Parametric Shape Analysis via 3-Valued Logic
Mooly Sagiv

Thomas Reps

Reinhard Wilhelm

Technical Report #1383

March 2000 (Revised)

Parametric Shape Analysis via 3-Valued Logic

MOOLY SAGIV

and

THOMAS REPS

and

REINHARD WILHELM

We present a family of abstract-interpretation algorithms that are capable of determining “shape
invariants” of programs that perform destructive updating on dynamically allocated storage. A key
innovation of this work is that the stores that can possibly arise during execution are represented
using 3-valued logical structures.

Questions about properties of stores can be answered by evaluating predicate-logic formulae
using Kleene’s semantics of 3-valued logic:

—If a formula evaluates to true, then the formula holds in every store represented by the 3-valued
structure.

—_If a formula evaluates to false, then the formula does not hold in any store represented by the
3-valued structure.

—If a formula evaluates to unknown, then we do not know if this formula always holds, never
holds, or sometimes holds and sometimes does not hold in the stores represented by the 3-valued
structure.

3-valued logical structures are thus a conservative representation of memory stores.

This paper presents a parametric framework for shape analysis: It provides the basis for gener-
ating different shape-analysis algorithms by varying the predicates used in the 3-valued logic. The
analysis algorithms generated handle every program, but may produce conservative results due to
the class of predicates employed; that is, different 3-valued logics may be needed, depending on
the kinds of linked data structures used in the program and on the link-rearrangement operations
performed by the program’s statements.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—

A preliminary version of this paper appeared in the Proc. of the 1999 ACM Symp. on Princ. of
Prog. Lang. [Sagiv et al. 1999). Part of this research was done while Sagiv was at the University
of Chicago. Sagiv was supported in part by the National Science Foundation under grant CCR-
9619219 and by the United States-Israel Binational Science Foundation under grant 96-00337.
Address: Dept. of Computer Science; School of Mathematical Sciences; Tel-Aviv University;
Tel-Aviv 69978; Israel. Tel: +972-3-640-7606, Fax:+972-640-6761; E-mail: sagiv@math.tau.ac.il.
Reps was supported in part by the National Science Foundation under grants CCR-9625667 and
CCR-9619219, by the United States-Israel Binational Science Foundation under grant 96-00337,
and by a Vilas Associate Award from the University of Wisconsin. Address: Computer Sciences
Department; University of Wisconsin; 1210 West Dayton Street; Madison, WI 53706; USA. Tel:
+1-608-262-2091, Fax:+1-608-262-9777; E-mail: reps@cs.wisc.edu.

Wilhelm was supported in part by a DAAD-NSF Collaborative Research Grant. Address: Fach-
bereich 14 Informatik; Universitit des Saarlandes; 66123 Saarbriicken; Germany. Tel: +49-681-
302-4399, Fax: +49-681-302-3065; E~mail: wilhelm@cs.uni-sb.de.

Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

© 2000 ACM 0164-0925/99/0100-0111 $00.75

2 . Mooly Sagiv et al.

symbolic ezecution; D.3.3 [Programming Languages): Language Constructs and Features—
data types and structures; dynamic storage management; D.3.4 [Programming Languages]:
Processors—optimization; E.1 [Data): Data Structures—graphs; lists; trees; E.2 [Data}: Data
Storage Representations—composite structures; linked representations; F.3.1 [Logics and Mean-
ings of Programs): Specifying and Verifying and Reasoning about Programs—assertions; invari-
ants; mechanical verification; F.3.3 [Logics and Meanings of Programs): Studies of Program
Constructs—type structure; F.4.1 [Mathematical Logic and Formal Languages]: Mathemat-
ical Logic—mechanical theorem proving

General Terms: Algorithms, Languages, Theory, Verification
Additional Key Words and Phrases: Abstract interpretation, alias analysis, constraint solving,

dataflow analysis, destructive updating, pointer analysis, shape analysis, static analysis, 3-valued
logic

1. INTRODUCTION

Data structures built using pointers can be characterized by invariants describing
their “shape” at stable states, i.e., in between operations on them. These invari-
ants are usually not preserved by the execution of individual program statements,
and it is challenging to prove that invariants are reestablished once a sequence of
operations is finished [Hoare 1975]. Such invariants are useful for sharpening the
results obtained from a tool like LC1int, which predicts memory-usage bugs [Evans
1996], and for program optimization (e.g., to improve memory locality [Luk and
Mowry 1996]).

In the past two decades, many “shape-analysis” algorithms have been developed
that can automatically identify shape invariants in some programs that manipulate
heap-allocated storage [Jones and Muchnick 1981; 1982; Larus and Hilfinger 1988;
Horwitz et al. 1989; Chase et al. 1090; Stransky 1992; Assmann and Weinhardt
1993; Plevyak et al. 1993; Wang 1994; Sagiv et al. 1998]. A common feature of these
algorithms is that they represent heap cells by “shape-nodes” and sets of “indistin-
guishable” heap cells by a single shape-node, often called a summary-node [Chase
et al. 1990]. In these shape analyses, the shape graphs capture properties of the
stores that arise at the different points in the program.

1.1 Main Results

1.1.1 Parametricity. This paper presents a parametric framework for shape
analysis. Different instantiations of the framework create analyses that use dif-
ferent classes of shape graphs, and hence are prepared to identify different classes
of store properties that hold at the different points in a program. The analysis
algorithms handle every program, but may produce conservative results due to the
use of an inappropriate class of shape graphs; that is, different classes of shape
graphs may be needed, depending on the kinds of linked data structures used in
a program and on the link-rearrangement operations performed by the program’s
statements.

Such a framework has two parts: (i) a language for specifying different abstraction
properties and how they are affected by the execution of the different kinds of
statements in the programming language, and (i) a method for generating a shape-
analysis algorithm from such a description. The first is an issue having to do with

Parametric Shape Analysis via 3-Valued Logic : 3

specification; the specified set of properties determines the set of observable data
structures. The second is an issue of how to generate an appropriate algorithm
from the specification. The ideal is to have a fully automatic method—a yacc for
shape analysis, so to speak. The “designer” of a shape-analysis algorithm would
supply only the specification, and the shape-analysis algorithm would be created
automatically from this specification. A prototype version of such a system, based
on the methods presented in this paper, has recently been implemented in Java [Lev-
Ami 2000].

A number of previous shape-analysis algorithins, including [Jones and Muchnick
1981; 1982; Horwitz et al. 1989; Chase et al. 1990; Stransky 1992; Plevyak et al.
1093; Wang 1994; Sagiv et al. 1998], can be viewed as instances of the framework
presented in this paper.

1.1.2 The Use of Logic for Shape Analysis. In our shape-analysis framework,
predicate-logic formulae play many roles: expressing both the concrete and abstract
semantics of the programming language; expressing properties of store elements
(e.g., may-aliases, must-aliases); and expressing properties of stores (e.g., data-~
structure invariants). For instance, the formula z(v) expresses whether pointer
variable x points to heap cell v; the formula n(vy,vs) express whether the n-field
of heap cell v; points to heap cell vg; to express the property “program variables x
and y are not may-aliases”, we write the formula

Yo = (z(v) Ay(v)); (1)

to specify the effect of the execution of the statement “x = x->n” on variable x
(part of the concrete semantics), we write the formula

#'(v) & Juy : z(vr) A nv,v). (2)

Formula (2) indicates that after the statement x = x->n, variable x points to a
heap cell that was formerly pointed to by x->n.

1.1.3 Shape Analysis via 3- Valued Logic. We use Kleene’s 3-valued logic [Kleene
1987] to create a shape-analysis algorithm automatically from a specification. Kleene's
logic, which has a third truth value that signifies “unknown”, is useful for shape
analysis because we only have partial information about summary nodes: For these
nodes, predicates may have the value unknown. One of the nice properties of
Kleene’s 3-valued logic is that the interpretations of formulae in 2-valued and 3-
valued logic coincide on true and false. This comes in handy for shape analysis,
where we wish to relate the concrete (2-valued) world and the abstract (3-valued)
world: The advantage of using logic is that it allows us to make a statement about
both the concrete and abstract worlds via the same formula—the same syntactic
expression can be interpreted either as a statement about the 2-valued world or the
3-valued world.

In this paper, shape graphs are represented as “3-valued logical structures” that
provide truth values for every formula. Therefore, by evaluating formulae, one
obtains simple algorithms for: (i) executing statements abstractly, and (ii) (conser-
vatively) extracting store properties from a shape graph. For example, formula (1)
evaluates to true for an abstract store in which x and y do not point to the same
shape-node. In this case, we know that x and y cannot be aliases. Formula (1) eval-

4 . Mooly Sagiv et al.

uates to false for an abstract store in which x and y point to the same non-summary
node. In this case, we know that x and y are aliases. However, the formula can
evaluate to unknown when both x and y point to a summary-node. In this case,
the analysis does not tell us if x and y can be aliases.

In Sections 2 and 4, we show how these mechanisms can be exploited to create
a parametric framework for shape-analysis. This technique suffices to explain the
algorithms of [Jones and Muchnick 1981; Horwitz et al. 1989; Chase et al. 1990;
Stransky 1992].

1.1.4 Materialization of New Nodes from Summary Nodes. One of the magical
aspects of [Sagiv et al. 1998] is “materialization”, in which the transfer function that
expresses the semantics of statements of the form y = x->n can split a summary-
node into two separate nodes. (This operation is also discussed in [Chase et al. 1990;
Plevyak et al. 1993].) This turns out to be important for maintaining accuracy in
the analysis of loops that advance pointers through data structures. The parametric
framework provides insight into the workings of materialization. It shows that the
essence of materialization involves a step (called focus, discussed in Section 5.1)
that forces the values of certain formulae from unknown to true or false. This has
the effect of converting a shape graph into one with finer distinctions.

In [Sagiv et al. 1998], it was observed that node materialization is complicated
because various kinds of shape-graph properties are interdependent. For instance,
the heap-sharing properties of shape graphs constrain the sets of potential aliases,
and vice versa. In this paper, we introduce a mechanism for expressing (3-valued)
constraints on shape graphs, which we use to capture such dependences between
properties. In Section 5.2.3, we give an algorithm that solves systems of such
constraints.

1.1.5 Separation of Disjoint Structures. The framework allows us to create al-
gorithms that are more precise than the above-cited shape-analysis algorithms. In
particular, by tracking which heap cells are reachable from which program vari-
ables, it is often possible to determine precise shape information for programs that
manipulate several (possibly cyclic) data structures (see Section 6.1). Other static-
analysis techniques (including ones that are not based on shape graphs [Landi and
Ryder 1991; Hendren 1990; Hendren and Nicolau 1990; Deutsch 1992; 1994]) yield
very imprecise information on these programs.

1.1.6 Relating 2- Valued Logic to 3-Valued Logic. The fundamental logical prin-
ciples on which our shape-analysis framework relies appear to be new. To relate
2-valued logic to 3-valued logic, we introduce a general notion of “truth-blurring”
embeddings that map from a 2-valued world to a corresponding 3-valued one. Our
Embedding Theorem (Theorem 3.11) ensures that the meaning of a formula in the
“blurred” (3-valued) world is consistent with the formula’s meaning in the original
(2-valued) world.

1.2 Limitations
The results reported in the paper are limited in the following ways:

—There are other shape-analysis algorithms—not based on shape graphs—that
are incomparable to our method. For example, the algorithm of [Hendren 1990;

Parametric Shape Analysis via 3-Valued Logic . 5

Hendren and Nicolau 1990] handles destructive updates in many cases, but does
not handle cyclic or doubly-linked lists. The algorithm of [Deutsch 1992; 1994] is
able to represent cyclic lists but fails to handle many kinds of destructive-update
operations (due to the absence of must-alias information).

~—The framework creates intraprocedural shape-analysis algorithms, not interpro-
cedural ones. Methods for handling procedures are presented in [Chase et al.
1990; Assmann and Weinhardt 1993; Sagiv et al. 1998]. Because the intraproce-
dural versions of these algorithms are instances of our framework, their methods
for handling procedures should generalize to the parametric case.

~—The number of possible shape-nodes that may arise during abstract interpretation
is potentially exponential in the size of the specification. We do not know how
severe this problem is in practice. However, it is possible to define a widening
operator that converts a shape graph into a more compact, but possibly less
precise, shape graph by collapsing more nodes into summary nodes. This can be
used to make a shape-analysis algorithm polynomial, at the cost of making the
results less accurate.

—The number of shape graphs may be quite large (as in {Jones and Muchnick 1981;
Horwitz et al. 1989]). This problem was avoided in [Larus and Hilfinger 1988;
Chase et al. 1990; Plevyak et al. 1993; Sagiv et al. 1998] by keeping a single
merged shape graph at every point. This measure has not been employed in this
paper in order to simplify the presentation.

1.3 Prototype Implementation

The algorithms presented in this paper have been implemented by T. Lev-Ami
(see [Lev-Ami 2000]). This implementation has been used to test our ideas and has
led to a number of improvements in them.

1.4 Organization of the Paper

We explain our work by presenting two versions of the shape-analysis framework.
The first version is used to introduce many of the key ideas, but in a simplified
setting: Section 2 provides an overview of the simplified version and presents an
example of it in action; Section 4 gives the technical details. Section 3 presents
technical details of how 3-valued logic is used to define abstractions of concrete
stores (which is needed for Section 4 and subsequent sections). Section 5 defines
the more elaborate version of the shape-analysis framework. Section 6 discusses
two instantiations of the parametric framework. Section 7 discusses related work.
Section 8 consists of some final remarks. The proof of the main logical theorem on
which our approach relies and other technical proofs are presented in Appendices A
and B.

2. AN OVERVIEW OF THE PARAMETRIC FRAMEWORK

Fig. 1(a) shows the declaration of a linked-list data type in C, and Fig. 1(b) shows a
C program that reverses a list via destructive updating. The analysis of the shapes
of the data structures that arise at the different points in the reverse program
will serve as the subject of many examples given in the remainder of the paper.
The reverse program allows us to demonstrate many aspects of the shape-analysis

6 ’ Mooly Sagiv et al.

/% reverse.c */
#include ‘‘list.h’’
List reverse(List x) {
List y, t;
t ic.list H
/% list.h */ assert(acyclic.list(x))
typedef struct node { y = NULL;
P while (x != NULL) {
struct node *n; £ =y
int data; _ if
} ¥List; yEx
x = x~>n;
y->n = t;
}
return y;
}
(a) (b)

Fig. 1. (a) Declaration of a linked-list data type in C. (b) A C function that uses destructive
updating to reverse the list pointed to by parameter x.

framework in a nontrivial, but still relatively digestible, fashion.

2.1 Representing Stores via 3-Valued Structures

In Section 1, we couched the discussion in terms of shape-graphs for the convenience
of readers who are familiar with previous work. Formally, we do not work with
shape-graphs; instead, the abstractions of stores will be what logicians call 3-valued
logical structures, denoted by (U,t). There is a vocabulary of predicate symbols
(with given arities); each logical structure has a universe of individuals U, and ¢
maps each possible tuple p(u1, ... ,ux) of an arity-k predicate symbol p, where u; €
U, to the value 0, 1, or 1/2, (i.e., false, true, and unknown, respectively). Logical
structures are used to encode stores as follows: Individuals represent abstractions of
memory locations in the heap; pointers from the stack into the heap are represented
by unary “pointed-to-by-variable-x” predicates; and pointer-valued fields of data
structures are represented by binary predicates.

Assuming that reverse is invoked on acyclic lists, the 3-valued structures that
describe all possible inputs to reverse are shown in the second column of Fig. 2.
The following graphical notation is used for 3-valued logical structures (cf. column
3 of Fig. 2):

—Individuals of the universe are represented by circles with names inside.
—Summary nodes (i.e., those for which sm = 1/2) are represented by dotted circles.

—Other unary predicates with value 1 (1/2) and binary pointer-component-points-
to predicates are represented by solid (dotted) arrows.

Thus, in structure Sp, pointer variable x points to element ui, whose n field may
point to a location represented by element u. u is a summary node, i.e., it may
represent more than one location. Possibly there is an n field in one of these
locations that points to another location represented by u.

S, corresponds to stores in which program variable x points to an acyclic list of
two or more elements:

Parametric Shape Analysis via 3-Valued Logic . 7

Graphical

S | Logical Structure Representation

unary predicates:
[indiv.[z[y[t]sm]is]
binary predicates:
unary predicates:
indiv.|z |y |t |sm]|is

Uy 1101010 |0
51 binary predicates: X*@

n |u
uy 10

So

unary predicates:

indiv.|z|y |t |sm |is

ui 1101010 0 S

u ololoji/2]0 U
52 binary predicates: x —>'@ > u

n jup|u

u3 |0 [1/2

u {0 11/2

Fig. 2. The 3-valued logical structures that describe all possible acyclic inputs to reverse.

—The abstract element u; represents the head of the list, and u represents all of
the tail elements.

—The unary predicates z, y, and t are used to characterize the list elements pointed
to by program variables x, y, and t, respectively. Thus, z(u1) = 1, because x
points to ui, which represents the head of the list. Also, y(u) = 0, y(u1) = 0,
t(u) = 0, and t(u;) = 0 because y and t do not point to any cell of heap-allocated
storage.

—The unary predicate sm indicates whether abstract elements are “summary el-
ements”, i.e., represent more than one concrete list element in a given store.
Thus, sm(u1) = 0 because u; represents a unique list element, the list head. In
contrast, sm(u) = 1/2, because u represents a single list element when the input
list has exactly two elements, and more than one list element when the input list
is of length three or more.

