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Abstract

The increased relative cost of accessing memory is encouraging processor designers to explore
deeper uniprocessor speculation (e.g., with branch and value prediction) and consider multi-
processor speculation (e.g., on coherence message types and values). While some mechanisms
have been proposed to support deep speculation using speculative multithreading, current
mechanisms for conventional processors are not as good.

To support kilo-instruction speculation with conventional processors, this paper proposes Mul-
tiversion Memory (MVM), a processor/memory interface that allows processors to create multi-
ple versions of memory and recover to previous versions when necessary. In this paper, we
develop an efficient implementation of MVM that uses a level one cache to keep recent specu-
lative blocks (like a future file for memory), uses version buffers to keep old versions of blocks
for which speculation is pending (like a memory history buffer), and leaves the level two cache
(and beyond) unchanged (like a memory architectural file).

Concurrently, requirements for highly-available computers and manufacturing trends to deep-
sub-micron design encourage techniques to mask transient faults (e.g., with error correcting
codes and execution retry). Most current designs consider speculation and fault tolerance inde-
pendently. Nevertheless, a second result of this paper is that MVM can provide support for
both needs, perhaps making the use of hardware fault-tolerance more widespread.

Simple cost models with parameters from commercial workloads show that our implementa-

tion of MVM allows kilo-instruction speculation and fault tolerance that can recover faster

(e.g., less than 273 vs. 362 cycles), uses recovery storage that is smaller (e.g., 5,356 bytes vs.

10,000 bytes), and has lower common-case overhead than other recently proposed schemes.
1 Introduction
Speculative execution is an important technique for improving computer system performance. This tech-
nique begins with a prediction of what work is likely to be needed soon. Then the work is performed specu-
latively so that it can be committed if the prediction is deemed correct or aborted otherwise. Most processors
today, for example, perform branch predictions [35] and then execute instructions speculatively following
those predictions. Furthermore, many future processors will make a wider use of prediction, in part to toler-
ate the increased relative time to access memory (i.e., the memory wall [32]). These speculations may be
based on predicting values [21], various aspects of multiprocessor coherence message types or values 8, 18,
24], or new ideas not yet invented. Data value prediction is an example of a speculation technique with a
large potential for performance gain, since it can hide the long latency of accessing memory, assuming the
system can provide efficient mechanisms for speculative execution. As the opportunity cost of waiting for

data to arrive or a condition to resolve increases, the potential benefits of speculative execution increase.



Along with good predictors, the twin challenges of implementing speculative execution are (i) keeping over-
head low in the (hopefully) common case when speculations commit (i.e., the prediction is verified to have
been correct), and (ii) minimizing the delay caused when a speculation aborts (i.e., the prediction is deter-
mined to have been incorrect). These costs depend on whether one recovers from aborts by restoring to a
checkpoint of pertinent state made at or before the time of the prediction, squashing tentatively-performed
speculative operations, using a log to rollback speculatively overwritten state, or some combination of these
mechanisms. The MIPS R10000 [42], for example, checkpoints register maps and only tentatively performs

memory stores.

One approach to deep speculation is speculative multithreading {4, 12, 15, 25, 37, 38]. With speculative mul-
tithreading, contiguous sequences from the dynamic instruction stream of a program’s execution—called
speculative threads—are distributed (often with compiler support) to processing elements within a proces-
sor. Speculative multithreading, however, is only one approach to deep speculation. In this paper, we focus
on supporting deep speculation techniques that do not rely on speculative multithreading, such as those
based upon value prediction [21] and multiprocessor coherence [8, 18, 24]. A specific example is false shar-

ing speculation, where a processor speculatively uses data in its cache that another processor invalidated.

The challenge of supporting deep speculative execution grows rapidly with (a) the latency between when a
prediction is made and when it is verified and (b) whether multiple predictions are in simultaneous use. The
R 10000 mechanisms, for example, depend on structures that must be associatively searched and updated on
many processor cycles. Since the size of these structures is proportional to the number of active instructions,
it is not viable to extend them to support a multiprocessor prediction that cannot be verified for 250 cycles
(say 1000 instruction opportunities). Schemes such as Ranganathan et al.’s Speculative Retirement [29] and
Gniady et al.’s SC++ [14] seek to extend the depth of speculation beyond that of the R10000 to narrow the
performance gap between sequential consistency and weaker memory models, but these schemes are still not

efficient for kilo-instruction speculation. This and other related work is discussed more fully in Section 2.

To efficiently support kilo-instruction speculation, this paper proposes a processor/memory interface called
multiversion memory (MVM)1 and develops one implementation of this interface. Multiversion memory
allows a processor to create multiple versions of memory, commit versions that are no longer needed, and
recover to previous versions if necessary. While MVM provides the clean abstraction shown in Figure 1 (for

simplicity, we show a uniprocessor system), the challenge lies in its efficient implementation.

In this paper, we develop one efficient implementation of multiversion memory that we call MVM1. MVYM1
works with a standard, speculative, out-of-order processor core that is augmented to occasionally checkpoint
its non-memory state (e.g., program counter and registers) and to tag loads and stores with a version number.

