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Abstract

Motivated by a recent analytical model for evaluating
the performance of shared memory systems with complex
modern processors, this paper develops and validates new
approximate mean value analysis (AMVA) techniques for
(1) estimating mean residence time at a FCFS queue with
high variance in service times, (2) modeling bursty arrivals
and computing mean waiting time at “downstream” queues
in the system, and (3) computing mean delays for saftware
locks that are acquired while occupying the processor and
held while queueing for the processor and memory system
resources. These techniques build on, and are compared
against, previous analytic techniques for FCFS servers that
have high service time variance and for systems with simul-
taneous resource possession. The new techniques greatly
increase the accuracy, robustness, and range of application
of the shared memory multiprocesssor model. The tech-
niques increase the model complexity, but do not appre-
ciably degrade model solution time. The improved analytic
model still computes performance estimates several orders
of magnitude faster than detailed simulation.

1 Introduction

A recent paper [16] develops an AMVA-based analytic
model for evaluating shared memory systems containing
complex modern processors. These processors have inter-
esting features such as parallel, out-of-order, and specula-
tive instruction execution. The analytic model, referred to
as the “ISCA98 model” in this paper, provides estimates of
application execution time, or system throughput measured
in instructions per cycle, that are in fairly close agreement
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with detailed simulation results for the Splash applications
that were used to validate the model.

The ISCA98 model input parameters are derived from
a simulation of the application running on a given parallel
architecture, but the analytic model can then predict, as ac-
curately as the detailed simulator, the performance impact
of modifying various memory system components such as
the number of memory modules per node or the speed of
the memory bus. Thus, the analytic model might be used
to quickly cull the memory system design space, thereby
greatly reducing the size of the design space that needs to be
explored using simulation. Moreover, the paper gives exam-
ples that illustrate how the measured input parameters pro-
vide insight into the behavior of applications with respect to
the memory system architecture. The insight derived from
the measured input parameters might, by itself, be used to
tune the applications, the compiler, or the architecture.

In this paper, we consider two important modeling issues
that were not fully addressed in the ISCA98 model. First,
we consider the question of how to accurately model the
highly bursty memory requests that are issued from the pro-
cessors to the memory system. Second, we consider how to
compute mean lock access delays using fundamental input
parameters that are insensitive to changes in the memory
system architecture. In addressing these issues, we make
the following contributions:

¢ We develop new robust approximate mean value anal-
ysis (AMVA) techniques for estimating the mean res-
idence time and mean residual life at a FCFS queue
that has a high coefficient of variation (CV) in service
time.

o We develop a new AMVA technique for modeling
the bursty arrivals and estimating the mean waiting
time at the resources that are “downstream” from the
high-CV FCFS server, such as the memory system
resources (e.g., memory bus and directory) that are
local to the processor in the ISCA98 model.



e We propose and evaluate a “method of complemen-
tary service time inflation” to model lock access con-
tention in addition to memory system (hardware) con-
tention.

The new technique for estimating mean residence time at
the high-CV server builds on the decomposition approach to
modeling high service time variability proposed by Zahor-
jan et al. [17]. The new AMVA interpolation for estimating
the mean residual life is superior to the interpolation used
in the ISCA98 model. The new techniques are not spe-
cific to the ISCA98 model, and thus might be employed
in other systems that have a server with non-preemptive
scheduling and highly variable service times. We show that
the mean residence time technique, together with the new
technique for modeling bursty arrivals at the downstream
servers, greatly improves the accuracy and robustness of
AMVA models for such systems.

The technique for modeling lock contention is contrasted
with previous approaches to modeling simultaneous re-
source possession [5, 12]. As with the method of surrogate
delays [5] that inspired the approach, the method of comple-
mentary service time inflation is a general AMVA technique
that might be applied to other systems where customers can
queue for one resource while holding or occupying another
resource.

Accurately modeling the system features described
above increases the robustness and applicability of the
ISCA98 model. While the techniques for analyzing bursti-
ness and lock contention increase the model complexity, the
number of additional model input parameters is small, and
the extensions do not appreciably degrade the model solu-
tion time, which is still on the order of a couple of seconds.

The rest of this paper is organized as follows. Sec-
tion 2 provides some background on the architecture and the
ISCA98 model that motivates the new AMVA techniques.
Section 3 discusses the new MVA approximations for es-
timating mean residence times at FCFS queues that have
high coefficient of variation in service times. Section 4
presents the new AMVA technique for modeling bursty ar-
rivals at the downstream queues. Section 5 discusses the
method of complementary service time inflation for com-
puting lock access delays. Finally, Section 6 summarizes
the new techniques developed in the paper and future re-
search directions.

2 Background

Below we describe the system architecture models that
motivate the modeling techniques developed in later sec-
tions of this paper. A reader who is not interested in these
details can skip this section.
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Figure 1. ISCA98 System Architecture

2.1 System Architecture

The architecture modeled in the ISCA98 model is the
cache-coherent, shared-memory multiprocessor architec-
ture, shown in Figure [, that is modeled in the detailed
RSIM simulator [10]. Cache coherence is maintained by a
standard three-state (MSI) directory-based invalidation pro-
tocol.

The MIPS R10000-like processor, modeled in RSIM, ex-
ploits instruction level parallelism (ILP). Instructions are
fetched into and retired from the instruction window in pro-
gram order, and are issued to the functional units when their
input data dependences are satisfied. Speculative execution
is used for (temporarily) unresolved control dependences
for up to four branch instructions. Parallel instruction exe-
cution, combined with non-blocking caches, allows the pro-
cessors to have multiple outstanding requests to the mem-
ory system. The caches use miss status holding registers
(MSHRs) to track the status of each outstanding miss [6].