—The unary predicate is is explained in Section 2.2.

—The binary predicate n represents the n fields of list elements. The value of
n(u1,u) is 1/2 because there is a list element represented by u that is the im-
mediate n-successor of u;, but other list elements represented by u are not the
immediate n-successor of u;.

The structures Sy and S; represent the simpler cases of lists of length zero and one,
respectively.

The 3-valued structures deliberately ignore the following properties of concrete
lists:

—The actual values of fields of data-structure cells, e.g., the values in the data
fields.

8 : Mooly Sagiv et al.

~Jo 1 12 fv]o 1i2)[=

0j0 0 0 010 11201
1o a2t o1 1]0
17210 172 172 || 172|172 1 172]| ||1/2]1/2

Table I. Kleene's 3-valued interpretation of the propositional operators.

—The actual length of lists. For example, Sy represents all the lists with two or
more elements.

2.2 Conservative Extraction of Store Properties

3-valued structures offer a systematic way to answer questions about properties of
the stores they represent:

OBSERVATION 2.1. [Property-Extraction Principle]. Questions about prop-
erties of stores can be answered by evaluating formulae using Kleene's semantics of
3-valued logic:

—If a formula evaluates to 1, then the formula holds in every store represented by
the 3-valued structure.

—If a formula evaluates to 0, then the formula never holds in any store represented
by the 3-valued structure.

—If a formula evaluates to 1/2, then we do not know if this formula always holds,
never holds, or sometimes holds and sometimes does not hold in the stores rep-
resented by the 3-valued structure.

Kleene’s 3-valued interpretation of the propositional operators is given-in Table I.

In Section 3.4, we give the Embedding Theorem (Theorem 3.11}), which states
that the 3-valued Kleene interpretation in S of every formula is consistent with
the formula’s 2-valued interpretation in every concrete store that S represents.
This provides the basis for using the results of shape analysis in optimization. For
example, for all abstract elements of structure Sy, the formula

Jv : z(v) A nlv,v),

which expresses the property “x points to a cell that has a self-cycle”, evaluates to

0 because x and x->n point to different elements in all of the stores represented by

S,. This information can be used by an optimizing compiler to determine whether

it is profitable to generate a prefetch for the next element [Luk and Mowry 1996].
Now consider the formula

Wis.n (V) 2 Jyy, vg n{vy, v) A nlvg, v) Avy 7 vy, (3)

which expresses the property “Do two or more different heap cells point to heap
cell 7 Formula ;s »(v) evaluates to 1/2 in Sp for v = u, v = u, and vy = ugy,
because n(u,u) An(ur,u) Au # uy = 1/2A1/2 A1, which equals 1/2 in Kleene’s
semantics. The intuition is that because the values of n(u,u) and n(ui,u) are
unknown, we do not know whether or not two different heap cells point to u.

Parametric Shape Analysis via 3-Valued Logic . 9

Logical Structure Graphical Representation
unary predicates:

indiv.|zly|t |sm |is
U3 110(0]0 {0

n
Acyclic u 0jojoj1/2]0 n* '
List binary predicates: X *@ > u
n julju

Ui 0 1/2
u |0 11/2

unary predicates:
indiv.|z |yt {sm |is
. Uy 1101010 0) Ere)
P0551bly u ololo 1/2 0 N .
~ . n
(J.ychc binary predicates: XUl) > u
List n o1 w =

up {0 |1/2
u |1/2]1/2

Fig. 3. The shape graphs for acyclic and possibly cyclic lists.

This uncertainty implies that the tail of the list pointed to by x might be shared
(and the list could be cyclic, as well). In fact, neither of these conditions ever holds
in the concrete stores that arise in the reverse program.

To avoid this imprecision, our abstract structures have an extra “instrumentation
predicate”, is(v), that represents the truth values of formula (8) for the elements
of concrete structures that v represents. In particular, is(u) = 0 in Sz. This fact
implies that Sy can only represent acyclic, unshared lists even though Formula (8)
evaluates to 1/2 on u.

The preceding discussion illustrates the following principle:

OBSERVATION 2.2. [Instrumentation Principle]. Suppose S is a 3-valued
structure that represents concrete store SY. By explicitly “storing” in S the val-
ues that a formula ¢ has in S% we can maintain finer distinctions in S than can
be obtained by evaluating @ in S.

As we will see shortly, instrumentation predicates play a key role in the para-
metric framework for shape analysis based on abstract interpretation. In general,
adding additional instrumentation predicates refines the abstraction used for shape
analysis; it yields a more precise shape-analysis algorithm that maintains finer dis-
tinctions, and hence allows more questions about the program’s heap-allocated data
structures to be answered.

Fig. 3 demonstrates how acyclic and possibly cyclic lists are represented by dif-
ferent shape graphs. In the shape graph that represents possibly cyclic lists, the
backpointer back to the head of the list is represented by the fact that the value of
n(u,u) is 1/2. Note that the value of is(u) is still 0.

2.3 Simple Abstract Interpretation of Program Statements

The most complex issue that we face is the definition of the abstract semantics of
program statements. This abstract semantics has to be (i) conservative, i.e., must
represent every possible run-time situation, and (ii) should not yield too many

10 . Mooly Sagiv et al.

“unknown” values.
Our main tool for expressing the semantics of program statements is based on
the Property-Extraction Principle:

OBSERVATION 2.3. [Expressing Semantics of Statements via Logical For-
mulae]. Suppose a structure S represents a set of stores that arise before statement
st. A structure that represents the corresponding set of stores that arise after st can
be obtained by evaluating a suitable collection of formulae that capture the semantics
of st.

Evaluation of the formulae in 2-valued logic captures the transfer function for st of
the concrete semantics. Evaluation of the formulae in 3-valued logic captures the
transfer function for st of the abstract semantics.

Observation 2.3 allows us to simplify drastically the argument that the shape-
analysis framework is correct (compared, for example, to our previous work [Sagiv
et al. 1998]), because the correctness of the abstract semantics falls out directly
from the Embedding Theorem (Theorem 3.11).

Fig. 4 illustrates the first two iterations of an abstract interpretation of reverse
on the structure S, from Fig. 2. The value of a predicate p(v) after a statement
executes is obtained by evaluating a predicate-update formula p’(v). The appropri-
ate predicate-update formulae for each statement are shown in the second column
of Fig. 4. To simplify the presentation, in Fig. 4 (and elsewhere) we break each
occurrence of sts: y->n = t into two statements: stsi: y->n = NULL, followed by
stso: y->n = t, so that in the predicate-update formulae for sts » we can assume
that y~>n == NULL. Fig. 4 lists a predicate-update formula p'(v) only if predicate
p is affected by the execution of the statement. For any unchanged predicate g,
the predicate-update formula is “¢’(v) = ¢(v)”. For instance, statement st; sets y
to NULL. The complete list of predicate-update formulae for st; is: z'(v) = z(v),
y'(v) = 0, t'(v) = t(v), n'(vi,v2) = n(vy,v2), sm'(v) = sm(v), and is'(v) = is(v).
Thus, after st; program-variable y does not point to any element.

As we will see, this approach has a number of good properties:

—The abstract-interpretation process will always terminate if we guarantee that
the number of elements in 3-valued structures is bounded.

—The Embedding Theorem implies that the results obtained are conservative.

—By defining appropriate instrumentation predicates, it is possible to emulate some
previous shape-analysis algorithms. The shape-analysis algorithm illustrated in
Fig. 4 is essentially that of Chase et al. [Chase et al. 1990}. Others that are
amenable to being simulated in this fashion include [Jones and Muchnick 1981;
Larus and Hilfinger 1988; Horwitz et al. 1989].

Unfortunately, there is also bad news: The method described above and illustrated
in Fig. 4 can be very imprecise. For instance, statement st4 sets x to x->n; i.e., it
makes x point to the next element in the list. In the abstract interpretation, the
following things occur:

—1In the first abstract execution of stq, z'(u) is set to 1/2 because z(u1) An(ui, u) =
1A1/2=1/2. In other words, x may point to one of the cells represented by the
summary node u (see the structure Sg).

Parametric Shape Analysis via 3-Valued Logic 11
Statement Formula Structure After
ST
/ \‘ :
sty: y = NULL; y'{v) =0 xé@& v Ss
T
, !
sty & = ¥; t'(v) = y(v) xa@@ u Ss
i \ .‘
sta y = x3 ¥(v) = a(v) oy =(m)s u S
TS
! * :
Stg: X = x->n; z'(v) = 3vy : z(v1) A nfv,v) y Q@T; u <x Sg
n'(v1,v2) = n(vy,v2) A ~y(v1) 4 :
sts1: y=>n = NULL; . 18(v) A pig e if 30" y(v) An{v',v) y 9@ U <x S
is'(v) =< . ' : 7
is{v) otherwise
w (o1, 02) = n(v1,v2) V (y(v1) A 1(02)) <«
stso: y=>n = t; ooy is(vY V@i if Fore t(v) Anfvi,v) ¥ > u <x S
18'(v) = ¢ . . 8
is(v) otherwise
Tl
! . \k
sta: t = y; t'(v) = y(v) 7.t > u1 u <x Sy
T
, N
stgr y = X; y'(v) = z(v) t 9—@ u < %Y Sy
7T
, !
stg: X = x~>n; z'(v) = Jvg 1 z(v1) An(vy,v) £ 9@ u <XY Sip
n'(v1,v2) = n(v1,v2) A ~y(v1) 4 "
sts.1: y~>n = NULL; | ., i5(V) A @i if I 1 y(v') An(v',v) £ w < XY Sip
18’ (v) =4 . .
is(v) otherwise
n'(v1,v2) = n(v1,v2) V (y(v1) A t(v2)) {
stso: y=>n = t; o [is(V) V @ie e i Fun 2 t(v) A nfvi,v) £ > < u < %Y Sz
is'(v) = { . o n
is(v) otherwise
T
i A
sto: t = y; t'(v) = y(v) @ﬁ u < X5t S
=TT
! \k :
sts: y = X; v'(v) = z(v) @ﬁ uw <%yt S
/ R
sty x = x->n; z'(v) = vy : z(v1) Anvg,v) % ‘>@ﬁ u <%yt Sig
7' (vi,v2) = n(vy, va) A —y{vr) \(”':
sts.1: y->n = NULL; is'(v) = i8(0) A @i if 30 y(v) An(v',v) x .:,@@ u <XVt Siz
is(v) otherwise i
n'(v1,v2) = n(v1,v2) V (y(v1) At(v2)) N "
stgo: y=>n = t; is'(v) = 18(v) V s if Jur 1 t(v) A nfvr,v) x»@@ u <Xt Sig
) is(v) otherwise "o
is

Fig. 4. The first three iterations of the simple abstract interpretation of reverse
applied to structure Sz shown in Fig. 2 (which represents acyclic lists of length two

or more).

12 . Mooly Sagiv et al.

55,1 X :

n n

4 ¢ N
@) o | @) | @)

Fig. 5. The three structures that result from the first abstract execution of st4 by
the improved abstract-interpretation method of Section 5.

—This eventually leads to the situation that occurs after the third abstract exe-
cution of sts, which produces structure Sig. Structure Sig indicates that “x, y,
and t may all point to the same (possibly shared) list”.

This provides insight into where the algorithm of Chase et al. loses precision.

2.4 Improved Abstract Interpretation of Program Statements

In Section 5, we show how it is possible to go beyond the simplistic approach
described above in Section 2.3 by “materializing” new non-summary nodes from
summary nodes as data structures are traversed. (Thus, Section 5 generalizes the
algorithm of [Sagiv et al. 1998].) As we will see in Section 5, this allows us to
determine the correct shape invariants for the data structures used in the reverse
program.

To perform a more precise abstract interpretation of programs, we have to be able
to materialize new nodes from summary nodes as the program’s data structures are
traversed. Plevyak et al. [Plevyak et al. 1993] introduced a way to do materialization
for straight-line code, and Sagiv et al. [Sagiv et al. 1998] developed a way to do
this in the presence of loops and recursion. However, these analyses are hard to
understand and to show correct.

In Section 5, we present a systematic solution to the materialization problem
that is relatively easy to understand and prove correct. It is based on the following
principle:

OBSERVATION 2.4. [Materialization Principle]. Materialization is driven by
a mechanism that refines a 3-valued structure into possibly several more-precise
structures by forcing certain predicate values to have definite values, i.e., O or 1.
The abstract semantics described in Section 2.8 is then applied to the more-precise
structures.

For instance, Fig. 5 shows the three structures that result from the first abstract
execution of sts4 by the improved abstract-interpretation method of Section 5. In
contrast to the structure Sg produced by the method of Section 2.3, for all elements
in all of the structures that occur in Fig. 5, z(v) evaluates to 0 or 1, and not 1/2.

3. 3-VALUED LOGIC AND EMBEDDING

This section defines a 3-valued first-order logic with equality and transitive closure.

We say that the values 0 and 1 are definite values and that 1/2 is an indefinite
value, and define a partial order T on truth values to reflect information content:
{1 T I3 denotes that I; has more definite information than lp:

Parametric Shape Analysis via 3-Valued Logic . 13

1/2%
i
n
f
0
T
m
a
t
i
0
n
0 1
logical

Fig. 6. The semi-bilattice of 3-valued logic. (The * symbols attached to 1/2 and 1
indicate that these are the “designated values”, which indicate “potential truth”.)

DEFINITION 3.1. [Information Order]. For ly,ls € {0,1/2,1}, we define the
information order on truth values as follows: Iy Cly if Iy = lp orlp =1/2. The
symbol U denotes the least-upper bound operation with respect to L.

Kleene's semantics of 3-valued logic is monotonic in the information order (see
Table I and Definition 3.4).

The values 0, 1, and 1/2 form a mathematical structure known as a semi-bilattice,
e.g., [Ginsberg 1988], as shown in Fig. 6. A semi-bilattice has two orderings: the
logical order and the information order. The logical order is the one used in Table I:
that is, A and V are meet and join in the logical order (e.g., 1A1/2 = 1/2,1V1/2 =1,
1/2A0 =0, 1/2V 0 = 1/2, etc.). The information order is the one defined in
Definition 3.1 to capture “(un)certainty”.

In Fig. 6, a value that is “far enough to the right” in the logical order indicates
“potential truth” (and is called a designated value). In the semi-bilattice of Fig. 6
we take 1/2 and 1 as the designated values. This means that a structure poten-
tially satisfies a formula when the formula’s interpretation is either 1/2 or 1 (see
Definition 3.4).

3.1 Syntax of First-Order Formulae with Transitive Closure

Let P = {p1,... ,pn} be a finite set of predicate symbols. Without loss of generality
we exclude constant and function symbols from our logic.! We write first-order
formulae over P using the logical connectives A, V, =, and the quantifiers V and
3. The symbol = denotes the equality predicate. The operator ‘T'C’ denotes
transitive closure on formulae. We also use several shorthand notations: for a binary
predicate p, p*(vs,va) is a shorthand for (TC v1,v2 : p(v1,v2)) (U3, va); @1 => p2 18
a shorthand for (—@1 V 2); @1 < @2 is a shorthand for (w1 = @2) A (w2 => ©1),
and vy # vg is a shorthand for —(v; = vz). Finally, we make use of conditional

! Constant symbols can be encoded via unary predicates and n-ary functions via n + 1-ary predi-
cates.

14 . Mooly Sagiv et al.

Predicate | Intended Meaning

z{v) Does pointer variable x point to element v7?

sm(v) Does element v represent more than one concrete element?
n{vy, v2) Does the n field of v; point to ve?

Table II. The core predicates that correspond to the List data-type declaration from Fig. 1(a).

expressions:

{ w2 if 1

3 otherwise is a shorthand for (1 A w2) V (=1 A p3).

Formally, the syntax of first-order formulae with equality and transitive closure
is defined as follows:

DEFINITION 3.2. A formula over the vocabulary P = {pi1,...,pn} s defined
inductively, as follows:

Atomic Formulae. The logical literals 0, 1, and 1/2 are atomic formulae with
no free variables.

For every predicate symbol p € P of arity k, p(vy,... ,v) is an atomic formula
with free variables {vi,... ,vr}-
The formula (vi = vg), where vy and vy are distinct variables, is an atomic

formula with free variables {vi,v2}.

Logical Connectives. If w1 and w2 are formulae whose sets of free variables are
Vi and Va, respectively, then (w1 Apa), (v1V), and (—p1) are formulae with free
variables Vi U Vs, Vi UVa, and Vi, respectively.

Quantifiers. If ¢ is a formula with free variables {vi, vz, ... , vk}, then (3v1 : @)
and (Yvy : @) are both formulae with free variables {va,vs, ... Uk -

Transitive Closure. If @ is a formula with free variables V' such that v3, vy €V,
then (TC vy, v2 : @)(vs,va) 18 a formula with free variables (V — {vi,v2})U{vs, va}.

A formula is closed when it has no free variables.

In our application, the set of predicates P is partitioned into two disjoint sets: the
“core-predicates”, C, and the “instrumentation-predicates”, Z. The core-predicates
originate from the program being analyzed and from the programming-language
semantics. In contrast, the instrumentation predicates are introduced in order to
improve the precision of the analysis (as described by Observation 2.2).