MVML is not tied to speculative multithreading. MVML1 consists of an augmented level-one (L1) cache

1. Multiversion memory gets its name from the superficially similar software technique of using multiple versions for
database concurrency control {26].
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FIGURE 1. Abstraction of the Uniprocessor MVM Processor/Memory Interface

with a special write-back buffer called the version buffer (VB). L1 and VB blocks are also tagged with ver-
sion numbers. The rest of the memory hierarchy is standard: level-two (L2) cache, optional L3 or more
caches, coherence protocol, interconnect, and memory. On a prediction, a processor declares a new version
and checkpoints its non-memory state. Thereafter, the processor core can proceed rapidly, without concern
for speculation, including loading from and storing to the memory hierarchy. A store that is about to over-
write an L1 cache block tagged with a previous version number first triggers a writeback of the old version
to the VB. A VB entry is not written to the L2 cache until its version commits. A processor with MVM1 can
support kilo-instruction speculation with multiple simultaneous versions (e.g., 8-16). Versions commit in
constant time and abort in constant time plus the implicit cost of some additional L.1 misses. Sections 3 and

4 present MVM1 design issues without and with coherence, respectively.

Astute readers may notice some conceptual similarities between the MVM interface and the techniques that
support backward error recovery for hardware fault tolerance. Backward error recovery (BER) techniques
periodically checkpoint the state of the system and, if a fault is detected, recover the system to a saved
checkpoint from before the occurrence of the fault {10, 28]. Traditional BER techniques tend to be more
heavy-weight than the MVM1 implementation presented here (e.g., by requiring checkpoints to be flushed
to memory or disk), and these overheads have limited their use beyond highly-reliable systems. Section 5

discusses modest MVM 1 changes to enable the unified support of deep speculation and fault tolerance.

Finally, Section 6 provides simple cost models with parameters from commercial workloads that compare
mechanisms for kilo-instruction speculation without restricting speculation policy or fault model. Results
show that MVM 1 recovers from kilo-instruction speculation in under 273 cycles, which is faster than either
Speculative Retirement [29] (362 cycles) or SC++ [14] (500 cycles). MVML1 also uses less recovery storage
(MVM1: 5,356 bytes, SR: 10,000 bytes, SC++: 12,000 bytes), and it has lower common-case overhead.

2 Related Work

The present effort to support deep recovery for speculation or fault tolerance builds on several existing
threads of work. The primary related thread is the effort to extend the speculation capabilities of conven-
tional (i.e., not speculatively multithreaded) out-of-order speculative processors, like the MIPS R10000 [42],

50 as to narrow the performance gap between systems that support sequential consistency (SC) and those



TABLE 1. Related Work in Speculation Support

Technique Speculation Limit Comment

MIPS R10000’s Speculative Instruction window or address queue  Limited to 10-100 entries to per-
Out-of-Order [42] size it associative searches on many
processor cycles

Ranganathan et al.’s Store buffer and history buffer Limited to 10-100 entries to per-

Speculative Retirement [29] mit associative searches on many
processor cycles

Gniady et al.’s Recovery cost is linear in the num- Non-perfect speculation is not

SC++[14] ber of speculative instructions viable when recovery cost gets
too high.

MVM1 Implementation Recovery cost involves “misses” to Non-perfect speculation is not

(this paper) cache blocks speculatively stored viable if recovery cost is too high.

that support weaker memory consistency models. Recall that the R10000 implements SC while still allowing
many operations to speculatively proceed out of program order. Speculation depth is limited to the minimum
of 32 instructions (due to the instruction window) or 16 memory operations (due to the address queue).
While these structures will likely increase, neither structure can increase dramatically, since both must be
associatively searched and updated on many processor cycles. Ranganathan et al.’s Speculative Retirement
scheme [29] relieves pressure on the instruction window by allowing instructions to speculatively retire from
the instruction window into a new history buffer that maintains enough state to permit instructions to be
unrolled on a coherence violation. Speculation depth in this scheme is primarily limited by store buffer and
history buffer size. Like the instruction window, the history buffer cannot be too large since it is also associa-
tively searched to detect coherence violations. Gniady et al.’s SC++ scheme [14] permits even deeper specu-
lation by (a) letting speculative stores complete into the level-one cache, (b) maintaining a large non-
associative history buffer of all instructions, and (c) detecting coherence violations that trigger rollbacks
with a new associative block lookup table that flags blocks accessed by any load or store in the history
buffer. The depth of speculation is primarily limited by the cost of recovery, and this cost is linear in the

number of speculative instructions.

MVM1 differs from this thread of related work by supporting even deeper speculation with the help of sev-
eral features. First, MVM1 adds no associative structures that must be manipulated each cycle, since most
MVM1 logic is behind the L1 cache. Second, MVML1 structure sizes are not linear with speculation depth,
since processor state is recovered via checkpointing rather than by rolling back a history buffer. Third,
recovery cost is much less than linear in speculation depth, because it is proportional to the blocks stored per

version. Table 1 compares MVM1 with the R10000, Speculative Retirement, and SC++.

A second relative thread of related work is the effort to support a particular type of speculation, speculative
multithreading, and not speculation in general [4, 12, 15, 25, 37, 38]. With speculative multithreading, con-

tiguous sequences from the dynamic instruction stream of a program’s execution—called speculative




threads—are distributed (often with compiler support) to processing elements (PEs) within a processor‘2 For
example, a compiler could indicate that loop iteration ! should go to one PE, loop iteration 2 to the second
PE, etc. Speculative threads execute in parallel if the instructions are actually independent, and some mecha-
nism is needed to detect and enforce the appearance of sequential thread execution when the threads are not
independent. The first proposed mechanism is Multiscalar’s Address Resolution Buffer (ARB) [37]. The
ARB uses a centralized implementation that puts significant associative logic on the critical path of even
load and store hits. DMT also uses a centralized solution that depends on having enough associative load and
store buffers for all speculative threads [4]. Subsequent designs [12, 15, 25, 38] used a fast cache with each
sub-processor backed by logic similar to snooping coherence to detect and enforce dependences.3 These
caches may be called level-zero caches, because they miss more often than a standard level-one cache due to
(a) data sharing among sub-processors {(e.g., a datum written by one sub-processor and read by the next) and

(b) data replication consuming sub-processor cache capacity (e.g., a datum read by several sub-processors).