The RSIM architecture is release consistent, which
means that store instructions can be retired from the instruc-
tion window before the data returns from memory. That is,
memory write or upgrade requests are asynchronous. Cor-
rectly speculated memory reads are synchronous, meaning
that the load instruction cannot be retired from the top of
the instruction window until the data returns from memory.

We have also modified the ISCA98 model so that it
can be applied to the architecture that is modeled by the
SimOS [13] simulator. The SimQOS architecture is similar
to the Stanford FLASH [7] and the SGI Origin [8] archi-
tectures. There are two key differences between the SimOS
and RSIM architectures that required structural changes to
the analytic model equations. First, the SimOS architecture
is sequentially consistent, and thus memory write requests



are synchronous. Second, the memory system resources
are organized somewhat differently. In particular, the di-
rectory controller (DC) (with an attached memory module)
is placed structurally where the network interface is placed
in the RSIM architecture, and the DC performs the func-
tions of both the directory and the network interface in the
RSIM architecture.

Table 1 defines the RSIM and SimOS system architec-
ture parameters used in the simulations that are used in this
paper. Latencies are in units of nanoseconds. Note that
Sinem 18 set to zero because we assume that memory access
is completely overlapped with directory lookup in both ar-
chitectures. Furthermore, the Sy, and S, parameters for
SimOS are fixed delays that each include an average queue-
ing delay estimate, whereas RSIM explicitly models queue-
ing time at the bus and at each switch in the interconnection
network.

2.2 The ISCA98 and SimOS Architecture Models

The validated ISCA98 model [16] views the memory
system architecture below the level two caches as a system
of queues and delay centers. The queues include the split-
transaction memory buses, directories and associated mem-
ory modules, and network interfaces. The interconnection
network is modeled by a delay center with mean service
time equal to the average network transit time including an
estimate of the average queueing delay at the switches. A
set of customized AMVA equations that make use of well-
known approximate MVA techniques is used to compute the
mean total residence time for memory requests in the mem-
oty system. The details of those equations are given in [15].

The processor and two-level cache subsystem are mod-
eled as a FCFS queue (i.e., a “black box”) that, when not
blocked, issues requests to the memory system with a given
mean and coefficient of variation in interrequest time (7,
CV;). The measured coefficient of variation is on the order
of 10-12 for several of the applications evaluated in [16],
indicating that parallel instruction execution can lead to
highly bursty memory interrequest times. Sorin et al. ob-
serve that the standard AMVA estimate of the mean resid-
ual life of a customer in service at a FCFS center with high
service time variance [11] is inaccurate for the processor
queue, because the average latency for a memory transac-
tion is often less than this estimated mean residual life, and
thus customers do not arrive back at the processor at ran-
dom arrival instants. ! The ISCA98 model therefore uses a
simple interpolation between this estimated mean residual
life and 7 to achieve the model accuracy reported in [16].
High burstiness in request arrivals at the downstream mem-

1The standard equation for mean residual life is accurate at all other re-
sources in the model since the variance in service time is low at the memory
system resources.

ory system resources (local to the processor), which may
cause higher average queue residence times, is not modeled.

In the ISCA98 model, the input measure of mean mem-
ory interrequest time, 7, includes the average time spent
waiting to acquire locks. In Section 5, we evaluate a new
approach for directly computing mean lock access delays.

Each processor has a closed class of customers with pop-
ulation equal to a fixed number of outstanding memory re-
quests that will be issued before the processor blocks. Let-
ting M be the number of outstanding read requests when the
processor blocks due to a correctly-speculated load request
that cannot be retired, the model is solved for each possi-
ble value of M, and then the overall system throughput is
computed as a weighted sum of the throughputs for each
value of M. The weights are computed from the measured
distribution of M, which is a model input.?

In the ISCA98 model, for a given value of M, two differ-
ent versions of the model (i.e., two submodels) are used to
compute (1) blocking due to a correctly-speculated load re-
quest that cannot be retired, and (2) additional blocking that
is due to MSHRs being fully occupied by write requests, re-
spectively. In each submodel, the processor service time is
inflated to account for the processor blocking (or idle) time
computed in the other submodel. The iterative solution of
the two (sub)models will be referred to as the ISCA98 “ar-
chitecture model” in the remainder of this paper.

To create the SimOS architecture model, we have modi-
fied the customized AMVA equations to model the different
memory system organization in the SimOS architecture.?
Furthermore, since write requests are synchronous in the
SimOS architecture, iteration between two architecture sub-
models is not required. Instead, M is the measured num-
ber of read, write, or upgrade requests that are outstand-
ing when the processor blocks. One model, solved for each
possible value of M, accounts for blocking that is due to a
correctly speculated load or store instruction that cannot be
retired. All blocking that occurs when MSHRs are full is
accounted for in this case.

The issues of computing mean residence time at the
high-CV processor queues, modeling bursty request arrivals
at the local memory system resources, and directly comput-
ing mean lock access delays, are relevant for the SimOS
architecture model as well as for the ISCA98 model. Tech-
niques for these extensions are discussed in the next three
sections.

2Sorin et al. observe that the model input parameters are sensitive to in-
struction window size, organization of the processor cache hierarchy. and
various aspects of the application code and compiler, but is relatively in-
sensitive to memory system latencies beyond the level two cache [16].