ExAMPLE 3.3. Table IT contains the core-predicates for the List data-type dec-
laration from Fig. 1(a) and the reverse program of Fig. 1(b). The unary predicate
sm € C captures the essence of “summary-nodes”, which were introduced by Jones
and Muchnick [Jones and Muchnick 1981] to represent an unbounded number of
concrete elements by a single abstract element. There are two possible values for
sm(u):

—0, when u represents a unique element. This is the case for all elements of concrete
stores (because cells in a concrete store represent only themselves). It is also the
case for abstract elements that are definitely pointed to by a pointer variable
(because a pointer variable can only point to a single concrete element). For

Parametric Shape Analysis via 3-Valued Logic . 15

Pred. | Intended Meaning Purpose Ref.

is5(v) | Do two or more fields of heap elements | lists and trees [Chase et al. 1990], [Sagiv et al. 1998
point to v?

r¢(v) | Is v (transitively) reachable from separating disjoint | [Sagiv et al. 1998]
pointer variable x7 data structures

r(v) Is v reachable from some pointer variable | compile-time
(i.e., is v a non-garbage element)? garbage collection

c(v) Is v on a directed cycle? reference counting | [Jones and Muchnick 1981]

¢f (v) | Does a field-f deref. from v, followed by | doubly-linked lists | [Hendren et al. 1992}, [Plevyak et al. 1993}
a field-b deref., yield v7

cb.1(v) | Does a field-b deref. from v, followed by doubly-linked lists | [Hendren et al. 1992], [Plevyak et al. 1993]
a field-f deref., yield v?

Table III. Examples of instrumentation predicates.

wis(v) = Fur, vz n(vr,v) An(ve,v) Avi F# vz @)

wr, () L z(o) v 3o z(v) Ant(vi,v))

wr(v) = \/ (z(v) V vy @ z(v1) Ant(v1,0)) (6)
x€ PVar

pe(v) = nt(v,0) (7)

Pey 1,(")) & Yur : flu,v1) = b(vl,'u) (8)

ey, £ (V) = oy :b(v,01) = f(v1,0) (9)

Table IV. Formulae for the instrumentation predicates listed in Table IiI.

example, in structure Sy from Fig. 2, u; represents a unique concrete element of
any store that S represents—the element pointed to by variable x.

—1/2, when u may or may not represent more than one element. For example,
element u of structure So represents a single concrete element if x points to a
two-element list, but represents two or more concrete elements if x points to a
list of length three or more.

Intuitively, sm(u) = 1 should mean that u definitely represents more than one
element. However, this is disallowed for technical reasons. In particular, allowing
sm(u) to be 1 violates the Property-Extraction Principle (Observation 2.1); this
will become clearer in Sections 3.4 and 3.5.

It is instructive to consider a variant of structure S from Fig. 2: Let structure S
be identical to Sy except that sm(u) = 0. S} represents lists of exactly two elements
(but not lists of length three or more). Notice that in this structure n{u,u) cannot
have the value 1 because u represents a unique, non-shared heap cell (in particular,
is(u) = 0). Therefore, the structure S and the structure 53 in which n(x, u) =0
represent the saine set of concrete stores.

Table III lists some interesting instrumentation predicates, and Table IV lists
their defining formulae.

~—The sharing predicate is was introduced in [Chase et al. 1990] and also used
in [Sagiv et al. 1998] to capture list and tree data structures.

16 . Mooly Sagiv et al.

—The reachable-from-variable-x predicate r, was mentioned in [Sagiv et al. 1998,
p.38]. It serves to differentiate different summary nodes, and thus separates
the abstract representations of data structures that are disjoint in the concrete
world. This leads to increased precision in many programs, including programs
that manipulate singly linked lists. (See Section 6.1.1.)

—The reachability predicate r identifies non-garbage cells. This is useful for de-
termining when compile-time garbage collection can be performed. (See Sec-
tion 6.1.2.)

—The cyclicity predicate ¢ was introduced by Jones and Muchnick [Jones and
Muchnick 1981] to aid in determining when reference counting would be sufficient.
(See Section 6.1.1.)

—The special cyclicity predicates csp, and c¢p.5 are used to capture doubly-linked
lists, in which forward and backward field dereferences cancel each other. This
idea was introduced in [Hendren et al. 1992] and also used in [Plevyak et al.
1993]. (See Section 6.2.)

In the general case, a program uses a number of different struct types. The core
vocabulary is then defined as follows:

C = {sel | sel € Sel} U {z | x € PVar} U {sm}, (10)

where Sel is the set of pointer-valued fields in the struct types declared in the
program, and PVar is the set of pointer variables in the program. The formula for
i8 is then

\/ Fuy, vy : sel{vy, v) A sel{va,v) Aoy 5 v
def sel€Sel
pis(v) = \% \/ uy, vy : seli(vy, v) A sela(va, v).
sely selp€Sal.

sel] Fsolp

3.2 Kleene's 3-Valued Semantics

In this section, we define Kleene’s 3-valued semantics for first-order formulae with
transitive closure.

DEFINITION 3.4. A 3-valued interpretation of the language of formulae over
P is a 3-valued logical structure S = (U, /%), where U® is a set of individuals
and ° maps each predicate symbol p of arity k to a truth-valued function:

S(p): (USYF — {0,1,1/2).

An assignment Z is a function that maps free variables to individuals (i.e., an
assignment has the functionality Z: {v1,va,...} — U®). An assignment that is
defined on all free variables of a formula ¢ is called complete for p. In the sequel,
we assume that every assignment Z that arises in connection with the discussion
of some formula @ is complete for p.

The meaning of a formula ¢, denoted by [p]5(Z), yields a truth value in
{0,1,1/2}. The meaning of @ is defined inductively as follows:

Atomic. For a logical literal 1 € {0,1,1/2}, [1]§(Z) =1 (where | € {0,1,1/2}).

Parametric Shape Analysis via 3-Valued Logic . 17

For an atomic formula p(vi,... V),

[p(vr,.. . o)l5(2) = B 0)(Z(w),- .., Z(v))

For an atomic formula (v; = o),
0 Z('Ul) :]é Z('Ug)

v = w)5(Z) =<1 Z{un)= Z(v2) and B(sm)(Z(v1)) =0
1/2 otherwise

Logical Connectives. For logical formulae @1 and @2

ler A @2l (2) = min([pa]5(2), [213(2))
[o1 V 21§ (2) = max([o]§ (2), [2]5(2))
[~e1]5(2) = 1 - [@)3(2)
Quantifiers. If p is a logical formula,

ﬂvvl : tP]]g(Z)

[Bor : 0]5(2) = max [er]5 (Z[v1 = ul])

i

i

min, le1]5 (Z[v1 — u))

Transitive Closure. For (T'C vy, vs : ©)(vs,v4),
[(TC vi,v2 :) (vs,va)]5(2) =

L
max min [¢]5 (Z[vy = g, v2 — uip1])
n24hLug,... yUnt1 € U, i=1
Z(va) = uy, Z{v4) = Un41

We say that S and Z potentially satisfy ¢ (denoted by S,Z = @) if lel3(Z) =
1/2 or [¢]$§(Z) = 1. Finally, we write S |= ¢ if for every Z: S, Z k=

EXAMPLE 3.5. Consider the structure Sy from Fig. 2 and formula (4),
wis(V) = oy, vy @ n(v1,v) An(ve,v) Avy # v,

which expresses the property “Do two or more different heap cells point to heap
cell v?”. For the assignment Z; = [v — u], we have

leis]3(Z1) = max [n(vr,v) An(ve,v) Avy # vo]5 ([v = u,v1 = u', v — u”])
w! u€{u1,u}
= 1/2,
and thus Sa, Z1 = @is. In contrast, for the assignment Zo = [v — u1], we have
l¢isls (Z2) = max [n(vi,v) An(ve,v) Avy # va]5 ([v + ur, v — w',vp — u'])
w v €{uru}
= 0,

and thus Sa, Zs - wis.

The only nonstandard part of Definition 3.4 is the meaning of equality (denoted
by the symbol ‘="). The predicate = is defined in terms of the sm predicate and
the “identically-equal” relation on individuals (denoted by the symbol ="):2

2Note that there is only a small typographical distinction between the syntactic symbol for equal-
ity, namely ‘==, and the symbol for the “identically-equal” relation on individuals, namely ‘=".
Throughout the paper, it should always be clear from the context which symbol is intended.

18 . Mooly Sagiv et al.

—Non-identical individuals u; and ug are unequal (i.e., if uy # ug then u; 7% ua).
— A non-summary individual must be equal to itself (i.e., if sm(u) = 0, then u = u).
—1In all other cases, we throw up our hands and return 1/2.

Notice that Definition 3.4 could be generalized to allow many-sorted sets of in-
dividuals. This would be useful for modeling heap cells of different types; however,
to simplify the presentation, we have chosen not to introduce this mechanism.

3.3 Properties of 3-Valued Logic
3-valued logic retains a number of properties that are familiar from 2-valued logic:

LEMMA 3.6. Let @1, o, and w3 be formulae, let S be a 3-valued structure, and
let Z be a complete assignment for the formula or formulae of interest. Then the
following properties hold:

Double-Negation.
[-(-1)I5(2) = [1]5(2) (11)
De Morgan Laws.
[(e1 A2)]5(2) = [~o1 V =a]5(2) (
[(01 V@2)5(Z) = [~e1 A —2l3(2) (1
(
(

[4%)

[=(3v: e)]5(2) = [Vo:)5 (2)
[~(Vv: 0I5 (2) = [Fv: —1]5(2)

Associativity Laws.

[(1 A w2) Agsl(Z) = [i01 A (02 As)l5(2) (16)

[(o1 vV w2) Vsl§(2) = 1 V (w2 V 93)]5(2) (17)
Commutativity Laws.

L1 A2l5(2) = [p2 A @1]5(2) (18)

L1V @al§(2) = [pa Vel (2) (19)
Distributivity Laws.

[er A (w2 V 03)15(2) = (2 Awa) V (01 A)5 (2) (20)

lor V (02 A 03)]5(2) = [(1 V sov) (101 V 03)5(2) (21)
Implication Law.

[o1 = ©2]5(2) = [z = ~¢1)]5(2) (22)

Kleene’s semantics is monotonic in the information order:

LeEMMA 3.7. Let <p be a formula, and let S and S’ be two structures such that
US = US and S T 5. (That is, for each predicate symbol p of arity k, .5 (p)(u1, ...
5 (p)(ury -y uk)-) Then, for every complete assignment Z,

[£15(2) C [¢]5 (2). (23)

yuk) &

Parametric Shape Analysis via 3-Valued Logic . 19

3.4 The Embedding Theorem

In this section, we formulate the Embedding Theorem, which gives us a tool to
relate 9-valued and 3-valued interpretations. We define the embedding ordering on
structures as follows:

DEFINITION 3.8. Let S = (US,i%) and §' = (US', 5"y be two structures. Let
f:US = US" be surjective. We say that f embeds S in S' (denoted by S c/s)

if (i) for every predicate symbol p of arity k and all uy, ... ,uk € Us,

S)(ur,-) £ () (ur)s- o Flux)) (24)
and (i) for all u' € Uus

({u | f(w) = u'} > 1) T (sm)() (25)

We say that S can be embedded in S’ (denoted by 5 C S') if there exists a
function f such that S T S'.

Note that inequality (24) applies to the summary predicate, sm, as well, and
therefore /5 (sm)(u') can never be 1.

A special kind of embedding is a tight embedding, in which information loss is
minimized when multiple individuals of S are mapped to the same individual in S’

DEFINITION 3.9. A structure §' = (US',15') is a tight embedding of S =
(US,.5)Y if there ezists a surjective function t.embed: US — US such that, for
every p € P — {sm} of arity k,

le(p)(u'l,... UL) = U Sp)ug, . uk) (26)

t.embed(u;)=u},1<1<k
'
and for every u' € U,

S (sm) () = ([{ult-embed(w) =’} >1)u || Flsm)(w) (27)

t.embed(u)=u’

Because t_embed is surjective, equations (26) and (27) uniquely determine S’ (up
to isomorphism,); therefore, we say that S' = t.embed(S).

It is immediately apparent from Definition 3.9 that the tight embedding of a
structure S by a function t_embed possessing properties (26) and (27) embeds S in
t_embed(S), i.e., S Ct-embed ¢_embed(S).

It is also apparent from Definition 3.9 how several individuals from US can “lose
their identity” by being mapped to the same individual in Us'

EXAMPLE 3.10. Let uy,up € US, where u; # ug, be individuals such that
S(sm)(u1) = 0and ¢%(sm)(ug) = 0 both hold, and where t_embed(uy) = t-embed(u2) =
. Therefore, .5 (sm)(u') = 1/2, and consequently, [v; = vo]§ ([vr — v/ ve — u]) =
1/2. In other words, we do not know if u' is equal to itself!

Equation (27) has the form that it does so that tight embeddings compose prop-
erly (i.e., so that t_embeda(t-embed;(S)) = (t-embeds o t.embed:)(S) holds).

Iff:US — US' is a function and Z: Var — U? is an assignment, f o Z denotes
the assignment f o Z: Var — US" such that (f o Z)(v) = f(Z(v)).

We are now ready to state the embedding theorem. Intuitively, it says:

20 . Mooly Sagiv et al.

If S Cf S, then every piece of information extracted from S’ via a
formula ¢ is a conservative approximation of the information extracted
from S via ¢.

Formally, we have the following theorem:

1

THEOREM 3.11. [Embedding Theorem]. Let S = (US,.5) and S’ = (US',15")
be two structures, and let f: US — U 5 be a function such that S ©f S’. Then, for
every formula o and complete assignment Z for p, lels(Z) C s (F o 2).
Proof: Appears in Appendix A.

EXAMPLE 3.12. Continuing Example 3.10, we can illustrate the Embedding
Theorem on the formula ¢ = vy = ve and the embedding f = t.embed, as fol-
lows:

0= v = 'vg]]g([vl - U1, U Usg))
C [v; =)5 (t-embed o [v1 + ug, vz — ua))
= [v1 = va]$ ([vs — t-embed(u1),vo — t-_embed(us)])
= o1 = vl (for = ', vz = w))
~1/2

1= o=l (fv—wl)

[v = v]5 (t_embed o [v s ui])
[v =] (v — t-embed(u1)))
= [o=9§ (- v

=1/2

I

The Embedding Theorem requires that f be surjective in order to guarantee that
a quantified formula, such as 3v : o, has consistent values in S and S’. For example,
if f were not surjective, then there could exist an individual v’ € US', not in the
range of f, such that [¢]§ ([v — u']) = 1. This would permit there to be structures
S and S for which [Fv : ¢]5(Z2) =0 but [Fv:] (f o Z) =1.

Apart from surjectivity, the Embedding Theorem depends on the fact that the 3-
valued meaning function is monotonic in its “interpretation” argument (cf. Lemma 3.7).

As mentioned in the Introduction, one of the nice properties of Kleene’s 3-valued
logic is that it coincides with 2-valued logic on the two values 0 and 1. This is
useful for shape analysis, because we wish to relate concrete (2-valued) structures
and abstract (3-valued) structures. Furthermore, our methodology of expressing
everything by means of formulae allows us to make a statement about both worlds
via a single formula—the same syntactic expression can be interpreted with respect
to either a 2-valued structure or a 3-valued structure. The Embedding Theorem
(Theorem 3.11) gives us the tool to relate the 2-valued and 3-valued interpretations.

3.5 Compatible Structures

The 2-valued logic that we have defined is slightly nonstandard in that (i) we
assume that the core predicate sm is always present in P, and (ii) the semantics of

Parametric Shape Analysis via 3-Valued Logic . 21

(v, = vg) is defined in terms of ¢(sm). The motivation for this is that sm is useful
for defining the link between 2-valued and 3-valued logic.

We use 3-STRUCT[P] to denote the set of general 3-valued structures over vo-
cabulary P, and 2-STRUCT|P] to denote the set of 2-valued structures over P,
where in both cases we impose the restriction that for all u, 15(sm)(u) # 1:

—For structures in 2-STRUCT[P], the reason for the restriction that for all v,
t8(sm)(u) = 0 is to make the interpretation of = coincide with the identity
relation on individuals—and to avoid letting 1/2 creep into the semantics of for-
mulae. For example, suppose that S were a structure in 2-STRUCT{P] in which
1S(sm)(u) = 1: Under these circumstances, [v1 = v2]3 ([v1 — u,v2 — u]) = 1/2;
that is, the meaning of an atomic formula with respect to a 2-valued interpre-
tation can be 1/2. Consequently, to capture conventional 2-valued logic, we are
interested only in 2-valued structures in which for all u, ¢5(sm)(u) = 0. Alter-
natively, we say that we are interested only in 2-valued structures in which the
compatibility formula Yv : ~sm(v) is satisfied.

—For structures in 3-STRUCT[P], the restriction that for all u, 15(sm)(u) # 1 is
a consequence of Definition 3.8. "

Note that 2-STRUCT[P] C 3-STRUCT[P].

We have other uses for the notion of compatibility formulae. For instance, sup-
pose that P is a C program that operates on the List data-type of Fig. 1(a), and
that S? € 2-STRUCT|P)] is a 2-valued structure over the appropriate vocabulary.
As described in Table II, our intention is that S% capture a List-valued store in
the following manner:

—Tach cell in heap-allocated storage corresponds to an individual in Us*.

—For every individual u, .5 ' (z)(u) = 1 if and only if the heap cell that u represents
is pointed to by program variable x.

—TFor every pair of individuals u; and ug, .S (n)(u1,ug) = 1 if and only if the n
field of u; points to us.

