',4

Computer

Sciences
Department

A Customized MVA Model for Shared-
Memory Systems with Heterogeneous
Applications

Daniel J. Sorin
Jonathan L. Lemon
Derek L. Eager
Mary K. Vernon

Technical Report #1400

June 2001

UNIVERSITY OF

- WISCONSIN

M A DI S O N

A Customized MVA Model for Shared-Memory Systems with
Heterogeneous Applications *

Daniel J. Sorint, Jonathan L. Lemon’, Derek L. Eager!, and Mary K. Vernon'

fComputer Sciences Department {Department of Computer Science
University of Wisconsin - Madison University of Saskatchewan
{sorin,lemon,vernon }@cs.wisc.edu eagerQcs.usask.ca
Abstract

We develop and validate an analytical model for evaluating the performance of shared memory systems with ILP
processors. We model heterogeneous node behavior, highly bursty memory request traffic, and lock synchronization.
The new model is applicable to a broad range of architectures and applications. This technical report provides
details regarding the equations that are used to model the system.

1 Introduction

Sorin et al. [7] presented an analytical model for evaluating the performance of shared memory ILP multiproces-
sors with homogeneous node behavior. This model is a good first step towards modeling such systems, but it has
several deficiencies. To overcome its shortcomings, we have developed a new model that handles heterogeneous node
behavior, high-variance in processor service times, bursty arrivals at system resources, and lock synchronization.

This technical report presents the equations used in the new model. Section 2 gives a brief outline of the system
and the parameters used to describe it. Section 3 discusses the differences between the equations for the homoge-
neous model [6] and the heterogeneous model, and it provides the equations for computing lock synchronization.

2 System

This system of interest in this paper is the system modeled in SimOS [4], a detailed simulator developed at
Stanford against which we validate our extended model. The architecture, which is similar to that of the Stanford
FLASH [2] and the SGI Origin [3], is a cache-coherent, sequentially consistent shared-memory multiprocessor
system, as shown in Figure 1.

Table 1 defines the system architecture parameters. Table 2 lists the application parameters. Since the model
assumes heterogeneous node behavior, each of the parameters in Table 2 is per-processor.

3 Equations

The principal output measure computed by the model is the system throughput, measured in instructions retired
per cycle (IPC). This throughput is computed as a function of the input parameters that characterize the workload
and the memory architecture.

*This research is supported in part by DARPA/ITO under Contract N66001-97-C-8533, the National Science Foundation under
Grants CDA-9623632, MIP-9625558, and ACI 9619019, and by the Natural Sciences and Engineering Research Council of Canada
under Grant OGP-0000264.

Complex
ILP
Processor

Directory
T T T Controller
- ! T T I s X \\ o \\/

R

Figure 1. System Architecture

parameter | description

N number of nodes

m memory modules per node

My number of MSHRs

Shus bus latency

Sdir directory latency

Smem memory /directory (DRAM) access
Snet network latency

Table 1. System Architecture Parameters

3.1 Notation

In general, the heterogeneous equations have extra indices (in brackets) to indicate the node of the customer
and/or the destination. Thus, a utilization term such as Ugir,,, (the mean utilization of the local directory) becomes
Usir,,.] (the mean utilization of the directory of node ¢ by local customers) to reflect the fact that the utilization
of the local directory is different for different nodes. The probabilities of the transaction types use an index in a
similar fashion. For example, we now have the probability of transaction LC at node i, Prc[i]. These probabilities
are computed from the last six parameters in Table 2.

Since the heterogeneous model does not assume that a request that goes remote is equally likely to go to any
of the other N — 1 nodes, remote visit counts have two indices: one for the node of the customer and one for the
node that the customer is visiting. For example, the term V..., (visit count at a remote directory) becomes
Viir,... [][5] (visit count of a customer of node ¢ visiting the directory of node j). Visit counts in the homogeneous
model were a function of N,m, and the transaction type. In the heterogeneous model, they depend on routing
probabilities instead of N and m, such as the probability that a transaction of type y visits node j when it goes to
a remote node. In the rest of this paper, we will treat the visit counts as inputs, bearing in mind that they depend
on transaction types.