3For example, since SimOS models the split-transaction memory bus as
a delay center with average delay that includes bus queueing time as well as
transfer time, the customized AMVA equations for the SimOS architecture
were modified to use a delay center for the bus.



parameter | description SimOS | RSIM
N number of nodes

m number of directories per node 1 4
Mpyw number of MSHRs 8 8
Shus bus latency (incl. avg. queueing delay for SimOS) 75 32
Sni network interface (RSIM) or DC (SimOQS) latency for message handling 20 16
Spc directory or DC latency for directory access 100 80
Smem non-overlapped memory access time 0 0
Shet network latency or switch latency 120 16

Table 1. SimOS and RSIM System Architecture Parameters

3 FCFS Centers with High Variance Service
Times

The standard AMVA approach for handling high (or low)
variance in service times at FCFS service centers [11] has
been shown to be accurate for many systems in spite of the
fact that this feature violates the assumptions required for
the MVA equations to hold. However, in the ILP multipro-
cessor model, this approximation was not sufficient to ac-
count for the burstiness of memory requests that are issued
by the processors [16]. Specifically, for this model, the stan-
dard approximation overestimates mean queueing time at
the processor node and underestimates mean waiting time
at the local memory system resources. In this section we
address the former problem by developing a new and sig-
nificantly more robust AMVA approximation for the mean
residence time at a high-variance FCES center. In Section 4
we address the latter problem by developing a new AMVA
approximation that captures the impact of bursty departures
from the high-variance FCFS center on the mean waiting
time at a “downstream” center. The new AMVA approxi-
mations may be of general use for more accurately model-
ing systems that have FCFS centers with high variance, or
coefficient of variation (CV), in service times.

The ISCA98 model addressed the accurate estimation
of mean residence time at a high-CV FCFS server by us-
ing the standard AMVA approximation for the customers
found in the queue, together with a new AMVA interpo-
lation for the mean residual life of the customer found in
service, by an arrival to the server. Instead, we derive a new
estimate of the mean residence time at the high-CV FCFS
server by adapting the decomposition-based approximate
solution technique for modeling high service time variabil-
ity at FCFS centers developed by Zahorjan et al. [17], to the
AMVA framework. We then provide the new interpolation
used in the ISCA98 model and develop an improved inter-
polation. Finally we compare the accuracy of the various
AMVA techniques as well as the decomposition technique
by Zahorjan et al. for a variety of systems with high-CV

FCFS centers, including the ILP multiprocessor system,
3.1 New AMVA Mean Residence Time Estimate

Consider first a system in which there is one FCFS cen-
ter with high variance service times, and suppose that the
service time distribution can be modelled with a 2-stage hy-
perexponential distribution. That is, with probability p a
given customer has a “small” mean service time, 7,, and
with probability 1 — p the customer has a “large” mean ser-
vice time, T3, T, < 75 and 7 = p7g + (1 — p)73. In this case,
the decomposition solution technique developed by Zahor-
jan et al. entails computing estimated system performance
measures using weighted averages of the performance mea-
sures of two simpler models. In one of these models, cus-
tomers have mean service time 7, at the FCFS center, while
in the other they have mean service time 7. An estimate
for the overall mean system residence time, for example, is
given by p times the mean system residence time in the first
model, plus 1 — p times that in the second.

The Zahorjan et al. solution technique has two key ad-
vantages. First, it has a firm theoretical foundation provided
by the theory of near-complete decomposability [2]. Sec-
ond, it has generally very high accuracy [17]. The principal
disadvantage is the cost of the technique, particularly when
there are multiple FCFS centers with high variance service
times. For a model including H FCFS centers with ser-
vice time distributions modelled by 2-stage hyperexponen-
tial distributions, 27 simpler models need be analyzed, one
for each possible combination of service stages for each of
the H centers. In some contexts, such as the ILP multipro-
cessor modelling application, this is too expensive.

The insight that leads to adapting the decomposition ap-
proach to the AMVA context is that it may be sufficiently
accurate to apply the decomposition only at the level of the
individual centers at which there is high service time vari-
ability. Thus, for a FCFS center with a service time distribu-
tion modeled by the 2-stage hyperexponential distribution
described above, assuming a single closed class of IV cus-



tomers, we approximate the mean residence time R at that
center using:

R =pR,+ (1 -p)Ry, (N
where N—1
R, = Ta(]- + '—]\:/:—“'Qa) 2)
N -1
Ry, = Tb(l + N Qb) 3)
R,
e =N— 4
Q NR(L + Roth.er ( )
R
Qy=No——"r 5)

Rb + Rothcr

In the above equations, Rother is the mean total resi-
dence time spent at the other centers in the model, which
is computed iteratively together with R within the standard
AMVA iterative solution framework. The extension of these
equations to multiple customer classes is straightforward.

Note that the above approach assumes that the “average
behavior” seen in the rest of the system is the same regard-
less of which stage of the center with high service time vari-
ability is active. In section 3.3 we examine the accuracy of
this approximation for many networks, including systems
for which such an assumption would appear to be inaccu-
rate. The principal advantage of this approach is that there
is no need to solve 2¥ separate models to obtain the solu-
tion for a system that includes H FCFS centers with high
service time variability. Only the one model is solved, with
modified mean residence time equations at each of the H
centers as given above.

The above model is easily extended to general Coxian
servers [3] by combining as necessary the above method for
composing the mean residence time equation, with the stan-
dard (and quite accurate) AMVA approximation for service
times with low variability. However, we have not yet inves-
tigated the accuracy that is achieved with such an extension.

3.2 New AMVA Mean Residual Life Estimates

The standard AMVA approximation for the mean resi-
dence time at a FCFS center with high (or low) variance ser-
vice times assumes that customers arrive at random points
in time and thus computes a relatively large value for the
mean residual life of a customer in service when an arrival
occurs to a high-CV FCFS center.* If the average residence
time of the customer in the rest of the system is smaller than
this mean residual life, as is the case for memory system re-
quests in the ILP multiprocessor model, the customer does
not arrive back to the high-CV server at a random point in

4The estimated mean residual life equals the second moment of service
time divided by twice the mean service time.

time relative to the service time at the processor. In this
case, the standard approximation can greatly overestimate
mean residual life. '

An alternative to the AMVA mean residence time ap-
proximation developed in section 3.1 is to develop a more
accurate accurate approximation for the mean residual life
of a customer found in service at high-CV FCES center, and
to use this more accurate estimate together with the standard
AMVA approximation for the number of customers waiting
in the queue, to compute overall mean residence time in the
queue.

