW98,
ZFMS00, ZFMS01] have studied the impact of overestimated runtime on backfill policies, and
conclude that the impact is minimal. However, no previous work has studied the impact of more
accurate runtime on priority backfill policies that favor short jobs. Note that more accurate
requested runtime has the potential to be beneficial for priority backfill policies that give priority
to short jobs.

A starvation-free priority function for backfill policies that favor short jobs has not yet been
proposed or studied. Furthermore, most previous studies assume that the actual job runtime is
known to the schedulers and most studies (except [LKK99]) do not take the job memory into
account.

Preemptive EQT and EQS have both been shown to have high performance. In particular,
EQT has been shown to outperform FCFS-backfill; however, job memory is not taken into
account. Furthermore, EQT has not been compared against priority backfill policies, and no

prior papers have compared EQS against backfill policies.
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Chapter 3

Evaluation Methodology

Our methodology for evaluating job scheduling policies consists of characterizing the O2K work-
load that will be used to evaluate the policies, evaluating and tuning the performance of the
schedulers that dispatch the jobs on the NCSA O2K, and designing improved alternative sched-
ulers that can be used for the O2K (as well as for the other production parallel computers). The
baseline policy that will be evaluated is NCSA-LSF*, which was the production job scheduler
on the O2K prior to July 2000. We also evaluate priority backfill policies, and using trace-driven
simulation with the O2K workload. show that our initial backfill policy, called Priority-backfill,
significantly improves NCSA-LSF*. Based on these results, a priority backfill policy, called
NCSA-MS*, configured with a similar priority function as that in Priority-backfill, replaced
NCSA-LSF* in July 2000. We further evaluate alternative priority measures for backfill poli-
cies to determine whether they improve performance. In addition, several other approaches
to improving the scheduler are evaluated; namely (1) adding limited preemption for backfill
policies, (2) using the preemptive spatial equal allocation (i.e., EQspatial) policy, and (3) using
improved requested runtime estimates for backfill policies.

Section 3.1 defines NCSA-LSF*. Other scheduling policies evaluated in this thesis are de-
fined in Section 3.2. Section 3.3 discusses our approach for characterizing the O2K workload.
Section 3.4 describes our trace-simulation method and the simulator we develop. The perfor-
mance metrics used to evaluate the scheduling policies are discussed in Section 3.5. Section 3.6
provides the performance evaluation and some of the tuning results for NCSA-LSF*. Sec-

tion 3.7 provides the results that validate the performance of our simulated NCSA-LSF* and
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Class Name Resource Request Limits Drain
Time CPU Time Run Time Wait
Per Processor Per Job Time
vst (very short) < 5 hrs < 5.5 hrs > 12 hrs
st (short) < 50 hrs - > 45 hrs
mt (medium) < 200 hrs - > 180 hrs
It  (long) < 400 hrs - > 360 hrs
Size # Processors Memory
Sj (small) <8 <2GB
mj  (medium) <16 <4GB
1j (large) < 64 < 16 GB*

(* < 25 GB in October-December 2000)

NCSA-MS* against the measured performance on the O2K.

3.1 Baseline Policy: NCSA-LSF*

This section describes the scheduling parameters and algorithm of NCSA-LSF*. Table 3 pro-
vides the definition of LSF job classes. Table 4 summarizes the LSF scheduling parameters; the
processors and memory available on each host are repeated from Table 1 for convenience.

When submitted to NCSA-LSF*, each job requests a number of processors, an amount of
memory, and the cpu time in average per processor. According to each job’s requests, NCSA-
LSF* classifies that job into one of the four time classes (i.e., vst, st, mt, and 1t) and one of the
three size classes (i.e., sj, mj, and lj). For example, a job that requests 16 processors, up to 4
GB of memory, and 50 hours of ¢pu time on average per processor (or equivalently, 50x16 hours
of total cpu time) is in the st-mj class. When a job is started, it is allocated as many processors
and as much memory as requested, and occupies the allocated processors and memory during
its entire execution.

Each of the eight LSF hosts is configured with job priority and class limits. There are also

system-wide job limits on the mt and It classes to avoid long jobs dominating the resources;
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Table 4. LSF Host Scheduling Priority on NCSA Origin2000

Memory Scheduler Configuration

Host Number

Total | Per Processor Job .
Name Processors (GB) (MB) limits Job priority
eir 128 64 512 1j<3; mj<4 | Ij > mj > sj; vst > st,mt,lt
nerthus 128 64 512 j<3; mj<4 | Ij > mj > sj; vst > st,mt,lt
hodl 128 64 512 1j<6; mj<2 | Ij > mj > sj; vst > st,mt,lt
jordl 128 32 256 1i<3; mj<4 | Ij > mj > sj; vst > st,mt,lt
sagal 128 32 256 j<3; mj<4 | [j > mj > sj; vst > st,mt,lt
huldra 128 32 256 1j<3; mj<4 | |j > mj > sj; vst > st,mt,lt
mimir 128 32 256 - sj only; vst > st,mt,lt
modi2 64 16 256 - mj only; vst > st,mt,lt
System-wide job limits: mt < 48; It < 20
Per-user job limit = 3 (the job limit is infinity in our simulations)

specifically, at most 48 mt jobs and 20 1t jobs can run at the same time in the system, as shown
in Table 4. For example, the host "eir” can run up to 3 1j jobs and 4 mj jobs at the same time.
The jobs in the vst-1j class have the highest priority on the host, followed by the other lj jobs,
subject to the class limits. If three jobs in the lj class are already running on the host, or if
no jobs in the lj class are available for scheduling, the jobs in the vst-mj class have the next
highest scheduling priority on the host, followed by the other mj jobs. Similarly, if 3 1j jobs and
4 mj jobs are running on the host or no mj and 1j jobs are available for scheduling, the jobs in
the vst-sj class have the highest scheduling priority on the host, followed by the other sj jobs.
Within each priority class, the jobs are scheduled in order of arrival time. Note that one host
(mimir) schedules sj jobs only, and one host (modi2) schedules mj jobs only; all of the other six
hosts give priority to 1j jobs.

When a job departs from a host, LSF schedules the waiting jobs according to the priority
and class limits described above. A job is skipped if not enough free processors and memory
are available to satisfy the job’s requests. If this job has the highest size class priority (e.g., j
priority), then other jobs in the same size class (i.e., 1j) can be started on the host, but not jobs

in the other size classes. However, vst priority jobs do not block the scheduling of jobs from
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other time classes. When a job arrives, if more than one host has enough free processors and
memory (and the required priority and quota) to start the job, the job is started on the host
with the largest number of free processors.

If a job has been waiting longer than the per-class ”Drain Wait Time” (defined in the last
column in Table 3), the job is given a draining priority on a randomly chosen host that does
not already have a job with such priority. Thus, at most one host can be drained for each such
job, and each host can be drained for at most one job. A job with draining priority on a host
is started when enough cumulative free resources on that host have become available (or when
another host can start the job). As long as a job has draining priority on a host, no other jobs
can be scheduled at that host. However, a job looses draining priority if the appropriate limit
for the time class of that job has been reached while the job is waiting. Also, if the size class of
a job no longer has scheduling priority on a host while that job is still waiting, a different host
that is not drained for any job is used to give the job another draining priority.

Note that host draining does not occur frequently, because of the high wait time threshold
for draining priority. The measured total idle processor time due to draining on the eight hosts
for each month is under 4% of the total processor time available in that month for the O2K

workloads studied in this thesis.

3.2 Other Policies Evaluated

This section continues to define other job scheduling policies evaluated in this thesis. Sec-
tion 3.2.1 defines the backfill policies. The preemptive immediate service option for the backfill

policies is defined in Section 3.2.2. The EQspatial policy is defined in Section 3.2.3.

3.2.1 Backfill Policies

Backfill policies compute the priority of each job as a weighted sum of several job metrics, such

as the current job waiting time, the estimated current job expansion factor (i.e., the sum of the
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elapsed time since the job was submitted and the job requested runtime, divided by the job
requested runtime), etc. This section describes the general algorithm for backfill policies. The
priority functions used in the priority backfill policies evaluated in this thesis will be defined in
Section 5.1.

Under the non-preemptive backfill policies evaluated in this thesis, when a job is started, it
is allocated as many processors and as much memory as requested, and occupies the allocated
processors and memory during its entire execution, as in NCSA-LSF*. Instead of draining as
in NCSA-LSF*, backfill policies allow small jobs that have lower priority to use the processors
and memory that would be otherwise idle, as illustrated in Figure 1.

For the purpose of illustration, let’s consider the processor allocations only and assume the
FCFS priority, i.e., the jobs are prioritized in the order of their arrival time and thus the job
priority never changes. In the figure, the jobs are numbered in the order of their arrival time.
Suppose Job J3 can’t be started at t0 and is given a scheduled start time to occur at time t2,
i.e., the processors required to run J3 at t2 are reserved for as long as the estimated runtime of
the job. At time t0, Job J10 is backfilled because it is the highest-priority job that can run on
the idle processors without delaying the scheduled start time of J3. At time t’, if J3 is the only
job with a scheduled start time, Job J11 is backfilled, as shown in Figure 1(b). However, if both

J3 and J4 are given a scheduled start time as shown in Figure 1(c), Job J11 can’t be backfilled at
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time t’ because it would delay J4’s start time. The number of jobs that can be given a scheduled
start time is a parameter, N, of the backfill policies. Previous proposed backfill policies either
use N = 1 (i.e., the scheduled start time is given to the first job only) [Lif95, LKK99] or N = oo
(ie., each waiting job is given a scheduled start time) [Gib97b, FW98, TF99, ZFMS00]. Both
values of N are studied in [PK00]. Note that the motivation of using N = oo is these previous
papers is to ensure that no job delays the start time of any jobs that have a higher priority.
In the case the job priority can dynamically change, the reservation can be dynamic-job
or fized-job (called "CURRHIGHEST” and "HIGHEST”, respectively, in the Maui Scheduler).
With the dynamic-job reservation, the scheduled start time is always given to dynamically the
current N highest-priority jobs. On the other hand, under fixed-job reservation, once a job is
given a scheduled start time, the job does not release the scheduled start time until it is started,
even if the job is no longer one of the N highest-priority jobs. Note that under FCFS-backfill,
fixed-job reservation is equivalent to dynamic-job reservation, as the job priority never changes.
When a job departs earlier than expected, the existing scheduled start times are rescheduled

to occur sooner (which can be the current time, i.e., the job can start now). As illustrated in
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Figure 2, Job J2 departs at t” (earlier than the expected complete time, t2), and the scheduled
start time for Job J3 slides to an earlier time, t1, as shown in Figure 2(b).

Using fixed-job reservation can potentially reduce the worst waiting time of that using
dynamic-job reservation for priority backfill policies, especially SJF-backfill, that gives the
highest priority to the job with the shortest requested runtime. Using N > 1 can also potentially
reduce the worst waiting time of that using N = 1. Note that with both N = oo and fixed-job
reservation, any non-FCFS backfill policy will use the FCFS order to give the scheduled start
time to the jobs, and only use the priority to backfill the jobs.

The default reservation used for the backfill policies evaluated in Chapter 5 is dynamic-job
with N = 1 reservation (i.e., only the job with dynamically the highest priority is given the
reservation). We also evaluate N > 1 and fixed-job reservation in an attempt to improve the
performance of SJF-backfill.

The backfill policies need to accommodate the job memory requirement and the host bound-

aries on the O2K. We augment backfill policies as follows:

e A job can be started on a host only if there are sufficient free memory as well as free

processors to satisfy the job’s requests.

e If more than one host can start a job, the host with the smallest free processors is chosen
to start the job. The motivation is to minimize the processor fragmentation so as to

increase the chance the jobs that request a large number of processors can be started.

e When a job is given a scheduled start time, the reservation is made on the host that
is expected to start the job at the earliest time, computed according to the requested

runtimes of all currently executing jobs.

3.2.2 Backfill Policies with Limited Preemption for Immediate Service

Similar to the other production workloads, a significant fraction of the O2K jobs terminate in

a very short time (e.g., under 1 minute), including the jobs that request a very long runtime
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(e.g., over 50 hours), to be shown in Section 4.5.1. To provide a good response time for these
very short jobs, we propose to extend the backfill policies with preemptive immediate service
of a short quantum.

With the preemptive immediate service, if a new job can't be started as a full job, the job is
given a preemptive priority to start on as many processors as requested and an initial memory
for a very short quantum. The initial cpu quantum and initial memory are the parameters of
the policy. The initial quantum should be short enough to not have adverse impact on longer
jobs but long enough to help a significant number of jobs. The values we choose are motivated
by the characteristics observed in the O2K workload (to be presented in Chapter 4, and are
discussed in Chapter 5.5 as we evaluate the performance of immediate service.

Below further explains the algorithm of giving an immediate service to a new job and the
parameter t.

If a host has enough free (i.e., unoccupied) processors and the initial memory to give an
immediate service to the new job, the job receives an immediate service on the host without
preemption. If more than one such hosts are found, the host that has the smallest number of
free processors is chosen. Otherwise, the currently executing jobs are chosen to be preempted as
follows. To avoid memory overhead, only the processors (but not the memory) of the currently
executing jobs can be preempted, i.e., a job vacates all the processors but occupies the memory
allocated when it is preempted. An executing job is eligible to be preempted if (1) it has been
running without interruption for longer than ¢, and (2) its expected remaining runtime is longer
than t. For each host that has at least an amount of the initial memory, each job eligible for
preemption is considered in the order of increasing estimated current job slowdown, which is
the ratio of the elapsed time since the job arrived divided by the time it has actually run so far
(i.e., the time it has been preempted is excluded). As many such jobs on the host as required
are selected, until the sum of the total number of processors occupied by these jobs plus the

currently free processors on the host is at least as large as requested by the new job. Note that
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if the number of these processors is greater than requested, some of the selected jobs may be
de-selected to avoid unnecessary preemption. The host that will have the fewest number of idle
processors due to preemption is chosen to give a preemptive immediate service to the new job.
A preempted job is assumed to completely stop execution.

If the new job completes in the initial quantum and the initial memory, it leaves the system.
Otherwise, it is killed and waits in the queue to be scheduled as a full job.

In our evaluation in Section 5.5, t equals 10 times the initial quantum (e.g., t = 10 minutes if
the initial quantum is 1 minute). Thus, the total delay incurred by any job due to preemption is
under 10% of its actual runtime. We expect that the preemptive immediate service option will
not adversely impact the long running jobs. Our comparisons of backfill policies in Section 5.5

will confirm that this is the case.

3.2.3 The EQspatial-MinInterval Policy

The previously proposed equal space partitioning policy (i.e., EQspatial) [TG89] dynamically
repartitions the processors as equally as possible among the jobs, upon each job departure
and arrival. We extend this policy to accommodate the job memory requirement and host
boundaries on the O2K and to have reduced processor repartitioning overhead, described below.

As in all other policies evaluated in this thesis, EQspatial allocates each job as much memory
as it requests, to avoid memory overcommitment.

The key algorithms of EQspatial are the host placement policy and the immediate service.

The host placement policy determines which host to schedule a new job as follows. Only
the hosts with enough free memory to satisfy the job requested memory are considered. If more
than one such hosts are found, the job is scheduled on the host that has the largest ratio of
the total number of processors available on the host divided by the total number of requested
processors of all executing jobs on the host and the new job. We've examined several other

more complex host placement heuristics and found that this simple heuristic results in least
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deviation from the ’true’ equi-allocation (computed as if there is no host boundaries).

If no host has enough free memory to satisfy the request, the job is given an immediate
service and an initial memory for a short quantum on the host that has at least the required
initial memory, as in the immediate service option for the backfill policies. If the job does not
finish in the initial quantum and memory, it is killed and waits in the queue for enough free
memory.

During the time while a job is waiting in the queue, the cumulative processor time the job
could have received under true equi-allocation is computed. Once the job is started, it is given
as many processors as requested until it has received what it should have received while it was
waiting in the queue. Note that if there are such jobs running on a host, the processors occupied
by these jobs are deducted from the total number of processors available on the host and the
requested processors of these jobs are excluded in the total number of requested processors of
the jobs on the host, when applying the host placement heuristic defined above.

To reduce the processor repartitioning overhead, a parameter, MinInterval, is used to define
the minimum time between any two consecutive processor repartionings on each host. If a new
job is scheduled on a host on which the processors cannot be repartioned due to the MinInterval
constraint, the job can run on the currently free processors (if any) until the processors can
be repartitioned again. Similarly, the processors released by a job departure on a host are
left idle until the MinInterval for the host is satisfied. We use 5 minutes for Minlnterval
(i.e., EQspatial-5m), which should have negligible processor repartitioning overhead for cuarrent
parallel computers.

Linear slowdown is assumed whenever the job executes on fewer processors under EQspatial,
although in an adaptive system the job might execute more efficiently on fewer processors; thus,
the predicted performance improvement for EQspatial is conservative.

The above assumption of the job execution efficiency although results in a more pessimistic

performance for EQspatial, it is consistent with the characteristics of the O2K workload, in
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which the overall efficiency on the allocated processors is about 80% each month and that a
large fraction (60%) of the jobs have high processor efficiency (> 80%) on the number of the
processors requested (and allocated), to be shown in Chapter 4.

In the case if each job can only run on a power of two number of processors, EQspatial can be
designed to accommodate the workload feature as proposed in Folding [MZ95] (Section 2.4.2).

To use EQspatial, the existing applications require recompiling or even more costly con-
version, to use the runtime support for processor repartioning. Our goal of evaluating the
performance of EQspatial is to study quantitatively how much it can improve the backfill poli-
cies, which helps us to determine whether or not it’s worthwhile to implement the required

support.

3.3 Workload Characterization

Realistic workload is an important part for evaluating the scheduling policy performance. While
it is now very common to use the job traces from the production workloads for scheduling policy
evaluation, the advantage of the synthetic workloads is to allow the flexibility for varying the
key workload parameters for the expected workloads in a systematic way. However, as discussed
in Section 2.2, no sufficient data is provided in previous studies for generating realistic synthetic
workloads. One of the goals of this thesis is to provide such data.

Six one-month O2K workloads, during January - March and October - December 2000,
are analyzed. We identify the periods of relatively stable arrival rate and characterize the
distribution of job interarrival time and the characteristics of the jobs that arrive in each period.
For each period of relatively stable job arrival rate, we analyze the key job characteristics, which
are three job resource request measures (i.e., the requested number of processors, requested
memory, and requested runtime), and two job resource usage measures (i.e., the actual runtime
and memory usage). The characteristics of several other new and important job measures, such

as per-job processor utilization, are also provided.
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Figure 3. Example Conditional Distribution Analysis

To generate the synthetic workloads that have the observe(i characteristics of the O2K
workload, the relations between the key job characteristics are required. We characterize the
distribution of the requested number of processors, and use that as the first-order job measure.
The distributions of each of the other job measures is characterized conditioned on the job
measures for which the distribution or conditional distributions are already characterized. As
an example, Figure 3 illustrates our approach to deriving the distributions of the requested
memory conditioned on the number of requested processors. First, the jobs are partitioned
according to the number of requested processors of the jobs. Since most of the jobs request
a power of two number of processors (to be shown in Section 4.4.1), it’s natural to partition
the jobs using the power of two processors, i.e., 1 processor, 2 processors, 3-4 processors, 5-8
processors, etc. For each set of the jobs, we examine the distribution of the requested memory
(measured by the 20, 50, 80-th percentiles, and the average of the requested memory), as
shown in Figure 3(a). Different sets of the jobs that have a similar distribution of requested
memory are identified. For example, the jobs that request 1-2 processors have an approzimately
similar distribution of requested memory, the jobs that request 3-8 processors have a similar
distribution of requested memory, etc. Based on the results, the observed distributions of the
requested memory are provided for four different sets of the jobs, as shown in Figure 3(b). The

workload generator can use the provided conditional distributions in Figure 3(b) to determine
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the requested memory after the number of requested processors of the job has been determined
according to the observed distribution of the number of requested processors.

The conditional distributions of the other job measures are analyzed using the same ap-
proach, except that the distributions are conditioned on more than one job measure. For ex-
ample, the distribution of the requested runtime is conditioned on both the requested number
of processors and requested memory.

In order to keep the workload model manageable and the characterization possible, approx-
imation is used to identify the sets of the jobs that have a similar distribution of a particular
job measure. In addition, unless there is data to suggest otherwise, a set of only a few number
of jobs is often analyzed with an adjacent set of the jobs, because the observed distribution
based on a few number of jobs can be very unreliable due to the statistical fluctuation in a

small number of jobs.

3.4 Trace-Driven Simulation and the Simulator

We evaluate the job scheduling policies by trace-driven simulation using six one-month work-
loads derived from the O2K job logs, during October-December 1999 and January-March 2000.

Note that three more recent one-month workloads (i.e., October-December 2000) character-
ized in Chapter 4 are not used for policy evaluation, because our simulation of the policies was
performed prior to October 2000. Nevertheless, since we find that the workload does not change
from January-March 2000 to October-December 2000, the policy performance evaluation results
would be the same for the more recent three months.

Only the space-shared hosts and the jobs that run on the space-shared hosts are simulated.
Thus, the jobs in the vst class that run on the dedicated hosts (when there are no dedicated
jobs available for running) are not included in our simulation.

For each month, the simulation of each policy starts a week in advance of the month to

remove the ’cold-start’ effect. Only the jobs submitted during that month are analyzed to
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compute the performance measures for the policy. Under non-preemptive policies, a simulation
is complete when all the jobs submitted during the month have been started; under policies
that allow the jobs to be preempted (i.e., backfill policies with limited preemption and the
EQspatial policies), the simulation is complete when all the jobs submitted during the month
have completed.

We develop the simulator using the Java programming language. The inputs to the simulator
are: the month to be simulated, the policy to be simulated with the scheduling parameters.
The NCSA-LSF* policy has additional inputs that specify the host priority and job limits. The
simulator reads the appropriate job traces with a known format to the simulator, according
to the month specified. The simulation is event-driven; the events include the next job arrival
and the next job departure for any policy. The limited preemption has an additional event
that wakes up the scheduler when a job has become eligible to be preempted by a new job
that is still waiting for an immediate service. The EQspatial with non-zero MinInterval has
an additional event that wakes up the scheduler to perform a delayed processor repartitioning.
Each simulation run produces a data file that records the response time of each job analyzed
(i-e., the total time the job has been in the system since it is submitted), together with the job
actual runtime and requested number of processors and memory, etc. The results of the output
files are processed by the programs written in the Matlab programming language to produce

the figures for each performance metric evaluated.