Similarly, the waiting time terms have two indices. The mean waiting time at a resource is equal to the sum
of the mean waiting time caused by local traffic and the mean waiting time caused by remote traffic. In the
homogeneous model, adding up the remote traffic could be done simply by multiplying the waiting caused by one
remote node by N — 1. In the heterogeneous model, the mean waiting due to remote traffic is computed as a sum.
For example, to compute the mean waiting time of a node i customer at remote directories, we have

Parameter Description

T Average time between read, write, or upgrade requests to memory, not counting the
time when the processor is completely stalled or is spin-waiting on a synchronization
event

CV; Coefficient of Variation of 7

fu Fraction of processor stalls that occur with M = 1,2, ... outstanding requests in the
MSHRs

Pread, Purite, Pupgrade || Probability that a memory request is a read, write, or upgrade

Py Probability that a read or write request causes a writeback of a cache block

Pria Probability directory is local for a type z transaction; z=read, write, upgrade, write-
back

Ppflz,y Probability home memory can supply the data for a type z,y request;
z=read, write; y=local home, remote home

Pyhopla¬—memory Probability that a request of type z to a remote home is forwarded to a cache at a
third node; z=read,write

X Average number of invalidates caused by a write or upgrade to a clean line

Table 2. Application Parameters

Wdirrem [i] - Z Wdi"'rem [i] [j]
i

where W, [#][7] is the mean waiting time by a customer of node i at the directory of node j.

3.2 Heterogeneous Model Equations

At the highest level, we compute the mean residence time, R][i], of a given customer from node 3. R[i] consists of
the synchronous residence times of a node 7 customer at all of the system resources, including the processor (pe),
system bus, network, memory (mem), and directory (dir), as well as the time spent at miscellaneous resources at
which there is no queueing (Z).

R[i) = Reg™eMi] + Ry li] + Rivion,oli] + Revoel il + R (i) + Z[i]

bus network

Examining the directory portion of this equation highlights the differences in the equations between the hetero-
geneous and homogeneous models. Mean directory residence time is equal to the mean residence time at the local
directory plus the mean residence time at the directories of the other nodes. The superscript of z differentiates
between synchronous and asynchronous.

R, [i] = R, [+ Y R, [i14]
i

The local and remote directory mean residence times are the sums of the mean residence times over the different
types of transactions, denoted by a subscript of y.

Ri,. 1= R, il
Y

du‘nm Z Rdzr"m v Z .7

The mean residence times of individual transaction types are equal to the probability of the transaction type
(P,) times the visit count times the sum of the mean waiting time and the service time at the directory:

Riirige,, 1i] = Py[ilViir,., (1 (Wairyo. [i] + Sair)

Riir, o, [6ll7] = Py[ilViir, ..., A1 (Wair, o [6)[4] + Sair)

All of the terms in the above pair of equations are inputs except for the waiting times.

Wair. (] = War,, [l + Wi li]

Wc’i‘l’f’ [4] is the mean waiting time of a node ¢ customer at its directory due to local traffic (the superscript of

loc denotes the cause of the waiting). Wiem [i] is the mean waiting time of a node ¢ customer at its directory
due to traffic from remote nodes. Superscripts of S and A refer to synchronous and asynchronous transactions (or
parts of transactions), respectively.

loc - 2 : loc KT loc,y®*¥meh .
d"‘loc (dirioc] Wd’l,'r'(oc [7']

y

asynch
Wi (i = 3 (W™ i)+ waems™™ " i)

y

The equations for mean waiting time at remote directories are as follows:

Wair, o [ill] = Wit)] + W, [11]

Wgthers[4][5] is the mean waiting time of a node ¢ customer at the directory of node j due to traffic from all
nodes other than node j. Wjig™ [i][5] is the mean waiting time of a node ¢ customer at the directory of node j
due to traffic from node j.

Wikl = 30 (Waiere” Gl + waihers* i)
Yy

wism [l = (Wasms Gl + Wi 1)
¥

The following equations are for the mean waiting times of specific transaction types. Thus, Wioew” [7] is the

dirioe
mean waiting time at node i’s directory due to local traffic for transactions of type y. Mean waiting time for a
Rairy,. 1
single other node 7 customer equals ——}_iti[’—:]ﬂ—— Uirion [z] (the probability that a customer is in the queue but not

in service) times the service time, plus Ug;,, _ [i] (the probability that a customer is in service) times the mean
residual life of a customer in service. Therefore to get the total mean waiting time, we multiply by the number of
other node ¢ customers, M[i] — 1.

R, [i :
WeV] = (M[i] - 1) [(JTQWH - U;ir,oc_y[i]> Sair + Ulin,,.., li] (%)]

Wil il = > M(j] [(Wd’”j{[‘jjw —Usir,,m.y[j][io Sitr + Uliryep, 1] (5‘“")}

J¢1

The equation for Wothersw’

dtrrem
7 due to other customers of node ¢, Wd" .. [i]l4], and waiting due to customers that are of neither node 7 or node

s Wéff:;{)’y [4][4]- Notice that this latter term is not a function of i, except in that k # i.