Multiversion Memory differs from this thread of related work primarily because MVM looks to support
deep speculation and fault tolerance for processors and multiprocessors rather than speculative multithread-
ing, in particular. Furthermore, MVM1 avoids either adding associative searches to load and store hits (like
the ARB and DMT) or increasing the primary cache miss rate (like the other schemes). MVM, however,
does not currently support speculation where versions execute in parallel in a manner similar to how specu-

lative threads execute in parallel.

There is a vast amount of prior research in checkpoint/recovery schemes for fault tolerance (refer to Elno-
hazy et al. [10] for a survey and to Pradhan [28] for additional background). These schemes tend to be
heavy-weight and conservative, in that they seek to tolerate a wider range of faults and they are less con-
cerned with performance than reliability. Some schemes resemble our MVM1 implementation in that they
use the caches to hold uncommitted state and use the shared memory to hold architectural state [16, 41]. In
particular, Wu et al. [41] label cache blocks with checkpoint IDs in a manner similar to MVM1 version tags.
MVM1 does not present a novel or superior fault tolerance mechanism; rather, it achieves some fault toler-

ance at a low cost by unifying it with the issue of deep multiprocessor speculation.

3 A Non-Coherent Uniprocessor Multiversion Memory

This section presents the MVM1 implementation of the multiversion memory interface, in the context of
speculation, for a uniprocessor without coherence issues. This simplifies presentation by deferring coher-
ence issues until Section 4 and fault tolerance issues until Section 5. This non-coherent design is only inter-

esting as a stepping stone to the design of Section 4, because even most uniprocessors have coherent DMA.

2. DMT differs in that it places threads on a processor that supports simultaneous multithreading (SMT).

3. One of these designs [12] is coincidentally named multiversion caching, but the versioning is designed to support the
Multiscalar paradigm and not speculation, in general.



3.1 Big Picture

The purpose of uniprocessor MVML1 is to allow processor speculations that do not resolve for 1000 instruc-
tions, which is much larger than a viable instruction window, and to allow several concurrent predictions and
speculations (e.g., 8-16). The processor may speculate for any reason. An example uniprocessor speculation

that does not resolve for 100s of cycles is a value prediction on a datum in main memory.
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FIGURE 2. Uniprocessor MVYM1 System

Figure 2 illustrates a system with uniprocessor MVM1. The processor maintains a current version number
(CVN) to tag loads and stores, a last committed version number (LCVN), and register checkpoints for uncom-
mitted versions. Register checkpoints include architectural non-memory state, such as the registers, proces-
sor status, and PC. Blocks in the L1 cache and VB maintain a write version number (WVN). The L2 cache

and beyond are standard. The design will maintain the following invariants:

e Uniprocessor correctness: A store will always write its value into the current version of a block contain-

ing its address, while a load will always return the value from the most recent version of its block.

o L1 as memory future ﬁle:4 Each valid block in the L1 cache is the most recently written version of the

block.

4. The terms future file, history buffer, and architectural file were used by Smith and Pleszkun [36] when discussing reg-
isters. A future file contains the most recently updated (speculative) state, a history buffer contains old values clobbered
by speculative writes, and the architecture file contains the safe (non-speculative) state. MVM1 uses similar notions, but
it applies them to memory instead of registers.




* VB as memory history buffer: The VB holds all speculative blocks that are not the most recently written.

o L2 and beyond as memory architectural file: L2, L3, memory, efc., only hold committed state.

Consider an example using stores to a single two-word block at address 100. We use bold and shading to

highlight changes. Assume initially that the processor’s CVN=2 and that the L.1,VB, and L2 state for block

100 are:
Structure  Address WVN Data Comments
L1 100 2 {2,4} block already dirty with respect to 1.2
VB NONE
L2 100 n/a {0,0}

The processor declares a new version by setting CVN=3 and creating a version 3 register checkpoint.

This action is fast because no L1, VB, or L2 changes occur:

Structure  Address WVN Data Comments
L1 100 2 {2,4} no change
VB NONE no change
L2 100 n/a {0,0} no change

The processor performs a store of the value 12 to address 100: ST 12, (100). This action forces the old ver-

sion of block 100 to enter the VB (from where it can be recalled after a misspeculation or fault):

Structure Address WVN Data
L1 100 3 12.4)
VB -  ' s

L2 100 n/a {0,0)

Comments

The processor performs a store of the value 24 to address 104: ST 24, (104). This action proceeds like a store

hit, illustrating how the L1 coalesces speculative updates:

Structure Address WVN Data Comiments

L 100 3 0228 justupdateword 104
v 00 ) ..{2,4} o Change g
1.2 100 n/a {0,0} no change

To commit version 2, the processor sets LCVN=2 and discards the version 2 register checkpoint. The

VB block’s WVN is changed from 2 to null. Commits are fast because no data movement is required:

Structure  Address WVN Data Comments
L1 100 3 {12,24} no chang

VB 100 {2,4) non-s ve
L2 100 (0,0} ‘nochange




The VB may now writeback the block to the L2, but this can occur any time later:

Structure Address WVN Data Comments
L1 100 3 {12,24}
VB NONE

L2 100 n/a

3.2 MVM1 Specification

This section examines MVM1 in more detail.