As before, we consider a FCFS center with a service time
distribution modeled by a two-stage hyperexponential with
parameters 7, 75, and p, such that 7 = p7, + (1—p)7s.
The mean residual life is approximated using an interpola-
tion between 7, which is the mean residual life in the limit-
ing case in which the time spent at the other centers in the
model approaches zero, and the mean residual life as would
be seen by a random arrival. Letting Rozner be the average
total residence time in the rest of the model, and L be the
“standard” mean residual life (i.e., assuming random arrival
instants), a simple ad hoc interpolation is given by:

T Rother

mean residual life ~
T+ Rother T + Rother

L (6)

This interpolation was used in [16] and yielded results
that were significantly more accurate than when the stan-
dard mean residual life was used.

An improved interpolation is obtained when ' = T¢™&
replaces 7 in the weighting factors, as follows:

T r Rother
T+ Rother T+ Rother

mean residual life =~ L (N

This interpolation is exact when the mean delay in the
rest of the model is exponentially distributed with mean
Roiner. To see this, consider a given customer, named A,
that is not at the high variance center when another cus-
tomer, named B, enters service at this center. If B has1 mean

service time equal to 7,, then with probability —__I—”%ﬂ%
Rother
A will arrive at the high variance center before B completes

service, and in this case the mean residual life is 7,. Simi-

larly if B has mean service time equal to 7, then with prob-
1

ability -_r_—i—"-'i‘ﬁt——, A will arrive at the high variance center

o ' Rother
before B completes service, and in this case the mean resid-

ual life is 7. Letting 7 denote the mean residual life of a
customer in service at an arrival instant, we thus have:
1 1
_— Rolher Ta
T=p|T T Ta T T
Ta Rothev' Ta

Rother
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which reduces to the second interpolation given above.

Tables 2 and 3 compare the accuracy of four techniques
for estimating the mean residual life: (1) assume that ser-
vice times are exponentially distributed (“CV=1"), (2) the
standard AMVA approximation, (3) the simpler (first) inter-
polation for mean residual life given above, and (4) the new
(second) interpolation given above (“New Interp.”). The re-
sults in these tables are for simple two-center models with
a single class of 5 customers. One center is a FCFS center
with service times modeled by a 2-stage hyperexponential
distribution with mean 7 and varying CV2. The other cen-
ter is either a delay (Table 2) or a queueing (Table 3) cen-
ter with exponentially distributed service times with mean
Sdelay OF Squeueing. respectively. Exact values of the mean
residual life are derived [rom numerical solutions of the cor-
responding Markov chains. For Table 3, the exact value
of the mean residence time at the second queueing center
(Rother) is used in the interpolation formulas. (In Sec-
tion 4, we describe an accurate AMVA approximation for
this mean residence time.)

Note that for the models in which the second center is a
delay center (Table 2), the new interpolation is exact, as es-
tablished above. Even for the models in Table 3, the new in-
terpolation appears to yield reliable estimates. The reliabil-
ity of the new interpolation is further supported by Figure 2,
which explores the accuracy of the new interpolation over a
space of two-center models in which the second center is a
queueing center. Each contour line in the figure corresponds
to a particular absolute value of percent relative error.

In contrast, as illustrated in Tables 2 and 3 the other
techniques appear to have considerably more variable accu-
racy. Most notably, the estimations provided by the stan-
dard AMVA approximation are highly inaccurate for these
cases. Although the simple interpolation is significantly
better than the standard AMVA approximation or assum-
ing CV=1, it appears to be significantly less accurate than
the new interpolation.

3.3 Accuracy of the AMVA Residence Time Esti-
mates

Tables 4 and 5 compare the accuracy of six alterna-
tive techniques for estimating the mean residence time at
a FCFS center with high variance service times: (1) assume
that service times are exponentially distributed (“*CV=1"),
(2) the standard AMVA technique, (3) use of the simple
(first) interpolation for mean residual life given in Sec-
tion 3.2 together with standard AMVA for all other esti-
mates, (4) use of the new (second) interpolation given in
Section 3.2 (“New Interp.”) together with standard AMVA,
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Figure 2. Accuracy of New Interpolation for
Mean Residual Life (two-center models with
queueing center, N=5, p=0.99, contours for
absolute value of percent relative error)

(5) the new technique proposed in Section 3.1 (“AMVA-
decomp”), and (6) the decomposition approach of Zahorjan
et al. (“Decomp.”) [17].

The techniques are compared for the same two-queue
model configurations as were used in Tables 2 and 3, respec-
tively. Exact values for the mean residence time at the FCFS
center with high variance service times are derived from nu-
merical solutions of the corresponding Markov chains. For
Table 5, the exact value of Roner is used in the calculations
for all of the techniques excepting for the decomposition
approach of Zahorjan et al., in which this quantity is not
used.

Note that for the models in which the “other” center is a
delay center, the AMVA approximation proposed in Sec-
tion 3.1 and the decomposition approach of Zahorjan et
al. on which it is based, yield identical results. For the
models in which the second center is a queueing center (Ta-
ble 5), we might expect the AMVA-Decomp technique to be
less accurate, as we would not expect the “average behav-
ior” seen in the rest of the system (i.e., arrival queue length
at the second queueing center) to be the same regardless of
which stage of the center with high service time variability
is active. However, for the cases considered in Table 5, the
AMVA-Decomp technique appears to be quite accurate in
spite of this possible issue.