(Similar statements hold for the instrumentation predicates, as indicated in Ta-
ble II1.) However, not all structures S* € 2-STRUCT[P] represent stores that are
compatible with the semantics of C. For example, stores have the property that each
pointer variable points to at most one element in heap-allocated storage. Again,
we are not interested in all structures in 2-STRUCT[P], but only in ones compat-
ible with the semantics of C. Table V lists a set of compatibility formulae F' (or
“hygiene conditions”) that must be satisfied for a structure to represent a store of
a C program that operates on the List data-type from Fig. 1(a). Formula (28)
captures the condition that all stn predicate values are 0 in concrete stores. For-
mula, (29) captures the fact that every program variable points to at most one list
element. Formula (30) captures a similar property of the n fields of List struc-
tures: Whenever the n field of a list element is non-NULL, it points to at most one
list element.

In addition, for every instrumentation predicate p € Z defined by a formula
@p(v1,- .. , k), we generate a compatibility formula of the following form:

Y1, ... Uk op(UL, ., Uk) & (U1, Uk) (40)

22 . Mooly Sagiv et al.

Yo @ —sm{v) (28)

for each x € PVar,Yvi, v : z{vy) Az(vz) = v =2 (29)
Yy, vz ¢ (3us : vz, v1) An(vs,v2)) = v1 =2 (30)

Yo« (Buy, va v, v) An{ve,v) Avy 7 ve) = is(v) (31)

Yo : (3w, vz (v, v) A nlvz, v) Avy # v2) = —is(v) (32)
for each x € PVar,Vus : (Juy : (v1) Avy £ v2) = —xz(va) (33)
for each x € PVar,Yuy : (3va : z(v2) Avy 3 v2) = —z(v1) (34)
Yug, vz ¢ (Fuy : nl(vz, v1) Avy # v2) = -mn(vs,vz) (35)

Yoy, va : (Buyp vz, v2) Avr # w2) = —n(vs,v1) (36)

Vg, v : (Buy @ —is(v) Anlvy,v) Avi £ ve) = —n(ve,v) (37)
Yo, v (Jug : —is(v) A n(ve,v) Avy 5% v2) = -n(v1,v) (38)
Yoy, vy ¢ (Fu: —is(v) An(v,v) Anve,v)) = v1 =12 (39)

Table V. Compatibility formulae F for structures that represent a store of the reverse program,
which operates on the List data-type declaration from Fig. 1(a). The rules below the line are
logical consequences of the rules above the line, and are generated systematically from the rules
above the line, as explained in Section 5.2.1.

This is then broken into two formulae of the form:

VUL, ..Uk p(U, ., Uk) = (UL, UK)
VU1, Uk D p(V1, -, Uk) = TP(V1, -, V)

For instance, for the instrumentation predicate is, we use formula (4) for ;s to
generate compatibility formulae (31) and (32).

The rules below the line in Table V are logical consequences of the rules above
the line, and are generated systematically from them, as explained in Section 5.2.1.

In the remainder of the paper, 2-CSTRUCT|P, F| denotes the set of 2-valued
structures that satisfy a set of compatibility formulae F'.

We can exploit the close relationship between 2-valued and 3-valued logic to
extend the hygiene conditions to 3-valued structures. As with the 2-valued struc-
tures 2-STRUCT|P], the set of 3-valued structures 3-STRUCTI[P] is more general
than is necessary for shape analysis. One way to impose hygiene conditions on 3-
valued structures is merely to use the same set of compatibility formulae F' that we
use for 2-valued structures, but to interpret the formulae in F under the 3-valued
interpretation (i.e., Definition 3.4). By the Embedding Theorem, this is safe: Be-
cause we are only concerned with 2-valued structures S* € 2-STRUCT(P] that
satisfy all of the formulae in F, we need only be interested in 3-valued structures
S € 3-STRUCT|P] that potentially satisfy all of the formulae in F.

An alternative way to impose hygiene conditions on 3-valued structures is devel-
oped in Section 5.2.1.

4. A SIMPLE ABSTRACT SEMANTICS

In this section, we formally work out the abstract-interpretation algorithm that
was sketched in Section 2.3. In Section 4.1, we define how (a potentially infinite
number of) concrete structures can be represented conservatively using a single 3-
valued structure. In Section 4.2, the meaning functions of the program statements

Parametric Shape Analysis via 3-Valued Logic . 23

unary n
el.[z{y|t{sm|is cilestcs
% c1 (1101010 10 [|er|0 (1 |1
\L 620000 0 C2000
n c3 |0(01]0]0 0]|c3|0 |0 |0
@z

Fig. 7. This structure, st

Y ira» 18 DOt Tepresented by the structure Sp from Fig. 2.

and conditions are defined. In Section 4.3, we address the question of defining
appropriate formulae for updating instrumentation predicates.

To guarantee that the analysis of a program containing a loop terminates, we
require that the number of potential structures for a given program be finite. For
this reason, in Section 4.4 we introduce the set of bounded structures, and show
how every 3-valued structure can be mapped into a bounded structure. Section 4.5
states the abstract interpretation in terms of a least fixed point of a set of equations.

4.1 The Concrete Stores Represented by a 3-Valued Structure

DEFINITION 4.1. (Concretization of 3-Valued Structures) For a structure
S € 8-STRUCTIP], we denote by ¥(S) the set of 2-valued structures that S repre-
sents, t.e.,

v(8) = {S"| S"C S, S" € 2-CSTRUCTIP, F|} (41)

ExXAMPLE 4.2. The structure S, shown in Fig. 2 represents two classes of data
structures: (i) lists of length two or more, and (ii) lists with one element and one
or more garbage cells. The reason that S, represents the latter class of data struc-
tures is that because n(ui,u) = 1/2, individual u of US2 may represent elements
unreachable from x (i.e., uncollected garbage).

It is possible to change the definition of embeddings (abstractions) to exclude
garbage cells explicitly (see [Sagiv et al. 1996]). An alternative is to use an addi-
tional instrumentation predicate, r, defined by formula (6), to maintain reachability
information explicitly. With the latter approach, for every program statement there
would be a predicate-update formula to update r. (See Section 6.1.2.)

The structure SSUEM shown in Fig. 7 has an individual ¢; that has two different
outgoing n pointers. Because of the clause “Sh ¢ 2-CSTRUCTIP, F]” in the set-
former in equation (41), So does not represent the structure Sfueird, even though

St S,

weird =
4.2 The Meaning of Program Statements and Conditions

The most technically challenging aspect in the design of our analysis is creating
the abstract meaning functions for the program statements, which are defined as
transformers from 3-valued structures to 3-valued structures. This task is difficult
(even in a non-parametric framework) because of the following issues:

—T¢t is hard to model the effect of program statements that destructively update

24 . Mooly Sagiv et al.

memory locations, e.g., statements of the form y~>n = t. Because of this, most
pointer-analysis algorithms resort to imprecise approaches in many cases, such
as performing weak updates (i.e., n edges emanating from the shape-node that x
points to are accumulated) [Larus and Hilfinger 1988; Chase et al. 1990].

—The (3-valued) interpretation of different predicate symbols may be related. For
example, heap sharing (i.e., predicate is) constrains the number of incoming
selector edges (i.e., predicate n); conversely, the number of incoming selector
edges constrains heap sharing.

In this subsection, we present a simple algorithm that, given a program, computes
for every point in the program a conservative approximation of the set of concrete
structures that arise at that point during execution. (This algorithm is refined in
Section 5 to obtain a more precise solution.)

We now formalize the abstract semantics that was discussed in Section 2.3. The
main idea is that for every statement st, the new values of every predicate p are
defined via a predicate-update formula ga]sf (referred to as p’ in Section 2.3).

DEFINITION 4.3. Let st be a program statement, and for every arity-k predicate
p in vocabulary P, let Lpf,t be the formula over free variables vy,... , v that defines
the new value of p after st. Then, the P transformer associated with st, denoted
by [st], is defined as follows:

[st](S) = (U5, ApAug, .. ur [05]5 (for = v, . v = ug))

Table VI lists the predicate-update formulae that define the abstract semantics
of the five kinds of statements that manipulate data structures defined by the List
data type given in Fig. 1(a).

Definition 4.3 does not handle statements of the form x = malloc() because the
universe of the structure produced by [st](S) is the same as the universe of S.
Instead, for allocation statements we need to use the modified definition of [st](S5)
given in Definition 4.4, which first allocates a new individual tney, and then invokes
predicate-update formulae in a manner similar to Definition 4.3.

DEFINITION 4.4. Let st = x = malloc() and let new € P be a unary predicate.
For every p € P, let Lp;" be a predicate-update formula over vocabulary P U {new}.
Then, the P transformer associated with st = x = malloc(), denoted by [z =
malloc()], is defined as follows:

[x = malloc()](S) =
let U' =U° U {Unew}, wWhere Uney 18 an individual not in U o

1 p=new and Uy = Unew
0 p=new and U1 # Unew
and J = Ap € (PU {new}). ui,... ,up. 1/2 p # new and there exists i,

1 <3<k, such that u; = Unew
S T
¢ (pYuy, ... ,ur) otherwise

in (U',\p € P.Aug,... ,uk.[[wf,"]}éw"'/)([vl UL, U e ug)))

Parametric Shape Analysis via 3-Valued Logic . 25

st [st |
x = NULL ost(v) €' o
©st(v) & z(v), for each z € (PVar — {x})

@8 (v1,v2) = n(v1,v2)

it (v) =2 sm(v)

x =t st (v) E t(v)

@St (v) = 2(v), for each z € (PVar - {x})
st def

et (v, v2) = n(vi,v2)

def

2 (v) 2 sm(v)

X = t->n st (v) L Ju; 1 t(v1) Anlvr,v)

w3t (v) %! z(v), for each z € (PVur — {x})
st def

wit(vi,v2) = n{vy,v2)}
N def

i (v) = sm(v)

x~>n = NULL wSt(v) %' z(v), for each z € PVar

w5t (v1,v2) £ n(v,v2) A -z (vr)

3t (v) B sm(v)
x->n = t st (v) € 2(v), for each z € PVar
(assuming x->n == NULL) | @ (v1,v2) € n(v1,v2) V (z(v1) At(v2))
dei
Pk (v) = sm(v)
= malloc() 0st(v) L ew(v)
©3t(v) L' 2(v) A —mew(v), for each z € (PVar — {x})
s (vy,v2) 4 n(vi, v2) A —new(v) A ~new(va)

ot (v) E sm{v) A =new(v)

Table VI. Predicate-update formulae for the core predicates for List and reverse.

In Definition 4.4, ¢/ is created from ¢ as follows: (i) new(unew) is set to 1,
(ii) new(ui) is set to O for all other individuals u; # Unew, and (iil) all predi-
cates are set to 1/2 when one or more arguments is Unew. The predicate-update
operation in Definition 4.4 is very similar to the one in Definition 4.3 after ./ has
been set. (Note that the p in “// = Ap....” ranges over P U {new}, whereas the p
in “Ap...." appearing in the last line of Definition 4.4 ranges over P.)

3-valued formulae also provide a natural way to define {conservatively) the mean-
ing of program conditions. In particular, we define the meaning of a condition st
to be

[st)(S) = [« 13 ()-

(To keep things simple, we assume that conditions do not have side-effects. It
is possible to support side-effects in conditions in the same way that is done for
statements, namely, by providing appropriate predicate-update formulae.)

—If [¢**]5 () yields 1, the condition holds in every store represented by S.

—If [¢**]5(]]) yields 0, the condition does not hold in any store represented by S.

—If [¢*t]15([]) vields 1/2, then we do not know if the condition always holds, never
holds, or sometimes holds and sometimes does not hold in the stores represented
by S.

26 . Mooly Sagiv et al

[st [o** |
x == Vo z(v) & y(v)

x =y T ~(z({v) & y(v))
x == NULL Vo : —x(v)

x = NULL Jv: z(v)
UninterpretedCondition|1/2

Table VII. 3-valued formulae for conditions involving pointer variables.

3-valued formulae for four types of conditions involving pointer variables are

shown in Table VII. Other kinds of conditions involving pointer variables would ei-

ther have other formulae, or would be handled via the formula for UninterpretedCondition.
The Embedding Theorem immediately implies that the 3-valued interpretation

is conservative with respect to every store that can possibly occur at run-time.

4.3 Updating the Instrumentation Predicates

Because each instrumentation predicate is defined by means of a formula (cf. Ta-
ble I'V), for the concrete semantics there is no need to specify formulae for updating
the instrumentation predicates. However, for the abstract semantics, the Instru-
mentation Principle implies that it may be more precise for a statement transformer
to update the values of the instrumentation predicates. In particular, this is of-
ten the case for the instrumentation-predicate value of a summary node, as the
following example demonstrates:

ExaMPLE 4.5. Consider the application of statement sts o : y->n = t to struc-
ture S7 in Fig. 4. The abstract transformer associated with statement sts o sets
i8'(u) to 0 in structure Sg, despite the fact that the value of ¢y, at u in S, ie.,
[pisn]38([v = u]), is 1/2. This is consistent with the semantics of the statement
y->n = t because the execution of y~>n = t can only cause heap cells pointed to
by t to become shared; because any (concrete) heap cell ¢ represented by u cannot
be pointed to by t, the (concrete) execution of y->n = t cannot make ¢ become
shared, and hence is'(u) can be set to 0 in structure S.

In order to update the values of the instrumentation predicates based on the
stored values of the instrumentation predicates, as part of instantiating the para-
metric framework, the designer of a shape analysis must provide, for every predicate
p € T and statement st, a predicate-update formula goff that identifies the new value
of p after st. It is always possible to define @5 to be the formula @,lc — @i | c € C]
(i.e., the formula obtained from ¢, by replacing each occurrence of a predicate c € C
by .3 This substitution captures the value for ¢ after st has been executed. We
refer to @plc — @3t | ¢ € C] as the trivial update formula for predicate p,
since it merely reevaluates the p’s defining formula in the structure obtained af-
ter st has been executed. As demonstrated in Example 4.5, because reevaluation

3Here we are making the assumption that the formula for an instrumentation predicate is defined
solely in terms of core predicates, and not in terms of other instrumentation predicates. An
instrumentation predicate’s formula can always be put in this form by repeated substitution until
only core predicates occur.

Parametric Shape Analysis via 3-Valued Logic : 27

st |03t |
x = NULL it (v) = 1s(v)

x =t () d——ifis(v)

X = t->n ©it(v) 2 is(v)

o = st def | 18(V) A pisn — 3F] if T’ z(v') An(v,v)
x=>n = NULL i () = { is(v) otherwise

o o sty det [18(V) V @is[n — St if Fug : t(v) A n(vr,v)
®om =t ¢is(v) = {is(’u) otherwise

(assuming x~>n == NULL)

x = malloc() o5t (v) & is(v) A —mew(v)

Table VIII. Predicate-update formulae for the instrumentation predicate is.

may yield many indefinite values, the trivial update formula is often unsatisfac-
tory. It is preferable, therefore, to devise predicate-update formula that minimize
reevaluations of ¢,

EXAMPLE 4.6. Table VIII gives the predicate-update formulae for the instru-
mentation predicate 5. The assignment to x~>n=NULL can only change the sharing
to false for elements pointed to by x->n. Therefore, in Table VIII p;s]n — 5] is
evaluated only for elements pointed to by x->n. Similarly, the assignment x->n=t
can only change the sharing to true for elements pointed to by t, when that element
already has at least one incoming edge. Therefore, w;s[n — 5] is evaluated only
for elements that are pointed to by t and already have at least one incoming edge.

We now state the requirements on predicate-update formulae that the user of our
framework needs to show in order to make sure that the analysis is conservative.

DEFINITION 4.7. We say that a predicate-update formula for p maintains the
correct instrumentation for statement st if, for all S" € 2-CSTRUCT[P, F)
and all Z,

(015" (2) = [p)E15 (2). (42)

In the above definition, [st](S") denotes a version of the operation defined in Defini-
tions 4.3 and 4.4 in which P is restricted to . {Here we are making the assumption
that the predicate-update formula for an instrumentation predicate is defined solely
in terms of core predicates, and not in terms of instrumentation predicates.)

In the sequel, we assume that for all the instrumentation predicates and all the
statements, the predicate-update formulae maintain correct instrumentation. Note
that the trivial update formuae do maintain correct instrumentation; however, they
may yield very imprecise answers when applied to 3-valued structures.

4.4 Bounded Structures

To guarantee that shape analysis terminates for a program that contains a loop,
we require that the number of potential structures for & given program be finite.
Toward this end, we make the following definition:

28 . Mooly Sagiv et al.

DEFINITION 4.8. A bounded structure over vocabulary P is a structure S =
(US,LS) such that for every ui,us € US, where u; # ug, there exists a unary
predicate symbol p € P such that 15 (p)(uy) # ¢ (p)(uz).

In the sequel, B-STRUCT|P] denotes the set of such structures.

The consequence of Definition 4.8 is that for every fixed set of predicate symbols
P containing unary predicate symbols A C P, there is an upper bound on the size
of structures S € B-STRUCT[P}, i.e., |US| < 3MAL

ExAaMPLE 4.9. Consider the class of bounded structures associated with the
List data-type declaration from Fig. 1(a). Here the predicate symbols are C =
{sm,n}U{z | x € PVar} and T = {is}. Notice that the sm predicate plays a
different role than other core predicates since it captures the information lost in
the abstraction, and has a trivial fixed meaning of 0 in all concrete structures. (We
choose to include sm in the concrete structures to avoid the need to work with
different vocabularies at the concrete and abstract levels.)