3.2.1 MVYMz1 Components

Processor. MVM1 uses a standard speculative, out-of-order, processor core with two additions. First, the
processor must be able to checkpoint “register” state (e.g., PC and registers) when it declares a new version.”
Second, it must maintain and use two version numbers. The current version number (CVN) gives the proces-
sor’s current version, and it is used to tag stores to the L1 cache. The last committed version number (LCVN)

gives the last version committed (i.e., guaranteed not to have a misspeculation), and it is the version to which

the processor recovers after detecting a mis-speculation.

L1 Cache. The L1 cache serves as a memory future file. Each L1 block is tagged with a write version num-
ber (WVN). While a block is not committed, the WVN denotes the version that wrote it. The WVN is null for
committed blocks. MVM1 ensures that each valid block in the L1 cache is the most recently written version

of the block.

Version Buffer. The VB serves as a memory history buffer. The VB holds versions of blocks, with corre-
sponding WVNSs, that were forced out of the L1 cache for one of two reasons. First, the L1 copies dirty
blocks to the VB when stores create new L1 versions (as in the example from the last section). Second, the
VB serves as a write-back buffer for normal dirty L1 replacements. As usual, clean blocks may be silently
deleted. VB blocks are written to the L2 only if they become committed. Thus, the VB contains all uncom-

mitted blocks that are not the most recently written.

L2 Cache. The L2 serves as the memory architectural file. It is a standard cache that holds committed state
and has no version information. Our implementation assumes that the L2 cache maintains inclusion with the
L1 cache by maintaining a bit per L2 block indicating whether the block may be in the L1 or VB, but inclu-

sion is not necessary for MVM1.

5. Processor cores may also use one recovery method for predictions that are rapidly resolved (e.g., branch prediction)
and then use multiversion memory for longer-term speculation in a manner inspired by the hierarchical speculation
approach of Ranganathan et al. [29].




3.2.2 MVM1 Operation
Uniprocessor MVM1 operation proceeds as follows. The processor creates versions, performs loads, stores,
and replacements during versions, commits versions, and aborts versions. Figure 3 illustrates each of these

operations, and we discuss them below.

Creating a new version. A processor creates a new version by checkpointing non-memory state and incre-

menting its CVN.®

Execution within a version. During a given version, the processor executes without regard for MVYM1

except to tag loads and stores with the CVN.,

Committing a version. A processor commits a version by incrementing its LCVN and discarding the now
unneeded architectural checkpoint. MVM1 commits version { in the L1 and VB by setting WVN=nu/l for all
blocks that had WVN=i,

Aborting a version. If a mis-speculation occurs in version i, the processor will revert to the checkpoint at

the beginning of version i, and MVML1 will invalidate all .1 and VB blocks whose WVN 2 ..

3.3 Implementation Issues

L1 Cache. The L1 cache design is conventional, with three important exceptions: (1) a store hit may trigger
a writeback of the old block, (2) a commit of version [ must find blocks with WVN=i and then set
WVN=null, and (3) an abort of version i must invalidate blocks with WVN = i. Case (1) can be detected by
comparing the processor’'s CVN and the stored block’s WVN in parallel with a standard tag comparison. A
store to the cache thus reads the cache tags (but not data) before writing it, but this is also the case for normal

stores, since they require a tag lookup.

Version commits and aborts can be made to operate globally on the L1 cache in constant time with two
changes. First, we store version numbers decoded as 1-hot bit vectors. This representation requires k bits to
support k active versions, which is not a problem for the small k we envision (e.g., 8-16). Second, we aug-
ment the L1 cache with a flash clear on each version bit column, similar to the mechanisi used in caches

that support flash invalidation [20].

Version Buffer Design. The VB design is simpler than the L1 cache design, and it is smaller. Later we will
show that supporting 64-256 entries is generous. Given that entries are only accessed on L1 misses, a fully-

associative design with a several-cycle access time would be adequate.

One VB design challenge is that the VB can contain multiple versions of the same block. In general, this
could complicate block lookup circuits because multiple matches could occur. One way to avoid this prob-

Jem is to bank the VB with the invariant that the blocks in a bank come from the same version, and each

6. Version number wraparound errors can be avoided by stalling if creating a new version would make CVN=LCVN.



CREATE VERSION

L L1 hit

OAD Normal hit
T L1 miss ~ VB hit Copy block with most
recent WVN to L1
i VB misS _ Normal miss, set L1's
WVN = null
STORE _ Llhit mCVN:WVN Normal hit
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Restore register checkpoint from before aborted version,
and invalidate all L1/VB blocks with WVN==aborted version.

FIGURE 3. MVM1 Operation

bank could indicate its WVN. This helps because each version has at most one copy of a block. A version

with a large number of blocks would span multiple banks.

An L1 miss in this design, for example, would query all banks for a block and then either select the most

recent version with a priority encoder or declare a VB miss. A new bank would be allocated (if available or

10




stall otherwise) for a new version or when a version fills a bank. The bank(s) for a committed version could

be written to the L.2 cache.

On balance, this VB design has some complexity, but the design is not large (e.g., 16 16-block banks) and it

can operate in a few cycles since it is behind the L1 cache.

Version Creation Policy. A naive version creation policy is to create a new version on each speculation.
This policy could exhaust MVML resources by creating too many versions during a burst of speculations,
thus limiting the effectiveness of coalescing stores from the same version in the L1 cache and VB. A better
policy might be to create a new version on a speculation only if no version has been created in the last i

instructions. Future work will determine how to set i or whether other policies are better.