[1][§] has two main terms, since it consists of waiting by a node ¢ customer at node

others,y® s k1,
Wdit‘r’r,:m Y [’l,][] 'Lr,.,m [J] + Z cg'l.'r;i,:) o [-7]

k¢1',j

. R:, [l i
Wiy [illi] = (M[5] - 1) —dfuﬂw~vgir,,my[1[] Suir + U, ... i1 (22
R[] 2

Rz. k 1 .
WD i) = MK [(—"‘—R-[-,;]-[-}-[f-]- ~ Ul [knﬂ) e+ Uiy, 1] (S;")]

R(ziinu v [-7]

Lastly, we have the utilization equations. The first equation is the mean utilization of node ¢’s directory by a
local customer, and the second equation is the mean utilization of node j’s directory by a customer of node i.

z PR S (] i -
Udinoc_y [7’] = I%J[I:L]J (Vdim“,y {Z]Slﬁ"‘)

Ui 1] = S50 Vi, 15

Modeling the other resources in the system is similar to what has been shown here for the directory.

3.3 Processor Modeling

The processor is modeled differently from the other resources, due to its burstiness. Processor mean residence
time is computed as follows:

RPG [7‘] = T[i](l + Qpe [7']) + Upe [i]Tresid'u.al [7']

where Qpe and Up. refer to the mean queue length and utilization, respectively, and they are computed using
standard MVA equations. This equation is the same as for the heterogeneous model, except that the mean residual
life is computed using a new interpolation [1]. One intermediate term in this interpolation is the standard MVA

equation for mena residual life:

VAR([i])

7l4]
2 274

Tres-—std['i] = ==+

Another intermediate term we use is based upon a model of the processor as a two-stage hyperexponential
server, shown in Figure 2, with service times 7,[i] and 7[i]. These service times, as well as the probabilities of
going to the servers, are chosen such that the mean service time and the variance in the service time match 7{i]
and V AR(7)[i], respectively. The problem is underconstrained, since there are three variables and two constraints.
The heuristic we use for a third constraint is to choose 7,[i] equal to the smallest value of T that is seen frequently.
The intermediate term T'[i] is then computed as follows:

Tmzﬁgf]

Using these terms, we have the following interpolation for mean residual life:

Treridual = T[T (8] + (R[i] - Rpe['i])Tres-—std[i]
restiuat T Ti] + R[Z] — Rpeli] T[i] + R[] — Rpeli]

—|] Ty

Figure 2. Hyperexponential Model of Processor

3.4 Modeling Downstream Burstiness

As explained more thoroughly in previous work [1], we model a bursty arrival process at a downstream resource
(e.g, a directory) as consisting of “bursts” containing a geometrically distributed number of requests, with exponen-
tially distributed inter-burst times as well as interarrival times within a burst. A bursty process is parameterized
with three parameters: K, I, and L. K is the mean number of customer arrivals within a burst, I is the mean

interarrival time within a burst, and L is the mean time between bursts.
Since we assume that downstream burstiness is only caused by traffic from the local processor, the burstiness

.odel only changes the mean waiting time equations, W2 _[i] and W™ [4][j]. Without loss of generality, we
will only show the equations for Wf,;’:loc [i]. First, we compute the mean queue length.

. loc,y 1s
Qke, li1=Y_ QY 4]
y

R3; 1]
loc, S . d"’loc.
Qdirli’c [Z] - (M[Z] - 1) R[i]y
Then we compute the mean queue length during the time between bursts (NB = not bursty).

QNBEEY)= Q5,0 61U ~ DKG] (S — gt

The mean waiting time is equal to:

Wi [i] = Sy QNBYSY [i] + (K[i] — 1)(Sair — I[i])

dirioc dirjec

Once again, we have an underconstrained problem with three variables and two constraints (discussed later).
The heuristic used here is to choose I[i] equal 7,[i] (where 7,[i] < 7o[i]). Now we need to compute K[i] and L[]
based on the coefficient of variation of the departure process, CV;[i]?, and the mean throughput, A[s].

CVali]? = 1+ MU [i*(CV: [i]* - 1)

The equations for computing K[i] and L[i] were derived by solving the following two constraint equations. Note
that CV,[4] is the coefficient of variation of interarrival times at node 7’s directory.