For the reverse program from Fig. 1(b), the program variables are x, y, and
t, yielding unary core predicates sm, z, y, and ¢; the only other unary predicate
is 5. Therefore, the maximal number of individuals in a structure is 2% = 32;
however, because sm cannot have the value 1, the maximal number of individuals
in a structure is really only 16. (On the other hand, Fig. 4 shows that each structure
that arises in the analysis of reverse has at most two individuals.)

One way to obtain a bounded structure is to map individuals into abstract in-
dividuals named by the definite values of the unary predicate symbols. This is
formalized in the following definition:

DEFINITION 4.10. The canonical abstraction of o structure S, denoted by
t_embed (S), is the tight embedding induced by the following mapping:

t~embed0(u) = Ufpe A—{sm)" (p)(u)=1},{p€ A=~ {sm}]|c5 (p)(u)=0}-

Note that t_embed. can be applied to any 3-valued structure, not just 2-valued
structures, and that t.embed,. is idempotent (i.e., t_embed.(t_embed.(S)) = t.embed.(S5)).
The nane “U{pea- {sm} | (p)(u)=1},{peA—{sm}|s5 (p)(u)=0} 1S known as the canon-
ical name of individual u.

EXAMPLE 4.11. In structure S» from Fig. 2, the canonical name of individual
U1 18 U{z} {y,t,is), and the canonical name of u is U, {e y.t,4s}. 1D Structure Ss, which
arises after the first abstract interpretation of statement stz in Fig. 4, the canonical

name of uy is U(y y}{1,is}> 2nd the canonical name of u is up,(¢,y,¢,15}-

For any two bounded structures S,S5’ € B-STRUCT|P), it is possible to check
whether § is isomorphic to S, in time linear in the (explicit) sizes of S and S’,
using the following two-phase procedure:

. . . - ’ . . .
(1) Rename the individuals in U% and U®" according to their canonical names.

(2) For each predicate symbol p € P, check that the predicates .5 (p) and .5 (p)
are equal.

Parametric Shape Analysis via 3-Valued Logic . 29

It is straightforward to generalize Definition 4.10 to use just a subset of the
unary predicate symbols, rather than all of the unary predicate symbols A C P.
This alternative yields bounded structures that have a smaller number of individ-
uals, but may decrease the precision of the shape-analysis algorithm. For instance,
canonical abstraction is a generalization of the abstraction function used in [Sagiv
et al. 1998].4 The only abstraction predicates used in [Sagiv et al. 1998] are the
“pointed-to-by-variable-x” predicates. Because sharing predicate is is used only as
an instrumentation predicate in [Sagiv et al. 1998], but not as an abstraction pred-
icate, the algorithm from [Sagiv et al. 1998] does not distinguish between shared
and unshared individuals, and thus loses precision for stores that contain a shared
heap cell that is not directly pointed to by a variable. Adopting is as an addi-
tional abstraction predicate improves the precision of shape analysis: In this case,
concrete-store elements that are shared and concrete-store elements that are not
shared are represented by abstract individuals that have different canonical names,
which is important for maintaining precision when analyzing, for instance, a pro-
gram that swaps the first two elements of a list.

Remark. The term “canonical abstraction” was chosen as a reminder that ¢_embed,
is a generalization of the abstraction functions that have been used in some of the
previous work on shape analysis.

In [Wang 1994; Sagiv et al. 1998], unbounded-size stores are embedded into
bounded-size abstractions by collapsing concrete elements that are not directly
pointed to by program variables into one abstract element, whereas concrete ele-
ments that are pointed to by different sets of variables are kept apart in different
abstract elements. Earlier, Jones and Muchnick proposed making even finer dis-
tinctions by keeping exact information on elements within a distance k from a
variable [Jones and Muchnick 1981]. Definition 4.10 generalizes these ideas to any
fixed set of unary “abstraction properties” on individuals:

Individuals are partitioned into equivalence classes according to their
sets of unary abstraction-property values. Every structure St is then
represented (conservatively) by a condensed structure in which each in-
dividual of S represents an equivalence class of Sb.

This method of collapsing structures always yields bounded structures, and is the
abstraction principle behind canonical abstraction.

Compared to previous work, however, the present paper uses canonical abstrac-
tion in somewhat different ways:

—Because the concrete and abstract worlds are defined in terms of a single unified
concept of 3-valued logical structures, we are able to apply t.embed, to abstract
(3-valued) structures as well as to concrete (2-valued) ones.

—The present paper is not so tightly tied to canonical abstractions. There is
nothing special about a bounded structure that uses canonical names; whenever
necessary, canonical names can be recovered from the values of a structure’s
unary predicates.

4The shape-analysis algorithm presented in [Sagiv et al. 1998] is described in terms of Storage
Shape Graphs (S85Gs), not bounded structures. Our comparison is couched in terms of the termi-
nology of the present paper.

30 ' Mooly Sagiv et al.

—-At various stages, we work with non-bounded structures, and return to bounded
structures by applying ¢_embed.. (The Embedding Theorem ensures that the
operations we apply to 3-valued structures are safe, even when we are working
with non-bounded structures.)

The notion of bounded structures is very general, and not restricted to shape
analysis. Many of the constructions presented in the rest of the paper are ones
that apply to all classes of bounded structures, not just the ones we use in shape
analysis.

More generally, the idea developed in this paper of using 3-valued logic for pro-
gram analysis has broader applicability than just the shape-analysis problem. Ap-
plications of the machinery developed in this paper to other program-analysis prob-
lems are discussed in [Nielson et al. 1999; Lev-Ami et al. 2000].

4.5 The Shape-Analysis Algorithm

In this section, we define the actual shape-analysis algorithm. First, we define the
Hoare order on sets of structures that is induced by the embedding order. (The
shape-analysis algorithm is defined as a least fixed point with respect to this order.)

DEFINITION 4.12. For sets of structures X 51,X 51 C 3-STRUCT|P], we define:
XS5 C XS V5 e X8, :35, € X5y S C 85,

The shape-analysis algorithm itself is an iterative procedure. For each vertex
v of control-flow graph G, it computes a set StructSet[v] of structures that hold
on entry to v as a least fixed point of the following system of equations (over the
variables StructSet[v]):

StructSet|v] =
{(0,0)} if v = start
StructSet|v]U U {t_embed. [st(w)](S) | S € StructSet|w]})
w— v € E(G),
w € As(G)
U U {S| S € StructSet|w]}
w ZITZI(EG?(G)‘ if v stgz%"%)
U U {S | S € StructSetw] and [st(w)](S) I 1}
w-v€TH{G)
U U {S | S € StructSet[w] and [st(w)](S) =2 0}
w—uE Fb(G)

In equation (43), As(G) denotes the set of assignment statements that manipulate
pointers; Id(G) denotes the set of assignment statements that do not manipulate
pointers (these statements are uninterpreted); Th(G) C E(G) and Fb(G) C E(G)
are the subsets of the G’s edges that represent true and false branches from condi-
tions, respectively.

The iteration starts from the initial assignment StructSet[v] = 0 for each control-
flow-graph vertex v. Because of the t_embed, operation, it is possible to check
efficiently if two structures are isomorphic.

Parametric Shape Analysis via 3-Valued Logic . 31

statement formula structure
LT
, i
stai t = y; t'(v) = y(v) u <%yt Si,
3 \x ‘
st3r y = X; y'(v) = z(v) u < %y,t S
Tl
4
stq: x = x->n; z'(v) = Jvg : x(v1) An(v,v) u <Xyt Sl
n' (v, v2) = nlv1,v2) A —y(vr) 4 "
stgi: y->n = NULL; is'(v) = z:s('u) A Qg if T :y(v') An(v,v) u < %Y, '
i8(v) otherwise
n'(v1,v2) = nv1,v2) V (y(v1) At(vz)) -
Stgo: y=>n = t; is'(v) = i5(v) V s e if Jvr : H(w) An(v1,v) U <XV, t 38
‘ T is(v) otherwise A
is

Table IX. The bounded structures that actually arise for the last four blocks of
Fig. 4 when t_embed, is applied at each step.

In Section 2, we did not wish to complicate the discussion with the issue of
mapping structures into bounded structures. For this reason, the last five blocks
of Fig. 4 are deliberately inconsistent with equation (43). The bounded structures
that actually arise when t.embed. is applied at each step are shown in Table IX.
In structures Si,, Sis, St and Si;, the canonical name of the one individual u is
ug. {is}- In structure S!g, the canonical name of individual w is ug.g-°

Other variations on equation (43) are possible. In particular, the function t_embed.
need not be applied after every statement; it could be applied (i) at every merge
point in the control-flow graph, or (ii) only in loops, e.g., on each backedge of the
control-flow graph.

5. IMPROVED ABSTRACT SEMANTICS

In this section, we formulate the improved abstract interpretation referred to in
Section 2. This analysis always performs strong updates and also recovers pre-
cise shape information for many list-manipulation programs, including ones that
manipulate cyclic lists.

This section is not organized to have a separate overview section for this material;
however, the basic principles should be clear from Fig. 9 and the corresponding
examples.

In contrast to the abstract meaning function for a statement st given in Defini-
tion 4.3, in this section we decompose the transformer for st into a composition of
three functions, as depicted in Fig. 8 and explained below:

(1) The operation focus, defined in Section 5.1, refines 3-valued structures so that

5 A consequence of Definition 4.8 is that when a bounded structure contains an individual whose
canonical name is ug g, then the structure contains exactly one individual.

32 : Mooly Sagiv et al.

focus

{55} 3 {85, 7.0.55.£,1,55,5,2}
!Isialll lﬂstsll
{56} | {S6.0,56.1, 55,2} <—— {55,0,0,55,0.1: S5.0,2}

coerce

Fig. 8. One- vs. three-stage abstract semantics of statement st3. The notation [st] denotes the
operation defined in Section 4.2. The focus and the coerce operations are introduced in Sections 5.1
and 5.2, respectively. (This example will be discussed in further detail in Sections 5.1 and 5.2.)

the formulae that define the meaning of st evaluate to definite values. The
focus operation thus brings these formulae “into focus”.

(2) The transformer [st], defined in Section 4, is then applied (see Definitions 4.3
and 4.4).

(3) The operation coerce, defined in Section 5.2, converts a 3-valued structure into
a more precise 3-valued structure by removing incompatibilities. In contrast to
the other two operations, coerce does not depend on the particular statement
st; it can be applied at any step (e.g., right after focus and before [st]) and
may improve precision.

It is worthwhile noting that both focus and coerce are semantic-reduction op-
erations (a concept originally introduced in [Cousot and Cousot 1979]). That is,
they convert a set of 3-valued structures into a more precise set of structures that
describe the same set of stores. This property, together with the correctness of
the structure transformer [st], guarantees that the overall three-stage semantics is
correct. In the context of a parametric framework for abstract interpretation, se-
mantic reductions are valuable because they allow the transformers of the abstract
semantics to be defined in a modular fashion.

5.1 Bringing Formulae Into Focus

To improve the precision of the simple abstract semantics of Section 4, we define
an operation, called focus, that generates a set of structures on which a given set of
formulae F have definite values for all individuals. Unfortunately, in general focus
may yield an infinite set of structures. Therefore, in Section 5.1.1, we declaratively
specify the properties of the focus operation, and in Section 5.1.2, we give an algo-
rithm that implements focus for a certain specific class of formulae that are needed
for shape analysis. The latter algorithm always yields a finite set of structures.

5.1.1 The Focus Operation. We extend operations on structures to operations
on sets of structures in the natural way: For an operation op that returns a set
(such as 7, [st], etc.),

ap(XS)= | op(5). (44)
SexXs

DEFINITION 5.1. Given a set of formulae F', a function op: 3-STRUCT|P] —
23-STRUCTIP] 5 a focus operation for F if for every S € 8-STRUCT[P], op(S)
satisfies the following requirements:

Parametric Shape Analysis via 3-Valued Logic . 33

—op(S) and S represent the same concrete structures, i.e., v(8) = F(op(S))

— Every formula ¢ € F has a definite value in each of the structures in/op(S), i.e.,
for every formula p € F, ' € op(§), and assignment Z, we have [els (Z) #1/2.

Henceforth, we will use the notation focus g, or simply focus when F' is clear from
the context, when referring to a focus operation for F in the generic sense. We will
consider a specific algorithm for focusing shortly.

The first obstacle to developing a general algorithm for focusing is that the num-
ber of resulting structures may be infinite. In many cases (including the ones used
below for shape analysis), this can be overcome by only generating maximal strue-
tures. However, in some cases the set of maximal structures is infinite, as well.
This phenomenon is illustrated by the following example:

EXAMPLE 5.2. Consider the following formula
Prast (V) = Yoy : ~n(v,v1),

which is true for the last heap cell of an acyclic singly linked list. Focusing on
last with the structure Sy shown in Fig. 2 will lead to an infinite set of maximal
structures (of length 1, 2, 3, etc.)

To sidestep this obstacle, the focus formulae ¢ used in shape-analysis are deter-
mined by the L-values and R-values of each kind of statement in the programming
language. These are formally defined in Section 5.1.2 and illustrated in the following
example.

EXAMPLE 5.3. For the statement st4: x = x->n in procedure reverse, we focus
on the formula

wo(v) = vy @ z(v1) An(v,v), (45)

which corresponds to the R-value of st4 (the heap cell pointed to by x->n). The
upper part of Fig. 9 illustrates the application of focus {wo}(S5)’ where S5 is the
structure shown in Fig. 4 that we have in reverse just before the first application
of statement sts: x = x->n. This results in three structures: Ss 0, Ss, 1, and
Ss.5,2-

—In S5 7.0, [[(,90]}55" O([v = u]) equals 0. This structure represents a situation in
which the concrete list that x and y point to has only one element, but the store
also contains garbage cells, represented by summary node u.

—In Ss.5.1, [[(pol}gs'f (Jv — u]) equals 1. This covers the case where the list that
x and y point to has exactly two elements: For all of the concrete cells that
summary node u represents, ¢p must evaluate to 1, and so w must represent just
a single list node.

—In S5 ¢,2, {[cpo]]gs“”([v s 1.0]) equals 0 and [[goo]]:fs'f'z([v > u.1]) equals 1. This
covers the case where the list that x and y point to is a list of three or more
elements: For all of the concrete cells that u.0 represents, ¢o must evaluate to
0, and for all of the cells that u.1 represents, wo must evaluate to 1. This case
captures the essence of node materialization as described in [Sagiv et al. 1998]:
individual u is bifurcated into two individuals.

34 Mooly Sagiv et al.
. \lA. >
input
struct. S5 XY @ > u
focus
formul. {po(v)}
focus.
struct. Ssp0 po=0 Ss.p1 po =1 Ssf52 wo=1 wo=0
T . . n
| i - N N
x,y—a@ i x,y»@_'; U x,y%@._’; ul ™ w0
T
update p3ti(v) 03 () |01 (v) | pist (v) | ont (v) | 03 (01, v2)
formul. Juy @ z{v1) Anfvr, v) | y(v) t(v) is(v) |sm(v) |n(vi,v2)
output
struct. S5.0.0 Sse1 X Ss,0,2 x
" l I
N N
y»@ u y'é"@:; u y—>@,§. wl % uo
: » : }*‘
Ik g
coerced
struct. 55,0 Se1 X Se.2 x
" T
\i . \‘ :
y»@ " y>@& Y*@; wl)® u.0

Fig. 9. The first application of the improved transformer for statement st4: x =
x~>n in reverse.

Notice how focusy Lpo}(Ss) can be effectively constructed from S5 by considering

the reasons why [w]5° (Z) evaluates to 1/2 for an assignment Z. In some cases,
[val5*(Z) already has a definite value; for instance [po]5® ([v = u1]) equals 0, and
therefore g is already in focus at u;. In contrast, [po]3°([v — u]) equals 1/2.
There are three (maximal) structures S that we can construct from S5 in which

[wol§ (v v u]) has a definite value:

—85.#,0, in which n(uy,u) was forced to 0, and thus {[(,00]}?5""’([1) — u]) equals 0.

—S5.4.1, in which n(u;,u) was forced to 1, and thus [[tpo]]gs"'l([v — u]) equals 1.

—S5, 7,2, in which v was bifurcated into two different individuals, v.0 and ».1. In

S5, ,2, n(u1,u.0) was set to 0, and thus [{gog]]gs'f‘z({v — u.0]) equals 0, whereas
n(uy,u.1) was set to 1, and thus [[cpo]]g“""“([v — u.1]) equals 1.

Of course, there are other structures that can be embedded into Ss that would
assign a definite value to ¢g, but these are not maximal because each of them can
be embedded into one of Sy .0, S5.5,1, o Ss,5.2.

5.1.2 Selecting the Set of Focus Formulae For Shape Analysis. The greater the
number of formulae on which we focus, the greater the number of distinctions that
the shape-analysis algorithm can make, leading to improved precision. However,

Parametric Shape Analysis via 3-Valued Logic . 35

st [Focus Formulae }
x = NULL [

x =t {t(v)}

X = t->n {3y : t(v1) Anfvr,v)}
x->n = ¢ {z(v), t(v)}

x = malloc()]

x == NULL [

x != NULL 0

x ==t {z(v), t(v)}

x 1=t {z(v), t(v)}
UninterpretedCondition | @

Table X. The target formulae for focus, for statements and conditions of a program that uses type
List.

using a larger number of focus formulae can increase the number of structures that
arise, thereby increasing the cost of analysis. Our preliminary experience indicates
that in shape analysis there is a simple way to define the formulae on which to focus
that guarantees that the number of structures generated grows only by a constant
factor. The main idea is that in a statement of the form lhs = rhs, we only focus
on formulae that define the heap cells for the L-value of lhs and the R-value of
rhs. This definition extends naturally to program conditions and to statements
that manipulate multiple L- and R-values.