3.5 DPolicy Performance Metrics

Similar to previous work, we evaluate the overall average waiting time and overall average
slowdown (which is defined to be the response time divided by the actual runtime) over all jobs
for each policy. However, these overall average measures are incomplete for understanding the
policy performance. Thus, we also provide overall 95th percentile and maximum waiting time.

Additionally, we show more detail performance by plotting the average, 95th percentile, and
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Figure 4. Example Plots for Waiting Time Versus Actual Runtime

maximum waiting time, and the average and maximum slowdown, versus the actual runtime.
In some cases, the average and maximum waiting time versus different ranges of the requested
number of processors and the requested memory are provided, as an auxiliary data.

To illustrate, Figure 4 shows the performance measures versus the actual runtime. Fig-
ure 4(a) plots the average of the waiting times in each equal-size logarithmic range of actual
runtime against the average of the runtime in that range. Specifically, the jobs are partitioned
into eleven disjoint groups according to their actual runtimes; each group is upper-bounded by
10* minutes, where the value of i is from -1 to 4 with an increment of 0.5. A very small fraction
(< 2%) of the jobs each month have actual runtime greater than 10* minutes, i.e., 167 hours,
and they are placed in the last group. The actual runtime is plotted on a logarithmic scale to
reflect the distribution of the actual runtime, i.e., an overwhelming fraction of the jobs have
very short run time. For each group of jobs, the average wait time is plotted against the average
of the actual runtimes in log scale, which is computed as follows. The average of the logarithmic
actual runtimes is computed, and then applied by the inverse logarithm. The maximum wait
time versus actual runtime is plotted in a similar way, except that it is plotted against the

actual runtime for which the maximum wait time occurs, as shown in Figure 4(c). Figures 4(d)
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and (e) plot the average slowdown and maximum slowdown versus the actual runtime, the same
way as that for the average wait time and maximum wait time, respectively.

Since the maximum wait time is a more sensitive measure, we also provide 95th percentile
wait time. Figure 4(b) plots the 95th percentile waiting time versus actual runtime. For this
plot, the top 5% of the wait times are first eliminated. To show more about the variation in
the 95th percentile wait times in each range of actual runtime while without making the graph
too complex to read, we plot more data points (namely three) in each range of actual runtime
but for a fewer ranges (namely six) of actual runtime, compared to that for the average and
maximum wait time versus actual runtime. Specifically, the actual runtimes are partitioned
into six ranges: each of the first four ranges consists of equal-size logarithmic range of actual
runtime upper-bounded by 10° minutes, where i = 0, 1, 2, 3; the last two ranges are the same
as that in the other plots (i.e., 103 to 1035 and 1033 to 10* minutes. The top three wait times
(from the remaining wait times) for each of the six ranges of actual runtime are plotted against
the actual runtimes for which the waiting times occur.

The plots of performance measures versus actual runtime as shown in Figure 4 reveal impor-
tant detail of the policy performance that can’t be illustrated by the simple overall measures.
For example, the plot of the average wait time versus actual runtime shows how the average
wait time varies with the increase in the actual runtime; the maximum wait time versus actual
runtime shows how poor the wait time is for small as well as large actual runtime, etc.

Note the wait time for each job under non-preemptive policies is the elapsed time since the
job arrives until the job is started. For the backfill policies with limited preemption and the
EQspatial policies, the waiting time for each job is computed to be the response time of the

job minus the actual run time of the job on the requested number of processors.

3.6 Performance of NCSA-LSF*

This section provides the evaluation results of our baseline policy, i.e., NCSA-LSF*.
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Since under NCSA-LSF*, the scheduling parameters are defined based on the time and
size classes, Figure 5 plots the average waiting time of each job class for each of four months.
Figure 6 provides the results for the maximum waiting time. One key observation is that the
average waiting time is measured by hours and tens of hours for 1j classes, and the maximum
wait is over 50 hours and even hundreds of hours. The poor waiting time applies to any job,
including very short running jobs. To illustrate, Figure 6, plots the largest 5% of the job waiting
times against the actual runtime for a typical-load month (January 2000). The figure shows
that the poor maximum wait (> 50 hours) applies to any runtime, including two jobs that have
very short runtime (< 1 minute).

Another observation is that the relative performance of LSF job classes varies from month
to month even though the job mix per month is similar (to be shown in Chapter 4). This has
made tuning for NCSA-LSF* difficult. For example, it might be appropriate to increase the
resource available for ’lj’ class for February 2000 to improve their average wait time, but this
would not be appropriate for March 2000. Section 5.2 will further show how the performance
of NCSA-LSF* varies from month to month, while the performance of Priority-backfill and
FCFS-backfill is more similar from month to month.

The scheduling parameters for NCSA-LSF* have been experimentally tuned by NCSA based
on our simulation results. It’s difficult to further improve its performance. Appendix E provides
some of our simulation and analysis results for tuning the performance of NCSA-LSF*.

Since draining in NCSA-LSF* occurs only very infrequently (as mentioned in Section 3.1),
the poor performance in NCSA-LSF* is mainly due to the use of static job classes with higher
priority to larger size classes (Ij > mj > sj on six out of eight hosts) and thus requires limits on
large jobs (lj and mj) in order to prevent starving small jobs. The job limits causes significant
waiting times for large jobs when there are more of them in the workload to be scheduled.
Furthermore, the performance of NCSA-LSF* is sensitive to the specific order of job arrivals;

and it is difficult to tune the scheduling parameters due to the complex interaction between the
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class priority and limits.

To improve the scheduler, we evaluated priority backfill policies and show that our initial
priority backfill policy, i.e., Priority-backfill, significantly outperforms NCSA-LSF*. Based on
our predicated improvement, a higher performance priority backfill policy, ie., NCSA-MS*,

configured with a similar priority function as in Priority-backfill, replaced NCSA-LSF* in July

2000, as mentioned at the beginning of this chapter.
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3.7 Validation of Simulation

This section provides results that validate our simulation of the scheduling policies used on the
NCSA 02K (i.e., NCSA-LSF* prior to July 2000 and NCSA-MS* since July 2000) and our
predicted improvement of Priority-backfill over NCSA-LSF*.

Figure 8 shows that the improvement in the monthly average wait time of the simulated
Priority-backfill over NCSA-LSF* (shown for two high-load months, December 1999 and Febru-
ary 2000) is qualitatively similar to the measured improvement of NCSA-MS* (for a high-load
month, August 2000) over NCSA-LSF* (for a high-load month, June 2000) on the O2K.

Figure 9 further compares Priority-backfill and NCSA-LSF* and validate our simulation
of NCSA-LSF* for a high-load month (December 1999), in which month NCSA-LSF* still
dispatched the jobs on the O2K. Figure 9(a) plots the average wait time versus the actual
runtime for the simulated Priority-backfill and NCSA-LSF* for a high-load month, December
1999. Also included in the graph is the measured NCSA-LSF* on the O2K (i.e., NCSA-
LSF*(observe)). The figure shows that Priority-backfill has significantly lower average wait time
than that of NCSA-LSF* over the entire range of actual runtime. Furthermore, it shows that
the simulated NCSA-LSF* has similar average wait time versus actual runtime than that of the

observed NCSA-LSF*, except that simulated performance is somewhat worse for runtime under
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and Validation of NCSA-MS* Simulation

50 hours and better for runtime > 50 hours. The discrepancy in the simulated and observed
performance of NCSA-LSF* is mainly due to the anomaly in the NCSA-LSF* scheduler on the
02K. We found that NCSA-LSF* sometimes scheduled the jobs in violation of the scheduler
parameters configured on the O2K; in particular, many sj jobs were scheduled on the hosts when
the mj or 1j jobs have the priofity and there are mj or lj jobs waiting. This sometimes causes
a lower overall average waiting time but higher overall maximum waiting time. As shown in

Figure 9(b), the maximum waiting time versus actual runtime for the observed NCSA-LSF* is
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The label "mm/dd (+n)” means the n-day period starting at mm/dd.

For example, ”9/25 (+14)” is the 2-week period starting at Sep. 25.
much worse than that of the simulated NCSA-LSF*. Appendix D explains the types of anomaly
found in the NCSA-LSF* scheduler in more detail.

Figure 10 compares the performance of the priority backfill policy (for August 2000) and
NCSA-LSF* (June 2000) observed on the O2K. Note August 2000 is the first full month in
which NCSA-MS* is used on the O2K. The figure also included simulated NCSA-MS* with the
scheduling parameters configured for the O2K. First, Figure 10(a) shows that the improvement
in the average wait time by simulated NCSA-MS* over NCSA-LSF* on the O2K qualitatively
resembles that in Figure 9(a) performed prior to the installation of NCSA-MS* on the O2K.
Second, Figures 10(a)-(b) show that the simulated NCSA-MS* has somewhat lower average
wait time (especially for runtime > 50 hours), and very similar maximum wait time versus the
actual runtime. We note that there was a bug in the NCSA-MS* in that month. The bug
caused the scheduler not able to start the jobs sometimes even though enough free resources
are available for scheduling more jobs.

Figure 11 further shows the difference in the average, 95th percentile, and maximum waiting
time between the simulated and measured NCSA-MS*. We chose the periods in which the above
mentioned bug in NCSA-MS* has been fixed and there is no or minimal system downtime (to

the best of our knowledge) for this study. As shown in the figure, the difference in each
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performance measure for each period is under 20% for almost periods simulated. There could
be numerous reasons for the discrepancy, e.g., events that are not available in the traces, such as
a scheduled or unscheduled downtown event on particular hosts, a scheduled special reservation
for particular users on particular hosts, etc. In addition, there is a 5 mintue interval between
two scheduling cycles for NCSA-MS* on the O2K, but not in the simulation. This could have
also caused some performance difference, since after a job departure but before the end of that 5
minutes interval, new jobs may arrive and may have higher priority and get to be started before
the previously waiting jobs can be scheduled. However, since the difference in the measured and

simulated performance is not significant, we did not pursue further study of the discrepancy.
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Chapter 4

Characteristics of A Large Shared

Memory Production Workload

A good understanding of the workload is useful for designing high-performance policies for the
workload and for creating realistic synthetic workloads. In this chapter, we analyze NCSA O2K
workload, used for evaluating scheduling policies in Chapters 5-6.

This chapter provides the characteristics of the batch jobs that do not request a dedicated
host. These jobs have more widely varying processor and memory requests than the jobs that
request a dedicated host. The jobs analyzed were submitted in the six one-month periods (i.e.,
January - March and October - December 2000).

Usage on the O2K is dominated by scientific applications from chemistry, physics, astro-
nomical sciences, molecular and cellular biosciences and materials research. Most programs
are written in Fortran programming language; others use C/C++ languages; only a very small
fraction of programs are in Java. Most programs use MPI (message passing interface) for par-
allelization; others use openMP (for shared memory programming models), native Fortran or
C compiler-support parallelization, and Posix.

The O2K workload is interesting for several reasons. First, the system, consisting of 1520
processors and 616 GB of memory, is larger than any previously studied workload. Second, the
largest O2K job runs for as long as 400 hours (i.e., over 16 days) on 64 processors, compared
to only a few tens of hours in previously studied workloads. Third, the jobs submitted each

month require a higher fraction (i.e., 90-100%) of the total processing time available than
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Table 5. Notation

Symbol | Definition

M Requested Memory

P Requested Processors

T Actual Runtime
MxT | Memory Demand
PxT Processor Demand

that in previously studied workloads, to be shown later in Section 4.1. Fourth, the 02K is a
shared-memory system, wheres the previous workload studies only focus on distributed-memory
systerns.

Our characterization is more thorough than that in previous workload studies. The re-
sults in this chapter make four main contributions. (1) we identify the different features in
the O2K workload from that in previously studied workloads. (2) we provide job character-
istics for each period of approximately stationary job arrival rate, rather than over a period
of several months as in the previous workloads without establishing whether the workload is
approximately stationary over those months. (3) we provide new measures that have not been
studied, including the distribution of utilization on the allocated processors for each job, the
average memory utilization for each job, the distributions of requested runtime and requested
memory, the characteristics of the fifteen largest jobs in each month. (4) we provide new con-
ditional distributions that are required for creating synthetic workloads but are missing in the
previous workload models. For example the distribution of requested runtime conditioned on
the number of requested processors and requested memory; the ratio of the actual runtime to
the requested runtime conditioned on requested runtime, requested number of processors and
requested memory.

Some of the notations that will be used in this chapter are given in Table 5. The organization
of this chapter is as follows. Section 4.1 provides the analysis results of the job mix and

load on the O2K hosts. Section 4.2 show the system load due to several large job classes,
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including the fifteen largest jobs of each month. Section 4.3 present the analysis of the number
of job arrivals for each day and for each hour during the six months studied. Section 4.4
provides the characterization results for the distributions and conditional distributions among
the job request measures, which are the requested number of processors, requested memory,
and requested runtime for each period of approximately stationary job arrival rate per hour.
Section 4.5 provides the results for the job usage measures, which are the actual job runtime

and job memory usage. A summary is given in Section 4.6.

4.1 Overview of NCSA 02K Workload

Table 6 summarizes the O2K workload for each of the nine months during October - December
1999, January - March 2000, and October - December 2000. The early three months in October
- December 1999 are included, because they are used for policy evaluation that are performed
prior to October 2000. Our workload characterization results in the rest of this chapter are
provided for the other six months in the year 2000. The LSF scheduler is used for the O2K
during the three months in January - March 2000 and a priority backfill scheduler similar to

the Maui Scheduler [Mau] is used during the late three months in October - December 2000.

For each month, the table shows the following information for all jobs (i.e., ”All”) and for
each of the twelve LSF job classes (classified by the time and resource requests, as defined in
Section 3.1): (1) the total number of submitted jobs; (2) the processor demand (i.e., PxT),
which is the sum of the product of the number of requested processors and the actual runtime
of each job, expressed as a fraction of the total processing time available on the eight O2K hosts
during the month (i.e., the product of the total number of the processors and the total time
during the month). Note that the total processor demand can be greater than 100% because
the jobs that are submitted to the vst classes but run on the three dedicated hosts that give

priority to dedicated jobs are also included. These vst jobs account for a total of 4-9% of the
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Table 6. Total Monthly Processor and Memory Demand By LSF Job Class

LSF Job Class
vsts] | st.s) | mt.sj | 1t_sj || vst.m]j | st_mj [ mt_mj [ It_mj [[ vst]j | st1j [ mt.1j | 1t]j

Month All

Oct 1999
#tjobs 13562 (| 5186|2190 2226 118 14831 750 145 2711 10671 244 74 52
PxT 86% 2% 9% | 14%| 3% 3% 8% 8% | 1% 9% | 13% | 11% | 4%
MxT 58% 1%| 4% 8% ! 3% 2% 1 4% 7%| 5% 2% | 4% | 11%| 8%

Nov 1999
#jobs 10916 || 3834|2231 | 510| 141 1312 722 212 401 1404 345 94 21
PxT 91% 2% 9% | T%| 2% 3% | 14%| 10%!| 3% 7% (16% | 15% | 3%
MxT 57% 1% 6% 6% 2% 1%| 5% 10%| 5% 2%| 8% | T™%| 5%

Dec 1999
#£jobs 8778 || 32232081 557 | 114 7321 B75 189 28 840 | 276 134 29
PxT 95% 1% 8% 10% | 4% 1%| 13%| 17%| 4% 4% 110% | 15% | 9%
MxT 74% 1%| 5% 7% 3% 0%| 5%| 11%| 4% 1% | 10% | 14% | 11%

Jan 2000
#jobs 9652 || 362212606 553 71 9501 589 163 61 671 | 252 91 23
PxT 88% 2% | 9% | 11%| 3% 2% 9% | 13%| 6% 4% 8% | 12% | 10%
MxT 76% 1%| 6% 7% 3% 1%| 5%| 10%| 6% 1% | 11% | 10% | 17%

Feb 2000 v
#jobs || 11290 || 5296|2269 | 466| 71 11281 698 219 33 686 | 314 90| 20
PxT 96% 2% 9% | 11%| 3% 3%| 10%| 13%| 3% 6% 118%| 12% | 5%
MxT 78% 1% % T%| 3% 2% 5%| 11%| 5% 1% ]10% | 12% | 15%

Mar 2000
#jobs 12101 || 4671|2678 | 472} 57 1808 | 631 216 70 8501 500 123 25
PxT 94% 2% 11%| 9% | 3% 4% 1 11%| 15%| 4% 4% | 14% | 14% | 3%
MxT 83% 1% ™% 6%| 3% 2% ™% 9% | 8% 2% 116% | 18% | 4%

Oct 2000
#jobs 9768 || 301212488} 580 | 278 881 627 241 50| 957 367| 209| 78
PxT 90% 1% 1% 9% ! ™% 2% | 10%| 11%| 2% 5%114% | 13% | 4%
MxT 84% 1% 6% | 7%| 9% 1%| 6% 6% | 2% 2% | 6% | 18% | 20%

Nov 2000
#jobs 8708 || 208212279 416| 60 711 497 187 16| 9121t 513| 110} 25
PxT 91% 2% | 10%| 8% | 3% 2% 9%| 12%| 3% 6% | 20% | 13% | 3%
MxT 63% 1% 5%! 5%| 2% 1% 5% 6%| 1% 2% 110% | 11% | 14%

Dec 2000
#jobs 7798 |1 2581|2190 | 565 | 164 801 252 215 59 667 | 176 113 15
PxT 102% 2% 11% | 10%| 9% 2% | 5%| 18%| 4% 6%111% | 13% | 12%
MxT 68% 1%| 6% 8%| 5% 1%| 2% | 10%| 6% 2% | 4% 13%| 9%

processor demand each month. (3) the memory demand (i.e., MxT), which is the same as
processor demand, but for the requested memory.

Key observations from Table 6:
o The processor demand for each month is very high, typically 90-100%;

o The memory demand for each month is lower, but is still in the range of 60-80%;
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e The job mix each month is very similar from month to month, except that there is a
smaller number of jobs but slightly higher processor demand in December 2000 than in

other months;

e The large jobs ('lj’) account for over 40% of the processor and memory demand each

month.

4.2 Monthly Load Due To Large Jobs

This section studies the system load due to large jobs in the O2K workload. Section 4.2.1
provides the results for several large job classes. Section 4.2.2 provides the results for the
fifteen largest jobs in each month. The characteristics for these largest jobs each month are

also provided.

4.2.1 Large Job Classes

Previous workload studies show that a relatively small fraction of the jobs account for a large
fraction of the total processor demand. For example, Feitelson and Nitzberg [FN95] reported
that 90% of the jobs on an iPSC/860 have runtime under 15 minutes, but the remaining
10% of the jobs account for 90% of the processor demand of all jobs. As another example,
Hotovy [Hot96] reported that under 50% of the jobs on the CTC SP/2 are use more than 1
processor (i.e., parallel jobs), but they account for over 90% of the processor demand of all jobs.

The O2K jobs have a longer runtime in average than that in previously studied workloads,
e.g., greater than 10% of the O2K jobs each month have over 20 hours of actual runtime
(shown in Table 7). Nevertheless, the O2K workload has a similar characteristic in that a small
fraction of the jobs account for a large fraction of the processor demand of all jobs. For example,
Table 6 in the last section shows that 50-60% of the jobs request under 5 hours of runtime but

the remaining 40-50% of the jobs account for over 90% of the processor demand of all jobs.
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Table 7. Summary of the Load of Various Large Job Classes

Demand/All Job Size
Avg| Avg | Avg | Avg
Month Job Class Jobs (%) || PxT | MxT || P M T PxT
(GB) | (hours)
PxT > avg (65h) | 1216 (13%)|[89.8% | 83.7% | 150 | 2.3 | 49.0 | 465
;(i)‘(‘) T > 20hr 016 (9%) || 77.9% | 82.0% || 7.3 | 1.9 | 67.3 | 536
P> 16 493 (5%) ||27.2% | 9.4% || 36.7| 3.0 | 95 | 347
M > 4GB* 302 (3%) |16.2% | 46.8% || 14.9 | 105 | 269 | 337
P>16 M>4GB*| 72 (1%) || 5.8% | 5.4% || 39.6 | 10.5 | 119 | 505
PxT > avg (57h) | 1595 (14%)|[89.3% | 82.3% | 184 | 22 | 355 | 359
;)e(; T > 20hr 1062 (9%) ||71.0% | 82.0% || 6.9 | 1.8 | 59.7 | 428
P > 16 617 (5%) ||35.6% | 14.5% || 38.6 | 3.0 | 86 | 369
M > 4GB* 987 (3%) || 25.2% | 45.2% || 23.3 | 104 | 25.9 | 562
P> 16, M > 4GB* | 112 (1%) ||18.1% | 11.7% || 49.3 | 10.6 | 18.9 | 1035
PxT > avg (55h) | 1670 (14%)|[88.1% | 82.4% | 152 | 2.8 | 41.0 | 353
;\ggg T > 20hr 1189 (10%) || 71.6% | 75.9% | 6.3 | 1.9 | 624 | 403
P > 16 542 (4%) |30.9% | 20.5% || 30.7 | 4.8 | 100 | 381
M > 4GB* 600 (5%) ||27.1% | 45.7% | 16.3 | 10.6 | 144 | 302
P> 16 M > 4GB*| 167 (1%) ||20.3% | 18.1% || 43.9 | 12.0 | 18.1 | 813
oo | BXT > ave (66h) [1793 (18%) [80.3% [ 70.0% [ 15.2 | 23 | 425 319
000 T > 20hr 1312 (13%)||71.3% | 80.9% || 6.7 | 1.9 | 59.6 | 348
P > 16* 605 (7%) ||35.7% | 9.7% || 42.2| 47 | 85 | 329
M > 4GB* 653 (7%) | 15.8% | 51.5% || 22.0 | 10.1 | 15.0 | 154
P> 16, M >4GB* | 265 (3%) ||10.7% | 7.0% | 47.0| 9.8 | 6.1 | 258
Now | PXT > ave (72h) [1495 (17%) ||89.4% 83.3% || 19.4| 26 | 355 | 376
2000 T > 20hr 1065 (12%) || 70.7% | 79.6% || 8.0 | 1.6 | 531 | 418
P > 16* 767 (9%) ||40.7% | 21.7% || 42.1| 49 | 92 | 333
M > 4GB* 502 (6%) || 20.9% | 53.7% || 27.5 | 9.4 | 168 | 261
P> 16, M > 4GB*| 246 (3%) ||14.4% | 17.1% || 46.8 | 120 | 86 | 367
[ PxT > avg (93h) | 1188 (15%) || 87.8% | 76.0% || 14.6 | 19 | 637 | 537
;}3; T > 20hr 1293 (17%) || 82.2% | 87.7% || 6.5 | 1.5 | 69.5 | 462
P > 16* 455 (6%) ||36.1% | 21.2% || 39.2 | 42 | 168 | 577
M > 4GB* 310 (4%) ||15.9% | 36.1% || 23.2| 9.5 | 194 | 372
P>16 M > 4GB*| 97 (1%) ||11.8% | 15.9% || 53.0 | 144 | 166 | 882

* T > 10 minutes

To examine to what extent a small fraction of the jobs account for a large fraction of resource

demands in the O2K workload, Table 7 summarizes the processor and memory demand (as a
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fraction of the demand of all jobs) for five classes of large jobs of each month. The class "PxT
> avg” is the set of the jobs that have per-job processing time (i.e., the product of the requested
number of processors and the actual runtime of the job) greater than the average processing
time over all jobs in each month (the average is shown in parentheses, e.g., 93 processor hours
for December 2000). The class ”T > 20hr” is the set of the jobs that have actual runtime
greater than 20 hours. The other three classes of jobs are defined by P > 16, M > 4 (‘}B, and
T > 10 minutes.