4 Coherent Multiprocessor Multiversion Memory

This section augments the non-coherent uniprocessor MVM1 of the previous section so that it can operate
with coherence and flourish in a cache-coherent shared memory multiprocessor. We assume a standard
cache-coherent multiprocessor where each processor is augmented with MVM1. This new design is also

appropriate in a uniprocessor that supports coherent DMA.

There are two primary differences between the MVM1 of a non-coherent uniprocessor and that of a coher-
ent multiprocessor. First, multiprocessor MVM1 must deal with external coherence requests. To do this, it
must be able to search the L1 and VB for the most recently committed version of a block and it must some-
times trigger version aborts. Second, multiprocessor MVML1 can support additional “multiprocessor” meth-
ods of speculation. These techniques include speculating on values cached at other processors, on values left
in local cache blocks, and on lock acquisitions or critical sections. In addition to uniprocessor invariants,

multiprocessor MVM1 implements a memory consistency model, such as sequential consistency.

4.1 Multiprocessor MVYM1 Specification

MVM1 COMPONENTS. Multiprocessor MVM1 components are the same as for uniprocessor MVM1,
except that each L1 and VB block includes a read version set (RVS) in addition to the WVN. The RVS of a
block indicates which uncommitted versions have read (this version of) the block. Since an external coher-
ence request for a possibly speculative block can cause an abort, as we will see later, maintaining the RVSs

allows MVML to selectively abort speculation on external requests rather than blindly aborting.

MVM1 OPERATION. Multiprocessor MVM1 operation is the same as for uniprocessor MVM1, with the

addition of maintaining the RVSs and handling external coherence requests.

Maintaining RVSs. The RVS is maintained with the following actions. A load during CVN=i adds i to a
block’s RVS. The RVS is copied with a block if the block moves between the L1 and VB. The RVS is initial-
ized to null when a new write-version of a block is created or when the block is loaded from the L2. Finally,
i is removed from all RVSs when version { commits. An uncommitted clean block, which was not possible in

uniprocessor MVM1, must be written back from the L1 to the VB.

11



Handling external coherence requests. External coherence requests cause the following standard actions

in an MSI protocol (exclusive Modified, read-only Shared, and Invalid):”
o M-->I: another processor seeks an M copy, so send the block to the other processor and invalidate,

e M-->S: another processor seeks an S copy, so send the block to the other processor and memory and

downgrade to S, or
e S-->I: another processor seeks an M copy from another source, so invalidate the block.

Most external coherence requests will be handled in the standard way by the L2 cache because the block’s
inclusion bit is not set. The remaining requests search the L1 and VB two ways. First, they search for ver-

sions of the block written in a committed version:

e If found, MVM1 applies the standard actions by obtaining data from the most-recently committed ver-

sion and downgrading the state of all committed versions.
e If not found, the L2 cache performs the standard actions.

Second, external coherence requests search for versions of the block that have been read or written in still

speculative versions:
o If found, all speculative versions are aborted.?
e If not found, no action.

The RVS allows MVM1 to know when a block being invalidated by an external coherence request has been
read by a speculative version. MVM1 must trigger a recovery in this case to support most memory consis-
tency models [13]. If RVSs were not maintained, multiprocessor MVM1 would have to trigger recoveries on

all external invalidates, resulting in serious performance loss.

Implementation of new VB mechanisms follows from uniprocessor MVM1 implementation issues. Main-
taining RVSs, for example, is similar to maintaining the unary encoded WVNs. Also, finding the most

recently committed version in the VB is similar to finding the most recent version in the VB.

4.2 High-Level Issues
Multiprocessor Correctness. To argue that multiprocessor MVML1 is correct, we argue that it can be used
to implement sequential consistency (SC) [19]. It then follows that it can be used to implement more relaxed

models, since SC is a correct implementation of more relaxed models.

SC requires that a multiprocessor appears to the programmer as if the memory references of each processor
(in program order) are interleaved to form a total order. We sometimes think of processor memory references

entering the total order one at a time as they commit. With multiprocessor MVM1, all processor memory

7. All MOESI states can be handled at a cost of enumerating more cases.
8. A more sophisticated implementation could recover to the speculative version that first accessed the block.

12




references from a version enter the total order atomically as the version commits. Nevertheless, this

“coarser” interleaving is a valid interleaving for SC.

Furthermore, the values obtained by coherence requests are correct, because coherence requests only obtain
the most recently committed values, as they would in a standard system with coherence, and a processor
never commits instructions that read speculative values that are later invalidated by an external coherence

request, because the coherence request would trigger a recovery.

Livelock. An external coherence request that seeks to obtain a block that has been speculatively read will
invalidate the block and trigger a recovery. The processor will then often issue a coherence request for the
block. If the block is then in speculative use at another processor, this will cause an invalidate, trigger a
recovery, and may cause the pattern to repeat and create a livelock. It would appear that the system could
avoid livelock by not handling the coherence request until the block was non-speculative. Applying this

solution in general, however, can lead to deadlock.?

There are simple solutions that risk livelock, detect when the processor is not making forward progress
(because it is re-executing the same instruction), and complete that instruction. One way is to execute non-
speculatively after livelock detection. Another possibility is to create a one-instruction version and defer
coherence requests until the version commits. Deadlock will not occur because there is no “cross coupling”

of dependences. We are investigating if livelock occurs often enough to warrant a more clever solution.