The accuracy of the AMVA-Decomp approach is ex-
plored more fully for the simple two-center models in the
contour plots of Figures 3 and 4. The key conclusions from
Tables 4 and 5 and Figures 3 and 4, are:

o The new decomposition-based AMVA technique in



CVZE | Ssetay/T || CV=1 Std. | Simple | New Interp./
AMVA | Interp. Actual

10 0.5 50 275 77.8 56.3

10 2 50 275 181.2 73.2
10 10 50 275 252.2 132.1
100 0.5 50 2525 87.0 108.1
100 2 50 2525 | 3404 267.1
100 10 50 2525 | 1249.9 853.7

Table 2. Mean Residual Life Estimates (two-center models with delay center, N=5, p=0.99, r=50)

CVZ | Squeucing/7 || CV=1 Std. | Simple New | Actual
AMVA | Interp. | Interp.

10 0.5 50 275 86.6 63.0 62.0
10 2 50 275 187.4 124.6 117.8
10 10 50 275 252.2 215.9 231.0
100 0.5 50 2525 141.0 260.0 221.0
100 2 50 2525 440.6 824.0 727.4
100 10 50 2525 1269.0 | 1787.7 | 1777.3

Table 3. Mean Residual Life Estimates (two-center models with queueing center, N=5, p=0.99, 7=50)

CViy | Sdetay/T || CV =1 Std. | Simple New | AMVA-Decomp./ | Actual
AMVA | Interp. | Interp. Decomp.

10 0.5 230.5 355.2 2422 | 2357 230.5 | 225.1

10 2 178.1 310.9 156.3 198.6 180.7 164.8

10 10 76.6 167.6 71.8 113.8 105.7 96.1
100 0.5 2304 825.7 249.1 272.2 2317 | 2262
100 2 178.1 786.3 2342 | 3077 203.6 199.3
100 10 76.6 606.8 157.1 323.8 189.9 1773

Table 4. Estimates of Mean Residence Time at High-CV Center (two-center models with delay center,
N=5, p=0.99, 7=50)

CVZE | Squencing /7 || CV =1 Std. | Simple New | AMVA- | Decomp. | Actual
AMVA | Interp. | Interp. | Decomp.

10 0.5 209.4 337.8 2385 | 2205 210.0 213.9 | 2045
10 2 81.9 182.8 148.6 | 120.8 109.3 110.6 | 112.2

10 10 54.4 73.8 71.8 68.7 79.6 90.8 73.2
100 0.5 180.3 787.9 246.9 | 306.4 204.2 203.5 | 206.0
100 2 78.4 617.2 2264 | 3254 190.2 193.1 186.2
100 10 34.3 251.8 155.5 | 196.1 173.3 187.9 154.8

Table 5. Estimates of Mean Residence Time at High-CV Center (two-center models with queueing
center, N=5, p=0.99, 7=50)
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Figure 3. Accuracy of Decomposition-Based
AMVA Approximation (two-center models
with delay center, N=5, p=0.99, contours for
absolute value of percent relative error in
mean residence time at high-CV center)
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Figure 4. Accuracy of Decomposition-Based
AMVA Approximation (two-center models
with queueing center, N=5, p=0.99, contours
for absolute value of percent relative error in
mean residence time at high-CV center)
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Section 3.1 yields estimates of mean residence time
that have similar accuracy as those provided by the
highly accurate but more costly decomposition ap-
proach. (However, we have not yet established that
we can estimate the mean residence times at down-
stream centers as accurately as can the decomposition
approach; this question is addressed in Section 4.)

o The other techniques have more variable accuracy.

¢ Although the new interpolation technique was shown
to be highly accurate for estimating mean residual
life, this is not always, by itself, sufficient for ac-
curately estimating overall mean residence time at a
high-CV FCEFS center.

o The standard AMVA approximation technique is
again not very robust.

Although the new interpolations for estimating the mean
residual life are not as robust for predicting mean residence
time in the queue as the decomposition-based approaches,
they are simple to implement and yield considerably im-
proved mean residence time estimates as compared with
the standard AMVA approximation. This is consistent with
the observations in [16] that the simple interpolation was
needed in the ISCA98 model. Figure 5 illustrates the ac-
curacy of memory request throughputs estimated by the
ISCA98 model with standard AMVA, and with the simple
mean residual life interpolation, as compared with the esti-
mates from the detailed RSIM simulator, for various Splash
benchmarks. The results for Simple Interp are perhaps more
accurate than one would expect from the preceding results
in this section. This is due to the fact that, in cases where
Simple Interp (or New Interp) overpredict mean residence
time, the error is partially cancelled in the throughput esti-
mate because the bursty arrivals at the downstream queues
are not modeled.

4 Bursty Arrivals

A FCFS center with high variance service times gener-
ates bursty departures. Bursty departures may yield bursty
arrivals at downstream centers, increasing queueing at these
centers. In the ILP multiprocessor system, for example,
there is a large coefficient of variation in the processor
service time () for many applications, resulting in bursty
memory requests. The standard AMVA equations do not
capture the bursty arrival behavior at the memory system
resources, which results in an underestimate of the mean ar-
rival queue length of requests from the processor, and thus
an underestimate of mean residence time.

In this section we develop a new AMVA approximation
that successfully captures the impact of bursty arrivals in
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Figure 5. Accuracy of ILP Multiprocessor
Throughput Estimates

this context. This new approximation is possibly useful in
other contexts as well.

4.1 A Model of Bursty Arrivals

Our approach entails modeling a bursty arrival process
as consisting of “bursts” containing a geometrically dis-
tributed number of requests, with exponentially distributed
inter-burst times as well as interarrival times within a burst.
Three parameters characterize the arrival process:

k, the average number of customer arrivals within a burst,
I, the mean interarrival time within a burst, and
L, the mean time between bursts.

The value of I is determined from the service time distri-
bution(s) at the center(s) generating the arrivals. For exam-
ple, consider the simple case where arrivals are generated by
departures from a FCFS queueing center with service times
modeled by a 2-stage hyperexponential distribution. In this
case, I is equal to the smaller of the mean service times of
the two stages.