Key observations of Table 7:

The average processing time of each job is in the range of 50-100 processor hours, which is
larger than in previous workloads (e.g., about 30 processor hours on SDSC Paragon [WLF*96]

and under 10 processor hours on CTC SP/2 [Hot96]).

e The processor and memory demands for each large job class is very similar across different

months.

e The processor and memory demands of each month are dominated by 10-20% of the
jobs (having run for over 20 hours or having a processing time greater than the average

processing time of all jobs each month).

o Very few jobs (< 3% each month) request > 16 processors, > 4 GB of memory, and run

for at least 10 minutes.

4.2.2 Characteristics of Fifteen Largest Jobs Each Month

This section provides the characterization results for the fifteen jobs that have the largest per-
job processing time for each month.

Table 8 summarizes the load due to the largest 15 jobs of each month. These 15 jobs account
for impressively 10-15% of the processor and memory demand of each month. For most months,

the average run time of these jobs is over 200 hours and the average processor demand is 4000 -
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Table 8. Fifteen Largest Space-Shared Jobs Each Month

Demand/Demand All Job Size

Month Avg Avg Avg Avg
(Year |Processor | Memory |Processors| Memory | Actual | Processor
2000) | Demand | Demand |Requested | Requested | Runtime | Demand

(GB) (hours) | (PxT hrs)

Jan 17.1% 15.7% 27.7 6.1 311.0 7173
. Feb 16.5% 17.2% 36.1 7.7 254.5 7031
Mar 15.6% 11.0% 36.1 6.6 209.5 6944
Oct 9.1% 3.4% 41.7 3.8 102.9 3888
Nov 11.1% 9.2% 39.8 5.1 168.4 4657
Dec 16.6% 13.3% 40.5 8.0 222.0 8044

weekends weekends

3 weekdays

# amivals

Arival Time Arrival Time Arrival Time

(a) Jan-March & November 2000 (b) October 2000 (c) December 2000

Figure 12. Job Arrival Times For the Fifteen Largest Jobs

8000 processor hours, which is at least an order of magnitude larger than the average processor
demand of all jobs each month.

Figure 12 shows the arrival time of these largest jobs. Figure 12(a) provides the results
for the four months (i.e., Jan-March and November 2000) that have the same results. The
results for October 2000 are shown in Figure 12(b), and that for October 2000 are presented in
Figure 12(c).

Figure 13 shows the characteristics of each of the 15 largest jobs in December 2000. For
each job, Figures 13(a)-(g) show respectively the processing time (PxT), memory time (MxT),
requested number of processors, requested memory, actual runtime, the processor utilization
(i.e., total processing time kept busy by the job divided by the total processing time allocated

to the job), the peak memory efficiency (i.e., the peak memory usage divided by the requested
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Figure 13. Characteristics of the Fifteen Largest Jobs
(December 2000)

memory of the job). A set of these graphs and the graph for the arrival time of the 15 largest
jobs for each of the other months are provided in Figures 83-87 in Appendix B.

The characteristics of the 15 largest jobs each month are summarized below.

2-6 of the 15 largest jobs each month request 64 processors (i.e., the largest number of

requested processors), and nearly all of these jobs run for under 200 hours.

e Most of the 15 largest jobs request either the maximum memory allowed (i.e., 16 GB for

January - March 1999 or 25 GB for October - December 2000) or under 4 GB of memory.

e 1-3 jobs each month request the maximum memory allowed, and nearly all of them also

request the largest number of processors.

e At least two-thirds of the 15 largest jobs each month achieve 80-100% processor utilization;
many of them achieve nearly 100% processor utilization; but 2-5 jobs each month achieve

under 50%, of which a total of three jobs have utilization under 10%.

o At least one third of the 15 jobs each month achieve 80% of peak memory efficiency, but
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also 1-3 jobs each month have under 50% of peak memory efficiency (except it’s 9 jobs in

November 1999).

o As shown in Figure 12(a), most of the 15 largest jobs each month in the four months
in January - March and November 2000, arrive during 9am-6pm on weekdays, which is
similar to the characteristics of all job arrivals to shown in Section 4.3. Figure 12(b) shows
that a significant number of the largest jobs in October 2000 arrive before 9am; graph (c)
shows that many of the largest jobs in December 2000 arrive at the beginning or the end

of the period of 9am-6pm.

4.3 Characteristics of Job Arrivals

Figure 14 shows the number of job arrivals for each day during each month, with each particular
day of the week (e.g., Monday) grouped together. Each week starts on Monday and ends on
Sunday. In the figure, the days in the first week of each month are shown by the bars in the
white color. Typically, 350-400 jobs arrive for each weekday day, and 150-200 jobs for each
weekend day. Occasionally, in some weekday days, there are over 500 job arrivals per day.
Other months have similar range of job arrivals per day, except that (1) in Feburary 2000,
the number of jobs per weekend day is about 300, more closer to that on a weekday. (2) on
the major holidays (i.e., the New Year day, Thanksgiving, and Christmas) and during the last
2-3 weeks in December 2000, the number of jobs per weekday day is more similar to that of a
typical weekend day.

Next, we further examine the variation in the number of job arrivals for each hour of each
day during the six months of workload.

Plots of the number of job arrivals for each hour of each day during the six months of
workload do not reveal any distinct characteristics for any particular day. Figure 15 shows
that the pattern of the number of jobs for each hour varies somewhat from one weekday to

another (Figure 15(a)-(d)), but the average number of arrivals each hour is approximately the
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Figure 14. Number of Jobs Submitted Per Day
(*’ marks holidays)

(Typical weekdays: 350-400/day, weekends: 150-200/day)
same whether computed over all Fridays (or other day of the week) in a given month (e.g.,
Figure 15(e)), or over Monday through Friday in a given week (e.g., Figures 15(f)), or over
all weekdays in any given month (e.g., Figures 15(g)-(h) for March 2000 and October 2000,
respectively).

Furthermore, the figure shows that when the average number of arrivals is computed over a
large number of days (such as all Fridays, or a given month), three relatively stable periods of
arrival rate during weekdays are readily identified, i.e., peak (8am - 6pm), intermediate (6pm
- midnight), and low (midnight - 8am), as identified in the figures. The number of job arrivals
for each hour is about 30 during a typical peak arrival rate period, 15-20 during a typical

intermediate period, and 5-10 during a typical low period 1.

INote that during the two-hour period in 0 - 2 am on some weekday days, the average number of jobs per
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Figure 15. Number of Job Arrivals Each Hour on Weekdays

(Holidays are excluded)
(In average, peak: 30/hour; intermediate: 15-20/hour; low: 5-10/hour)

Figures 16(a)-(h) plot the results for each of eight heavy-load weekdays (> 500 jobs/day)
that have a significantly higher number of jobs per day than that in other weekdays. 1t shows
that the ’extra’ jobs arrive during the peak period of arrival rate for all except for Tuesday of
the 2nd week in March 2000 (Figure 16(e)), in which a significant number of extra jobs arrive
during the intermediate period of arrival rate. Thus, there is a larger difference in the number
of job arrivals of the peak and intermediate periods for most months, and a similar number of
job arrivals per hour for the period between 8am - midnight. However, three periods of arrival
rate are still appropriate for delineating the job arrivalrate for each hour.

Figures 17(a)-(d) shows the results for each of four light-load weekdays (< 300 jobs/day)
that is not/a holiday but has a fewer number of jobs than in the typical weekdays. It shows the
number of job arrivals for each hour during the peak arrival rate period is significantly lower
than that for a typical weekday day, but three periods of arrival rate are still still appropriate

for these days.

hour is more similar to that in the intermediate period (i.e., 6pm - midnight). For these days, it may be more
appropriate to include these two hours in the intermediate period. However, we did not find difference in the job
characteristics between from period to period and it is not likely that this two-hour period would have made the
differences.
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Figure 17. Number of Job Arrivals Each Hour On Weekdays with Fewer Arrivals

Figures 18(a)-(d) plot the results for each Saturday of a typical month (i.e., November 2000),
and (f)-(i) for each Sunday of the given month. Figures 18(e) plots the average computed over
all Saturdays in the month, and Figures 18(j) plots the average computed over all Sundays in
the month. The key observation is that the number of jobs for each hour does not vary over the
hours as much as that during weekdays. Similar to that for the weekdays, when the average
number of jobs for each hour is computed over the Saturdays of the month (Figures 18(e) or
over Sundays of the month (Figures 18(j), approximately two periods of relatively stable job
arrival rate per hour are identified, i.e., intermediate and low.

Similarly, Figure 19 plots the results for the weekend days, but for the exceptional month
(i.e., February 2000), in which the number of job arrivals per day in most of the weekend days

is significantly higher than that in a typical weekend day. It shows that there is more variation
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Figure 19. Number of Job Arrivals Each Hour During Heavy-Load Weekends
(Feburary 2000)

in the job arrival rate per hour between 8am-midnight for many of the weekend days in this
month than that in a typical weekend days. Nevertheless, since the difference in the number of
jobs during these hours is not as significant as that on each weekday day, two weekend periods
of arrival rate are also used for this month for the purpose of characterizing the other job

characteristics.
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Several previous papers have reported the average number of job arrivals for each hour for
the workloads on an iPSC/860 [FN95], Paragon [WLF*96], SP/2 [HSO96], and a collection
of workstations [Gib97a]. The per-hour job arrival pattern on these systems, except for the
Paragon, is surprisingly similar to that observed on the O2K, i.e., a peak period arrival rate
period during 8am and 6pm, a lower arrival rate period before 8am, and an intermediate arrival
rate period after 6pm. The previous papers have noted the peak and low arrival rate periods,
but not the intermediate arrival rate period. Furthermore, they do not analyze whether the
per-hour job arrival pattern is similar or different across different days.

For the purpose of determining interarrival time distributions, we consider weekday peak
periods from 9am-5pm because the two one-hour periods in 8-9am and 5-6pm have average
arrival rate per hour that is slightly lower than that in the other peak hours; and the weekday
low periods from 2am to 8am because the two-hour periods in 0-2am have an average arrival
rate per hour slightly higher than that in the other low periods. For analyzing all other job
characteristics, the weekday peak period is defined to be 8am-6pm and the low period is defined
to be 0 am - 8am.

Excluding the downtime, the coefficient of variation (CV) of the interarrival time for each
period of stable arrival rate is typically in 1-1.5, with occasionally slightly higher than 1.5 (but
< 2). Higher CVs of interarrival time (i.e., 2.5-6) have been reported on other systems [FN95,
WLF+96, JPF+97, SYZ99] during 'day’ time, 'night’ time, or during the entire period for which
the traces are analyzed, rather than during stable periods of arrival rate. The paper in [Hot96]
report a CV of 1.76 (more similar, but slightly higher than in most periods of arrival rate in
the O2K workload) for all the interarrival times during ’day’ time on an CTC SP/2.

We investigate several models for the distribution of the interarrival time for each period
of relatively stable arrival rate. The distributions are the exponential distribution with the
observed mean interarrival time, the two-stage hyperexponential distribution with the observed

mean interarrival time and CV, and the Weibull and Gamma distributions 2

2For each period of arrival rate, the parameters of the two-stage hyperexponential distribution are computed
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Figure 20. Distributions of Job Interarrival Time (Y)

Figure 20 illustrates the fit of these distributions for several different periods, with the in-
terarrival time ranging from 76 seconds in the peak arrival rate period on a high-load weekday
(Figure 20(c)) to 977 seconds in a typical low period of arrival rate (Figure 20(e)). The com-
plement of the cumulative distribution is plotted on a log scale of the interarrival time to more
clearly show the fit of the tail of the distribution. As shown in the graphs (a) and (c)-(f), the
hyperexponential and Weibull distributions provide a better fit than that of the exponential

distribution for each period, even if the CV is very close to 1 (e.g., Figure 20(a) and ). In

using the standard algorithm such that the products of the probability and the mean service time for each stage
are equal [Al190]. The maximum likelihood estimates of the Weibull and gamma distribution parameters with
95% confidence intervals [JKK92], are computed using Matlab [Mat].
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some cases, the hyperexponential distribution provides a better fit than that of the Weibull
distribution (e.g., Figure 20(d)). The fit of the Gamma distribution is similar to that of the
Weibull distribution. For more readable figures, this distribution is not shown.

We also use the hyperErlang distribution to model the interarrival time using the algorithm
proposed in [JPF+97], the resulting distribution for each period is the 2-stage hyperexponential
distribution that matches the first three moments of the observed interarrival time. The fit
of this particular 2-stage hyperexponential distribution (not shown for more readable graphs)
is similar to that of the hyperexponential distribution shown in the graphs. The two-stage
hyperexponential with CV close to 3 was found to have a good fit for the distribution of all
interarrival times, not separately measured over periods of approximately stationary arrival
rate, for the CTC SP/2 in [JPF+97].

Figure 20(b) plots the results for a period which includes a downtime (10:12-11:38am on
January 11, i.e., Tuesday of the 3rd week in January) 2. It shows that if the system downtime
is included, one might erroneously conclude that the Pareto distribution provides a better fit

for the distribution of the interarrival time.

4.4 Characterizations of Job Resource Requests

This section provides characterization of the requested number of processors, requested memory,
and requested runtime, for each period of relatively stable arrival rate. The characterization

results for the actual job resource usage are provided in Section 4.5.

4.4.1 Requested Processors

Figure 21(a)-(f) plot the probability distribution of the number of requested processors for the
weekday peak arrival rate period for each of the six months studied. The results for the weekday

intermediate and low periods are shown in Figures 22 and 23, respectively

*Downtime is often not recorded in the job logs. We implemented a special daemon process that tracks system
downtime on the O2K since the O2K job logs do not contain the down time information.
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Figure 22. Distribution of Requested Processors During Weekday Intermediate
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Figure 23. Distribution of Requested Processors During Weekday Low Arrival Rate
Periods

Similar to that in other workloads previously studied [FN95, Hot96, Fei96, WLF+96, WMKS96,
SGS96, Fei97a, SSN99), for each period of arrival rate of each month, a large fraction (30-40%)
of the O2K jobs are serial (i.e., requesting one processor) and most jobs request power-of-two
processors (except for 2 processors). The results for different months and different periods
is approximately similar, except that in the late three months (especially October November

2000), there is a somewhat higher fraction of the jobs requesting 32 processors and 64 processors
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during each arrival rate period than that in the other months. In particular, 5-10% of the jobs
for each arrival rate period of October and November 2000 request 32 processors, compared
to under 2% in the first three months. This is also A higher fraction of jobs requesting 32
processors in the late three months is also observed for the periods of the weekends. Another
exception is that in the weekday low period during January 2000 (Figure 23(a)), 40A similar
distribution is observed in a few weekend periods.

The average number of requested processors is typically in the range of 7-10, except it is
lower for several non-peak periods and weekends periods. The log-uniform cumulative distri-
bution proposed in [Dow97b] does not fit the observed cumulative distribution of the requested
processors in the O2K workload, because the number of jobs requesting 32 or 64 is much smaller
than that for 4 and 8 processors, and also smaller than that for 16 processors, and there are
only very few jobs that request a number of processors that is not a power of two. Thus, the
harmonic distribution hand-tuned to emphasize small numbers and power of two processors

proposed in [Fei96] is a better model for the O2K.
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Figure 24. Distribution of Processor Utilization
(October - December 2000)

Each job is allocated as many processors as requested during its entire execution. Figure 24
examines the utilization on the allocated processors per job (i.e., the total busy processing time
divided by the total allocated processing time). Figure 24(a) plots the distribution (measured by

the 80, 40, and 20th percentiles) of processor utilization for each range of number of processors



70

(ie., 1,2, 3-4, 5-8, 9-16, 17-32, 33-64 processors). Note each range includes mostly the power of
two processors (i.e., the upper bound of the range, since there are very few fraction of the jobs
request a number of processors that is not a power of two. It shows that a high fraction of jobs
utilize over 80% on the processors they requested, including jobs that request 32-64 processors.
Figure 24(b) plots the fraction of the jobs (i.e., '# jobs”) for each 10% range of processor
utilization. Also included are the fractions weighted by the actual runtime (i.e., ”cumulative
runtime”) and by the processor demand (i.e., "cumulative PxT”). The figure further shows
that the jobs that have high utilization (> 80%) include the jobs that have dominate actual
runtime, and jobs that have dominant processor demand (PxT).

This leads to high total utilization of allocated processors on the O2K, to be shown in

Figure 45(c).

4.4.2 Requested Memory

Figure 25(a) plots the distribution of requested memory during the weekday peak period of
each month. It shows that the distribution of requested memory is fairly similar for different
months during the peak arrival rate period.

Figure 25(b) shows that the distribution of requested memory is similar for the peak arrival
rate period during different days of the week (Saturday and Sunday are included 4, in the
three-month period in October - December 2000.

Figure 25(c) shows that the distribution of requested memory is very similar during different
weekday period of arrival rate, except that jobs submitted during weekday intermediate periods
request 256 MB to 1 GB of memory slightly more often, and 2-4 GB slightly less often but the
weekday peak distribution is still a fairly good approximation for the intermediate period. Note
that only a very small fraction (i.e., <1%) of jobs each month request the maximum of 25 GB

(or previously 16 GB) of memory.

4Recall that there are only intermediate and low periods on each weekend day, defined in Section 4.3. The
intermediate periods of Saturday and Sunday are shown in Figure 25(b) to compare with the peak period of each
weekday day of the week.
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Figure 25. Variation in Distribution of Requested Memory During Weekdays

Figures 25(d)-(e) plot the results for the intermediate period and low period of different
months, respectively. Figures 25(f)-(g) plot the results for the intermediate period and low
period of different days of the week in the late three months. These figures show that there is
a larger difference during different months for non-peak periods, due to a smaller sample of the
jobs in these periods.

The results for the weekends are shown in Figures 26(a)-(c). As shown in these figures, due
to a very small sample of jobs during these periods, there is more difference during different
months and during different periods of arrival rate for the weekends. Recall that as shown
in Figure 25(b), the distributions of total requested memory for Saturday and Sunday when
computed over October - December 2000 is very similar to that of each weekday day.

The normalized requested memory for a job is defined as the amount of requested memory
divided by the number of processors requested.

Figures 27(a) - (c) show that the distribution of normalized requested memory is very similar
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Figure 27. Variation in Distribution of Normalized Requested Memory During
Weekdays

during different months, and during different periods of arrival rate, and different days of the
week.

Similar to the distribution of requested memory for non-peak periods and weekend periods,
the results for the distribution of normalized requested memory during these periods have a
larger variation due to a small sample of jobs. The graphs for the normalized requested memory
during non-peak periods and weekend periods are shown in Figures 88-89 of Appendix C.

To generate a synthetic workload, conditional distributions of requested memory are re-
quired. Next, we characterize the distribution of requested memory conditioned on the re-
quested number of processors.

Figures 28 show that the requested memory (measured by the average, or the 20th, 50th or

80th percentile) has a strong correlation with the requested number of processors. Specifically,
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Figure 28. Requested Memory vs. Requested Processors

total requested memory is positively correlated with the requested number of processors, while
normalized requested memory is negatively correlated with the requested number of processors.
The results for Oct-Dec 2000 are slightly different from that for Jan-March 2000, in that jobs
that request 33-64 processors in the late three months have higher 80th and lower 50th per-
centile of total requested memory, and jobs that request 2 processors have lower 80th and 50th
percentile of normalized requested memory. To our knowledge, the correlations between these
parameters of previous workloads have not been investigated.

Based on the results for October - December 2000 in Figure 28(c), Figure 29(a) provides the
distributions of requested memory for four different ranges of the requested processors, with the
mean and CV of the requested memory shown in the table in Figure 29(b). These conditional
distributions can be used to generate the distribution of requested memory, after the number
of requested processors is determined.

Recall from Table 1 that the total memory available per processor on the O2K is either

256 MB or 512 MB, depending on the host. As shown in Figures 25(a) and 28(a), 35-40% of
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all jobs have normalized requested memory greater than 256 MB; furthermore 15-20% of all
jobs and 50% of the sequential jobs have normalized requested memory greater than 0.5 GB.
In contrast, in an SP/2 system where about 80% of the nodes had 128 MB of memory, and a

similar fraction of the jobs requested this smallest possible normalized memory [Hot96].

4.4.3 Requested Runtime

To our knowledge, previous papers have not reported the distribution of requested job runtime,
although this job measure is used by many job scheduling policies.