For our simplified language and type List, the target formulae on which to focus
can be defined as shown in Table X. Let us examine a few of the cases from Table X:

—For the statement x = NULL, the set of target formulae is the empty set because
neither the L-value nor the R-value is a heap cell.

—TFor the statement x = t->n, the set of target formulae is the singleton set {3 :
t(v1) A nf{vy,v)} because the L-value cannot be a heap cell, and the R-value is a
cell pointed to by t->n.

—TFor the statement x->n = t, the set of target formulae is the set {z(v),t(v)}
because the L-value is a heap cell pointed to by x and the R-value is a heap cell
pointed to by t.

—TFor the condition x == t, the set of target formulae is the set {z(v),t(v)}: there
are no L-values, and the R-values of the statement are the heap cells pointed to
by x and t.

It is not hard to extend Table X for statements that manipulate more complicated
data structures involving chains of selectors. For example, the set of target formulae
for the statement x->a->b = y->c~>d~>eis

{3 @ z(v1) A a(vr,v), 31, 02,03 : y(v1) A c(vr,v2) A d(va,v3) A e(vs,v)},

because the L-value is a heap cell pointed to by x->a, and the R-value is a heap
cell pointed to by y->c->d->e.

Fig. 10 contains an algorithm that implements focus for the type of formulae that
arise in Table X. We observe that for every set of formulae F} U Fy, it is possible
to focus on Fy U Fy by first focusing on Fp, and then on F». Thus, it is sufficient to

36 : Mooly Sagiv et al.

provide an algorithm that focuses on an individual formula . Also, there are two
types of formulae used in Table X:

—The formula ¢ = z(v), for x € PVar. In this case, FocusVar(S, x) is applied.

—The formula ¢ = Ju; : z(v1)An(vy,v), for x € PVar. In this case, FocusVarDeref(S, x,n)
is applied.

FocusVar repeatedly eliminates more and more indefinite values for z(v) by cre-
ating more and more structures. For every individual u for which :%(z)(u) is an
indefinite value, two or three structures are created. The function Expand creates
a structure in which individual » is bifurcated into two individuals; this captures
the essence of shape-node materialization (cf. [Sagiv et al. 1998]).

FocusVarDeref first brings z(v) into focus (by invoking FocusVar), and then
proceeds to eliminate indefinite ¢%(n) values.

EXAMPLE 5.4. Consider the application of FocusVarDeref(Ss,x,n) for Ss de-
fined in Fig. 9. In this case, FocusVar(Ss,x) = {Ss}. When S5 is selected from
the worklist, structures Ss o, Ss,71, and Ss fo are created. In the next three
iterations, these structures are moved to AnswerSet.

The following two lemmas guarantee that the algorithm for focus shown in Fig. 10
is correct.

LEMMA 5.5. For = z(v), and for every structure S € 8-STRUCT{P], FocusVar(S,x)
is a focus operation for {¢}.

LEMMA 5.6. Forp = Ju; : z(v1)An(v1,v), and for every structure S € 3-STRUCT(P],
FocusVarDeref(S,x,n) is a focus operation for {p}.

Tt is not hard to see that both FocusVar and FocusVarDeref always return a finite
set of structures.

In what follows, Focus, denotes the operation that invokes FocusVar or Focus-
VarDeref, as appropriate.

5.2 Coercing into More Precise Structures

After focus, we apply the simple transformer [st] that was defined in Definitions 4.3
and 4.4. In the example discussed in Section 5.1, we apply [st4] to the structures
Ss,7.0, Ss,4,1, and S 52. Structure S5 ;0 is obtained from S5, 1.0+ S5,0,1 from S 7.1,
and Ss 0,2 from Ss 5.

Applying focus and then [st] can produce structures that are not as precise
as we would like. The intuitive reason for this state of affairs is that there can
be interdependences between different properties stored in a structure, and these
interdependences are not necessarily incorporated in the definitions of the predicate-
update formulae. This is demonstrated in the following example:

EXAMPLE 5.7. Consider structure Ss 2 from Fig. 9. In this structure, the n
field of ©.0 can point to u.1, which suggests that x may be pointing to a cyclic data
structure. However, this is incompatible with the fact that is(u.1) = O—i.e., u.l
cannot represent a heap-shared cell—and the fact that n(ui,uv.l) = I—ie., it is
known that .1 definitely has an incoming selector edge from a cell other than u.0.

Parametric Shape Analysis via 3-Valued Logic

37

function FocusVar(Sp : 3-STRUCT[P], x : PVar) returns 23-STRUCT(7]
begin
WorkSet := {So}
AnswerSet := 0
while WorkSet # 0 do
Select and remove a structure S from WorkSet
if there exists u € US st 5(z)(u) = 1/2 then
Insert (U5, 15 [z(u) = 0]) into WorkSet
Iasert (U5, 15[z(u) = 1)) into WorkSet
if 5(sm)(u) = 1/2 then
let 2.0 and u.1 be individuals not in US
and S8’ = Expand(S, v, u.0,1.1)
Insert (US’,LSI [z(u.0) = 0,2(u.1) = 1]) into WorkSet
fi
else
Insert & into AnswerSet
fi
od
return AnswerSet
end
function FocusVarDeref(Sp : 3-STRUCT|P), x : PVar, n:Selector) returns 23-STRUCT(P]
begin
WorkSet := FocusVar(Sg, x)
AnswerSet = 0
while WorkSet # @ do
Select and remove a structure S from WorkSet
if there exists u1,u € US st. 5 (z)(u1) = 1 and ¢5(n){u1,u) = 1/2 then
Insert (U®,15[n(u1,u) — 0}) into WorkSet
Insert (U5, 15 [n(u1, u) = 1]} into WorkSet
if 15(sm)(u) = 1/2 then
let 4.0 and .1 be individuals not in U¥
and S’ = Expand(S, u,u.0,u.1)
Insert (USI‘LS’[n(m, w.0) — 0,n{u,u.1) — 1]} into WorkSet
fi
else
Insert S into AnswerSet
fi
od
return AnswerSet
end
function Expand(S : 3-STRUCT|P], u, .0, u.1: elements)
returns 3-STRUCT[P]

let m = ' 4 Y ifu' =uldvy =ul
T u’ otherwise
(US — {u}) U {u0,ul}
return < Mpdur,. e eS(P)(mlw), . mlu))

PFig. 10. An algorithm for focus for the two types of formulae that arise in Table X.

38 . Mooly Sagiv et al

In this subsection, we show that in many cases we can sharpen the structures by
removing indefinite values that violate certain compatibility rules. In particular, it
allows us to remedy the imprecision illustrated in Example 5.7. Furthermore, the
shape-analysis actually yields precise information in the analysis of reverse.

This subsection is organized as follows: In Section 5.2.1, we show that struc-
tures that result from abstraction obey certain consistency rules. In particular,
the Property-Extraction and Instrumentation Principles play important roles here.
Interestingly, the consistency rules are stronger than what we have when the for-
mulae for hygiene conditions on 2-valued structures are just interpreted as 3-valued
formulae. The consistency rules are used in Section 5.2.2 to define an operation,
called coerce, that “coerces” a structure into a more precise structure. Finally, in
Section 5.2.3, we give an algorithm for coerce.

5.2.1 Compatibility Constraints. We can, in many cases, sharpen some of the
stored predicate values of 3-valued structures:

EXAMPLE 5.8. Consider a 2-valued structure S" that can be embedded in a
3-valued structure S, and suppose that the formula p,s for “inferring” whether
an individual u is shared evaluates to 1 in S (i.e., [is(v)]5 ([v — u]) = 1). By the
Property-Extraction Principle (Observation 2.1), is(u?) must be 1 for any individual
ut € US" that the embedding function maps to u.

Now consider a structure S’ that is equal to S except that is(u) is 1/2. S? can also
be embedded in S’. However, the embedding of S%in S is a “better” embedding;
it is a “tighter embedding” in the sense of Definition 3.9. This has operational
significance: It is needlessly imprecise to work with structure S’ in which is(u)
has the value 1/2; instead, we should discard S’ and work with S. In general, the
“stored property” is should be at least as precise as its inferred value; consequently,
if it happens that ;s evaluates to a definite value (1 or 0) in a 3-valued structure,
we can sharpen the stored predicate is.

Similar reasoning allows us to determine, in some cases, that a structure is incon-
sistent. For instance, if v;, evaluates to 1 for an individual w and ¢s(u) is 0, then S
is a 3-valued structure that does not represent any concrete structures at alll When
this situation arises, the structure can be eliminated from further consideration by
the abstract-interpretation algorithm.

This reasoning applies to all instrumentation predicates, not just is, and to both
of the definite values, 0 and 1.

The reasoning used in Example 5:8 can be summarized as the following principle:

OBSERVATION 5.9. [The Sharpening Principle]. In any structure S, the
value stored for p(uy, ... ,ur) should be at least as precise as the value of p’s defining
formula, p, evaluated at uy,. .., ug (i.e., [[(p,,]]gs([vl Uy, ., U e Ug))) Fur-
thermore, if p(ui, ... ,us) hes a definite value and @, evaluates to an incomparable
definite value, then S is a 3-valued structure that does not represent any concrete
structures at all.

This observation motivates the subject of the remainder of this subsection—
an investigation of compatibility constraints expressed in terms of a new logical
connective, ‘7.

Parametric Shape Analysis via 3-Valued Logic . 39

DEFINITION 5.10. Let ¥ be a finite set of compatibility constraints of the form
1 B> o, where w1 is an arbitrary 3-valued formula, and w2 is either an atomic
formula or the negation of an atomic formula. We say that a structure S satisfies
¥ (denoted by S |=) if for every constraint 1> w2 in X, and for every assignment
Z such that [p1]5(Z) = 1, we have [p2]5(2) = 1.

For a 2-valued structure, > has the same meaning as implication. (That is, if
S is a 2-valued structure, S$,Z k& 1 > s iff 5,2 = 1 = p,.) However, for
a 3-valued structure, t> is stronger than implication: if ¢ evaluates to 1 and s
evaluates to 1/2, the constraint ¢1 > @2 is not satisfied. More precisely, suppose
that [¢1]5(Z) = 1 and [2]5(Z) = 1/2; the implication 1 = o is satisfied (i.e.,
S, Z = @1 = 3), but the constraint ¢ I> ¢ is not satisfied (i.e., S, Z = 1 > pa).

The constraint that captures the reasoning used in Example 5.8 is ;s (v) > is(v).
That is, when ¢y, evaluates to 1 at u, then is must evaluate to 1 at u.

Such constraints formalize the Sharpening Principle. They will be used to im-
prove the precision of the shape-analysis algorithm by (i) sharpening the values of
stored predicates, and (ii) eliminating structures that violate the constraints.

Constraints give us a way to express certain properties that are a consequence
of the tight-embedding process, but that would not be expressible with formulae
alone. In general, constraints are not expressible in Kleene’s logic (i.e., by means
of a formula that simulates the connective t>). The reason is that formulae are
monotonic in the information order (see Lemma 3.7), whereas i> is non-monotonic
in its right-hand-side argument: The constraint 1 t> 1 is satisfied in all structures;
however, when we change the right-hand-side argument from 1 to 1/2, we find that
the constraint 1 > 1/2 is one that is not satisfied in any structure.

The following definition converts formulae into constraints in a natural way:

DEFINITION 5.11. For formula ¢ and atomic formula a with free variables vy,

Va, ..., Uk (such that a # sm) we generate a constraint v as follows.
r(Vor,...vx: (@ = a)) & pba (46)
r(Vur,. .. vk (o= —a)) £ o> -a (47)

der

r(VU1,. .. Uk @) >0 (48)

For a set of formulae F, we define 7(F) to be the set of constraints obtained by
applying r to each of the formulae in F.

The intuition behind (46) and (47) is that for an atomic predicate, a tight em-
bedding yields 1/2 only in cases in which a evaluates to 1 on one tuple of values
for vy,...vg, but evaluates to 0 on a different tuple of values. In this case, the
left-hand side will evaluate to 1/2 as well (see Lemma 5.13 below). Rule (48) was
added to enable an arbitrary formula to be converted to a constraint.

EXAMPLE 5.12. The constraints generated for the formulae that appear above
the line in Table V are listed above the line in Table XI.

The following Lemma guarantees that tight embedding preserves satisfaction of
FLE).

LEMMA 5.13. For every pair of structures S% € 2-CSTRUCTIP,F] and S €
8-STRUCTI[P) such that S is a tight embedding of S%, S |= F(F).

40 . Mooly Sagiv et al.

sm(v) > 0 (49)

for each x € PVar,z(vi) Az(v2) > vy = v2 (50)

(Fvz : n(vs,v1) An(vs,v2)) > v1 =v2 (51)

(g, vz : n(v1,v) An{ve,v) Avt #Zva) > is(v) (52)
—(Jvy, v : n{v1,v) Anlvz,v) Avy £ v2) > —is(v) (53)
for each x € PVar, (Juy : x{vi) Avi % v2) > —z{vz) (54)
for each x € PVar,(3vz : x(vz) A vy 5% v2) > —x{v1) (55)
(Fuy : nva,v1) Avy # v2) > —nlvs,vz) (56)

(Fva : nlva,v2) Avy 5% v2) > —n(vs, vr) (57)

(Fvy : —is(v) An(vi,v) Avy # v2) > —nfvg,v) (58)

(Fug : —is(v) An(ve,v) Avy 5% v2) > —n(vi,v) (59)

(Bw : —is(v) Anfvy,v) An(ve,v)) B> vy =uv2 (60)

Table XI. The compatibility constraints r(closure F)) generated using Definitions 5.11 and 5.15
from the formulae F given above the line in Table V (i.e., formulae (29)-(32)). Formulae {33)-

(39), given below the line in Table V, are closure(F). Constraints (54)~(60) come from applying
r to formulae (33)—(39) from Table V

Proof: See Appendix B.

ExXAMPLE 5.14. It is worthwhile to notice that tight embedding need not pre-
serve implications when the right-hand side is an arbitrary formula. In particular,
it does not hold for disjunctions. Consider the implication formula

Yo 1= p1(v) V pa(v)
and the structure S* = ({u1,us}, f) with two individuals, u; and us, such that

sm = iy +— 0,u9 — 0],
Lhz le[ulH17u2HO]7
p2 = [ug = 0,up = 1]

Let S be the tight embedding of S obtained by mapping both u; and us into the
same individual uj 2; that is, S = ({u12},¢)) and

sm o= uig — 1/2],
v= | p1— [uro — 1/2],
p2 — [ur 2+ 1/2]

We see that S% = Vo : 1 = pi(v) V pa(v) but S & 1 pi(v) V pa(v) since
[p1(v) V pa()]5 ([v — uy2]) = 1/2, whereas [1]5([v = u12]) = 1.

The constraint-generation rules defined in Definition 5.11 generate interesting
constraints only for certain specific syntactic forms, namely implications with ex-
actly one (possibly negated) predicate symbol on the right-hand side. Thus, when
we generate compatibility constraints from implicative hygiene conditions (cf. Ta-
ble V and the discussion in Section 3.5), the set of constraints generated depends
on the form in which the hygiene conditions are written. In particular, not all of
the many equivalent forms possible for a given hygiene condition lead to useful con-
straints. For instance, 7(Yvy,... v : (¢ => a)}) yields the (useful) constraint ¢ > a,
but 7{(Vv1;... v : (mp V a)) yields the (not useful) constraint —{-p Vv a) > 0.

Parametric Shape Analysis via 3-Valued Logic . 41

This phenomenon can lead to a shape-analysis algorithm that is more conser-
vative than we would like. However, when hygiene conditions are written as “ex-
tended Horn clauses” (see Definition 5.15 below), the way around this difficulty
is to augment the constraint-generation process to generate constraints for some
of the logical consequences of each hygiene condition. The process of “generating
some of the logical consequences for extended Horn clauses” is formalized in the
following definition:

DEFINITION 5.15. For a formula o, we define ¢* = ¢ and ¢ = —p. We say
that a formula @ of the form

™m
V... \/((qu)Bi,
i=1

where m > 1 and B; € {0,1}, is an extended Horn clause. We define the
closure of @, denoted by closure(yp), to be the following set of formulae:

m 1<j<m,
closure(w) LUV, 3, ve, . U /\ @?'B"‘ = cpf"' v € freeVars(p), »(61)
i=1,i] v & freeVars(p;)

For a formula @ that is not an extended Horn clause, closure(p) = {p}. Finally,

for a set of formulae F', we write cl@re(F) to denote the application of closure to
every formaula in F.

It is easy to see that the formulae in closure(y) are implied by .

EﬂMPLE 5.16. Table XI shows the compatibility constraints obtained from
7(closure(F)), where F is the set of formulae given above the line in Table V
(ie., formulae (29)-(32)). For the extended Horn clauses given as formulae (29)-
(32), the new formulae generated by closure are listed below the line in Table V
(ie., formulae (33)-(39)). The constraints generated from these formulae are listed
below the line in Table XI (cf. (54)-(60)).