Letting X denote the arrival rate (equal to the center
throughput which is iteratively computed during the itera-
tive AMVA solution), and C'V,2 denote the squared coeffi-
cient of variation of interarrival times (to be computed be-
low), k and L can be defined by the following two equa-
tions:

k
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Thus, estimation of k and L requires estimation of CV2.
For this purpose, the method proposed by Sevcik et al. [14]
can be employed. For example, consider again the case that
a single FCFS queueing center with high variance service
times (the “upstream” center), generates arrivals to a single
“downstream” center. Assuming that the arrivals to the up-
stream center are not themselves bursty, an approximation
for CV? at the downstream center is expressed in terms of
the squared coefficient of variation of service times, CV,,at
the upstream center and the utilization (U) of the upstream
center, as follows [14]:

CV2=14+U*CVZ~-1) (10)

As described below, the value of & may need to be
capped to some value less than that computed from the
above equations (and the value of L correspondingly modi-
fied), depending on the size of the customer population and
on the mean queue length estimates produced during the it-
erative AMVA solution.

4.2 An Approximation for Mean Residence Time

The new approximation for the mean residence time R
at a queueing center with bursty arrivals employs the above
model, with parameters k, I, and L, together with the as-
sumption that the center is never empty in the midst of a
burst. This assumption is likely to be reasonable for most
parameter settings of interest for the ILP multiprocessor
system.

Given this assumption, and assuming a single closed
class of N customers, the residence time of a customer is
equal to its own service time, plus those of the customers
found at the center by the “lead arrival” of the burst (less
any service time already acquired by the customer in ser-
vice, but for simplicity we will assume memoryless service
times for this calculation), plus those of the prior customers
within the same burst, minus the time from the start of the
burst until the customer’s arrival. Since the burst size is ge-
ometrically distributed with mean &, on average there are
k — 1 prior customers within a burst. Thus, the average
time from the start of the burst until the customer’s arrival
is (k — 1)I. Letting Qns be the mean queue length during
the time intervals between bursts, and making the standard
AMVA approximation for the arrival instant mean queue
length,
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QQny, can be derived from the overall average mean queue
length @ = RX, computed during the iterative AMVA so-
lution, and the assumption that the center never idles in the
midst of a burst, yielding:

I(k—1)(S -
Qu=0-xIEZNE=D
Clearly, however, there cannot be more than N — 1 cus-
tomers that are either found already present at the center by
the lead arrival of the burst, or that arrive prior in the burst.

Thus,

N

-1
N Qnb (13)

Ensuring that this constraint is satisfied may require re-
ducing k to the value of the rhs of the above relation,
and then recomputing L (so as to ensure that the constraint
(‘EZTI;T?E = X remains satisfied), during the course of the
iterative AMVA solution.

k<N -

4.3 Validation Results

Tables 6 and 7 compare five approaches for handling
FCFS centers with high variance service times, and the
bursty arrivals that they generate at downstream centers:
(1) assume that service times are exponentially distributed
(“CV=1"), (2) the standard AMVA approximation, (3)
the approach proposed in Section 3.1 with no attempt to
model bursty arrivals (“AMVA-Decomp”), (4) the approach
proposed in Section 3.1 in conjunction with the above
technique for modeling bursty arrivals (“AMVA-Decomp-
Bursty™), and (5) the decomposition approach of Zahor-
jan et al. (“Decomp.”) [17]. The results in this table are
for the same two-center model configurations that were
used in Tables 2 and 3. Exact values for the perfor-
mance metrics shown are derived from numerical solution
of the corresponding Markov chains. The accuracy of the
decomposition-based AMVA approach in conjuction with
the proposed technique for modeling bursty arrivals is ex-
plored more fully for these simple two-center models in the
contour plots shown in Figures 6 and 7.

The results show that, for the cases considered, the com-
bined use of the new decomposition-based AMVA tech-
nique and the proposed technique for modeling bursty ar-
rivals yields estimates of mean residence time that are
nearly as accurate as those provided by the more costly
decomposition approach. In contract, the other techniques
have much more variable accuracy.
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Figure 6. Accuracy of Decomposition-Based
AMVA Approximation + Bursty Arrival Ap-
proximation (two-center models with queue-
ing center, N=5, p=0.99, contours for absolute
value of percent relative error in mean resi-
dence time at the center with bursty arrivals)
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Figure 7. Accuracy of Decomposition-Based
AMVA Approximation + Bursty Arrival Ap-
proximation (two-center models with queue-
ing center, N=5, p=0.99, contours for absolute
value of percent relative error in mean system
residence time)



CV? | Squeucing /T || CV =1 Std. | AMVA- | AMVA-Decomp.- | Decomp. | Actual
AMVA | Decomp. Bursty

10 0.5 40.7 33.8 40.7 40.7 47.8 53.4
10 2 4372 353.8 416.3 464.6 4522 | 4315
10 10 24567 | 24414 2436.8 2495.0 2449.6 | 24394
100 0.5 40.7 28.3 40.4 78.6 104.1 96.4
100 2 437.2 176.4 361.3 482.1 483.0 | 4732
100 10 2456.7 | 22934 2362.8 2496.2 2468.8 | 2450.7

Table 6. Estimates of Mean Residence Time at Queueing Center with Bursty Arrivals (two-center

models with queueing center, N=5, p=0.99, 7=50)

CVZ | Squeneing /7 || CV =1 Std. | AMVA- | AMVA-Decomp.- | Decomp. | Actual
AMVA | Decomp. Bursty

10 0.5 259.4 383.5 259.6 259.6 261.7 257.9

10 2 518.7 558.1 526.5 572.0 562.8 5437

10 10 25109 | 25159 2516.3 2574.1 25404 | 2512.7
100 0.5 259.4 852.6 262.9 286.5 307.6 302.4
100 2 518.7 923.7 553.1 672.3 676.1 659.4
100 10 2510.9 | 2558.3 1536.8 2669.2 2656.7 | 2605.5

Table 7. Estimates of Mean System Residence Time (two-center models with queueing center, N=5,

p=0.99, r=50)

5 Synchronization

Two predominant synchronization primitives used by
parallel applications are barriers and locks.® Barriers are
global synchronization primitives, in that all processors
must wait for all other processors to have reached the barrier
before they are allowed to continue. Locks are generally
used to enforce mutual exclusion to a shared software re-
source. Processors contend for a lock, acquire the lock, use
the shared resource, and then they release the lock so that
other processors can obtain access to the shared resource.