Figure 30 shows the distribution of requested runtime for jobs submitted during weekday
peak periods, and Figure 31 compares the distributions of requested runtime for jobs submitted
during different periods of approximately stationary arrival rate. General observations about

these distributions include the following.

e As shown in Figures 30(a)-(c), a large fraction of jobs request the default runtime for
the job class (i.e., 5, 50, 200, or 400 hours). These requested runtimes have no special
meaning for the current scheduler on the O2K, except that jobs that request up to 5 hours
of runtime are eligible to run on the three hosts that have higher priority for jobs that

request a dedicated host.
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Figure 31. Variation in Distribution of Requested Runtime (R)

o Nearly all other jobs request some 'round’ number such as 1, 2, 10, 20, or 300 hours,
with approximately uniform frequency for each such requested runtime between a pair of

default values (Figures 30(a)-(c)).

e The distribution of requested runtime is similar for jobs submitted in different months,
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although a somewhat larger fraction of jobs request 50 - 400 hours during October through
December 2000 (Figure 31(a)). Similar results are observed for the weekends of different

months, as shown in Figure 31(d).

e The distribution of requested runtime is similar for different days of the week. Over each
three month period, but not during each month within the period, there are slightly fewer

vst jobs submitted on Mondays and Saturdays (Figure 31(b)).

o Allowing for statistical variations in finite sample sizes, the distribution of requested
runtime is very similar during different weekday arrival rate periods (Figure 31(c)). The
distributions during different weekend periods of arrival rate (i.e., intermediate and low

as shown in Figure 31(e)) are also similar.

To generate a synthetic workload, the conditional distributions of requested runtime are re-
quired. We analyze the distribution of requested runtime for each range of requested processors
paired with each range of requested memory.

Figure 32(a) plots the distribution of requested runtime (measured by the mean, and the
80th, 50th, and 20th percentiles) for each range of the number of processors. The figure shows
that there is no appreciable correlation between the requested runtime and the number of
processors and that the distribution for jobs that request over 32 processors are significantly
different from that of the other jobs.

For each range of the number of processors, Figures 32(b)-(h) plots the distribution of
requested runtime versus requested memory. As shown in these graphs, the requested runtime
has a complex relation with the requested processors and requested memory, but the following
observations can be made. For the serial jobs (Figures 32(b)), those that request larger than 1
GB of memory have higher 80th percentile and mean requested memory than the other jobs.
For the 2-processor jobs (Figures 32(c)), the 50th percentile requested runtime jobs request

257 MB - 512 MB is lower than that for other jobs. Note that the requested runtime for 4-8
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Figure 32. Distribution of Requested Runtime Conditioned on Requested
Processors and Memory

(October - December 2000)

GB is extremely low, but there is only one job in that range, and thus are not statistically
meaningful. For jobs that request 3 or 4 processors (Figures 32(d)), the requested runtime for
jobs that request 257 - 512 MB of memory is significantly lower than that of the other jobs.
For jobs that request 5-8 processors (Figures 32(e)), those that request over 2 GB of memory
have higher 80th percentile and mean requested runtime. For jobs that request 9-16 processors
(Figures 32(f)), the jobs that request < 128 MB of memory have significantly higher 80th
percentile of the requested runtime than that for the other jobs, and the jobs that request 257
- 512 MB of memory have significantly lower mean and 80th percentile of requested runtime
than that of the other jobs. For jobs that request 17-32 processors (Figures 32(g)), those that
request 1-2 GB have significantly higher 80th and mean requested runtime than that of the
other jobs. Finally, for jobs that request over 32 processors (Figures 32(h)), those that request
over 8 GB of memory have significantly higher mean requested runtime than that of other jobs.

Based on these analyses, for each range of requested processors, we partition the jobs according
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Figure 34. The Distribution Functions of

Requested Runtime

(October - December 2000)

Table 9. Mean and CV of Conditional Distributions of Requsted Runtime (R)

Conditional All R Default R || NonDefault R
Distribu- 7 Mean | CV || Mean | CV || Mean (047
tion Jobs (hrs) (hrs) (hrs)
A 2207 || 20.9 |2.62 33.0 |2.23|] 13.6 2.78
B 10828 || 41.0 [1.74] 58.8 {145} 22.8 2.02
C 1458 || 81.5 1.27| 97.8 | 1.17 | 44.6 1.37
D 187 || 48.4 12.52(/112.6 | 1.52 | 4.4 4.08

(October - December 2000)

to the requested memory, with the jobs that have (very approximately) similar distribution

of requested runtime in the same set. For each set of jobs, the distribution of the requested

runtime can be plotted as that in Figure 31 for further examination. Whenever appropriate,

different sets of the jobs are combined to simplify the distributions.

The analysis reveals four distributions (i.e., A - D) of requested runtime conditioned on

the requested processors and requested memory, as defined in Figure 33. The distributions

are provided in Figure 34. Although the ranges of processors and memory requests over which

each conditional distribution applies are complex, there are significant similarities between

Figure 34(a) and (b), suggesting that the identified distributions are meaningful.

For the results in Oct - December 2000, Figure 34(a) plots the probability mass on the

default requested runtime (5, 50, 200, and 400 hours), and Figure 34(b) plots the probability
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mass on the non-default requested runtime, for each of the four conditional distributions of
requested runtime. The mean and coefficient of variation (CV) of the requested runtime for
each distribution are provided in Table 9. The requested runtime of each job can be generated
using these conditional distributions, after the requested processors and requested memory of
the job have been determined.

The features of the conditional distributions of requested runtime are: (1) distribution A
has a high fraction (about 70%) of the jobs requesting < 5 hours; (2) distribution B has a 20%
higher fraction of jobs requesting 50 hours and a lower fraction of jobs requesting < 5 hours,
compared to distribution A; (3) distribution C has a 20% higher fraction of jobs requesting
> 50 hours especially 200 hours, and a lower fraction of jobs requesting < 5 hours, compared
to distribution B; (4) distribution D has a significantly higher fraction of jobs requesting 400
hours and a significantly higher fraction of jobs requesting < 1 hour, compared to any other
distribution. Note distribution D is for the largest jobs (i.e., P > 32 and M > 8 GB) in October
- December 2000 only.

Table 9 also shows the difference in these distributions in terms of mean and CV. For both
default requested runtimes and non-default requested runtimes, the distribution C has a mean
requested runtime (close to 100 hours for default requested runtimes) that is about 1.5 times
that of distribution B and about 3 times that of distribution A. The distribution D has an even
higher mean requested runtime for defaults than that of distribution C, but distribution D has
a very small mean requested runtime (i.e., under 5 hours) for the nondefaults, compared to over

40 hours for distribution C.

4.4.4 Summary of Requested Resources

The procedure for creating a synthetic workload that approximates the resource requests of the

02K weekday peak workloads can be summarized as follows:
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o Job interarrival times have a two-stage hyperexponential distribution, with mean ap-
proximately in 2 minutes for a typical peak period (Figure 20(a)) about 4 minutes for a
typical intermediate period (Figure 20(d)), and about 15 minutes for a typical low period

(Figure 20(e)), and CV in the range of 1-2.

o Requested number of processors has a specialized harmonic distribution that emphasizes

powers of two and small numbers, as shown in Figure 21-23.

e The distributions of requested memory, conditioned on the requested number of proces-

sors, are given in Figure 29.

e The requested runtime distributions, conditioned on both the requested number of pro-
cessors and requested memory, are given in Figures 33 - 34 and Table 9. These specialized
distributions have significant probability mass at 5, 50, 200, and/or 400 hours, and rel-
atively uniform probability for round numbers between these values, as illustrated in

Figure 30.

4.5 Characterizations of Job Resource Usage

Sections 4.5.1 and 4.5.2 provide the distributions of actual job runtime and memory usage,
respectively. Relationships among these quantities and the job resource requests for processors,
memory, and runtime are also provided. Overall average utilization of allocated memory per
month is compared against overall average utilization of allocated processors per month. Dis-
tribution of processor utilization was analyzed in Section 4.4.1. Section 4.5.3 summarizes the

execution characteristics.

4.5.1 Actual Runtime

Many previous papers report the distribution of actual runtime of the jobs that arrive over a

period of several months, without studying whether the workload is approximately stationary.
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Figure 35. Variation in Distribution of Actual Runtime

Several papers have provided the distribution of actual runtime for different ranges of requested
Processors.

Figure 35(a) shows that the distribution of actual runtime is very similar for jobs submitted
during the weekday peak arrival rate period of different months, except that in December 2000,
a slightly smaller fraction of the jobs have runtime for under 1 hour, and a slightly higher
fraction of the jobs have runtime for 50-100 hours than that in other months. Figure 35(b)
shows that the distribution of actual runtime is very similar for jobs submitted during different
days of the week in the peak arrival rate period, except that in Saturdays, a slightly higher
fraction of the jobs have runtime for under 1 hour and a slightly higher fraction of the jobs have
runtime for 5-10 hours than in other days of the week. Figure 35(c) shows that the distribution
of actual runtime is very similar for jobs submitted during peak and intermediate periods on
weekdays, a slightly smaller fraction of the jobs submitted during the low period have runtime
under hours and a slightly higher fraction of the jobs submitted during the low period have
runtime in 1-5 hours, that that of the jobs in peak and intermediate periods.

'The CV of the overall runtime distribution for the O2K workloads during October - Novem-
ber 2000 is approximately 3, and is higher (i.e., 3 - 3.5) in January - March 2000. A runtime CV
in the range of 2-5 has been reported for several previous parallel workloads [FN95, WLF+96,
Gib97b].

Similar to other workloads [FN95, WLF+96, Hot96, SGS96], a significant fraction of the
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02K jobs are very short running. For example, over 30% of the jobs are under 10 minutes,
which is very short relative to the longest runtime of 400 hours for the O2K workload.

Previously proposed models for the actual runtime based on the production parallel work-
loads include the two-stage hyperexponential distribution [Fei96, DF99], the hyperErlang dis-
tribution [JPF*97], and the piecewise log-uniform distribution [Dow97b, DF99]. The Pareto
distribution was proposed for parallel jobs on the specialized distributed-server systems, based
on the observed distribution of actual runtime on sequential Unix computers [HB0O].

Figure 36 plots the distribution of actual runtime and a Pareto distribution on a log-log
scale for the given month (October 2000). It shows that it is not a heavy-tail distribution, i.e.,
the Pareto distribution. Note that the Pareto distribution on a log-log scale is always a straight
line.

Figures 37(a)-(f) plot the fit of the models for the distribution of actual runtime for each
weekday period of each month. These graphs illustrate that the Weibull distribution provides
a much better fit than that of the two-stage hyperexponential distribution for the observed
distribution of actual runtime. Using the algorithm proposed in [JPF*97] to fit the hyper-
Erlang distribution for the observed distribution results in another two-stage hyperexponential
distribution that matches the first three moments of the observed distribution (not shown for
more readable graphs). The fit of this hyperexponential distributions is similarly poor as the

hyperexponential distribution shown in each graph. Note that the paper [JPF+97] does not
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Figure 37. The Models for the Distribution of Actual Runtime (T)

provide data to show how well the hyperErlang distribution model proposed in their paper
match the observed distribution of processing time in the SP/2 workload.

To show the fit of the tail of the distribution, Figures 37(g)-(i) plot the results of the
cumulative distributions on a log scale of the actual runtime. The gamma distribution is

included in these three graphs. The figures show that the gamma distribution does not fit the
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Figure 38. Actual Runtime vs. Requested Processors

tail of the observed distribution.

Finally, since the observed distribution is piecewise linear in the logarithm of the actual
runtime, the piecewise log-uniform distribution also fits the observed distribution, but it is
more complex than Weibull distribution.

Similar results are derived using the above models to fit the observed distribution of the
processing time (i.e., the product of the number of requested processors and the actual runtime).
That is, the Weibull and log-uniform distributions fit the observed distribution well, wheres the
hyperexponential, gamma, and Pareto distributions do not.

Figure 38(a) plots the distribution (measured by average and 80th, 50th, and 20th per-
centiles) of the actual runtime for each range of requested processors, for the three-month
workload in January - March 2000. Figure 38(b) plots the results for the late three months in
October - December 2000. The graphs show that there is no appreciable correlation between
the actual runtime and requested number of processors, in contrast to previous workloads on
an iPSC/860 [FN95], a Paragon [WLFT96]. Our results are more similar to that reported
in [Hot96] for an SP/2 workload in that there is no clear correlation between these the actual
runtime and the number of requested processors.

Actual Runtime vs. Requested Runtime

Previous workload studies report on the correlation between actual runtime and number of

requested processors [FN95, WLF+96, Hot96] as well as the distribution of the ratio of actual
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Figure 39. Distributions of Actual Runtime Conditioned on Requested Runtime
Class (October - December 2000)

to requested runtime [FW98], but not (to our knowledge) on the correlation between the ratio
of actual runtime to requested runtime with other job measures (requested runtime, requested
processors, and requested memory).

Figures 39(a)-(c) plot the distribution of actual runtime for each of the default requested
runtime class (i.e., vst, st, mt, and lt) for weekday peak, intermediate, and low, respectively,
of the late three-month period during October - December 2000. It shows that there is a large
discrepancy between the actual and requested runtime for most jobs. For example, for the jobs
that request over 5 hours of runtime (i.e., st, mt, and 1t classes), approximately 10% of the jobs
terminate in under 1 minute. These premature job completions may be due to unanticipated
errors in the codes, but it’s surprising that 10% of all jobs that request over 5 hours would
terminate due to an unanticipated error in the code. Furthermore, more than 20% of the jobs
that request runtime greater than 50 hours actually run for 10-50 hours, and 30% of the jobs
that request runtime greater than 200 hours actually use 10-100 hours. Thus, a significant
fraction of the inaccurate runtime requests appear to be due to simple misestimation of the
actual runtime, perhaps partially encouraged by the default requested runtime values defined
in the system.

Figure 40 further plots the distribution of the ratio of the actual runtime to requested

runtime for each requested runtime class for the two three-month workloads. For any requested
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Figure 40. Distributions of Actual Runtime / Requested Runtime vs. Requested
Runtime Class

runtime class, a large fraction (> 40%) of the jobs use only a small fraction (< 10%) of the
runtimes requested. On the other hand, a significant fraction (about 5-10%) of the jobs use
more than the runtimes requested. Note that current NCSA-MS* allows each job to run one
hour longer than requested before killing the job.

Previous paper [FW98] reports the distribution of actual runtime to requested runtime of
all jobs and shows that there is a large discrepancy between requested and actual runtimes for
an SP/2 workload. The main differences between the SP/2 and the O2K workloads are that
possibly due to larger default requested runtimes defined on the O2K (i.e., 5, 50, 200, and 400
hours), a much higher fraction (> 40%) of the O2K jobs than that (about 10%) of the SP/2
jobs use under 10% of requested runtimes, and a somewhat lower (< 10%) fraction of the O2K
jobs than that (about 16%) of the SP/2 jobs are killed due to exceeding the requested runtimes.

A key question is how to generate actual runtimes in a synthetic workload if requested
runtimes are generated as discussed in Section 4.4.3. The percentiles in Figure 41(a) were
computed for the default requested runtimes (i.e., 5,50,200, and 400 hours), each range between
the defaults, and the following ranges of requested runtime (R): R=1 minute, 1 min. <R <10
min., 10 min < R < 5 hrs.®. This figure shows that the ratio of actual to requested runtime is
statistically somewhat higher for jobs that request greater than 5 hours of runtime but not one

of the default values than for jobs that request one of the default values.

5The value of each percentile for each range of runtime is plotted against the average requested runtime in
the range.
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Figure 41(b) shows that the distribution for the requested runtime between defaults is similar
for each number of requested processors up to 32, but has a much higher fiftieth percentile if
the requested number of processors is greater than 32.

Figure 41(c) plots the results for the default runtime requests greater than 5 hours. It shows
that the distribution for the jobs has a higher 50th percentile if the jobs also request over 16
processors.

Figure 41(d) plots the results for the requested runtime equal to 5 hours. It shows that
the distribution has higher 50thand 80th percentile if the jobs also request over 16 processors,
and that the distribution for 3 - 8 processors has higher 50th percentile than that for 1 and 2
Processors.

For categories of requested runtime and requested number of processors that have a similar

distribution of the ratio of actual runtime to the requested runtime, we plot the distribution of
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Figure 42. Conditional Distributions of Actual Runtime/Requested Runtime Given

Requested Runtime, Requested Processors, and Requested Memory
(R: Requested Runtime)

the ratio versus different ranges of requested memory. Our intent is to identify the distributions
that are significantly different from the other distributions. Approximations are used to keep
the model reasonably simple.

For example, for requested runtime equal to 5 hours, Figure 41(d) shows that the requested
number of processors equal to 3 - 8 have similar distribution of the ratio; P > 9 have statistically
higher 80th and 50th percentiles of the ratio than for P < 9. Thus, for requested runtime equal
to 5 hours, the jobs are further partitioned into three categories according to the number of
requested processors: 1-2; 3-8; and > 8. The distributions of the ratio of actual to requested
runtime versus requested memory for each category are further examined. Figure 41 (e) plots the
results for P = 3-8 and it shows that the distribution has a significantly lower 80th percentile for
the requested memory under 128 MB than that of the other jobs. Figure 41(f) plots the results
for P > 8. It shows that the distribution is significantly different for requested memory greater
than 4 GB; in all other cases, the distribution is not significantly sensitive to the requested

memory. Similar analysis are performed for the requested runtime in 10 minutes - 5 hours.
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Table 10. Mean and CV of Conditional Distributions of Actual Runtime (T) /
Requested Runtime (R)

Given Conditions Actual Runtime/Requested Runtime
Requested Requested Processors <1 >1
Runtime and Memory Mean | CV [#Jobs| Mean | CV | #Jobs
1 <R <10 min all 0.12 1.41 149 5.01 |0.68 13
R=1m all 0.23 0.67 12 46.06 | 0.47 5
P = 2-4, 9-32 0.15 1.44 | 1601 1.70 [0.68 90
10m <R < 5 hrs P=1 0.16 | 1.9 | 1160 || 1.76 |0.36| 124
P = 5-8, > 32 0.29 1.00 1144 1.48 |0.42 100
P <2, 0.14 1.58 1021 1.27 |0.38 31
R = 5 hours P=38&M < 128MB
all others 0.28 1.20 | 1998 1.13 [0.08] 91
P>8&M > 4GB 0.51 0.83 174 1.21 [0.00 3
R = 5, 50, 200, P <16 0.19 1.20 3722 1.02 10.06 163
400 hrs P>16 0.32 0.85 95 1.02 |0.01 9
Ranges Between P <32 0.29 1.03 2604 1.05 |0.04| 239
Defaults P> 32 0.46 0.69 34 1.04 |0.02 4

(October - December 2000)

Based on these analysis results, Figure 42 provides the distributions of the ratio of actual to
requested runtime, conditioned on the requested runtime, requested processors, and requested
memory. Table 10 provides the mean, CV, and number of jobs for each conditional distribution
in Figure 42, with the ratio (T//R) < 1 and the ratio > 1 shown separately.

Recall that actual runtime may exceed requested runtime by one hour before the job is
killed. The results in Figure 42(a) show that a significant fraction of the jobs that request one
minute of runtime exceed their request. The results in Figure 42(c) show that a significant
fraction of the jobs that request 5 hours of runtime, > 8 processors, and > 4 GB of memory,
are tuned to run for exactly 5 hours.

A synthetic workload generator can use the distributions provided in Figure 42 to generate
the actual runtime as a fraction of requested runtime after requested runtime (Section 4.4.3),
number of processors (Section 4.4.1), and requested memory (Section 4.4.2) have been gener-

ated.
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4.5.2 Actual Memory Usage

For each job, the JMD process records the memory usage of the job every 30 seconds. The
format of the jmd log is described in Appendix A. A small fraction of the jobs that run over 1
minute but do not have the information of the memory usage. These jobs are not included in
our analysis of memory usage in this section.

The peak memory used by each job is the maximum memory over 30-second periods reported
for the job. The normalized memory is the ratio of the peak memory divided by the requested
number of the processors of the job. The average memory is computed as the total memory
time used by the job divided by the actual runtime of the job. The peak memory efficiency
is defined to be the peak memory divided by the requested memory of the job. Similarly, the
average memory efficiency is defined to be the average memory usage divided by the requested
memory of the job.

Figure 43(b) shows that the distribution of peak memory usage is similar across different
days of the week. Figures 43(a) and (c) show that there is some variability in the distributions
of peak memory usage over different months and over different arrival rate periods. In particu-
lar, jobs submitted during intermediate arrival rate periods tend to have somewhat lower peak
memory usage. Similarly, Figures 44(a)-(c) show the variation in the distribution of normalized
peak memory usage over different months (graph(a)) and over different arrival rate periods
(graph (c)) and the similarity over different days of the week (graph (b)). In the remainder
of this section we focus on further characterizing representative peak memory usage for jobs
submitted during weekday peak arrival rate periods in October through December 2000. Pa-
rameters of the representative distributions for these periods could be adjusted to reflect the
observed variations for different months or for the intermediate arrival rate period.

Similar to previous workloads [Fei97a, SSN99], Figures 44(a)-(c) shows that a large fraction
(i.e., approximately 50%) of the O2K jobs use a very small (i.e., under 32 MB) peak memory

usage per processor. On the other hand, another significant fraction (about 5%) of the jobs on
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(Normalized Peak Memory = Peak Memory Used/Number of Requested Processors)
the O2K have normalized peak memory usage greater than 1 GB per processor.

Figure 45 shows that there is a large discrepancy between requested memory and memory
utilized per job. In particular, Figures 45(a) and (b) show that 15-20% of the jobs have
peak or average memory usage higher than their requested memory; for the remaining jobs,
the respective ratio of peak or average memory usage to the requested memory is distributed
fairly uniformly over each 10% range from 10-100%. A similar result was reported for a CM-5
workload in [Fei97a]. Figure 45(c) shows that average memory efficiency (i.e., the utilization on
the memory allocated) each month in in the range of 40-55%, wheres the overall utilization on
the processors allocated each month is around 80%. As with the large discrepancy in requested
runtime on the O2K, the scheduling performance may be improved if memory requests were
more accurate.

Peak memory usage is an important job characteristic in that it defines the amount of
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memory that must be allocated to the job (in a shared memory system such at the O2K) in
order to guarantee that the job doesn’t experience any memory interference during execution.

To further characterize peak memory usage for the purpose of creating synthetic workloads,
we analyze the correlations between peak memory efficiency and other job characteristics. To
that end, Figures 46 - 47 plot the percentiles of the peak memory efficiency per job, for ranges
of requested number of processors, requested memory, and actual runtime.