EE - DI+ I
%2].['5]2 + 7{_1[?[21;[“2 -1 = C’Va[i]z

K[

((K[z’]——l)[[i]-}-L[i])z

The following equation computes CV,[i]> from CV,[i], according to an approximation by Sevcik and Levy [5]:

CVulil? = 1+ Upeli*(CV, [i]* — 1)

Now we have the equations for K[i] and Ll[i].

K[= LAABIIEL+ 1+ ARPRIEY + OVl
=3 1+ A[PIE)? — 2A[]I(G)
+ 12A[I[] — 1 — CV,fi?
1= 3 AR D

In practice, solving for K [i] and L[4] requires that we check to make sure that the values are self-consistent. For
example, if K[i] is less than 1, the burstiness model is unnecessary and will produce invalid results.

3.5 Modeling Lock Synchronization

We will first describe the proposed technique assuming only one lock is held at a time; then we will discuss
generalizations for specific types of nested lock acquisition, which occur in the Splash benchmarks in SimOS.

Like the method of complementary service time inflation used in [7] to iterate between two architecture sub-
models, we iterate between the architecture model that estimates memory request throughput for each processor,
and a lock contention model that computes average lock access delay (or processor spin-waiting time) due to lock
contention. Customers in the architecture model represent actual or potential memory requests that can be issued
by each processor. Customers in the lock contention model represent processors. During the iterative solution,
specific service times in each model are inflated to reflect delays in the other model, as explained below.

The lock contention model is illustrated in Figure 3. The number of customers in the lock contention model
equals the number of processors that access any of the L locks. The (fundamental) input parameters for this model

no-lock execution time

S
lock 1

—C O~ fi—*
lock 2

— || =2
locgkL

PLj

=

Figure 3. Lock Contention Model

are:

%.- number of locks that have non-negligible contention

Pnolock,j: avg number of memory accesses by processor j between lock requests
Piock; 5 prob that a lock request from processor j is for lock 4

Tlock;,j¢ average number of memory requests by processor j while holding lock i

The model includes a FCFS queue for each of the L locks, and a delay center representing the execution time
while not accessing or holding any of the L locks in the submodel. The service time at each delay center is computed
as Tnolock,j times m, where X nolock is the throughput of memory requests for processor j estimated by a
version of the architecture model in which the service time at processor j is not inflated to include average lock
spin time, but service time at each other processor is inflated with the estimates of average lock spin time from the
previous iteration lock contention model. The service time at each queueing center represents lock holding time
which is similarly computed as jock;,; times Xo

Solution of the lock contention model yields the mean waiting time for each lock by each processor. This average
lock spin time is added to the mean processor service time (7) in the architecture submodel using the fraction of
memory requests that are lock accesses, 1 , and the lock selection frequencies. In addition,

T‘nolock,fFZi Piock;,5%TLock; i
CV,ay is recomputed assuming that lock spin time has a coefficient of variation (arbitrarily) equal to one. Solving
the overall model involves iterating between the architecture and lock contention models until the (complementary)
service time inflation factors converge.

The above iterative model is generalized for specific cases of nested lock requests by creating a separate lock
contention model for the set of locks at each level of the lock hierarchy, and iterating among the lock submodels
as well at the architecture model, appropriately inflating the various service times.

References

[1] D. Eager, D. Sorin, and M. Vernon. Analytic Modeling of Burstiness and Synchronization Using Approximate MVA.
Technical Report 1391, Computer Sciences Dept., Univ. of Wisconsin - Madison, Dec. 1998.

[2] J. Kuskin et al. The Stanford FLASH Multiprocessor. In Proc. 21st Int’l Symp. on Computer Architecture, Apr. 1994.

[3] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server. In Proceedings of the 24th Annual
International Symposium on Computer Architecture, June 1997.

[4] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. Complete Computer Simulation: The SimOS Approach. IEEE
Parallel and Distributed Technology, 1995.

[5] K. Sevcik, A. Levy, S. Tripathi, and J. Zahorjan. Improving Approximations of Aggregated Queuing Network Subsys-
tems. Computer Performance, 1977.

[6] D. Sorin et al. A Customized MVA Model for ILP Multiprocessors. Technical Report 1369, Computer Sciences Dept.,
Univ. of Wisconsin - Madison, Mar. 1998.

[7] D. Sorin, V. Pai, S. Adve, M. Vernon, and D. Wood. Analytic Evaluation of Shared-Memory Parallel Systems with ILP
Processors. In Proc. 25th Int’l Symp. on Computer Architecture, June 1998.

10