In the ISCA98 model, lock access delays and barrier de-
lays were included in the model input parameters. This does
not permit investigation of how these delays might change
when varying memory system configuration. Below we
propose an approach for predicting average lock contention
delays (and barrier delays) from basic model input param-
eters that are insensitive to changes in the memory system
beyond the processor cache hierarchy. The technique for es-
timating lock contention may be more generally applicable
to other systems in which resources are symmetrically held
while waiting for other resources to become available.

The specific context that we consider is one in which the
application program queues for a lock while occupying (or

5Flags are not addressed in this paper.
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holding) the processor. Symmeltrically, while holding the
lock, the program can queue for memory system resources
or the processor. Conversely, the program can release the
lock while still holding the processor or it can complete set-
vice at a memory system resource while still holding the
lock. This “symmetric” simultaneous resource possession
problem can be contrasted with the “asymmetric” problem
previously considered in [5, 9], in which resource A (e.g. a
tape drive) is acquired before queueing for resource B (e.g.,
adisk) and then A is held for the entire queueing and service
time at B. The ILP multiprocessor simultaneous resource
possession problem can also be contrasted with the method
of layers [12], in which a client does not occupy the pro-
cessor while queueing for the software resource (i.e., the
server). One further important contrast between the prob-
lem considered here and the problem considered in previous
work is that each processor in the architecture model has a
class of customers with population equal to the number of
memory requests that can be issued before the processor
blocks; there may be more than one customer per processor
due to ILP, yet the customers from a given processor cannot
contend with each other for any of the locks. Our proposed
solution differs from previous approaches primarily because
we are addressing a different simultaneous resource posses-
sion problem. We comment further on this after describing



the proposed technique.

5.1 A Method of Complementary Service Time
Inflation

We will first describe the proposed technique assuming
only one lock is held at a time; then we will discuss general-
izations for specific types of nested lock acquisition, which
occur in the Splash benchmarks in SimOS. Further general-
ization for simultaneous lock access is beyond the scope of
this paper.

The approach is inspired by the method of surrogate de-
lays, first proposed by Jacobson and Lazowska [5]. Like
the method of complementary service time inflation used
in the ISCA98 model to iterate between two architecture
submodels, we iterate between the architecture model that
estimates memory request throughput for each processor,
and a lock contention model that computes average lock
access delay (or processor spin-waiting time) due to lock
contention. Customers in the architecture model represent
actual or potential memory requests that can be issued by
each processor. Customers in the lock contention model
represent processors. During the iterative solution, specific
service times in each model are inflated to reflect delays in
the other model, as explained below.

no-lock execution time
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Figure 8. Lock Contention Model
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The lock contention model is illustrated in Figure 8. The
number of customers in the lock contention model equals
the number of processors that access any of the L locks.
The (fundamental) input parameters for this model are:

L: number of locks that have non-negligible contention
Trolock,j: avg number of memory accesses by processor j
between lock requests

Piock;,;: prob that a lock request from processor j is for
lock ¢

Tiock:,j: average number of memory requests by processor

j while holding lock i

The model includes a FCFS queue for each of the L
locks, and a delay center representing the execution time
while not accessing or holding any of the L locks in the sub-
model. The service time at each delay center is computed as
Tnolock,j LiMes 7;‘;'1:0— where X notock is the throughput
of memory requests for processor j estimated by a version
of the architecture model in which the service time at pro-
cessor j is not inflated to include average lock spin time, but
service time at each other processor is inflated with the esti-
mates of average lock spin time from the previous iteration
lock contention model. The service time at each queueing
center represents lock holding time which is similarly com-
puted as 7o, ; times 3\—]—:1—02—:

Solution of the lock contention model yields the mean
waiting time for each lock by each processor.  This
average lock spin time is added to the mean proces-
sor service time (r) in the architecture submodel using
the fraction 01 memory requests that are lock accesses,
, and the lock selection fre-

Trolack,j +Zi Plock,-,, *TLock; . j
quencies. In addition, CViay is recomputed assuming that
lock spin time has a coefficient of variation (arbitrarily)
equal to one. Solving the overall model involves iterating
between the architecture and lock contention models un-
til the (complementary) service time inflation factors con-
verge.

The above iterative model is generalized for specific
cases of nested lock requests by creating a separate lock
contention mode! for the set of locks at each level of the
lock hierarchy, and iterating among the lock submodels as
well at the architecture model, appropriately inflating the
various service times.

5.2 Validation Results

The accuracy of the proposed method of complementary
service time inflation is illustrated by the sample results in
Figures 9, 10, and 11. The first two figures compare the
application of the method in the SimOS architecture model,
compared with measurements obtained using SimOS, on an
implementation of the “Sieve of Eratosthenes™ algorithm
for finding prime numbers. This application was selected
due to its heavy lock contention, as is seen by the high mean
lock waiting times reported in the table. The predicted mean
waiting times and throughputs are seen to agree reasonably
well with the measured values, even in this extreme case.
The estimated throughput of CPU 2 is predicted to be higher
than that of CPU 1; however the actual throughputs of each
processor are in fact quite similar, and relatively large mean
lock spin time is estimated accurately enough to obtain this
qualitative result.
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Figure 11. Accuracy of Complementary Ser-
vice Time Inflation Model in Comparison with
Simulation Results (4 processors, 4 memo-
ries, 5 customers per processor, 2 locks, 10
memory requests while holding lock, con-
tours for absolute value of percent relative
error in memory request throughput)