Figure 46(a) shows that the peak memory efficiency per job is fairly insensitive to the
requested number of processors. An implication of this result is that peak memory usage is
positively correlated with the number of requested processors, since requested memory and
requested processors are positively correlated (see Figure 28(c)). Similarly, there is a negative
correlation between the normalized peak memory usage and the number of requested processors
(see Figures 28(d)). In contrast, in the CM-5 [Fei97a] workload, the jobs with a larger number

of processors not only use a larger amount of memory, but also a larger amount of per-processor
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memory.

Figure 46(b) shows that the distribution of peak memory efficiency is significantly different
for jobs that request fewer than 128 MB of memory than for jobs that request more than 128
MB of memory. From this figure, noting that very few jobs request 33-64 MB of memory
and that the 80-percentile value for these memory requests is statistically unreliable based on
the small number of jobs, we partition the jobs into three classes according to their memory
request (i.e., < 32 MB, 33-128 MB, and > 128 MB) and provide the percentiles of peak memory
efficiency as a function of actual job runtime for each class in Figures 47(a) - (c).b

Note that all jobs that have runtime under one minute use a very small fraction of their

5The ranges of actual runtime over which the percentiles in Figure 47(a)-(c) are computed are: 0-1 minute,
1-10 minutes, 10-100 minutes, 1.7-17 hours, 17-170 hours, and above 170 hours.



94

Table 11. Mean and CV of Conditional Distributions of Peak Memory / Requested

Memory
Given Conditions Peak Memory/Requested Memory
Requested ‘ ) <1 >1

Memory Actual Runtime Mean | CV |#Jobs Mean | CV | #Jobs

M > 128 MB lm 0.00 13.03 | 890 - - 0

1-10m 0.17 1.52 | 1961 | 1.83 |0.61 86

10-100m 0.33 0.91 | 2449 | 3.88 |1.56| 407

> 100m 0.44 0.75 | 4172 | 2.94 |2.41] 640

33 <M < 128 MB 17-170hrs 0.39 0.63 193 1.97 [0.20| 277

1-10m 0.13 1.95 65 |313.39]1.06 80

M < 32MB 10-100m 0.58 0.41 69 |454.7011.041 168

100m-170h 0.59 0.30 35 |515.85(0.70 28

(October - December 2000)

memory request; in fact, nearly all such jobs use less than 64 MB of memory.

The distribution of peak memory used as a fraction of requested memory is very similar
for runtime greater than 10 minutes and memory request greater than 32 MB, except for jobs
with memory request of 33-128 MB and actual runtime in the range of 1,000-10,000 minutes
(i.e., approximately 17-170 hours). Thus, Figure 48 provides the requisite distributions for
generating peak memory as a fraction of memory requested after requested memory and actual
runtime have been generated as described earlier in this paper. Table 11 provides the mean
and CV of the ratio of peak memory to the requested memory for each conditional distribution

in Figure 48.

4.5.3 Summary of Job Resource Usage

To generate actual runtime and peak memory usage to complete a synthetic workload that
is representative of the O2K weekday peak arrival rate workloads, these characteristics are
obtained from the distributions in Figure 42 and 48, respectively. Processor utilization can also
be generated from the distribution in Figure 24. To create a synthetic workload for intermediate

arrival rate periods, the peak memory usage might be adjusted slightly as shown in Figure 43.
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Low arrival rate periods have approximately the same distributions of actual runtime and peak
memory usage as weekday peak arrival rate periods.
Note that, depending on the purpose of the synthetic workload, any of the characteristics

that are not needed can be ignored.

4.6 Summary of Workload Characterization

This chapter provides a characterization of the large production parallel workload submitted
to the NCSA O2K over two three month periods. This characterization is more compléte than
previous parallel workload characterizations in that new characteristics are provided (e.g., dis-
tributions of requested runtime, processor and memory utilizations, distribution of requested
memory over more flexible range of possible requests), correlations among the characteristics
are more fully explored, and conditional distributions are provided for generating synthetic
workloads that include the observed correlations in the O2K workload. Another key difference
in this analysis as compared with prior work is that job characteristics are provided for jobs
that are submitted during periods of approximately stationary job arrival rate. From these
characteristics we determined that the jobs submitted in different months or in different ar-
rival rate periods are statistically very similar. The roadmaps for generating similar synthetic
workloads are summarized in Sections 4.4.4 and 4.5.3.

Interesting characteristics of the O2K workload include: (a) the fifteen largest jobs in a
typical month have average running time of over 200 hours and use an average of 4000-8000
processor hours, (b) most requested runtimes are default values (i.e., 5,50,200, or 400 hours), (c)
whether or not a default runtime is requested, over half the jobs have actual runtime less than
20% of the requested value, and (d) overall utilization of allocated processors is approximately
80% whereas overall utilization of allocated memory is closer to 50%.

Some of the O2K workload characteristics that differ from previous workloads (e.g., the CV

of job interarrival time equal to 1-2 instead of 2.5-6) are most likely due to measuring the O2K
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characteristics during periods of stationarity. Other differences (e.g., longer runtimes and larger
memory requests) are most likely due to general trends in production parallel systems. Still
other differences (e.g., lack of correlation between requested runtime and requested number of
processors, or the large number of jobs with very inaccurate requested runtime) may either
be due to the trend toward more widespread use of parallel/distributed computing, or may
instead be reflective of the O2K usage and environment. Characterization of further modern
production parallel/distributed computing workloads are needed to distinguish the trends from

the environment-specific results.
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Chapter 5

Performance Evaluation of Backfill

Policies

This chapter presents results of our evaluation for the backfill policies by simulation using the
02K job traces that were characterized in Chapter 4.
As discussed in Chapter 3, our baseline policy is NCSA-LSF*. The key questions addressed

in this chapter are:

o What is the relative performance of priority backfill policies versus NCSA-LSF* for the

02K?
e What is the 'best’ priority backfill policy for the O2K?

e Can adding an immediate service with limited preemption for the backfill policies signifi-
cantly improve the turnaround time for the short jobs, without impacting the performance

of the other jobs?

As part of determining the best priority function for the backfill policies, we study the impact
of the number of reservations and fixed versus dynamic-job reservation on the performance of
backfill policies.

This chapter is organized as follows. Section 5.1 provides the definition of the priority
functions used in each priority backfill policy evaluated. Section 5.2 compares NCSA-LSF*

against FCFS-backfill and a new priority backfill policy, i.e., Priority-backfill that gives some
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priority to short jobs. We show that these two backfill policies significantly improve NCSA-
LSF*. Based on our simulation results, a priority backfill policy, NCSA-MS*, which uses a
slightly different priority function than in Priority-backfill replaced NCSA-LSF* for dispatching
jobs on the O2K. The performance of NCSA-MS* is similar to that of Priority-backfill, which
will be shown in Section 5.3. Section 5.3 also studies the impact of applying the weight for the
requested processors and memory on Priority-backfill. In addition, an implementation error in
NCSA-MS* was found recently; the error causes the reservations not able to be rescheduled
sooner when a job departs earlier than expected. The impact of this error on the performance of
NCSA-MS* is also evaluated in that section. Section 5.4 compares alternative priority backfill
policies, i.e., Priority-backfill, SJTF-backfill and LXF&W-backiill, each giving priority to short
jobs. The effect of fixed-job and multiple reservations for backfill policies are also evaluated.
Section 5.5 studies the potential benefit of adding a limited preemptive immediate service for
backfill policies to improve the turnaround time for short jobs. Section 5.6 summarizes and

concludes the performance evaluation results for the backfill policies.

5.1 Definition of Alternative Priority Functions

This section provides the definitions of the priority functions used in each priority backfill
policy evaluated in this chapter. They are three new policies: Priority-backfill, Priority (P&M)-
backfill, and LXF&W-backfill; and two previously proposed FCFS-backfill and SJF-backfill. In
addition, this section also provides the definition of the priority measures in the Maui Scheduler
configured for MHPCC SP/2 (i.e., MHPCC-MS*) and NCSA O2K (NCSA-MS*).

Table 12 provides the definition of the priority weights used in each policy (except for SJF-
backfill). The definition of each job measure for which the priority weight applies is given in
Table 13.

FCFS-backfill prioritizes jobs in order of job arrival time, or equivalently giving weight to

job wait time only (i.e., Wy, = 1 and all other weights are zero). SJF-backfill gives the highest
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Table 12. Job Metrics and Weights for Backfill Policies

Weight Value

Weight| FCFS | MHPCC | Priority | Priority | NCSA | LXF&W Job
Sym- |-backfill| -MS* | -backfill| (P&M) | -MS* | -backfill Measure
bol -backfill '

Wy 1 60 1 1 240 0.02 Jw

W - 10 5 5 1500 1 Jz

Wy - 8 0.2 0 0 0 Jp

W - - 0 0 0 0 Im

Whe - - 0 0.2 100 0 max{Jp, Jm}

Table 13. Definition of Job Measures

Job Measure |Defition
Jw current job wait time in hours

Jz estimated current job expansion
_Ju + requested runtime in hours
requested runtime in hours

Jp number of requested processors, Jp
Im requested memory in MB/358.4*, J,,
* The average memory per processor on the eight hosts is 358.4 MB.

priority to the job that has the shortest requested runtime, which significantly improves the
short jobs (thus the mean response time), but has the problem of starving long jobs.

The other priority backfill policies defined in Table 12 give priority to short jobs, but not
as much as in SJF-backfill. MHPCC-MS* dynamically computes the priority of the jobs as a
function of a weighted sum of the job waiting time, the estimated current job expansion factor,
and the number of requested processors ! as shown in Table 12. Note that under MHPCC-MS*,
the priority of each job increases as the job waits in the queue because of a non-zero weight for
the job waiting time (i.e., W, > 0). Furthermore, the priority of the jobs with shorter requested
runtime increases faster than that of the other jobs as the jobs wait in the queue, because of a
non-zero weight for the estimated current job expansion factor (i.e., Wy > 0).

Priority-backfill is derived from MHPCC-MS*, except that a relatively higher weight (i.e.,

IMHPCC-MS* uses several additional job measures related to the site-specific political priority and the
fairness, such as the user fairness, group fairness, and an urgency factor. Since these measures are not related to
policy performance per se, they are not used in our evaluation.
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W,) is applied for the estimated current job expansion factor, in order to give higher priority to
shorter jobs than in MHPCC-MS*. In our preliminary evaluation, we find that Priority-backfill
has higher performance for the O2K workloads.

Since both processors and memory need to be scheduled on O2K, we also evaluate a variant
of Priority-backfill; the Priority(P&M)-backfill policy is the same as Priority-backfill, except
that it applies the weight for the larger value of the requested number of processors and nor-
malized requested memory, rather than the number of requested processors (i.e., Wpe > 0 but
W, = 0).

NCSA-MS* also applies the weight for the larger value of the number of requested processors
and the normalized requested memory, as in Priority(P&M)-backfill. The differences are that
NCSA-MS* uses a slightly higher weight (i.e., Wye) for this job resource request measure, but
a slightly lower weight (i.e., W,,) for the current job waiting time, relative to the weight (i.e.,
W,) for the estimated current job expansion factor. Note that the effect of increasing W, and
decreasing W,, may offset each other to some degree, since it is likely for the jobs that request
a large resource (processors and/or memory) to incur a longer wait in the queue than the jobs
with a smaller resource request.

The motivations for LXF&W-backfill are: to give even higher priority to shorter jobs than
that in Priority-backfill and to treat jobs that have the same job expansion factor equally,
an idea similar to that in uniprocessor processor sharing as discussed in Section 1.1. Further
motivations of these policies are to have simpler priority function than in the above priority
backfill policies, in order to more easily tune the performance and to avoid user gaming for
getting better service. Under LXF&W-backfill, the relative priority of the waiting jobs with
shorter requested runtimes increases faster as they waits in the queue, compared to that in
Priority-backfill, Priority(P&M)-backfill, and NCSA-MS*.

Except as noted, the default reservations used by all the other backfill policies evaluated are

dynamic-job and one reservation. Fixed and multiple reservations are evaluated for SJ F-backfill
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to avoid the starvation problem.

NCSA-MS* is configured with fixed-job and two reservations (increased to six reservations
since May 2001). The current implementation of NCSA-MS* on the O2K uses non-sliding
rather than sliding reservation. This error in the implementation was only discovered recently
(June 2001) and will be corrected in a future release of the scheduler. However, we find that
non-sliding reservation has minimal impact on the performance of NCSA-MS*, to be shown in

Section 5.3.3.

5.2 Performance of Priority-backfill, FCFS-backfill, and NCSA-

LSF*

Section 3.6 shows that NCSA-LSF* has poor performance and it is difficult to tune the pa-
rameters. This section compares Priority-backfill and FCFS-backfill against NCSA-LSF*, with
a goal of providing NCSA useful information for determining whether backfill policies signifi-
cantly improve NCSA-LSF* for the O2K workload. NCSA-LSF* and backfill policies have not
been compared in previous work.

Since the LSF job classes do not have any meaning for the backfill policies, instead of showing
the performance measures for each job class (as that for NCSA-LSF* in Section 3.6), it is more
useful to provide performance measures versus job sizes (i.e., actual runtime, requested number
of processors, and requested memory) for evaluating backfill policies and other policies that do
not use LSF job class for scheduling.

Figure 49 plots the average waiting time versus actual job runtime for Priority-backfill,
FCFS-backfill, and NCSA-LSF* for each of the six months studied.

The results show that Priority-backfill and FCFS-backfill have very similar average waiting
time versus actual runtime for each month (except a slight difference in February 2000 in
Figure 49(e)). This suggests that perhaps Priority-backfill does not give enough priority to

short jobs, because of a small but significant weight for job waiting time and a non-zero weight
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Figure 49. Variation in Monthly Average Wait of Priority-backfill, FCFS-backfill and
NCSA-LSF*

for requested number of processors. However, later in Section 6.2.3, we will show this is mostly
due to large discrepancy between requested and actual runtimes in the workload.

Figure 49 also show that the average waiting time under both Priority-backfill and FCFS-
backfill is significantly lower than that for NCSA-LSF* over the entire range of actual runtime,
for three months, including the two high-load months (i.e., December 1999 and February 2000
in Figure 49(c) and (e)) and March 2000 (Figure 49(f)). For the other three months, Priority-
backfill and FCFS-backfill significantly improve the average waiting time of NCSA-LSF* for
jobs that have long running time (> 10 hours).

Another observation is that unlike NCSA-LSF*, the average waiting time versus actual
runtime under Priority-backfill and FCFS-backfill does not vary dramatically from month to
month. Instead, there are small increases for the longest running jobs for the two high-load
months (in December 1999 and February 2000 in Figure 49(c) and (e)).

Figure 50 provides further comparison results for Priority-backfill, FCFS-backfill, and NCSA-

LSF*. Figures 50(a)-(d) show that Priority-backfill and FCFS-backfill have significantly lower
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Figure 50. Further Comparisons of Priority-backfill, FCFS-backfill and NCSA-LSF*

95th percentile waiting time and average slowdown versus the actual runtime than that of
NCSA-LSF* (shown for one typical-load month November 1999 and one high-load month Febru-
ary 2000 in (a)-(d)); the improvement is larger for the two high-load months.

Figures 50(e)-(h) plot the maximum waiting time versus actual runtime for each given
month. Priority-backfill and FCFS-backfill have significantly lower maximum waiting time than
that of NCSA-LSF* each month, except for the light-load month October 1999 (Figure 50(e)).

The only difference between Priority-backfill and FCFS-backfill is in their maximum wait
time. As shown in Figures 50(e)-(h), Priority-backfill has slightly to considerably lower maxi-
mum wait for most of actual runtime for four months (shown in graphs (g)-(h) for February and
March 2000; the difference in December 1999 and January 2000 is smaller than that in (h)). On
the other hand, FCFS-backfill has somewhat lower maximum wait than that of Priority-backfill

for the only light-load month, i.e., October 1999 (Figure 50 (e)). For November 1999, they have
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fairly similar maximum wait time (Figure 50 (f)).

Based on the predicted performance improvement of Priority-backfill over NCSA-LSF*, a
priority backfill policy, i.e., NCSA-MS*, that uses a fairly similar relative priority measure
(defined in Table 12) as that in Priority-backfill has been used on the O2K since July 2000.
They have very similar performance except for the two high-load months, discussed in the next

section.

5.3 Priority-backfill, Priority(P&M)-backfill, and NCSA-MS*

First, Section 5.3.1, compares Priority-backfill and Priority (P&M)-backfill that differ only in
the requested resource measure they use; the former uses the requested processors, while the
latter uses the larger value of requested processors and normalized requested memory. Sec-
tion 5.3.2 compares Priority-backfill with NCSA-MS* to show that these policies have similar
performance. Section 5.3.3 studies whether the performance of NCSA-MS* is affected because
of the error of disallowing the scheduled start times to be rescheduled sooner when a job departs

earlier than expected.

5.3.1 Impact of Processor and Memory Weights for Priority-backfill

This section compares Priority-backfill and Priority(P&M)-backfill to study whether a weight
to the requested memory as in Priority(P&M)-backfill can improve the performance of Priority-
backfill.

Priority-backfill and Priority(P&M)-backfill have almost identical average waiting time over
the entire range of actual runtime for each month (shown for four months in Figures 51(a)-(d).
The remaining two months are shown in Figures 91(a)-(b) in Appendix F).

Priority-backfill has lower 95th percentile wait time in one high cpu load month (i.e., De-
cember 1999 shown in Figure 51(f)), while Priority(P&M)-backfill has lower 95th percentile

wait time in a typical cpu load month, March 2000 (Figure 51(h)), in which the memory load
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Figure 51. Performance of Priority-backfill and Priority(P&M)-backfill
(Versus Actual Job Runtime)

is slightly higher than that in the other five months.

In the other four months, they have

almost identical 95th percentile wait time versus actual runtime (shown for November 1999 in

Figure 51(e) and February 2000 in Figure 51(h). The results for the remaining two months,

i.e., October 1999 and January 2000, are shown in Figures 91(c)-(d) in Appendix ).

Figure 91(i)-(j) and (1) show that Priority-backfill and Priority(P&M)-backfill have more

or less similar maximum wait for the three given months, including the heavy-load month in

December 1999 (Figure 91(j)). They also have similar maximum wait for October 1999 and

January 2000, shown in Figures 91(e)-(f) in Appendix F. Figure 91(k) shows that for the high
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Figure 52. Comparisons of Priority-backfill and Priority(P&M)-backfill
(Maximum Wait Versus Requested Processors and Memory)

cpu-load month (February 2000), Priority-backfill has lower maximum wait time over certain
ranges of actual runtime.

Since the difference in Priority-backfill and Priority(P&M)-backfill is in the weight applied
for the job resource requests, Figure 52 further studies how the performance of these two policies
is different versus the requested number of processors and requested memory.

For the light-load month (i.e., October 1999), Figures 52(a) shows that Priority-backfill has
slightly worse maximum wait for jobs that request > 8 processors, than that under Priority(P&M)-
backfill. For November 1999, Figures 52(b) show that they have similar maximum waiting time
verus requested number of processors. For December 1999, they have nearly identical maximum
wait time verus requested number of processors (shown in Figure 91(g) in Appendix F).

Figures 52(c)-(e) show that Priority-backfill has slightly lower maximum waiting time for
jobs that request over 32 processors in January 2000, 17-32 processors for February 2000, and

> 16 processors for March 2000, respectively.
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A key observation from Figure 52(a)-(e), is that the maximum waiting time approximately
increases with the number of processors under both Priority-backfill and Priority(P&M)-backfill.

Figure 52(f)-(j) plots the maximum waiting time versus requested memory for each of the
given five months. In contrast to the results in Figure 52(a)-(e), the maximum waiting time
is rather insensitive to the requested memory. The key conclusion is that applying weight for
the requested memory in addition to the number of requested processors as in Priority(P&M)-
backfill does not improve Priority-backfill for the O2K workload, because processor resources

are more constrained than memory resource.

5.3.2 Priority-backfill Versus NCSA-MS*

Note that NCSA-MS* evaluated in this section assumes a correct implementation with reserva-
tion, i.e., the reservations are rescheduled to occur sooner if possible when a job departs earlier
than estimated. Recall that Priority-backfill uses dynamic-job and single reservation, while
NCSA-MS* uses fixed-job and two reservations, as described in Section 5.1.

Figure 53 shows that Priority-backfill and NCSA-MS* have very similar average, 95-percentile,
and maximum waiting time, and average slowdown over the entire range of actual runtime, in
the typical-load month (shown for January 2000, similar for the light-load and the other two
typical-load months, i.e., October, November 1999 and March 2000).

For the two high-load months, December 1999 and February 2000, Figures 54-55 show that
Priority-backfill has a lower 95th percentile waiting time and slightly lower average waiting
time, but slightly worse maximum waiting time.

Thus, Priority-backfill and NCSA-MS* have the same performance, except for the two
high-load months. The difference in the high-load months is due to the slight difference in the
priority measures as well as the difference in the reservations used (i.e., dynamic-job versus
fixed-job and single versus multiple reservations). As discussed in Section 3.2.1, a fixed-job

reservation may reduce the maximum wait than that of dynamic-job reservation, and multiple
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Figure 55. High-Load Performance of Priority-backfill versus NCSA-MS*
(February 2000)

reservations may further reduce the maximum wait. However, the penalty with fixed-job and
multiple reservations is higher 95th percentile waiting time, as shown for the comparison results

for Priority-backfill and NCSA-MS* in the two high-load months in Figures 54-55.

5.3.3 Sliding Versus Non-sliding Reservations for NCSA-MS*

As discussed in Section 5.1, it was found recently that NCSA-MS* has an implementation error

that does not allow the reservations to slide. This section studies how much the non-sliding
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Figure 57. Impact of Non-Sliding Reservations for NCSA-MS* in Typical-Load Months
(January 2000)

reservation impacts the performance of the NCSA-MS* scheduling algorithm.

An example of non-sliding reservation is illustrated in Figure 56. In Figure 56(a), job J2
is scheduled at time t’ and is expected to depart at time t2, but it will actually depart at
t” (earlier than expected). With a sliding reservation as shown in Figure 56(b), when job J2
departs, the scheduled start time for J3 is rescheduled to occur sooner at t1. On the other
hand, with a non-sliding reservation as shown in Figure 56(c), at time t” when J2 departs, the
existing scheduled start time for J3 does not slide, i.e., J3 is still expected to start at time
t2, while job J12 is backfilled because it fits in the gap opened up by the departure J2 and is
expected to complete before t2.