5 Unifying the Support for Speculation and Hardware Fault Tolerance

Seemingly unrelated to speculation is hardware fault tolerance. Hardware fault tolerance techniques com-
monly use either forward error recovery (FER) or backward error recovery (BER) [28]. FER techniques tol-
erate a fault while continuing to execute forward (e.g., using error-correcting codes (ECC) or triple modular
redundancy (TMR)). Austin’s DIVA design is a recent example of FER [5]. BER techniques restore the pre-
fault state and re-try, similar to mechanisms for handling mis-speculation. Methods for restoring state
include checkpointing and rolling back with logs. Implementation complexity depends on the class of faults
to be tolerated and the latency from fault occurrence to detection. To date, however, powerful fault tolerance

techniques have been deployed mostly in systems willing to trade performance for reliability [7, 17, 341.

Computer customers, such as providers of Internet services, are becoming increasingly interested in obtain-
ing more robust systems, provided that they do not cost much more than traditional high-performance sys-
terns. Fortunately, MVM-initially included to support deep speculation—can also be used to provide this
robustness using BER to improve hardware fault tolerance. Furthermore, the modest cost of extending
MVML1 for BER can make it attractive for traditional computer systems that have eschewed heavy-weight

fault-tolerance mechanisms. The rest of this section discusses key issues.

9. Assume, for example, that processor 1 needs block B before it can commit block A, while processor 2 needs block A
before it can commit block B.

13



Fault Model. Designing fault tolerance begins with a clear fault model that states which faults will be toler-
ated and which are beyond the scope of proposed mechanisms. MVM1 designs of Sections 3 and 4 can be
made to tolerate faults within a single processor, provided the faults can be detected reasonably soon after
they occur using reasonable additional hardware and that they disappear on re-execution (i.e., are transient).
Examples of faults that can be tolerated include incorrect operation of processor datapath, functional units,
and control logic. Not included (at this time) are faults in architectural state (e.g., registers, cache, and mem-
ory) or faults in interactions between processors (e.g., memory interconnect). Faults in architectural state

may be addressed with error correcting codes, while the end of this section explores inter-processor issues.

Fault Detection Mechanisms. Faults of interest must be detected with reasonable latency (e.g., less than
100 cycles). Recent mechanisms useful for our fault models use redundant SMT threads [30, 31]. Other

mechanisms include duplication and comparison [17,33] or diagnostic and coding techniques [27].

Version Creation Policy. To support speculation only, we assumed a new version would be created on a
speculation only if no version has been created in the last { instructions, for some i to be determined. To also
support fault tolerance, we must retain at least one version from more than ¢ cycles ago, where ¢ is the max-
imum latency between when a fault occurs and when it is detected and invokes a recovery. If speculation is
frequent, no versions need to be created especially for fault-tolerance. If speculation is rare, creating ver-

sions with any period greater than ¢ ensures that only three versions are needed to support fault tolerance.

Output Commit Problem. Another issue that arises in fault tolerance is that we cannot allow operations
from uncomimitted versions to interact with the outside world—disks, networks, and other I/O devices—
since we might want to recover. This is the output commit problem that exists for backward error recovery
schemes, in general [11, 23]. We propose to handle this issue with the standard solution of keeping uncache-
able operations at processor nodes until their versions commit. This solution will work well for emerging /O
approaches, such as VIA [9] and InfiniBand [1}, that first set up /O descriptors in memory and then trigger
1/0 with a single uncached “doorbell.” It could be slow, however, for conventional I/O interfaces, although

the latency of /O operations is likely to dominate this overhead.

Future Extensions to Global Recovery. Multiprocessor MVM enables multiprocessor speculation, but it
only handles the same faults as uniprocessor MVM, namely, faults within the processor that can be tolerated
with a recovery of a single processor. Ultimately, we would like to support a more general multiprocessor
fault model that, for example, enabled a recovery from transient interconnection network errors, such as cor-
rupted messages, lost messages due to buffer overflows, and temporary losses of synchronization between a

sender and receiver.

We are investigating how to support global recovery by having processors create versions at the same logical
times. Coordinating checkpoints avoids the problem of cascading rollbacks where inconsistent checkpoints

can force rollbacks arbitrarily far back [28]. Using logical rather than physical time for coordinated check-
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points mitigates the delay for creating checkpoints. In an SMP, for example, the number of coherence

requests processed is a viable source of logical time.

6 Performance Evaluation
MVM1 was designed to support a wide variety of speculation and fault models. As such, the evaluation of
MVM1 will focus on the efficiency of its mechanisms rather than on its performance for any particular

speculation policies or fault models.

6.1 Methodology and Benchmarks

We develop simple cost models with input parameters obtained using the Simics full system simulator [22]
to simulate the SPARC v9 architecture running Solaris 7. We simulate a 16 processor system, but we focus
on uniprocessor issues. The L1 cache is 64 kB and 2-way set-associative. We evaluated MVM1 with three

commercial applications and one scientific application.

e Database decision support system (DSS): We selected a representative query from the TPC-H bench-
mark [39], a recent successor to TPC-D, and we executed it on a 100 MB database using IBM’s DB2.

v6.1 database management system.

° Web Server: We used the Apache 1.3.9 web server [2] driven by SURGE, the Scalable URL, Request

Generator [6].
e Web search engine: We used an evaluation copy of the Altavista Search Engine V2.3A for Solaris [3].

o Scientific application: We selected barnes from the SPLASH-2 suite [40], using the 1K body input set.