In particular, computability formula (31) is

Yo @ (3ug, va : n(v1, v) A n(ve,v) Avg 7 v) = is(v)

Expressing the implication as a disjunction, we have

Yo : =(Jvy, v : vy, v) A n(ve,v) Avy # v2) Vis(v)

which can be rewritten by using De Morgan laws as the following extended Horn
clause:

Yo, vy, vs v1 = v V =n(v1,v) V —n(ve,v) V is(v).

From this, we obtain compatibility formulae (37), (38), and (39), which by Defini-
tion 5.11, yield compatibility constraints (58), (59) and (60).

As we will see in Section 5.2.3, compatibility constraints—and, in particular, the
ones created from formulae generated by closure—play a crucial role in the shape-
analysis algorithm. Without them the algorithm would often be unable to deter-
mine that the data structure being manipulated by a list-manipulation program
is actually a list. In particular, constraint (58) (or the equivalent constraint (59))

42 . Mooly Sagiv et al

allows us to do a more accurate job of materialization: When is(u) is 0 and one
incoming n edge to u is 1, to satisfy constraint (58) a second incoming n edge to
u cannot have the value 1/2—it must have the value 0, i.e., the latter edge cannot
exist (cf. Examples 5.7 and 5.22). This allows edges to be removed (safely) that
a more naive materialization process would retain {cf. structures S5 o2 and Sg 2 in
Fig. 9), and permits the improved shape-analysis algorithm to generate more pre-
cise structures for reverse than the ones generated by the simple shape-analysis
algorithm described in Sections 2.3 and 4.

Henceforth, we assume that closure has been applied to all sets of hygiene con-
ditions.

DEFINITION 5.17. (Compatible 3-Valued Structures). Given a set of hy-
giene conditions F, the set of compatible 3-valued structures 3-CSTRUCT[P,7(F)] C
3-STRUCT[P] is defined by S € 3-CSTRUCT[P,7(F)] iff S |=7(F).

The following lemma ensures that we can always replace a structure by a com-
patible one that satisfies constraint-set 7(F') without losing information:

LEMMA 5.18. For every structure S € 3-STRUCT[P] and concrete structure

St € v(8S), there exists a structure S’ € 8-CSTRUCT|P,7(F)] such that (i) US' =
US, (ii) 8'C S and (iii) S* € v(S')
Sketch of Proof: Let S € ~(S), then by Definition 4.1, S* = F and there ex-
ists a function f: US" — US such that S" Tf S. Define ' = f(S%) (ie., S is
the tight embedding of S% under f). By Lemma 5.13, S’ satisfies the necessary
requirements.

In Section 5.2.3, we give an algorithm that constructs from S and 7(F') a maximal
S’ meeting the conditions of Lemma 5.18 (without investigating the possibly infinite
set of actual concrete structures St € v(S)).

5.2.2 The Coerce Operation. We are now ready to show how the coerce opera-
tion works.

EXAMPLE 5.19. Consider structure Ss,2 from Fig. 9. This structure violates
constraint (58) under the assignment [v — wu.1l,v1 — uj,v2 +— u.0]. That is,
because ¢(is)(u.1) = 0, u1 # u.0, and ¢(n)(ur,u.l) = 1, yet o(n)(u.0,u.1) = 1/2,
constraint (58) is not satisfied: The left-hand side evaluates to 1, whereas the
right-hand side evaluates to 1/2.

This example motivates the following definition:
DEFINITION 5.20. The operation
coerce: 8-STRUCT|P] — 3-CSTRUCT|P,7(F)]u {Ll}

is defined as follows: coerce(S) = the mazimal S’ such that S' C S, Us' = USs,
and S' € 8-CSTRUCTIP,7(F)], or L if no such S’ exists.

It is a fact that the maximal such structure S’ is unique (if it exists), which
follows from the observation that consistent structures (i.e., those with the same
universe of individuals) are closed under the following join operation:

Parametric Shape Analysis via 3-Valued Logic . 43

DEFINITION 5.21. For every pair of structures Si,S2 € 3-CSTRUCT[P,7(F)]
such that US1 = US2 = U, the join of Sy and S2, denoted by S U Sy, is defined as
follows:

def

S1 U8y = (U, Ap.dug, ua, . . - Ut (p)(u1,uzy ... s Um) UL52(p)(u1,uz, cee sy Um))-

In Lemma B.1 (Appendix B) we show that consistent structures are closed under
join. Because of uniqueness of the resultant structure, coerce is not defined in terms
of a set former—in contrast to focus, which can return a non-singleton set. The
significance of this is that only focus can increase the number of structures that
arise during shape analysis, whereas coerce cannot.

EXAMPLE 5.22. The application of coerce to the structures Ss,0,55,,1, and
Ss.0.2 is shown in the bottom block of Fig. 9. It yields S 0, S6,1, and Sg 2, respec-
tively.

—The structure Sg o is equal to Ss .0 because Ss o0 already satisfies all of the

constraints of Table XI.

—The structure Sg; was obtained from Sg,,1 by removing incompatibilities as
follows:

(1) Consider the assignment [v — u,v; — u1,v2 — u]. Because (is)(u) = 0,
uy # u, and ¢(n)(u1,u) = 1, constraint (58) implies that o(n)(u,u) must
equal 0. Thus, in Sg; the (indefinite) n edge from u to u has been removed.

(2) Consider the assignment [v; = u,v2 — u]. Because «(z)(u) = 1, con-
straint (50) implies that [v; = 02]5 ([vg = u,v2 — u]) = 1. By Defini-
tion 3.4, this means that ¢(sm)(u) must equal 0. Thus, in Ss,1 u is no longer
a summary node.

—The structure Sgo was obtained from Ss,2 by removing incompatibilities as
follows:

(1) Consider the assignment [v — u.1,vy — uy, vy — u.0]. Because ¢(is)(u.1) =
0, ug # u.0, and t(n)(ug,u.1) = 1, constraint (58) implies that +(n)(u.0,u.1)
must equal 0. Thus, in Ss2 the (indefinite) n edge from u.0 to u.1 has been
removed.

(2) Consider the assignment [v — u.1,vy — u1,vs — u.1]. Because ¢(is)(u.1) =
0, uy 5 u.1, and ¢(n)(uy,u.1) = 1, constraint (58) implies that +(n)(w.1,u.1)
must equal 0. Thus, in Sg 2 the (indefinite) n edge from u.1 to u.l has been
removed.

(3) Consider the assignment [v; — u.1,vz — u.1]. Because i(z)(u.1) = 1, con-
straint (50) implies that [v; = Ug]]gﬁ'z([vl + u.1,v3 — u.1]) = 1. By Defini-
tion 3.4, this means that ¢(sm)(u.1) must equal 0. Thus, in Ss2 u.1 is no
longer a summary node.

There are important differences between the structures S0, S6,1, and Se,2 that
result from the improved transformer for statement st4 : x = x->n, and the struc-
ture Sg that is the result of the simple version of the transformer (see the fourth
entry of Fig. 4). For instance, z points to a summary node in Sg, whereas in none
of Sg.0,56.1, and Sg2 does z point to a summary node.

44 . Mooly Sagiv et al.

5.2.3 The Coerce Algorithm. In this subsection, we describe an algorithm, called
Coerce, that implements the operation coerce. This algorithm actually finds a
maximal solution to a system of constraints of the form defined in Definition 5.10.
It is convenient to partition these constraints into the following types:

e(vy,v2,-.. ,0k) > b (62)
wlu,ve, .. ug) B> (v = vg)b (63)
(P(UJ.’?)Q:'” 7Uk) e]Jb('UlaU’wa aU/i:> (64)

where p # sm, b € {0,1}, and the superscript notation used is the same as in
Definition 5.15: ¢! = ¢ and ¢® = —~p. We say that constraints in the forms (62),
(63), and (64) are Type I, Type II, and Type IIT constraints, respectively.

The Coerce algorithm is shown in Fig. 11. The input is a 3-valued structure
S € 3-STRUCT[P] and a set of constraints 7(F). It initializes S’ to the input
structure S and then repeatedly refines S’ by lowering predicate values in S’ from
1/2 to a definite value, until either: (i) a constraint is irreparably violated, i.e., the
left-hand side and the right-hand side have different definite values, in which case
the algorithm fails and returns L, or (ii) no constraint is violated, in which case
the algorithm succeeds and returns S’. The main loop is a case switch on the type
of the constraint considered:

—A violation of a Type I constraint is irreparable since the right-hand side is a
literal.

—A violation of a Type II constraint when the right-hand side is a negated equality
cannot be fixed: When v; # vy does not evaluate to 1, we have Z(v1) = Z(v2);
therefore, it is impossible to lower predicate values to force the formula v; % vo
to evaluate to 1 for assignment Z.

—A violation of a Type II constraint having the right-hand side is an equality
that evaluates to 1/2. This can happen when there is an individual v that is a
summary node:

[vr = va]§ ([o1 = w09 — u]) = S (sm)(u) = 1/2.
In this case, +5 (sm)(u) is set to 0.

—A violation of a Type III constraint can be fixed when the right-hand-side value
is 1/2.

Coerce must terminate after at most n steps, where n is the number of definite
values in §’, which is bounded by sz'P |U|erity(P) | Correctness is established by
the following theorem:

THEOREM 5.23. For every S € 3-STRUCT|P), coerce(S) = Coerce(S).
Proof: See Appendix B.

6. INSTRUMENTATION PREDICATES

One of the attractive features of having a parametric framework for shape analysis
is the ability to define new shape-analysis algorithins easily by instantiating the
framework using different collections of instrumentation predicates.

In this section, we demonstrate this by defining some interesting instrumenta-
tion predicates and showing their significance for shape analysis. In Section 6.1,

Parametric Shape Analysis via 3-Valued Logic . 45

function Coerce(S: 3-STRUCT[P], 7{F): Constraint set)
returns 3-CSTRUCT{P,F(F)]u{l}
begin
S = §
while there exists a constraint ¢ = 1 > w2 € F(F) and an
assignment Z: freeVars(c) — U 5 such that 8, Z } ¢ do
switch p2
case w2 = b /* Type 1 */
return 1
case g = (v1 = v3)b /* Type II */
if b=1and Z(v1) = Z(vz) and 15 (sm)(Z(v1)) = 1/2 then
S sm)(Z(v1)) =0
else return 1
case @2 = pP(v1,... ,vg) /* Type IIl */
if 8 (p)(Z(v1),. . . Z(vy)) = 1/2 then
SN2, B) =0
else return L
end switch
od
return S’
end

Fig. 11. An iterative algorithm for solving 3-valued constraints.

we discuss instrumentation predicates that track reachability properties. In Sec-
tion 6.2, we define instrumentation predicates that track a special case of cyclicity
that occurs in doubly linked lists.

6.1 Instrumentation Predicates that Track Reachability Properties

This section discusses instrumentation predicates that track reachability properties.
The instrumentation predicates capture the following properties:

—Is a cell reachable from a specific variable of the program?
—Is a cell reachable from any of the variables of the program?

These are discussed in Sections 6.1.1 and 6.1.2, respectively.

6.1.1 Reachability From Individual Program Variables. Instrumentation pred-
icates that track information about reachability from the individual variables of
the program drastically improve the precision of shape analysis, because they keep
separate the abstract representations of data structures—and different parts of the
same data structure—that are disjoint in the concrete world [Sagiv et al. 1998,
p-38]. Therefore, shape-analysis algorithms can be created that, in many cases, de-
termine precise shape information for programs that manipulate several (possibly
cyclic) data structures simultaneously. The information obtained is more precise
than that obtained from previous work on shape analysis [Jones and Muchnick 1981;
1982; Larus and Hilfinger 1988; Horwitz et al. 1989; Chase et al. 1990; Hendren
1990; Hendren and Nicolau 1990; Landi and Ryder 1991; Stransky 1992; Deutsch
1992; Assmann and Weinhardt 1993; Plevyak et al. 1993; Deutsch 1994; Wang
1994; Sagiv et al. 1998].

46 : Mooly Sagiv et al.

The defining formulae for the predicates that track the property “reachable from
x via 0 or more applications of the field-selector n”, denoted by 75 »(v), were given
in Table IV as equation (5):

or, () = z(v) Vur : z(vy) Ant(vr,v), for each x € PVar.

In order to instantiate the shape-analysis framework with the 7, 5, predicates, in
addition to supplying the definition of ¢,, , (v}, it is necessary to supply predicate-
update formulae, @t (v) that maintain the correct instrumentation for rz..,. Note
that in a 3-valued structure S, ¢, , (v) is likely to evaluate to 0 or 1/2 for most
individuals. For [, ,]5([v — u]) to evaluate to 1, there would have to be a path
of n-edges that all have the value 1, from the individual pointed to by x to u.
However, the Instrumentation Principle comes into play: As we will see below, in
many cases, by maintaining information about cyclicity in addition to reachability,
information about the absence of a cycle can be used to update 74 », directly, without
reevaluating ¢r, , (v).

For programs that use the List data-type declaration from Fig. 1(a), predicate-
update formulae are listed in Table XII. The predicate-update formula in the
x->n=NULL case in Table XII, when z 2 z, is based on the observation that it is
unnecessary to reevaluate o, , (v) whenever v does not occur in a directed cycle or
is not reachable from x.5

To be able to identify such situations, we introduce an additional instrumentation
predicate, denoted by c,,(v), that records the cyclicity property of v. The defining
formula for ¢, (v) was given in Table IV as equation (7):

we, (V) = nt(v,v).

As noted in Section 3.1, the cyclicity predicate is useful by itself. It can be used to
determine if reference counting would be sufficient for storage management.

For programs that use the List data-type declaration from Fig. 1(a), predicate-
update formulae for 7, ,(v) and e,(v), are given in Table XII and Table XIII,
respectively. Some of these formulae update the value of r¢ »(v) in terms of the
value of ¢, (v), and vice versa.

Let us now consider the predicate-update formulae that appear in Table XII:

—The statement x = NULL resets 7 to O.
—The statement x = t sets 74, t0 Tin.

—The statement x = t->n sets 7,.,(v) to the value of r;,(v'), where v/ is an
n-predecessor of v.

—The statement x~>n = NULL not only resets the x-reachability property rs n, it
may also change 7., when the element directly pointed to by x is reached by
variable z. Furthermore, as illustrated in Fig. 12, in the presence of cycles it is
not always obvious how to determine the exact elements whose 7, , properties
change. Therefore, the predicate-update formula breaks into two subcases:

—a appears on a directed cycle and is reachable from the individual pointed to
by x. In this case, ¢r_, (v) is reevaluated (in the structure after the destructive
update). For 3-valued structures, this may lead to a loss of precision.

6 An alternative method for maintaining reachability properties is discussed in Section 7.4.

Parametric Shape Analysis via 3-Valued Logic . 47

st I Condition ‘ s (v)
x = NULL z=x 0
rZT rzn (V)
x =t = 7e,m (V)
zET 7z (V)
X = t->n z=x T’ (V) ARy, v)
z#Ez 72,n(V)
x->n = NULL TEQR z(v)
o =t ' wT':,u [TL - (10;‘] if Cﬂ(v) A TZU,T'»(U)
FEE { T2 (V) AGV ron (V) Az(v') Are a(v) A —z(v)) otherwise
x->n = t Ten(W) V(30 1z 0 (V) Az() Area(v))
(assuming x->n == NULL)
x = malloc() = new(v)
zZz 720 {v) A “new(v)

Table XII. The predicate-update formulae for the instrumentation predicate 7:.n, for programs
that use the List data~type declaration from Fig. 1(a). To simplify the presentation, we break
the assignment x->n=t into two statements: x->n=NULL, and x->n=t (assuming that x~>n==NULL).

—uv does not appear on a directed cycle or is not reachable from the individual
pointed to by x. In this case, v fails to be reachable from z only if the edge
being removed is used on the path from z to v.

—After the statement x = malloc(), the only element reachable from x is the
newly allocated element.

Let us now examine the predicate-update formulae that appear in Table XIII:

—The statements x = NULL, x = t, and x = t->n, do not change the store (n-
predicates) and thus have no affect on cyclicity.

—If v/, the node pointed to by x, appears on a cycle, then the statement x~>n =
NULL breaks the cycle involving all the nodes reachable from x. (The latter cycle
is unique, if it exists). If the node pointed to by x does not appear on a cycle,
this statement has no affect on cyclicity.

—1If t reaches the node pointed to by x, then the statement x->n = t creates a
cycle involving all the nodes reachable from t. In other cases, no new cycles are
created.

—The statement x = malloc() sets the cyclicity property of the newly allocated
element to 0.

EXAMPLE 6.1. The program shown in Fig. 13 demonstrates the advantage of
using reachability predicates for analyzing linked lists.

Fig. 14 shows the structures that occur during the abstract interpretation of
search with one instrumentation predicate is(v). Fig. 15 shows the details of
the application of the abstract transformer in the second iteration. Consider the
structure S o that occurs in the first iteration: When y is advanced down the list by
Y = y=>1, focus 3y, (v)an(v, w)} Creates the structure Ss.2, 1,2 in which .0 has been

bifurcated into 1.0.1 and u.0.0 (where [Jvy : y(v1) A n(vl,v)}]:fs 212y u0.1)) =
1 and [Jvq : y(vi) A n(vl,v)]];?s 292 (v - 1.0.0]) = 0). The statement transformer

48 . Mooly Sagiv et al.