For each of the four typical-load months (shown for January 2000 in Figure 57), NCSA-MS*

with sliding and with non-sliding reservations have nearly identical average and 95th percentile
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Figure 58. Impact of Non-Sliding Reservations for NCSA-MS* in a High-Load Month
(December 1999)

wait versus actual runtime, and a similar maximum wait versus actual runtime.

The results for the two high-load months (i.e., December 1999 and February 2000) are
shown in Figures 58-59. In December 1999, NCSA-MS* with non-sliding reservation has lower
95th percentile waiting time (Figure 58(b)) but very similar performance for all other measures
studied (Figures 58(a) and (c)-(h)), compared to NCSA-MS* with sliding reservation.

For the other high-load month, i.e., February 2000, Figures 59(a), (b) and (d) show that
NCSA-MS* with non-sliding reservation and NCSA-MS* with sliding reservation have the same
average and 95th percentile wait versus actual runtime, and average slowdown versus actual
runtime, respectively. However, NCSA-MS* with non-sliding reservation is significantly worse
with respect to the other performance measures, i.e., maximum waiting time for most ranges of
actual runtime (in Figure 59(c)), average and maximum waiting time for requested processors
> 16 (Figures 59(e)-(f)), average waiting time for requested memory > 4 GB (Figures 59(g)),

and maximum waiting time versus the entire range of requested memory (Figures 59(h)).
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Figure 59. Impact of Non-Sliding Reservations for NCSA-MS* in a High-Load Month
(February 2000)

The increase in the maximum wait with non-sliding reservation in February 2000 (Fig-
ure 59(c), (f), and (h)) and the decrease in the 95th percentile wait in December 1999 (Fig-
ure 58(c)) are due to the effect of providing more processing power for backfilling lower-priority
jobs by disallowing the scheduled start time for jobs with reservation to occur sooner.

Non-sliding reservation is non-intuitive and lack of motivation (and in fact is an error in
the NCSA-MS* implementation). Nevertheless, it has minimal impact on the performance for

most months studied.

5.4 Performance of Alternative Priority Measures

Since Priority-backfill does not improve the waiting time of jobs compared to FCFS-backfill,
we next evaluate SJF-backfill and LXF&W-backfill (defined in Section 5.1), both give a higher
relative priority to short jobs than that in Priority-backfill. SJF-backfill has been shown to have

higher performance than FCFS-backfill policies in previous work [ZK99, PKO00]; however, it has
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Figure 60. Overall Performance of Alternative Priority Measures

the potential starvation problem. LXF&W-backfill is a new priority backfill policy proposed in
this thesis to favor shorter jobs without the starvation problem.

Section 5.4.1 compares the relative performance of Priority-backfill, LXF&W-backfill, and
SJF-backfill, assuming the reservation is given to the job that has dynamically the highest
priority. The impact of fixed-job and multiple reservations, which can be used as another
mechanism to reduce the maximum waiting time as discussed in Section 3.2.1, are evaluated in
Section 5.4.2. Based on the results, the best of each priority backfill is chosen and compared

with each other again in Section 5.4.3.

5.4.1 SJF-backfill and LXF&W-backfill Versus Priority-backfill

This section compares SJF-backfill and LXF&W-backfill against Priority-backfill, assuming the
reservation is always given to the job that has dynamically the highest priority.

As shown in Figures 60(a)-(b), SJF-backfill has lower overall average wait and especially
the 95th percentile waiting time than that of LXF&W-backfill and Priority-backfill. However,
Figures 60(c) shows that SFJ-backfill has very poor maximum wait, especially for the high-load
month in February 2000 (about 200 hours under SJF-backfill, compared to under 80 hours
in both Priority-backfill and LXF&W-backfill). The results show that SFJ-backfill has the
starvation problem.

Figures 60(a)-(d) show that LXF&W-backfill has significantly lower overall average and 95th

percentile wait time, average slowdown and a comparable maximum waiting time, compared to




113

im 10m th  10h 50h 8 im  10m 1h  10h 50h 100
- Priority-bf FOB g g KRRk -~
@ 3 -0~ LXFaw-bf A3 " {M. B B
£ [o% SJIF-bf =6 : : g £ %
£e s, £ £
= £ ‘ . B 40 E
H g : VS S z x
g e ::: 219 ‘x»‘-—v-al«‘."" p ﬁ""»‘;‘/ :Eé. 204 é
- Lo 2 : L
o X o . : o _ s
10" 10t 10t 10° 10° 10* 10° 107 10* 1 2 4 8 16 32 64
actual job runtime (minutes) actual job runtime (minutes) actuat job runtime (minutes) number of requested processors
(a) Avg Wait (b) 95th Percentile Wait (c) Max Wait (d) Max Wait
vs. Actual Runtime  vs. Actual Runtime  vs. Actual Runtime vs. #Processors
Figure 61. Detailed Performance of Alternative Priority Measures (February 2000)
Priority-backfill.

Figures 61(a)-(g) further show the detail performance of the three priority backfill for Febru-
ary 2000, in which month SJF-backfill has significantly lower average and 95th wait but very
poor maximum wait, compared to LXF&W-backfill and Priority-backfill.

Figures 61(a)-(b) show that the lower average wait under SJF-backfill applies to the jobs
for the entire range of actual runtime except for > 50 hours, and the lower 95th percentile
wait under SJF-backfill applies to the entire range of actual runtime. Figure 61(c) shows that
SJF-backfill has much worse maximum waiting time for most of the actual runtime ranges >
1 hour. Figures 61(d) show that the worst maximum wait time under SJF-backfill occurs to
jobs that request > 32 processors. Thus, SJF-backfill has the problem of starving long and
large-processor jobs.

Figures 62(a)-(d) plots that the 95th percentile wait time versus actual runtime for each
of the four other months (except for the light-load month, October 1999). The difference in
the 95th percentile wait time between LXF&W-backfill and SJF-backfill is significantly smaller
than that in February 2000 Figures 61(b).

For each of these four months, Figures 62(e)-(h) plots the maximum wait versus actual
runtime, and Figures 62(i)-(1) plots the maximum wait versus requested number of processors.

The key conclusion from these results Figures 60-62(a)-(1)) is that LXF&W-backfill has

significantly lower 95th percentile over the entire range of actual runtime for each month (except
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Figure 62. Detailed Performance of Alternative Priority Measures (For Other Months)

it’s similar for the light-load month October 1999) and significantly lower overall average waiting

time (Figure 60(a)), and comparable maximum wait time, compared to Priority-backfill, Thus,

LXF&W-backfill is the preferred policy among the three priority backfill studied, for the O2K

workload.

5.4.2 Improving SJF-backfill Using Different Reservation Rules

As shown in the previous section, SJF-backfill has the starvation problem. In this section, we

study whether using fixed-job reservation and multiple reservations can improve the maximum
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Figure 63. Impact of Fixed and Multiple Reservations for SJF-backfill

wait time in SJF-backfill, and whether the improved SJF-backfill can outperform LXF&W-
backfill, the best backfill policy identified in the previous section.

Figure 63 show the performance of SJF-backfill using fixed-job reservation with 1, 2, 4, 6,
and 8 reservations.

As shown in Figure 63, using fixed-job and one reservation significantly reduces the maxi-
mum waiting time (by 20-70%) for each month (Figure 63(c)), but considerably increases other
performance measures studied in most months. Using fixed-job and two reservations further
significantly reduces the maximum waiting time for February 2000 (Figure 63(c)). Further in-
creasing the number of reservations from two makes no improvement for the maximum waiting
time, and in fact sometimes increases the maximum waiting time and also other performance
measures. For example, in February 2000, fixed-job and six reservations has similar maxi-
mum wait but worse average and 95th wait, and worse average slowdown compared to that of
fixed-job and two reservations.

In contrast to the effect of fixed-job and one or two reservations, Figure 64(c) show that with

dynamic-job reservation, using multiple reservations has much smaller impact on the maximum
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Figure 64. Impact of Number of Reservations for SJF-backfill with Dynamic-job
Reservation

wait time of SJF-backfill.

Thus, the key conclusion is that SJF-backfill can be improved by fixed-job and one or two
reservations. In the next section, they will be compared with LXF&W-backfill and further
discussed.

The impact of using fixed-job and using dynamic-job with multiple reservations on LXF&W-
backfill and Priority-backfill is similar to that for using fixed-jobs and one or multiple reser-
vations on SJF-backfill. The results for LXF&W-backfill are be provided in Figures 92-93 of

Appendix F.

5.4.3 Re-evaluating Improved SJF-backfill with LXF&W-backfill

Figure 65 compares the improved SJF-backfill (using fixed-job with one and two reservations)
against LXF&W-backfill. The Priority-backfill is not included, since it is worse than LXF&W-
backfill.

Figure 65(c) shows SJF-backfill using fixed-job with one reservation still appears to have the

potential starvation problem. Specifically, the maximum wait for SJF-backfill with fixed-job
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Figure 65. Re-evaluation of Improved SJF-backfill Versus LXF&W-backfill

and one reservation is almost 50% (or almost 70 hours) worse than that of LXF&W-backfill for
February 2000.

SJF-backfill using fixed-job with two reservations has more comparable maximum wait to
that of LXF&W-backfill for February 2000 (Figure 65(c)). However, SJF-backfill using fixed-
job with two reservations has worse overall average and 95th percentile wait time than that of
LXF&W-backfill for most months, including February 2000. (as shown in Figure 65(a),(b) and
(d))-

Thus, the estimated current job expansion factor with a small weight for the job wait time,
used in LXF&W-backfill, appears to be the best priority function to use among the functions

evaluated in this work.

5.5 LXF&W-backfill with 1-Minute Preemptive Immediate Ser-
vice

As can be seen in the previous two sections, very short running jobs incur similar 95th (several
hours) and maximum waiting time (tens of hours) as that for the other jobs under the priority
backfill policies. To improve the turnaround for very short jobs, we propose a limited preemption
option that gives a one-minute quantum of immediate service and up to 1 GB of initial memory
to each new job that can’t be started due to insufficient resources. The definition of limited

preemption is given in Section 3.2.2. The values of one-minute cpu quantum and up to 1 GB of
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Figure 66. Overall Performance of LXF&W-backfill with 1-Minute Inmediate Service

memory are motivated by the characteristics of the O2K workload, in that a significant fraction
(15-20%) of the jobs terminate in under one minute, including jobs that request over a long
runtime (> 50 hours) (Section 4.5.1), and nearly all of these jobs use much less than 1 GB of
memory (Section 4.5.2).

Figure 66 evaluates the performance of LXF&W-backfill with limited preemption (ie.,
LXF&W-bf/immediate). Also included in graph (d) is a non-preemptive version of test run
option (i.e., LXF&W-bf/soon), which does not preempt any executing jobs for new jobs, but
gives a 1-minute quantum and up to 1 GB of memory (as in the preemptive immediate service
option) to each new job as soon as after its arrival if there are enough free processors and
memory. The idea of the non-preemptive test run is proposed in [PKO00] and shown to improve
the average slowdown (by up to 50%) for FCFS-backfill and SJF-backfill. The non-preemptive
test run evaluated in their paper is different from that evaluated in this section in that (1) the
policies evaluated in [PK00] schedule the processors but not the memory (thus the initial mem-
ory is not a parameter); (2) they use a larger quantum, i.e., 15 minutes, which is heuristically
chosen but not based on the workload characteristics.

Figure 66(a)-(c) show that preemptive immediate service slightly improves the overall av-
erage and maximum wait time for most months, and slightly improves the 95th percentile wait
time for three months (i.e., November and December 1999 and February 2000).

Figure 66(d) shows that preemptive immediate service dramatically reduces the average

slowdown for each month. Furthermore, preemptive immediate service is much more effective
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Figure 67. Detailed Performance of LXF&W-backfill with 1-Minute Immediate Service

than non-preemptive option in reducing the average slowdown.

To examine how the performance of jobs that run for over 1 minute is impacted by the

immediate service, Figure 67(a)-(e) plot the 95th percentile wait time versus actual runtime,

Figure 67(f)-(j) plot the maximum wait time versus actual runtime, and Figure 67(k)-(o) plot

the average slowdown versus actual runtime, for each month (except the light-load month,

Oc

tober 1999). The key conclusion from these results is that adding preemptive l-minute

immediate service dramatically improves the wait time and slowdown for jobs terminate under

1 minute, without adversely impacting the performance of the other jobs.
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Note that about 1000-2000 jobs (at least 15% of all job arrivals) for each month (except

the light load month October 1999) receive an immediate service; about 10-15% of these jobs

actually complete in their initial quantum and memory. Among the jobs that receive immediate

service, 100-200 jobs each month (except October 1999) require preempting the processors of the

executing jobs; these jobs will not receive an immediate service under non-preemptive version.

5.6 Summary of Performance of Backfill Policies

FCFS-backfill and Priority-backfill have almost identical performance, except that Priority-

backfill has significantly lower maximum wait time in a few months.

Furthermore, both Priority-backfill and FCFS-backfill have significantly lower average,
95th percentile, and maximum wait time and average slowdown over most ranges of

actual runtime than that of highly-tuned NCSA-LSF*.

Whether giving priority to the requested processors only (as in Priority-backfill) or both
the requested processors and requested memory (as in Priority(P&M)-backfill and NCSA-
MS*), the maximum waiting time approximately increases as the number of requested
processors increases, but is relatively insensitive to the requested memory. This is because

the processors are more constrained than the memory in the O2K workload.

The current estimated expansion factor plus a relatively very small weight for the cur-
rent job wait time as in LXF&W-backfill provides the starvation-free measure that gives
priority to short jobs and significantly improves both Priority-backfill and FCFS-back{ill.
Specifically, LXF&W-backfill has at least 20% lower average and 95th percentile wait
and at least 20% lower average slowdown, while comparable maximum wait time. Fur-
thermore, the LXF&W priority measure is intuitive and based on fundamental scheduling
policy results; and easy to be tune (only the weight for the job wait time); and discourages

users gaming for better service.
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¢ Adding preemptive 1-minute immediate service for backfill policies not only dramatically
improves the performance for the jobs under 1 minute without impacting the performance
of the other jobs for each month, and also slightly improves the 95th percentile wait time

for all jobs in three out of six months studied.

e Preemptive 1-minute immediate service is much more effective than non-preemptive op-

tion in improving the turnaround for jobs under 1 minute.
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Chapter 6

Further Policy Evaluation

This chapter examines further policies that require greater system support. One is the use of
more accurate requested runtime for backfill policies. The other is EQspatial, which is compared
against LXF&W.-backfill with immediate service, the best priority backfill function studied in
Chapter 5.

As shown in the previous section, adding a preemptive 1-minute immediate service sig-
nificantly improves the performance of the jobs that complete in 1 minute. With support of
dynamic processor repartitioning, the preemptive dynamic equal space partitioning policy (i.e.,
EQspatial) are expected to further improve jobs that are longer than 1 minute. Note that if
most jobs have high processor efficiency on the number of processors allocated (and requested),
such as that in the O2K workload (as shown in Figures 24 and 45), Gang Scheduling is expected
to have similar performance as that of EQspatial for workloads. In addition, EQspatial can
be modified to accommodate power-of-two numbers of processor allocation requirements (i.e.,
Folding, as discussed in Section 3.2.3). Thus, the performance of EQspatial is representative
for Folding and Gang scheduling.

In the absence of preemption and/or support for dynamic processor repartitioning, improv-
ing the accuracy of the requested runtime may improve backfill policies, as backfill policies
use requested runtimes to make scheduling decisions. The benefit for priority backfill policies
that give priority to jobs with short requested runtime (such as LXF&W-backiill and SJF-
backfill) may be larger than backfill policies that do not give priority to short jobs (such as

FCFS-backfill).
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In Section 6.1, we evaluate a dynamic space sharing policy, EQspatial-5m, designed to
have a minimal processor repartitioning overhead (defined in Section 3.2.3), to examine the
performance gain of equal space partitioning over LXF&W-backfill with preemptive 1-minute
immediate service. Section 6.2 investigates the potential benefit of using improved runtime

estimates for backfill policies. Section 6.3 summarized the results in this chapter.

6.1 Performance of Dynamic Equal Space Partitioning

This section evaluate the performance of EQspatial. The implication of the EQspatial for Gang

scheduling is commented with data measured from EQspatial results.

6.1.1 EQspatial-5m Versus LXF&W-backfill with 1-Minute Immediate Ser-

vice

To reduce the processor repartitioning overhead, we simulate EQspatial with MinInterval equal
to 5 minutes (i.e., EQspatial-5m). Figures 68(a)-(d) compare the overall performance measures
for EQspatial-5m with the ideal EQspatial (i.e., MinInterval = 0 minute). Figures 68(e)-(g)
further compare the performance versus actual runtime of these two policies for the high-
load month (February 2000). These graphs show that EQspatial-5m has similar average and
maximum wait time, and comparable 95th percentile wait and average slowdown, compared to
EQspatial-Om,

More than 99% of the arriving jobs in each workload are placed on a host for full execution
immediately upon arrival, which indicates that the processor and memory usage on each host
is reasonably well-balanced by the heuristic host placement policy defined in Section 3.2.3.

Figure 69 compares EQspatial-5m against the LXF&W-backfill with immediate service.
Also included is EQspatial-5m/>50hr, which will be explained later.

Figures 69(a), (b) and (d) show that EQspatial-5m significantly improves the overall av-

erage wait time (by over 50%) and overall average slowdown (by over 30% except for the
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Figure 68. EQspatial-5m vs EQspatial-Om

light-load month, October 1999), and dramatically improve the 95th percentile wait in each
month for LXF&W-backfill with 1-minute immediate service. However, Figure 69(c) shows
that EQspatial-5m has very poor maximum waiting time in February and March 2000. Plots of
maximum wait time versus actual runtime and number of requested processors for each month,
in Figures 70-71 respectively, show that jobs that have long running time (> 50 hours) and

a large number of processors (> 32) in February and March 2000 have very poor wait under
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Figure 69. Overall Performance of EQspatial Versus LXF&W-backfill with Inmediate
Service




125

im 10m $h  10h 50 1m 10m 1h  10h 500 im 10m i 10h 50h 20 200
100 X 100 100 i ~O- LXFaW-bYimmedial o X :
5 LXFEW-bifmmedie | 207 LXFRW-bifmmedate | o DEEwbmede| || g N _"_;xo’;g:’ﬁ;_'g’::““’"‘“*
@ gol — EQspalia-5m B gol — EQspatial-5m # gyl — EQspatial-5m ; £ 150i] -6~ EQspatial-5m/>50ht £ 150)-n -
& %l o- EQupatia-5mssone | £ | o~ EQspalial-mioS0hr £ o Eowata-smson | S £ 1501 -0 EQwaiah S>30
o H : T @ T o0 o 50 T : H £ £
£ 60 [ E 80 : E ; Z 0 fm 1om th 1 = 0 m 10m th 1k
= = | = T . K .
© K i K H A 2 H
g - o - £ O R B ; I
] 3 s ] [ My E £ 50
g g ¥ g 2 2.y : :
: - : - : a . i h
h: 08 0 : 068 o
0w w0 10 TR L o 10 ) G 10 10' 1 W
actuai job runtime {minutes) actual job runtime {minutes) actual job runtime (minutes) acual job runtime (minutes) aclual job runtime {minutes)

(a) Nov. 1999 (b) December 1999 (c) January 2000 (d) February 2000 (e) March 2000

Figure 70. EQspatial Versus LXF&W-backfill with Inmediate Service: Maximum Wait
vs. Actual Runtime

10 100: 160 200 200:
-0~ LXF&W-blimmediale ~0+ LXFEW-blYimmediate ~Q~ LXF&W-btimmediate 8- LXFEW-blimmediate -8~ LXFEW-blimmediate
=8l EQupatial-5m o EQspatial-5m P EQspatial-5m 3 -~ EQspatial-5m 2 —- EQspatial-5m
_g -8 EQspatial-5m/>50hr E -8 - EQspalial-5m>50hr g -3~ EQspatial-5m>S0he & 150{_B- EQspatial-5m/>50ht £ 150{ 0 EQspatial-5m/>50hr
) £ £ ° >
2 2 60 20 £ E
5 4 g 4 R / o ; g "
i | 3 o E 8 50
E 20 E 20 E 20 2 = P
A e e > . i, T
2 4 8 5 2 6 12 4 8 6 ® 6 1 2 4 8 65 » 64 T2 4 8 % R T2 o4 8 16 R 6
number of requested processors number of requested processors number of requested processors number of requested processors number of requested procassors

(a) Nov. 1999 (b) December 1999 (c) January 2000 (d) February 2000 (e) March 2000

Figure 71. EQspatial Versus LXF&W-backfill with Inmediate Service: Maximum Wait
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EQspatial-5m. Thus, it may require to improve the maximum wait time of the jobs that have
a long runtime and a large number of processors under EQspatial-5m.

EQspatial-5m/>50hr is designed to improve the worst wait under EQspatial. Under EQspatial-
5m/>50hr, the jobs that have been running for longer than 50 hours are allocated the number
of processors they requested for the remainder of their execution time, even if this is larger than
the equipartition value, as long as each other job assigned to the host has at least one proces-
sor to Tun on. As shown in Figure 69(c) and Figures 70-71, EQspatial-5m/>50hr effectively
improve the maximum wait of the largest jobs under EQspatial-5m, and Figures 69(a) and
(d) show that EQspatial-5m/>50hr has similar overall average wait and slowdown as that of
EQspatial-bm. Although EQspatial-5m has significantly lower 95th percentile wait for the two
heavy-load months (Dec 1999 and Feb 2000) as shown in Figure 69(b), EQspatial-5m/>50hour

may be preferred because of a significantly lower maximum wait for the largest jobs.
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Figure 72. EQspatial Versus LXF&W-backfill with Inmediate Service: 95th Percentile
Wait vs. Actual Runtime

Figures 72(a)-(e) further show the 95th percentile wait under EQspatial-5m/>50hr, EQspatial-
5m, and LXF&W-backfill with immediate service for each month (except the light-load month).
The graphs shows both EQspatial-5m/>50hr and EQspatial-5m significantly improve the 95th
percentile wait for job > 1 minute under LXF&W-backfill for each month. Nevertheless, consid-
ering the effort required in implementing EQspatial-5m, LXF&W-backfill with immediate ser-
vice is perhaps surprisingly competitive with respect to the overall average wait (Figures 69(a))

and overall average slowdown (Figures 69(d)).