6.2 Results

In this section, we compare the recovery latencies, storage costs, and common case overhead of MVM1 ver-
sus previous schemes for general speculation (but not speculative multithreading, in particular). We develop
cost models, and the inputs to these cost models are derived from program profiling data that was gathered
while running the benchmarks. Table 2 provides the profiling data. For each benchmark, and for various ver-

sion lengths, it lists the mean number of stores and the mean number of distinct blocks written per version.

TABLE 2. Program Profile Data

version length TPC-H, query 11 | Apache/SURGE Altavista Barnes
store store store store

(in instructions) stores  blocks stores blocks | stores blocks | stores blocks

50 5.2 2.6 6.3 3.0 6.1 2.3 5.1 2.5

100 94 4.1 12.0 49 11.7 3.4 9.9 4.0

150 13.6 5.5 17.7 6.8 17.3 4.2 14.6 5.0

1000 76.2 229 1154 30.0 112.1 13.2 95.7 8.1
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6.2.1 Recovery Latencies
We now compare the recovery latencies for speculation that takes 1000 instructions to resolve. We assume
that the MVM1 system uses 10 versions of 100 instructions each. We also assume that data blocks are 64

bytes and that addresses are 4 bytes (32 bits).'0

Speculative Retirement. Ranganathan et al.’s Speculative Retirement scheme [29] recovers from a mis-
speculation by rolling back the register writes for each instruction that wrote to a register and was then

logged in the history buffer. The rollback latency is equal to:
mean number of instructions that write a register per 1000 X latency to rollback history buffer entry

The first term is on the order of the number of instructions, but, most significantly, it does not include store
or branch instructions. Subtracting out the mean number of stores in the worst-case benchmark (76 for TPC-
H, as shown in Table 2) and assuming that branches are 20% of all instructions, we get a total of 1000 - (76
+ 200) = 724 instructions in the history buffer. Assuming we can restore 2 history buffer entries per cycle,

the roliback latency is 362 cycles.

SC++. Gniady et al’s SC++ scheme [14] recovers by rolling back the effects of every speculative instruc-

tion. The rollback latency is equal to:
1000 instructions X latency to rollback history queue entry

The maximum latency to rollback a history queue entry is equal to the latency to write a store into the L1

cache. Assuming we can rollback 2 instructions per cycle, we have a latency of 500 cycles.

MVM1. MVM1 recovers by restoring to the checkpoint state that precedes the mis-speculated instruction
and replaying any unnecessarily undone instructions. The recovery latency of MVML1 consists of three fac-
tors. First is the cost of recovering the register state and invalidating the speculative blocks from the L1 and
the VB. Second is the time to replay the lost non-speculative work that was done between when the check-
point was taken and when the abort occurred. The third factor is the implicit cost of MVM1 replay that is
due to the L1 cache misses that will occur for accesses to blocks that were squeezed out of the L1 cache

when they were clobbered by (useless) speculative stores.

Assuming naively that the aborted processor will stall until it has re-issued and completed the same stream

of loads and stores that were aborted, the recovery cost is conservatively equal to:

register recovery and invalidate latency +
time to replay lost non-speculative work done between checkpoint and abort +

(mean number of store blocks per 1000 instructions X latency to refill store block)

The register recovery and invalidate latency is short, say 8 cycles, since the register recovery is determined

by the number of registers (32) divided by the number of register file write ports (assume 4), and the invali-

10. We assume 32-bit addresses since we simulate a 32-bit machine, but there is no restriction against 64-bit addresses.
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date can be implemented as a flash invalidation. The time to replay lost non-speculative work is, on average,
on the order of half the number of instructions in the version. At 2 instructions per cycle, this comes to 25
cycles, but this is pessimistic for policies we would expect to use in practice. Policies would likely trigger
versions upon speculation rather than at fixed intervals, as assumed here, making this cost negligible. For
Apache/SURGE, the mean number of store blocks per 1000 is odly 30. We assume the latency to refill a
store block is roughly equal to an L2 hit (although it could be a faster VB hit), and we choose a value of 8
cycles. Thus, we appear to have a latency of 8 + 25 + 240 = 273 cycles. However, the actual latency is con-
siderably less than that, since the processor can easily pipeline the VB accesses and potentially overlap use-
ful work. Moreover, a possible optimization for hiding refill latency would be to prefetch aborted store

blocks from the oldest version that was aborted.

Summary. The recovery latencies of Speculative Retirement and SC++ are 362 and 500 instructions,
respectively. The recovery latency for MVML is 33 required cycles plus 240 potentially overlapped cycles.
MVMZ1’s low penalty for recovery can be viewed as either permitting higher mis-speculation rates for the
same performance, thus enabling more aggressive speculation techniques, or providing better performance

for a given mis-speculation rate.

6.2.2 Storage Structure Costs

We now compare the storage structure costs for speculation that takes 1000 cycles to resolve, and we make
the same assumptions as in Section 6.2.1. We first present the cost, in bytes, of each scheme. Then we dis-
cuss the relative costs per byte, because, while storage cost is partly a function of the sheer number of bytes
needed to buffer speculative state, storage cost also depends on the complexity of the hardware necessary to

search the buffer.

Speculative Retirement. An entry is logged in the history buffer for every speculative instruction that writes

to a register. Storage cost is equal to:
maximum number of instructions that could write a register per 1000 X size of entry in history buffer

The first term is equal to 1000 instructions, even though the mean number of instructions that write a register
is less than all 1000. The size of a history buffer entry is equal to the sum of the sizes of the program counter
(4 bytes), the previous value of the register (4 bytes), and the register map information (2 bytes). Thus, this

scheme has a storage cost of 1000 X 10 bytes = 10,000 bytes.