The results in Figure 11 compare analytic results to
results obtained from simulation for a range of simple
models.® These models consist of four service centers
representing processors and four representing memory re-
sources. There are five customers per processor center, rep-
resenting actual or potential memory requests. Customers
cycle between their processor center and a randomly se-
lected (with equal selection probabilities) memory resource,
with exponentially distributed service times at the proces-
sors and memories. A customer about to leave a processor
may attempt to acquire one of two locks, with probability
that is varied in the experiments. If an attempt is made to
acquire a lock that is held by another processor, the request-
ing processor is blocked until the lock is freed. Ten mem-
ory references are made while holding a lock, implying (for
these parameters) low variability in lock holding times. It
is assumed that processors may request and hold only one
lock at a time, and that the selection frequencies for the two
locks are equal. For the cases considered, the method of
complementary service time inflation is seen to have very
good accuracy, particularly in the regions of most interest
that correspond to low probability of lock access (per mem-
ory request).

6The simulation values that were used in generating the relative error
results in this plot have 95% confidence intervals that are within 1%.



5.3 Comparison with Previous Work

The above technique differs from the method of layers
in that (1) the customers are very different in our architec-
ture model due to modeling instruction level parallelism and
not client-server applications, and (2) queueing for software
(lock access) is reflected in our architecture model by in-
flating the processor service time, whereas queueing for a
server is represented by a delay center where clients are not
occupying hardware resources in the method of layers.

Menasce et al. [9] use a model with service time inflation
at the tape drive to represent the time spent queueing for a
disk while holding the tape drive. Since all customers in the
model can simultaneously compete for the tape drive, sep-
arate submodels are not needed for the system they model.
The separate lock contention model is needed for the ILP
multiprocessor model to prevent customers from the same
processor from simultaneously competing for the locks.

Jacobson and Lazowska [5] model the same simultane-
ous resource possession problem as Menasce et al. using
an iteration between two models, each of which explicitly
models the queueing for one of the simultaneously held re-
sources but represents the queueing for the other resource
(computed by the other model) as a service time at a (sur-
rogate) delay center. To our knowledge, the accuracy of
the Menasce at al. approach has not been compared against
the accuracy of this surrogate delay center approach. An-
other open question for future research is to compare the
method of complementary service time inflation against the
method of surrogate delays for the simultaneous resource
possession problem considered in this earlier work. In the
ILP multiprocessor model, complementary service time in-
flation is needed due to the different nature of the system.

5.4 Predicting Barrier Delays

The execution time between barriers can be computed
separately for each barrier pair. Thus, we solve the analytic
model for each era between barriers, to obtain the estimated
throughput for each processor. The total execution time for
each processor is computed from the estimated throughput
for that processor and the measured number of memory re-
quests generated by the processor during the era. The ex-
ectution time of the slowest node in each era is then used
to compute the total execution time and throughput of the
system. Previous work by Dubois and Briggs [4] computes
the longest execution time in an era from both the estimated
mean and variance of the execution time for each proces-
sor; however, based on results in [1], we use simply the
mean execution time. We have validated that this leads to
correct estimates of total execution time for the barriers in
the Splash applications we have modeled.
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6 Conclusions

This paper has developed and evaluated three new
AMVA techniques that are motivated by behavior that oc-
curs in shared memory systems with complex modern pro-
cessors. In the case of high coefficient of variation in the
time between memory requests, we’ve developed a new
decomposition-based AMVA technique for estimating the
mean residence time at a FCFS queue that has high ser-
vice time variance, and a new model of bursty arrivals at
the “downstream” queues. These techniques were shown
to have remarkably low error over a wide range of two-
queue system configurations. The decomposition-based ap-
proximation for mean residence time at the high-CV FCFS
queue requires one additional input parameter, is easy to
apply, and has errors under 10% over most of the parameter
space examined. Similarly, the model of bursty arrivals at
the downstream queues is also easy to apply, and together
with the decomposition-based AMVA technique at the high-
CV FCFS queue, yields errors in mean residence time at the
center with bursty arrivals that are under 10% over nearly all
of the parameter space examined.

We also developed an improved AMVA interpolation for
estimating mean residual life of the customer in service at
an arrival instant at the high-CV FCFS queue. Validation
results for the two queue models show that this interpo-
lation is highly accurate for estimating mean residual life,
but mean residence time in the queue is not accurately es-
timated by this mean residual life estimate combined with
standard AMVA techniques for estimating the rest of the
average queueing delay. Furthermore, the standard AMVA
technique for estimating mean residual life and mean res-
idence time, based on the random arrival assumption, is
highly inaccurate for regions of the parameter space that
are of interest for the shared memory system architecture
model.

In the case of lock contention, we proposed a new
method of iterating between the architecture model (con-
taining queues for the hardware resources) and a separate
lock contention model, using complementary service time
inflation to represent the architecture queueing delays in the
lock contention model, and for representing average lock
spin time in the architecture model. This approach is mod-
erately accurate for a parallel application with high lock
contention on the SimOS architecture, and has very good
accuracy over a broad parameter space for a simpler archi-
tecture model.

These new techniques have greatly increased the accu-
racy, robustness, and range of applicability of the analytic
model previously developed for evaluating shared memory
architectures with complex modern processors. A com-
panion paper [] applies the SimOS architecture model, in-
cluding the extensions developed in this paper, to a vari-



ety of Splash-2 benchmarks. For each Splash-2 benchmark
that has been successfully run on SimOS, there is excellent
agreement between the analytic estimates and the SimOS
detailed simulation estimates of per-processor throughput.
Future reseach includes applying the techniques in this pa-
per to a greater variety of Splash-2 and other parallel appli-
cations running on ILP multiprocessor architectures.
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