6.1.2 Implication of EQS Results for EQT

To schedule the 02K workload, both EQspatial and Gang have the same consideration for
balancing the load across the hosts and providing an equal allocation to each job. If a Gang
Scheduler is used, we can use a similar host placement policy as in EQspatial to choose the host
to schedule each job for balancing the load across hosts. Since the O2K workload has high (80%)
utilization on the processors allocated (Figure 45 of Section 4.5.2), jobs are expected to have
similar execution efficiency on the processors allocated under Gang and EQspatial. Thus, the
main difference between EQspatial and Gang for the O2K workload occurs during the period of
time when the total requested number of processors on a host is larger than the total number
of processors available on the host. To examine how often this occurs, Table 14 shows for each
month (except for the light-load month), the fraction of the time the total requested processors

of all scheduled jobs on each of the eight O2K hosts is in the range of < p, p+1 to 2p, and
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Table 14. Total Number of Requested Processors on Each Host Under EQspatial

Total Processors | Total Requested Processors
Month | Host 4 vailable | < P|P+1-2P] 2P+1-3P

Nov 1999 eir (128) 57 42 0
hod1 (128) 60 | 39 0

huldra (128) 56 43 0

jordl (128) 62 37 0

mimir (128) 62 37 0

modi2 (64) 100 0 0

nerthus (128) 50 | 49 0

sagal (128) 57 42 0

Dec 1999 eir (128) 39 60 0
hod1 (128) 41 58 0

huldra (128) 68 31 0

jordl (128) 55 44 0

mimir (128) 51 48 0

modi2 (64) 00| 0 0

nerthus (128) 38 61 0

sagal (128) 46 53 0

Jan 2000 | eir (128) 60 39 0
hod1 (128) 48 51 0

huldra (128) 76 23 0

jordl (128) 68 31 0

mimir (128) 68 31 0

modi2 (64) 100 0 0

nerthus (128) 61 38 0

sagal (128) 71 28 0

Feb 2000 | _eir (128) 38 61 0
hodl (128) 34 64 1

huldra (128) 48 51 0

jordl (128) 45 54 0

mimir (128) 51 48 0

modi2 (64) 99 0 0

nerthus (128) 47 52 0

sagal (128) 45 54 0

Mar 2000 | eir (128) 2 56 1
hodl (128) 54 42 2

huldra (128) 69 30 0

jordl (128) 79 20 0

mimir (128) 71 28 0

modi2 (64) 100 0 0

nerthus (128) 51 48 0

sagal (128) 74 25 0
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2p+1 to 3p, where p is the total number of processors available on the host. Note the total
number of requested processors on each host is never greater than 3p.

As shown in Table 14, a significant fraction of the time (40-50% for the two high-load months
and 50-70% for other months, except it is 100% the smallest host, modi2), the total number of
requested processors of all scheduled jobs on each host is no more than the total number of the
processors available, which means each job gets as many processors as it requests and thus the
EQspatial policy equals to the Gang Scheduling policy in this case. In nearly all the remaining
time, the total number of requested processors of all scheduled jobs on each host is no more
than twice the total number of processors available, i.e., two time slies are sufficient to share
the host among the jobs. Since there are almost never more than two time slices on each host,
the performance of Gang is expected to be comparable to EQspatial and has the potential to

significantly improve LXF&W-backfill for the O2K workload.

6.2 Potential Benefit of More Accurate Requested Runtime for

Backfill Policies

Since backfill policies use requested runtimes for scheduling, a natural question to ask is:
whether more accurate requested runtimes can improve the performance of backfill policies.
The results in a previous study for FCFS-backfill suggest that the improvement is very lim-
ited [FW98]. The question is whether there is a significantly larger benefit of using more
accurate requested runtimes for priority backfill policies that give priority to short jobs (such
as in Priority-backfill, SJF-backfill, and LXF&W-backfill) than that for FCFS-backfll.

To evaluate the potential benefit of more accurate requested runtimes for backfill policies, in
addition to the ideal case where the requested runtime equal to actual runtimes, two scenarios
of more accurate requested runtimes are evaluated for backfill policies. Section 6.2.1 defines
the two scenarios for more accurate requested runtimes. Section 6.2.2 presents the results for

FCFS-backfill. The results are compared against the previous results. Section 6.2.3 presents
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the results for the priority backfill policies studied, i.e., Priority-backfill, SJF-backfill, and
LXF&W-backfill. Section 6.2.5 presents the results of using more accurate requested runtimes

for LXF&W-backfill with preemptive immediate service. A summary is provided in Section 6.3.

6.2.1 Two Possible Scenarios For More Accurate Requested Runtimes

Table 15 defines two scenarios (i.e., A and B) of more accurate but imperfect requested runtimes.

Table 15. Two Scenarios for More Accurate Requested Runtime

Scenario | Figure Label Computed Requested Runtime
A T+k% min{(1 + k%) x T, R}, for any T
3 T-k% | >10m, 10%R min{(1 + k%) x T, R}, if T > .lOm or > 10% x R
R, otherwise

R: O2K requested runtime; T: actual runtime

In Scenario A, all jobs have improved requested runtimes. Specifically, for each job that
requests a runtime that is greater than 1 + k% of the actual runtime of the job, the improved
requested runtime for this job is computed to be 1 + k% of the actual runtime of the job.
For example, suppose k = 20, if a job requests 50 hours, but actually terminates in 10 hours,
the improved requested runtime for this job in Scenario A is computed as 12 hours (ie., 1 +
20% of 10 hours). For all other jobs (i.e., which have the requested runtime < 1 + k% of the
actual runtime), the O2K (i.e., user-supplied) requested runtimes are used. Three values of k
are simulated. They are 20, 50, and 100. A small value of k (such as 20) is more interesting
for this analysis, since we are investigating the benefit of more accurate runtime for backfill
policies. The other two larger values (50 and 100) are used to examine whether the value of k
has a significant impact on the performance. Note that Scenario A is similar to the model of
requested runtimes used in previous two papers [FW98, ZFMS00] (except that they model the
value of k by the uniform distribution rather than deterministic). The mean value of k used
is as large as 30,000 in [FW98] and from 50 up to 1000 in [ZFMS00]. These two papers use

such large values for k, because their goal is to study whether using overestimated runtimes for
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FCFS-backfill results in worse performance, compared to that if the actual runtimes are used;
and whether the performance degrades more as k increases.

In Scenario B, all jobs, except for ’short’ jobs, have improved requested runtimes. The
motivation for this scenario is that these short jobs possibly prematurely terminate due to
unexpected errors in the codes or in the configurations for the execution, thus it’s difficult to
improve their requested runtimes. In our simulation, jobs that run for under 10 minutes and
use under 10% of the requested runtime are considered to prematurely terminate; they do not
have improved requested runtimes. All other jobs have improved requested runtimes computed
to be the smaller value of 120% of actual runtime and the O2K requested runtime (as that
in Scenario A with k = 20). Thus, Scenario B is more pessimistic but perhaps more realistic
than Scenario A. Note the threshold of runtime used to classify the jobs in Scenario B is only
a heuristic used to give some idea of how the performance is affected if some short jobs do not
have improved requested runtimes.

Note that about 25-30% of the jobs each month terminate in under 10 minutes and the
majority of these jobs have a requested runtime greater than the actual runtime by over 20%.

Scenario B use the O2K requested runtimes for these short jobs.

6.2.2 Impact of More Accurate Requested Runtime for FCFS-backfill

This section evaluates the potential benefit of using more accurate requested runtimes for
FCFS-backfill, including using actual runtimes and Scenario A requested runtimes.

Figures 73(a) and (b) show that using perfect runtime information for F CFS-backfill does
not improve the overall average nor the 95th percentile wait time. In fact, using actual runtimes
increases the 95th percentile waiting time (although only slightly) for several months (December
1999 and February and March 2000, shown in Figure 73(b)).

On the other hand, Figures 73(c) and (d) show that using actual runtimes for FCFS-backfill

improves the maximum wait time by 20-30% each month, and improves the overall average
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Figure 73. Overall Performance of Using More Accurate Requested Runtime for
FCFS-backfill

slowdown by up to 25%, which is only as much as that reported in previous results [FW98].
Figures 73(a)-(d) also show that using Scenario A requested runtimes for FCFS-backfill
(whether the requested runtimes are up to 20%, 50%, or 100% longer than the actual runtimes)
result in similar performance to that of using actual runtimes, except that Scenario A with T
+ 20% has slightly better average and 95th percentile wait time in four months (Figures 73(a)
and (b)) and better average slowdown for two months (Figure 73(d)). This is in agreement with
the previous results [FW98, ZFMS00], which shows that using modeled overestimated runtimes
have similar or slightly better average waiting time or slowdown than using actual runtimes.
The reason Scenario A requested runtimes result in similar or slightly better performance
than using actual runtimes is because increasing the requested runtimes proportional to actual
runtimes as in Scenario A results in longer estimated completed time for currently executing
jobs (thus increased chances to backfill longer jobs) but also longer estimated requested runtimes
for waiting jobs (thus requiring a longer backfilled window). The effects on both executing and
waiting jobs cancel out on each other to some degree; however, since the difference between the
requested and actual runtimes for longer executing jobs is larger than that for shorter executing

jobs in Scenario A, using Scenario A can be actually beneficial for shorter jobs.
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Figure 74. Overall Performance of More Accurate Requested Runtime for
Priority-backfill

Thus, the conclusion is that if the actual runtimes are known or the requested runtimes
are approximately proportional to the actual runtimes, the performance of FCFS-backfill can
be improved, but the improvement is very limited. For this reason and because Scenario B

is not expected to improve the performance of Scenario A, Scenario B is not evaluated for

FCFS-backfill.

6.2.3 Potential Benefit of More Accurate Requested Runtime for Priority
backfill Policies

This section examines the impact of using more accurate requested runtimes for priority backfill
policies evaluated, including the actual runtimes, Scenario A and Scenario B.

In contrast to the results for FCFS-backfill (Figures 73 in the previous section), Fig-
ures 74(a)-(d) show that the benefit of using actual runtimes and using Scenario A requested
runtimes is much larger for Priority-backfill than for FCFS-backfill. In particular, using actual
runtimes or Scenario A improved requested runtimes for Priority-backfill not only dramatically
reduces the overall average slowdown (by 50-75% for most months, shown in Figure 74(d)), but

also improves the overall average and 95th percentile wait time by over 25% each month (shown
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Figure 75. Performance vs. Actual Runtime Using More Accurate Requested
Runtime for Priority-backfill

in Figures 74(a) and (b), respectively).

However, as also shown in Figures 74(a)-(d), using Scenario B requested runtimes for
Priority-backfill only slightly improves the overall average, 95th percentile, and maximum wait
time for most months, and increases the overall average slowdown by up to 20%.

To show why Scenario B has worse average slowdown, Figure 75 plots the performance
versus actual runtime for Priority-backfill using different scenarios of requested runtimes. It
shows that prematurely terminated jobs (< 10 minutes) in Scenario B may incur poor average
and maximum wait time and average slowdown longer jobs have more accurate requested run-
time. Nevertheless, the performance of longer jobs (that have improved requested runtimes) in
Scenario B is improved.

The impact of using actual runtimes and Scenario A and B on the other two priority backfill
policies, LXF&W-backfill and SIF-backfill, is similar to that for Priority-backfill. The results
for LXF&W-backfill are shown in Figure 76 for the overall performance and in Figure 77 for

the performance versus actual runtime for two given months. The results for SJF-backfill are
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Figure 77. Detail Performance of Using More Accurate Requested Runtime for
LXF&W-backfill

shown in Figure 78 for the overall performance.

The conclusions in this section are: (1) the benefit of using more accurate requested runtimes

is much more significant for priority backfill policies that give priority to short jobs than that
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Figure 79. Overall Performance of Alternative Priority Backfill Policies Using Actual
Runtimes

for FCFS-backfill; (2) however, jobs that prematurely terminate due to unexpected errors may

incur poor turnaround if other jobs have improved requested runtimes.

6.2.4 Alternative Priority Backfill Policies Using Actual Runtimes

Since the improvement of using more accurate requested runtimes is much larger for priority
backfill policies that favor short jobs than that for FCFS-backfill, next, we re-evaluates FCFS-
backfill, Priority-backfill, and LXF&W-backfill, using actual runtimes.

Recall that that using inaccurate requested runtimes given in the O2K workload, FCFS-

backfill and Priority-backfill have similar performance (except for maximum wait time) versus
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Figure 80. Performance vs. Actual Runtime of Alternative Priority Backfill Policies
Using Actual Runtimes

actual runtime for each month, as shown in Section 5.2. Figure 79 shows that if actual runtimes
are known or all jobs (including short jobs) have improved requested runtimes, Priority-backfill
significantly outperforms FCFS-backfill: significantly lower overall average and 95th percentile
wait time and average slowdown (in Figures 79(a), (b), and (d)), and comparable maximum
wait time (in Figure 79(c)).

Figure 79 also shows that LXF&W-backfill still has lower average and 95th percentile wait
time than that of Priority-backfill if actual runtimes are used, but the improvement is much
smaller than that if the O2K requested runtimes are used. Figure 80 further shows the per-
formance versus actual runtime for Priority-backfill and LXF&W-backfill (for the case if the
actual runtimes are known). It shows that LXF&W-backfill has considerably lower 95th per-
centile wait time than Priority-backfill for most ranges of actual runtime for the two heavy-load
months (December 1999 and February 2000 in Figures 80(b) and (f) respectively), but Priority-

backfill is very comparable for other measures.
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The key conclusion is that if the actual runtimes are known to the schedulers, Priority-
backfill significantly outperform FCFS-backfill for all performance measures. Another conclu-
sion is that LXF&W-backfill still outperforms Priority-backfill if the actual runtimes are known

(or the requested runtimes are proportional to the actual runtimes), but the improvement is

not as much as that if the requested runtimes given in the O2K workload are used.

6.2.5 Impact of More Accurate Requested Runtime For LXF&W-backfill

with Immediate Service

This section provides the results for using more accurate requested runtimes for LXF&W-backfill
with 1-minute immediate service, the best priority backfill policy.

As shown in Figures 81(a)-(d), using actual runtimes improves LXF&W-backfill with 1-
minute immediate service, but the improvement is significantly smaller than that for LXF&W-
backfill. In particular, the improvement in the average slowdown for LXF&W-backfill with
immediate service is 25% for most months and no more than 50% (Figures 81(d)), compared
to more than 50% improvement for LXF&W-backfill in most months (Figures 76(d)). This is
because the dramatical improvement in the average slowdown under LXF&W-backfill is mainly
due to the improvement for 1-minute jobs, which has good turnaround under LXF&W-backfill
with 1-minute immediate service whether the actual rungimes or the O2K requested runtimes
are used. For the same reason, Scenario B has a smaller impact on the average slowdown
for LXF&W-backfill with immediate service. In particular, Scenario B does not impact the
performance for LXF&W-backfill, except a slight increase in the averge slowdown for one month
(February 2000).

Figures 82(a)-(e) provides the average wait time versus actual runtime for LXF&W-backfill
with 1-minute immediate service using the O2K requested runtimes, the actual runtimes, and
Scenario B requested runtimes for each month (except the light-load month). The graphs

show that due to the 1-minute quantum, the jobs that terminate in under 1-minute have good
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Figure 82. Impact of More Accurate Requested Runtime on LXF&W-backfill with
Preemptive Immediate Service: Average Wait Time versus Actual Runtime Each
Month

turnaround in any case. However, jobs that are longer than 1 minute but shorter than 10
minutes have significantly higher average wait time in c’Scenabrio B for one high-load month
(February 2000, shown in Figure 82(d)).

The results for LXF& W-backfill with immediate service suggest that using a larger quantum
for immediate service (e.g., 10 minutes) can improve jobs that prematurely terminate, even
if other longer jobs have more accurate requested runtimes. However, a longer quantum may
impact the performance of longer running jobs and may create the problem of memory pressure.
Further investigation of the impact of a longer quantum for immediate service is necessary to

determine whether it can improve the overall performance.
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6.3 Summary of Further Policy Evaluation

In this chapter, we evaluate the performance of EQspatial against LXF&W-backfill with imme-
diate service, and evaluate the potential benefit of using more accurate requested runtimes for
backfill policies. Our results for FCFS-backfill using perfect runtime and Scenario A requested
runtimes are consistent with previous results.

The key results are: (1) EQspatial has the potential to significantly further improve the per-
formance of LXF&W-backfill with immediate service, especially for the 95th percentile waiting
time, for the jobs that don’t complete in the 1-minute quantum under LXF&W-backfill with
1-minute immediate service; (2) It may be important to modify EQspatial to reduce the max-
imum waiting time of the jobs that have long running time and a large requested number
of processors in the challenging production workloads. A proposed simple modification, that
allocates each long running jobs (> 50 hours) as many processors as requested, effectively im-
proves the maximum wait time of EQspatial and results in comparable maximum wait and still
significantly lower average and 95th percentile wait time than that of LXF&W-backfill with im-
mediate service for most ranges of runtime; (3) The benefit of more accurate requested runtime
is much larger for priority backfill policies that favor short jobs than that for FCFS-backfill.
In particular, if the actual runtimes are known or the requested runtimes are proportional to
the actual runtime, Priority-backfill significantly improves the average and 95th percentile wait
time (by at least 25%) and average slowdown of FCFS-backfill; whereas, using the inaccurate
requested runtimes given in the O2K workload, these two policies have similar performance
(except for the maximum wait time) for each month studied; (4) Jobs that request a long run-
time but prematurely terminate may incur poor turnaround, if other jobs have more accurate
requested runtimes. Preemptive immediate service can help the short jobs that abort within
the initial quantum. To help the other short jobs that prematurely terminate but run longer
than the initial quantum, users are encouraged to request a short runtime to test-run each new

configuration for a job, before submitting the job with a longer runtime.
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Chapter 7

Conclusions and Future Work

This thesis has provided new and improved parallel job scheduling policies as well as a better
understanding of relative scheduling policy performance for challenging production parallel
workloads, such as the workload that runs on the NCSA Origin 2000 system. The design of
new policies was guided by fundamental job scheduling principles and the observed workload
characteristics, with two additional goals; namely, easy to tune and avoiding user gaming for
better service. A more complete understanding of relative policy performance was obtained
by using more extensive performance measures for policy comparisons (e.g., average and 95th
percentile waiting time as a function of actual runtime) and by performing comparisons among
a more extensive set of policies than in previous work.

Due to the absence of a reliable synthetic workload model in the literature, the performance
evaluations and comparisons were conducted using trace-driven simulation with six one-month
02K job traces. A key contribution of this thesis is that we developed a model for creat-
ing synthetic workloads that have the observed relationships among key job characteristics in
the workload as well as the observed distributions for each characteristic. The model uses
conditional distributions to capture the relationships among job characteristics. The requisite
conditional distributions are identified by plotting the percentiles of a given distribution that
might need conditioning as a function of the values of the candidate conditioning variables. We
applied the approach to obtain a procedure for generating synthetic workloads using conditional

distributions that faithfully represent the O2K workload.
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As a result of workload characterization, the O2K workload during the year 2000 is com-
pletely characterized with respect to the range of policies that were evaluated. The characteri-
zation aided the design of new and improved scheduling policies for the workload, and provides
data for comparison against other system workloads. Thus, the results of the scheduling policy
evaluation for the O2K workload may be applied to other systems that have similar workloads.

Section 7.1 summarizes the interesting characteristics of the O2K workload. Section 7.2
concludes the results of policy comparisons. Section 7.3 provides possible directions for future

work on workload characterizations on the job scheduling policies.

7.1 Workload Characterization

The 02K workload is a large-scale production workload in that the O2K system has more
processors and memory than previously studied systems, jobs request a large fraction (80-90%)
of the processing cycles each month, and the longest O2K job runs up to 400 hours (compared
to only a few tens of hours on previously studied production parallel scientific workloads). In
addition, the O2K system is a shared-memory system, while the previous workloads studied are
for distributed-memory systems. Despite the differences in the systems and system scale, for
the characteristics that are reported in previous workload studies, there are many similarities
and only a few differences in the characteristics of the O2K workload. In addition, this thesis
has reported many new workload characterization results due to new workload measures and
analysis.

The similarities in the O2K workload to previous workloads include the following. A large
fraction of jobs are serial and most jobs request power of two numbers of processors. A large
fraction (50%) of the O2K jobs use a small fraction (< 15%) of the memory available per
processor. The total memory usage has a positive correlation with the number of requested
processors. There is a large discrepancy between peak memory usage and requested memory.

In particular, 15-20% of the jobs use more memory than requested. For the remaining jobs, the
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ratio of the peak memory usage to requested memory is approximately uniformly distributed
over each 10% interval from 0 to 100%. Many jobs have a significant discrepancy between the
requested and actual runtimes. The actual runtime can be modeled by the Weibull distribution,
which is simpler but similar to the piece-wise log-uniform distribution suggested for previous
workloads. Jobs that are very short (under 1 minute) use much less than 1 GB of memory in
total.

A few characteristics in the O2K workload are different from several previously studied
workloads. First, the coefficient of variation (CV) of the job interarrival time, during each
period of relatively stable arrival rate and excluding system downtimes, is in the range of 1
- 9 for the O2K workload. This is similar to that reported for the daytime workload on an
SP/2, but smaller than the CV of 2.5 - 6 that has been reported for several other workloads
(iPSC/860, Paragon, SP/2). One possible reason for the higher CV in many previous workloads
is that the CV was computed for daytime and nighttime periods over several months (possibly
also including system downtimes during which no arrivals occur). Second, there is a negative
correlation between normalized memory usage (i.e., peak memory usage divided by number
of processors) and the number of processors requested in the O2K workload, while a positive
correlation between these two job measures is reported for a CM-5 workload. In addition, we
found a complex correlation between actual runtime and the number of requested processors
in the O2K workload, which is similar to an SP/2 workload; in contrast, a positive correlation
between these two job measures is reported for an iPSC/860 and a Paragon workload.