Beyond the sheer number of storage bytes required, storage for Speculative Retirement is costly because it
requires that the entire history buffer be content addressable. Building increasingly large content addressable

memories (CAMs) is expensive and increases the time to access the CAMs,

SC++. An entry is logged in the speculative history queue for every speculative instruction. The storage cost

is equal to:

1000 instructions X size of entry in speculative history queue
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The size of a speculative history queue entry is equal to the size of an address (4 bytes) plus the size of a
word of data (8 bytes). Thus, we get a storage cost of 12,000 bytes. SC++ also allocates storage to a block
lookup table which is a list of all of the block addresses that are accessed by loads and stores in the history

queue. Its size is much smaller than the size of the history queue.

The storage cost per byte of the history queue is less than that of Speculative Retirement, because it does not

need to be content addressable. The block lookup table, however, needs an associative lookup.

MVM1. MVM1 saves copies of the register state for every version, and it stores an entry in the VB for
every store block in a version. The storage cost of MVML1 (for 10 versions of 100 speculative instructions

each) is equal to:

10 X mean number of store blocks per 100 instructions X safety factor X size of VB entry +

10 X number of registers X register size

The mean number of store blocks per 100 instructions for Apache/SURGE is 5. The safety factor is included
to accommodate variability in the mean number of stores, and we choose a safety factor of 1.5. The size of a
VB entry is equal to the size of a tag (4 bytes) plus the size of a block of data (64 bytes). We assume that we
have 32 registers at 8 bytes each. Thus, MVML1 has a storage cost of 5,356 bytes.

MVML1 requires associative search of the VB but, since the MVM1 design is banked by version, it can have
relatively small CAMs. Also, MVML1 can tolerate relatively slow CAMs, since they are beyond the L1

cache.

Summary. Speculative Retirement uses 10,000 bytes, of which 4,000 bytes (40%) need to be fast CAM.
SC++ uses 12,000 bytes, but it only requires a small fast CAM. MVM1 uses a total of 5,356 bytes, which is
divided up among 10 banks. Each bank needs a 40 byte CAM, but the CAM does not have to be fast, since it
is beyond the L1 cache.

6.2.3 Common Case Overhead

The most nebulous cost to quantify—but a cost that is critical to performance—-is the overhead that is
incurred in the common case, while the processor is operating in the absence of mis-speculations and faults.
Accurate calculation requires detailed implementation of all three schemes. Instead, we estimate these costs
based on the overheads for load and store hits, coherence requests for non-speculative blocks, L2 replace-

ments, and committing speculative work once the prediction is verified.

Speculative Retirement. An associative lookup of the history buffer is incurred for every store hit, coher-
ence request, and L2 cache replacement. For each of these events, the system must ensure that there are no

speculative loads in the history buffer which could be invalidated.

SC++. A history queue lookup is incurred for every coherence request and L2 replacement, but a costly

associative search of the history queue is avoided through the use of the block lookup table. However, the
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TABLE 3. Comparison of Speculation and Fault Tolerance

uniprocessor multiprocessor

speculation speculation fault tolerance
prediction examples branch direction, false sharing, lock fault-free execution

data value acquisition
probability of correct prediction | med-high med-high very high
checkpoint state registers, core state registers, core state,  registers, core state,

cache state cache state
recovery destination before mispredict before mispredict before fault occurrence
(not detection)

instructions until checkpoint 10s - 100 100s 100s - 1000s
can be committed

block lockup table still must be queried for every coherence request and L2 replacement, and this lookup is

on the critical path.

MVMZ1. The cost of a writeback from the L1 to the VB is incurred whenever a store hit displaces an old ver-
sion of the same block. Coherence requests and L2 replacements require an MVM1 lookup, but only for
blocks that the 1.2 indicates could possibly be in the L1 or VB. Moreover, the L1 tag match and the VB

lookup are both fast. Creating new versions and committing speculative work is done in constant time.

7 Conclusions

The increased relative cost of accessing memory is encouraging processor designers to explore deeper uni-
processor speculation (e.g., with branch and value prediction) and consider multiprocessor speculation (e.g.,
on coherence message types and values). Concurrently, manufacturing trends toward deep-sub-micron
design and customer requirements for highly-available computers are encouraging techniques to mask, at
least, transient faults (e.g., with error correcting codes and execution retry). Most current designs consider
speculation and fault tolerance independently, but the similarities between the support interfaces required by

speculation and fault tolerance, summarized in Table 3, suggest a common interface.

In this paper, we propose a unified processor/memory interface, called Multiversion Memory (MVM), to
support checkpoint and recovery for both speculation and fault tolerance. We develop an efficient MVM
implementation, called MVM1, that uses a level one cache to keep recent speculative blocks (like a future
file), version buffers to keep old versions of blocks for which speculation is pending (like a history buffer),

and leaves the level two cache unchanged (like an architectural file).

Simple cost models with parameters for 16 processors and commercial workloads show that using MVM1
allows kilo-instruction speculation and fault tolerance, with little overhead to create new versions and a

recovery cost that is smaller than previous mechanisms.
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We have implemented an MVM1 memory system simulator, which we use in conjunction with the Simics

full system simulator [22], and we plan on pursuing research with MVM. MVM enables many types of kilo-

instruction speculation techniques that have not had a sufficient checkpoint/recovery mechanism, and it also

enables speculation techniques that have not yet even been explored. For example, we are not aware of any

multiprocessor speculation technique that uses global checkpointing to allow speculative data to be observed

by other processors.
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