Regarding the discrepancy between the requested runtime and actual runtime, there is a
significantly higher fraction of the O2K jobs making very poor runtime estimations than that
in an SP/2 workload; namely, at least 40% of the O2K jobs for any default requested runtime
class, compared to only 10% of all SP/2 jobs, use under 10% of the runtimes requested. This
could be due to larger default requested runtimes defined on the O2K (i.e., 5, 50, 200, and 400

hours).
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The new workload measures and analysis provided in this thesis include: the characteristics
of the fifteen largest jobs each month, comparisons of the workload mix from month to month,
more complete analysis of number of job arrivals for each hour and each day, including iden-
tifying periods of stable arrival rate, comparisons of the characteristics of jobs submitted from
period to period, the distribution of requested runtime, the distribution of requested memory
for a shared-memory system, the distribution of processor efficiency per job (i.e., the utiliza-
tion on the requested processors of the job), the distributionb of average memory efficiency per
job (i.e., the average memory usage divided by the memory requested of the job), the overall
utilization on the processors and memory allocated each month, new conditional distributions
that capture the relationships among key job characteristics, i.e., the distributions of requested
memory, conditioned on requested number of processors; the distributions of requested run-
time, conditioned on requested number of processors and requested memory; the distributions
of the ratio of the actual to the requested runtime, conditioned on the requested runtime, the
requested number of processors, and the requested memory; and the distributions of the ratio of
the peak memory usage to requested memory, conditioned on the actual runtime and requested
number of processors. In addition, the distribution of actual runtime for each requested run-
time class is also provided. Finally, we provide a procedure for generating synthetic workloads
that have the observed distributions and correlation between key job characteristics in the O2K
workload; the procedure is summarized in Sections 4.4.4 and 4.5.3.

Interesting results from the new analyses, which impact scheduler design, include:

e In a typical month, the fifteen largest jobs each month have a runtime over 200 hours
and use 4000 - 8000 processor-hours on average, which is at least an order of magnitude
larger than the average over all jobs in each month. In addition, at least two-thirds of
these largest jobs each month achieve 80-100% utilization of the requested (and allocated)

Pprocessors.

e A large fraction (60%) of all jobs, including long and/or large-processor jobs, achieve over
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80% utilization of the processors allocated, which leads to high overall utilization (i.e.,

80%) on the processors allocated each month.

o The overall utilization on the memory allocated each month is 40-55%, which is signifi-

cantly lower than the utilization on the processors each month.

e There is a large discrepancy between actual and requested runtime for every requested
runtime class. In particular, 10% of the jobs that request over 5 hours of runtime terminate
in under 1 minute. This is possibly due to unexpected errors in the programs, yet it
is surprising that 10% of the jobs that request over 5 hours would terminate due to
unanticipated errors. Furthermore, over 20% of the jobs that request 200 or more hours
of runtime run for over 10 hours but terminate in under 50 hours. Thus, it appears
that a significant fraction of inaccurate requested runtimes are due to misestimation of
the runtime. We note that the scheduler performance may be improved if the requested

runtimes could be more accurate.

Other new workload results that are also important for scheduling include the following.
First, the O2K workload mix did not change over time, even after the job scheduler used on
the system changed (from NCSA-LSF* to a priority backfill policy). Second, there are three
weekday periods (i.e., peak, intermediate, and low) and two weekend periods (i.e., intermedi-
ate and low) of approximately stable arrival rate per hour. We notice from the data provided
in several previous papers that similar periods of stable job arrival rate per hour also exists
on several other systems (namely, iPSC/860, SP/2, and the Lewis network of workstations at
NASA), but these periods were not identified or used in the previous work. Third, allowing
statistical fluctuation in small samples, the jobs submitted during peak arrival rate periods have
similar characteristics to the jobs submitted during non-peak periods of arrival rate. The job
characteristics are also similar for different months and for different days of the week. Fourth,
although the total requested memory is positively correlated with the number of requested pro-

cessors, the normalized requested memory is negatively correlated with the number of requested
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processors. Finally, a significant fraction (15-20%) of the jobs request a larger fraction of system

memory than processors. Such jobs would not run efficiently on a distributed-memory system.

7.2 Job Scheduling Policies

This thesis has proposed new and improved policies and has provided more extensive evaluations
and comparisons of new and previous policies, with a goal of providing useful information to
help NCSA or other production facilities to choose an appropriate scheduling policy for their
workloads.

To gain more complete understanding of policy performance, more extensive performance
measures were used for evaluating job scheduling policies. In addition to the overall average
wait and average slowdown as commonly used in previous policy comparisons, we provided
average, 95th, and maximum wait time versus actual runtime, number of requested processors,
and requested memory.

The new and previous policies quantitatively compared are: (1) the highly tuned static
job-class priority NCSA-LSF* scheduler, (2) two new and simplified priority backfill policies:
Priority-backfill and LXF&W-backfill that give priority to short jobs without starving long jobs,
(3) previously proposed FCFS-backfill and SJF-backfill, (4) varying numbers of reservations for
priority backfill policies, (5) limited preemption for backfill policies to improve the turnaround
for very short jobs, (6) the EQspatial spatial equi-partitioning policy modified to reduce the
maximum wait for large and long running jobs. (7) the impact of more accurate requested
runtime for Priority-backfill, LXF&W-backfill, and FCFS-backfill. The results for the impact
on FCFS-backfill are compared against prior work.

The key conclusions of job scheduling policies in this thesis are:

e Static job-class priority scheduling such as that in NCSA-LSF*, does not appear to per-
form well, because limits are required to prevent starvation. This causes significant wait

times for higher-priority jobs when there are more of them to be scheduled. Furthermore,
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the scheduling performance is sensitive to specific order of job arrivals and it is difficult

to tune the job limits.

The benefit of more accurate requested runtime is much larger for priority backfill policies

that favor short jobs than that for FCFS-backfill.

The current estimated job expansion factor plus a relatively very small weight for the
current job waiting time, used in LXF&W-backfill, provides a starvation-free priority
measure for backfill policies that favors short jobs and performs significantly better than
FCFS-backfill and the other priority backfill policies studied. Furthermore, the LXF&W
priority measure has three additional advantages: (1) intuitive and based on fundamental
scheduling policy results, (2) easy to experimentally tune (i.e., the weight for the job wait

time) due to its simplicity, and (3) avoids gaming for better service.

With an appropriate initial quantum and memory and selection of jobs for preemption
that have not recently been preempted, adding a preemptive immediate service for priority
backfill policies effectively provides immediate turnaround for jobs that complete in the
initial quantum and memory, without impacting the performance of other jobs. The
initial quantum and memory are based on measured distribution of actual runtime and

the measured memory usage of short jobs.

The dynamic equal spatial partitioning policy (EQspatial) has the potential to signifi-
cantly improve priority backfill policies with limited preemption for immediate service,
but it may be important to reduce the maximum waiting time of long and large-processor

jobs under EQspatial.

A proposed simple modification that allocates as many processors as requested to each
long running job (> 50 hours) effectively reduces the maximum wait time of EQspa-
tial to be comparable to the best priority backfill policy studied, i.e., LXF&W-backfill

with immediate service, and has significantly better performance (e.g., 50-75% lower 95th
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percentile wait time for most ranges of runtime).

Further simulation results show that (1) for the O2K workload, giving priority to large-
memory jobs in addition to large-processor jobs does not improve the performance of large-
memory jobs, because the processor resources are more constrained than the memory on the
current O2K system. (2) Jobs that request a long runtime but prematurely terminate may
incur poor turnaround, if other jobs provide more accurate requested runtimes. Preemptive
immediate service can help the short jobs that abort within the initial quantum. To help
the other short jobs that prematurely terminate, users may request a short runtime (e.g., 10
minutes) to test-run each new configuration for a job before submitting the job with a longer

runtime.

7.3 Future Work

7.3.1 Future Work for Workload Characterization

Possible directions for future work on the study of the workloads and the workload model
include: (1) analysis of related job arrivals in the O2K workload, i.e., the patterns of repeated
submissions of similar applications; (2) analysis of job I/O demands; (3) analysis of the variation
in the actual memory usage relative to the memory requested during the execution of each job;
(4) analysis of the workload submitted during weekdays in which there is a higher number of
job arrivals per day (i.e., > 500) than that in a typical weekday (i.e., 350-400/day); (5) analysis
of whether statistical fluctuation in finite sample sizes accounts for small variation observed
among periods of job arrival rate, daily, and monthly workloads on the O2K; (6) analysis of
the jobs that request a dedicated host on the O2K; (7) implementation of a synthetic workload
generator that uses the workload distributions provided in Chapter 4, with the flexibility of
varying the workload parameters within expected or hypothetical range; and (8) analysis of the

workloads on future cluster of computers (e.g., the 960-node IA32 Linux cluster at NCSA) and
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on more widely distributed environment (e.g., Condor or Globus).

7.3.2 Future Work for Policy Evaluation

Possible directions for future work on job scheduling policies include (1) further evaluation of
EQspatial, using EQspatial host placement to choose the host for scheduling a job and using
gang scheduling for sharing the processors among the jobs on each host. (2) further refinements
of LXF&W-backfill with an initial quantum larger than 1 minute to possibly help jobs that
prematurely terminate but run longer than 1 minute. Note that a larger quantum may require
a larger initial memory (> 1 GB) and a higher threshold of non-interrupted execution time
(e.g., 100 minutes as opposed to 10 minutes for 1-minute quantum) before an executing job
is eligible to be preempted. (3) evaluation of nonpreemptive policies with initial adaptive
processor allocations (e.g., ASP-max) for the O2K. Such policies have the ability to adapt to
increased load by reducing the processor allocations; however, a minimum processor allocations
may be required to avoid long turnaround for large-processor jobs. (4) comparing policies using

synthetic workloads generated from the workload model provided in Chapter 4.
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Appendix A

NCSA O2K Logs and Daemons

This appendix describes the information in the job logs on the O2K and how we extract the

information from the logs.

A.1 The O2K Logs

Three types of job logs on the O2K are used for extracting the job information for analysis in
this thesis. Table 16 summarizes the fields in the log that are used in our analysis. The fields
marked by an asterisk (*) are further explained below. The actual log entries will be shown at
the end of this section.

Each job may be suspended and resumed waiting for several times. Each of such events
with the time when it occurs is recorded in the LSF event log. In our simulation, the submit
time for such a job is the last time it is ready in the queue, but not the time it is submitted by
the user. Only a very small fraction (< 7%) of the jobs have been suspended while waiting.

Very infrequently a job is suspended during execution. The total suspended time is recorded
in the JMD log. The actual runtime of the job does not include the time the job has been
suspended during execution.

To record the memory and cpu load usage, the JMD process for each job polls the informa-
tion of the resource usage of the job every 30 seconds. The value of the cpu load is from 0 to
the maximum number of processors; it is defined to be the total cpu time used divided by 30
seconds. The peak usage of memory and cpu load so far is updated when the peak changes.

The frequency of the usage is reported in pairs of the value of the usage and time (in seconds).




Table 16. The Content of O2K Logs

Log Field Comments
job ID assigned by LSF
job name often incomplete
user name the submitter
LSF
job submission time
Accounting
job dispatch time
Log
job complete time
queue name e.g., vst-mj
resource requests string | #processors, memory & runtime can
be derived
execution host name where the job was executed
LSF suspended (while waiting)x*
Event Log resumes pending*
total cpu time
total suspended timex during execution
Per-Job JMD
memory usedsx both peak and the frequency
IJOg

cpu load usedsx

are recorded

killed time & reasons

if the job is killed
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The values of the usage are chunked into bins, with the chunk size of 100 MB for the memory
usage and 1 for the cpu load, e.g., a memory usage in the range of 500 £ 50 MB is counted
for the bin with a value of 500 MB. As an example of the frequency of memory usage, ”100
830 2000 540 4000 36000” means the job used 100 % 50 MB for 830 seconds, 2000 = 50 MB
for 540 seconds, and 4000 + 50 MB for 36000 seconds. The averaged memory usage reported
in Section 4.5.2 is computed as the average usage over time, e.g., in the above example, the
average memory usage for the job is 100 x 830 + 2000 x 540 + 4000 x 36000 divided by (830
+ 540 + 36000).

The information of each job is extracted from these three job logs. and stored as one entry
in the log for the month the job is submitted to. These new per-month logs are used for our
later analysis and simulation.

Below further shows the actual data recorded in the three logs for an example job (with id
385173). The identity of the user and the project name is replaced by ”xxx”.

This job has the following entry in the LSF accounting log:

» JOB_FINISH” ”3.2” 946539696 385173 23533 33816723 1 946481108 0 0 946486336 "xxx”
»st_mj” ”rusage[npe=15:nmem=2000] order[npe] spanfhosts=1]" ”” ”” “modi4”

» /scratch-res4/xxx” ”” "htjob.o” " "946481108.385173” 0 1 "huldra” 32 60.0
”1.0-0.15-300” ”#!/bin/csh;#;#BSUB -n 15 # Specify 4 threads/processes;#;#BSUB -P
xxx # Charge job to project abc (recommended for users; # with multiple
projects);#BSUB -o htjob.o # Store the stan” 794591.549313 1339.050120 59808 0-1 00

5683 62 0 7246 459 -1 282 399 41 10908 14 -1 ”” "xxx” 2048 1 7" »” 0 887264 5806016

These are the log entries of the job in the LSF event logs (across two log files) in the order they

are recorded, for the job submission, executing, status checked, and complete events.

1. ”JOB.NEW” 73.2” 946481108 385173 23533 33816723 1 946481108 0 0 -65535 0 0 "xxx”
1-1-1-1-1-1-1-1-1-1-1"” 60.00 23 ”st_.mj” "rusage[npe=15:nmem=2000]

P NN NN

order[npe] spanfhosts=1)" "modi4” ” /scratch-resd/xxx/Xxx /XXX /XXX /XXX
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"htjob.o” ”” ” /u/nesa/xxx” "946481108.385173” 0 ** »” *1,0-0.15-300”
"#!/bin/csh;#;#BSUB -n 15 # Specify 4 threads/processes;#;#BSUB -P xxx #
Charge job to project abc (recommended for users; # with multiple projects);#BSUB -o

htjob.o # Store the stan” 0 ”” "xxx” 1 ?SGI02K” »» »» "” " 16 0
2. 7JOB_START” 73.2” 946486336 385173 4 0 0 60.0 1 "huldra” ”” »” 07”7 0
3. "JOB_START_ACCEPT” ”3.2” 946486336 385173 3049622 3049622 0

4. "JOB.EXECUTE” 73.2” 946486336 385173 23533 3049622 ” /scratch-res4/xxx"

” Ju/nesa/xxx” "xxx” 3049622 0

5. "JOB_STATUS” 73.2” 946539696 385173 32 0 0 795930.6250 946539696 1 794591.549313

1339.050120 59808 0 -1 0 0 5683 62 0 7246 459 -1 282 399 41 10908 14 -1 2048 0
6. "JOB_CLEAN” ”3.2” 946543473 385173 0
This is the actual JMD log file for the job:

TIOChunk=100
IObChunk=10
IObread=1671219200
1ObreadRateUse=0 53381
I0bwrite=217267200
I0ObwriteRateUse=0 53381
I10read=136237269140
I0readRateUse=0 53381
IOwrite=1436173386816
IOwriteRateUse=0 53381
cpuTime=795870.4709928

detectTime=946486359



domain=ncsa.uiuc.edu
finishTime=946539743
host=huldra

hostFactor=1

jmdGapTime=33
jmdVersion=1.171
jobld=LSBATCH:385173
jobName=1.0-0.15-300
limitCpuTime=2160000
limitMem=2048000

limitNpe=15

loadChunk=1

loadUse=12 36 15 53238 0 71 1 36
memChunk=100

memUse=800 36 900 53238 0 107
npeUse=15 53274 0 71 1 36
peakLoad=14.9028616902195
peakMem=880592

peakNpe=15

project=xxx

queue=st_mj

queueFactor=1.0

runTime=53407
scratchDir=/scratch/LSBATCH/385173.29Dec1999105216
startTime=946486336

submitTime=946481108
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user=xXxx

A.2 Processes For Monitoring O2K Jobs

I've developed three processes that run on the interactive host (i.e., modi4) to monitor the
system. The function of each process is briefly described below. The information produced
by these processes is helpful for studying scheduler anomalies and check for the information of

system downtime.

e A process that takes a snapshot of the scheduling state every two hours, including the

currently executing jobs and the jobs in the waiting queues

e A process that records the current cpu load of each host every 1 minute in average (the
actual interval between two recordings is generated by an exponential distribution with

an average of 1 minute to simulate a random process).

e A process that checks the time stamps of the LSF configuration files every half hour, and
if any configuration file has been changed, the new configuration is saved so that we have

a copy of the LSF configuration after each change.

These processes die when modi4 is shutting down for whatever reasons. Upon such an event,
an email notification from modi4 is sent to a list of people, including me. I restart the processes

later when modi4 comes back on line.
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Appendix B

Characteristics of Fifteen Largest

Jobs For Additional Mdnths
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Appendix C

Additional Workload

Characterization Graphs

Figures 88-89 provide additional graphs to show the variation of the distribution of normalized

requested memory across different periods.
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Appendix D

Anomalies in the LSF Scehduler

As mentioned in Section 3.6, the LSF scheduler sometimes schedule the jobs in violation of
the rules, which has caused some discrepancy in our simulated results and the results analyzed
from the log.

Specifically, we found three types of scheduling rules that have been violated under the LSF
scheduler. Type 1 is the rule for the class priority, e.g., the mj jobs are started on a host that
currently has the priority for the lj jobs and there are lj jobs that are waiting in the queue
and can be scheduled. Type 2 is the rule for the class limits (i.e., per-host mj and lj limits
and system-wide mt and It limits), e.g., the mj jobs are started on a host on which the mj job
limit has been reached. Type 3 is the rule that ensures the processors on each host are not
oversubscribed. Some jobs have been scheduled in violation of this rule. Table 17 provides an
example of the number of jobs that have been scheduled in violation of each rule, during each

given period.




Table 17. Scheduling Violations Under the LSF Scheduler

#Jobs Scheduled in Violation of Rules

Class Priority | Class Limit | Processor | Memory
Period || sj mj mj lj mt It Limit Limit
6/1-6/7 || 79 2 6 0 37 3 0 0
6/8-6/14 || 110 0 149 0 4 0 1
6/24-7/6 || 55 5 1000 1 0
7/7-7/12 || 11 1 2 0 1 0 2 0

171



172

Appendix E

NCSA-LSF* Tuning Results

This appendix provides example LSF tuning results or suggestions based on our simulation

study.

E.1 Tuning Per-Queue & Per-Host Job Limits

Prior to June 1998, there were limits on the number of running jobs in each queue and on each
host. Table 18 shows Our study showed that a large fraction of the waiting time is due to
per-host limit and per-queue limit (for popular queues), shown for an example week in March

1998. We thus suggested to remove these job limits, which were implemented immediately.

Table 18. Job Waiting Time Due To Each Job Limit Under Early LSF

Queue Number || Wait Time (hrs) Job Limit
Jobs Avg Sum User | Queue | Host
st_sj 251 1.6 397.0 3.8% | 62.2% | 14.9%
st.mj 94 0.9 81.5 50% | 0.0% |51.5%
mt_sj 110 7.4 809.1 8.6% | 65.7% | 10.3%
mt_mj 59 7.8 458.3 0.0% | 0.3% |67.0%
mt_lj 12 6.3 75.6 0.0% | 0.0% |59.8%
ltsj 19 10.6 | . 200.7 0.0% | 1.0% |56.6%
It_mj 40 25.7 1026.6 82% | 9.8% | 26.0%
1t 10 36.6 366.5 0.0% | 0.0% | 16.3%
All 897 3.9 3510.3 6.0% | 25.2% | 28.2%

(Period for analysis: Week 1, March 1998)
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E.2 Tuning Class Job Limits

E.3 Suggestions for Immediate Service

Table 19 shows the 10-th, 20-th, and 50-th percentiles of waiting time for each LSF queue that
have an average cpu time limit of over 5 hours and that for all space shared jobs for an example
week in March 1998. The key observation is that a significant fraction of these jobs used a very
small total cpu time (< 1 minute). Thus, we suggested to give each new job a short immediate
service if it can’t start right away. The idea is the same as the immediate service we propose
for policies with backfill in Section 5.5. However, the preemption has never been implemented

on the O2K so far.

Table 19. Per-dob Total CPU Time In LSF Queues .

Total CPU time (hours)
Percentiles

Queue | #Jobs | 10-th | 20-th 50-th
st.sj 249 0.0 | 0.0 3.1

st.mj 93 0.0 | 0.3 4.7

mt.mj 59 0.1 | 4.2 23.6
mt_lj 12 0.0 | 0.0 0.5

It_sj 19 00 | 14 28.8

1.1 10 0.0 | 0.0 5.0

(Period for analysis: Week 2, March 1998)

E.4 Suggestions for Utilizing Dedicated and Interactive Hosts

Figure 90 shows the cpu utilization on a then dedicated host (saga2) and the interactive host,
i.e., modi4 for an example weekday day in May 1998. It shows that these hosts have low
utilization sometimes. Thus, we suggest that these hosts can run space-shared jobs when it’s
nearly idle. The space;shared vst classes were created to run for short jobs (under 5 hours) and

were allowed to use dedicated hosts if no dedicated jobs are available for scheduling.
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Figure 90. CPU Utilizaation on LSF Dedicated and Interactive Hosts

(an example day in May 1998)
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Appendix F

Additional Performance Results for

Backfill Policies

Figure 91 shows the average, 95th percentile, and maximum waiting time versus actual run-
time for the two typical load months (October 1999 and January 2000) that are not shown in
Figure 91.

Figures 92-93 provide the results for the impact of number of reservations and fixed-job

versus dynamic-job reservation on the performance of LXF&W-backfill.
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Figure 91. Performance of Priority-backfill and Priority(P&M)-backfill versus Actual
Runtime: Additional Results
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Appendix G

Performance Comparisons of Key

Policies

Figure 94 summarizes the performance of the key policies evaluated in Chapters 5-6, using
O2K requested runtime. They are two previously proposed FCFS-backfill and SJF-backfill;
two new priority backfill policies: Priority-backfill and LXF&W-backfill; LXF&W-backfill with

immediate service; and dynamic EQspatial-5m and EQspatial-5m/>50hr.
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Figure 94. Overall Performance of Priority Backfill and EQspatial Policies
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