[st [ee (v)

x = NULL en (V)

X =t cn (V)

x = t->n cn(v)

x->n = NULL en(W) A -(ZV z(V) Aen (V') ATz, n (V)
x->n = t en{v) VIV i 2(v) At (V) Aren(v)
(assuming x->n == NULL)

x = malloc() cn(v) A —mnew(v)

Table XIII. The predicate-update formulae for the instrumentation predicate c,, for programs
that use the List data-type declaration from Fig. 1(a). To simplify the presentation, we break
the assignment x->n=t into two statements: x~>n=NULL, and x->n=t (assuming that x->n==NULL).

Z X

Fig. 12. For the statement z=>n=NULL, the graph shown above illustrates the chief
obstacle for updating reachability information: After the execution of x~>n=NULL,
the elements u4 and ug are no longer reachable from z, whereas uq (and ug) are
still reachable from z. Note that beforehand the value of r, is the same for us,
w4, and us. For such a structure, Table XII reevaluates ¢, , (v).

[y=y->n] and coerce are then applied, which creates the structure Sy 2. When
850,02 is converted into a bounded structure, elements u.1 and ©.0.0 are merged
into a single element since they have the same values for the unary predicates (i.e.,
is = 0,z = 0,y = 0). Therefore, in S5 2 2, this element appears as the single element
u. This structure is too conservative: it indicates, for example, that y may point
to a cyclic structure (which cannot occur in the analyzed program).

In contrast, Fig. 16 shows the structures that occur during the abstract interpre-
tation of search with the instrumentation predicates is(v), 7z, (v), and 7y, (v).
This version of the analysis does not produce false cycles; that is, the structures
that arise represent only acyclic structures.

6.1.2 Reachability From Program Variables. This section discusses the use of
a single instrumentation predicate that tracks information about whether a cell is
reachable from any of the program’s variables. The definition of this instrumenta-
tion predicate, denoted by r(v), was given in Table IV as equation (6):

or(v) & \/ (z(v) V Juy : z(v1) Ant (v, v)).
xEPVar

It tracks the property “Is v reachable from some pointer variable?”, or alternatively,
“Is v a non-garbage element?”

The effect of instrumentation predicate r on shape descriptions is that garbage
cells are represented by different individuals from non-garbage cells: Definite values
of reachability predicate r distinguish non-garbage cells from garbage cells. (With-

Parametric Shape Analysis via 3-Valued Logic . 49

/* search.c */
#include
List search(int d, List x) {
List y;

“‘list.h’’

assert(acyclic.list(x));

y =X

while (y != NULL &% y->data != d) {

y = y->n;

}

return y;

Fig. 13. A program that searches for an element with a data value d in an acyclic singly linked
list whose head is pointed to by x.

iter. new structures
S3 Sy Sy
mn
0 N
Y —{ U XY —>{ Uz L
Sig Ss.0 Ss.1 y Ss.0 y
n n
X —{ U1 x»@ u x»@—’; x—{u1) S(u1) > w0
Ss.1.0 S5.2.0 Ss.2.1 y
n
2 . N
x () ()| x () (w1) w0 | x—(u 2 (1) % (w0
Sp a0 U = [uwl,u 0 0] y
T
N
n n
X —> > U - >
() Lo

Fig. 14. The structures that occur during the abstract interpretation of search
with one instrumentation predicate is(v) (See Fig. 15 for a detailed explanation of
the application of the abstract transformer to Ss.9.)

50 Mooly Sagiv et al.
input
struct. S50 y
n
N
(w1 2 (u.1) > 6.0
focus
formul. {gStv) = a;(v),gozt(v) = vy : y(v1) An(vy,v)}
focus. ,
struct. 55.2,1,0 y Ss.2.4,1 y
n n
N N
x —(U1)— (2.1 .0 x —{ U1) (u.1) % .0
S5.2,1, y
T
T n
N o
x —>(Uy) 2 w01 % 100
update | 22 (0) [y (0) Pi(0) [(0) [(01, 02)
formul. x(v) 1Fv; :y(vy) Anlvg,v)|is(v) |sm(v) |n{vi,va)
output
struct. S5 2,0,0 852,01 y
g !
{ .
X ——{ U1 __n_)@ u.0 X—%@—g@-& .0
: N
"
55.2,0,2 y y
! !
X—%@——%@ 2 401 > w00
. [KON AT N
L o
coerced X
struct. S5.2.c0 S5 2.1 y
n
\l N
X —>{ U1 -—%@ u.0 X > U1 _g@_n} 1.0
S5.2.c2
—@=@2 () 6 - wos
canon.
struct. 55.2.0 S5.21
n
\l N
X —>{ Uz L@ u.0 X —>{ U1 ——%@ u.0
S5_2A2 U = ['LL 1 1.0, 0
n
\l N
n n
K | . > U R
=) g
e

Fig. 15. Detailed explanation of the application of the abstract transformer for the
statement y =

y->n in search applied to Ss.2 shown in Fig. 14.

Parametric Shape Analysis via 3-Valued Logic . 51

iter. new structures
Sy Tz Tymn | Ss Tz Tyn Tz Ty,n
0 o
XYy — X, Y e U > U
S
‘-
Sio Tzon | Sp1 Tem YsTzm Tyn z,n Y:TznTyn Tz.n,Tyn
1 n n J/
X > X e Em—— X o —————>u]_ e 0.0
. N
oy

I
%
@<_
I
Ci}ﬁ.,

a%
@e_

S5 0.0 Tz,n Tz,n YsTens Ty, Tz,nTym
n n
X — —> —z (1.0.1 > 4.0.0
N
p
Ss501.0 Tzmn Tz.n Sso0921 Tz Tz,n YsTzms Tym

. - 4.1,0 [— - .1,01 "> @

N N
o A £ 2
Te,n 7'5 n YTz Tyn Tz,n:Tyn
n n
X e —>ul 0.1 > § > 14.0.0.0

N

e

Fig. 16. The structures that occur during the abstract interpretation of search
with the instrumentation predicates i8(v), Tz n(v), and 7y (v).

52 . Mooly Sagiv et al.

/* dlist.h */

typedef struct node {
struct node *f, *b;
int data;

} *#List;

Fig. 17. Declaration of a doubly linked-list data type in C.

out r, this distinction is not maintained. For instance, in an instantiation of the
shape-analysis framnework that does not use instrumentation predicate », the struc-
ture S, shown in Fig. 2 represents a store containing a list of length two or more, or
a list of length one together with one or more garbage cells.) Information obtained
from a shape-analysis algorithm that uses r could be used by an optimizing compiler
to insert instructions in a program to perform compile-time garbage collection.

Because y, (v) is just the disjunction of all of the ¢, , formulae, for each program
statement st, the predicate-update formula for r can be defined as the disjunction
of the predicate-update formulae for the cpij‘n predicates:

pit) =\ et () (65)

xEPVar
6.2 Instrumentation Predicates for Doubly Linked Lists

We now briefly sketch the treatment of doubly linked lists. A C declaration of a
doubly linked list is given in Fig. 17.

The defining formulae for the predicates ¢, and cp g, which track when for-
ward and backward dereferences “cancel” each other, were given in Table IV as
equations (8) and (9):

Pe, () = Vour 1 fv,v1) = blug,v)
©ey, (V) = Yop :b(v,v1) = f(vr,v)

The predicate-update formulae for cs; are given in Table XIV. (The predicate-
update formulae for ¢, f are not shown because they are dual to those for cy.)

In addition to ¢y and cp 5, we use two different reachability predicates for every
variable z: (i) 75, ¢(v), which holds for elements v that are reachable from z via 0 or
more applications of the field-selector £, and (ii) 7, 4(v), which holds for elements v
that are reachable from z via 0 or more applications of the field-selector b. Similarly,
we use two cyclicity predicates ¢y and ¢p. The predicate-update formulae for these
four predicates are essentially the ones given in Table XII and Table XIII (with n
replaced by f and b). (One way in which Table XII should be adjusted is in the
case of updating the reachability predicate with respect to one field, say b, when
the f-field is traversed, i.e., via x = t->£. In this case, the predicates cs and ¢y ¢
can be used to avoid an over-conservative solution [Lev-Ami 2000]).

We have already demonstrated how the shape-analysis algorithm works as a
pointer is advanced along a singly linked-list, as in the body of search (see Fig. 16).
The shape-analysis algorithm works in a similar fashion when a pointer is advanced

Parametric Shape Analysis via 3-Valued Logic . 53

st |e2t () |
x = NULL cr.p(v)
x =t cr.p(v)
x ot 2 o(0)
x~>f = NULL cr.p(v) V z(v)
x->b = NULL cr.p(v) A =Ty z(vr) A b(v1,v)
4>t = t { Yoy @ t{vy) = blvy,v) if z(v) ‘
cr p(v) otherwise
(assuming x->f == NULL)
x->b = t cpp(v) V (t(v) A vyt flv,v1) Ax(vr)
(assuming x->b == NULL)
x = malloc() cy.p(v) V new(w)

Table XIV. The predicate-update formulae for the instrumentation predicate ¢y p.

along a doubly linked-list. Therefore, in this section, we consider the operation
splice, shown in Fig. 18, that splices an element with a data value d into a doubly
linked list after an element pointed to by p. (We will assume that this operation
oceurs after a search down the list has been carried out, and that the variable that
points to the head of the list is named 1.)

Fig. 19 illustrates the abstract interpretation of splice under the following con-
ditions: p points to some element in the list beyond the second element, and the
tail of p is not NULL. (This is the most interesting case since it exhibits all of
the possible indefinite edges arising in a call on splice.) Preceding row by row in
Fig. 19, we observe the following changes:

—1In the initial structure, the values of cgp and cp ¢ are 1 for all elements, since in
all of the list elements forward and backward dereferences cancel.

—Immediately after a new heap-cell is allocated and its address assigned to e, css
and ¢ 5 are both trivially true for the new element since this element’s £ and b
components do not point to any element. Note that in the last row of Table X1V,
the value of ¢y for a newly allocated element’s is set to 1.

—The assignment to the data field of e does not change the structure. The assign-

ment t = p->f materializes a new element whose cy.p and ¢p 5 predicate values
are 1:
In the second structure shown in Fig. 19, the values of ¢y and cp. ¢ are both 1
for the summary element pointed to by p->f. In going from the second structure
to the third structure, these predicate values are not changed by the predicate-
update formula in the x = t->f row of Table XIV.

—The assignment e->f = t, is performed in two stages: (i) e->f = NULL and then
(ii) e->f = t assuming that e->f == NULL. The first stage has no effect since
the value of ¢y is 1 for the element pointed to by e. But then e->f = t changes
the value of ¢f to O for the element pointed to by e, and changes the values of
e, and rep to 1 for the elements transitively pointed to by t.

The fourth structure shown in Fig. 19 is produced by the x->f = t row of Ta-
ble XIV, for x = e, since Yoy : t(v1) = b(v1,v) evaluates to O for the element v
pointed to by e. Also, by the x->n = t row of Table XII, for x = e and n = [,

54 . Mooly Sagiv et al.

/* splice.c */
#include ‘dlist.h’’
void splice(int v, DList p) {
DList e, t;
e = (DList)malloc(sizeof (struct DListNode));
e->data = v,
t = p~>f;
e->f = t;
if (¢ != NULL)
t=->b = e;
p—>f = e;
e->b = p;

Fig. 18. A program that splices an element with a data value d into a doubly linked list after an
element pointed to by p. We will assume that the variable that points to the head of the doubly
linked list is named 1.

the elements reachable in the forward direction from t acquire the value 1 for
Te,f-

—The assignment t->b = e, is performed in two stages: (i) t~->b = NULL and then
(ii) t->b = NULL, assuming that t->b == NULL.

The assignment t->b = NULL changes the value of cfp to O for the element
pointed to by p. The fifth structure shown in Fig. 19 is produced by the x—>b =
NULL row of Table XIV, for x = t and t = e, since =Jv; : t(v1) Ab(v1,v) evaluates
to 0 for the element pointed to by p. In the second stage, the assignment t—>b =
e changes the value of ¢y to 1 for the element pointed to by e: By the x->b =
t row of Table XIV, for x = t and t = e, the formula e(v) AJv; : f(v,v1) A t(vy)
evaluates to 1 for the element pointed to by e.

Also, by the x->n = NULL row of Table XII, for x = t and n = b, the elements
reachable in the backward direction from t are no longer reachable from t. Fi-
nally, by the x->n = t row of Table XII, for x = t,t = e, and n = b, the nodes
reachable in the backward direction from e are now reachable from t.

—The assignment p->f = e involves an implicit assignment p->f=NULL. This causes
the elements reachable from p->f to no longer be reachable from p and 1. How-
ever, the assignment p->f = e restores the reachabillity properties r, ; and 7 ¢
to all the elements reachable from e along the forward direction.

—The assignment e->b = p restores the reachability properties rep and 7yp to all
clements reachable from p along the ha<sward direction and ¢y for the element
pointed to by p.

> gELATED WORK

This paper presents results from an effort to clarify and extend our previous work
on shape analysis [Sagiv et al. 1998]. Compared with [Sagiv et al. 1998], the major
differences are

—A single specific shape-analysis »2g0rithm was presented in [Sagiv et al. 1998].

Parametric Shape Analysis via 3-Valued Logic . 55

Tp,bs Cf by Ch.f TLETpby Cfby Co.f Py Cflbs Cb»f Ty Tp, fr CE.byCbf

b bt

1 b 4

Iy i
e = (DList)malloc(sizeof (struct DListNode));
T']J‘bvcf‘lhcbuf rl,f””p,b’cfvbv Cbxf pv'l‘l,fvcf”bicb.f 'rl,f17~7),f}cfub)cb»f

—& o b

y

.
€,Crb,Ch. f ———>O

A Y

e->data = v; t = p—>f;

Tp,br CFfbsCofs T80 TLfTpbs CRb:CofsTeb PoTLFCErbChfaTtb T Tp fCrbsChf TLTp, faTt,f1Cf.by Cbf

| . j* o s . I ,j’
N b 17 b ' b h b 1
’

1

b
€,Cf b, Ch.f -——————~————a—©

e->f = t;

Tpbs CEbCh.fsTtb TLETpbs CFbCofs Tt PoTLACRLCofsTtbs B TL T 75 CrbyCh gy Tef TLATp,frTt,frCLbICb.fsTe,f

A b 17 b R b b
1

o r .
€,Te,Ch.f

N

if (¢ t= NULL) t->b = e;

Tpbi CEBCb.fy TLEA TP CRLCf PyTLCofsTtb B TL 1 Tp £2Crba Co.faTe,f TLE TP frCEbsChfsTtns Te,f

N L S b
1

T
b 4
€, Ch.fyCf.by Tt,b ——eremen
p->f = e;
TpbyCEbrCh.f TLfsTpby Cfbe Cbof PyTl,f1Chb f L To frCrbrCo.frTen TLEsTpfrTt,frCrbyCh.fsTe,f
. o - . . >
e b ,/ ~ b b 4
) b ' :"b :
1 €,Ch f1Cfby Tt by Tpyfome o

e->b = p;)
TpbsCfbyChfsTebs Ttb TLFTpbi CFbs CbfrTebsTeb PaTLf1ChfrCfbrTeb Ttb

g Tn.f, Cf;b) Cb‘fv Tt,b Tl,f’ Tpr’ Tt,f’ ¢

f > ¥ f !

b b

©3Ch.f2 CFby T frTL THD

Fig. 19. The abstract interpretation of the splice srocedure apvlied to & doubly
linked list whose head is pointed to 1. Variable p polixs to some element In }l;u,
list beyond the second element, and the tail of p it? as:sumed £0 .be non-NULL. For
brevity, 7z s (v) and 7, (v) are not shown when v is directly pointed to by z.

56 . Mooly Sagiv et al.

The present paper presents a parametric framework for shape analysis: It pro-
vides the basis for generating different shape-analysis algorithms by varying the
instrumentation predicates used.

—This paper uses different instantiations of the parametric framework to show how
shape analysis can be performed for a variety of different kinds of linked data
structures.

—The shape-analysis algorithm in [Sagiv et al. 1998] was cast as an abstract in-
terpretation, in which the abstract transfer functions transformed shape graphs
to shape graphs. The present paper is based on logic, and “shape graphs” aré
replaced by “3-valued logical structures”. The use of logic has many advantages.
The most important of these is that it relieves the designer of a particular shape
analysis from many of the burdensome tasks that the methodology of abstract
interpretation ordinarily imposes. In particular, (i) the abstract semantics falls
out automatically from the concrete semantics, and (ii) there is no need for a
proof that a particular instantiation of the shape-analysis framework is correct—
the soundness of all instantiations of the framework follows from a single meta-
theorem, the Embedding Theorem, which shows that information extracted from
a 3-valued structure is sound with respect to information extracted from a cor-
responding 2-valued structure.

A substantial amount of material covering previous work on pointer analysis, alias
analysis, and shape analysis is presented in [Sagiv et al. 1998]. In the remainder of
this section, we confine ourselves to the work most relevant to the present paper.

7.1 Previous Work on Shape Ansalysis

The following previous shape-analysis algorithms, which all make use of some kind
of shape-graph formalism, can be viewed as instances of the framework presented
in this paper:

—The algorithms of [Wang 1994; Sagiv et al. 1998} map unbounded-size stores
into bounded-size abstractions by collapsing concrete cells that are not directly
pointed to by program variables into one abstract cell, whereas concrete cells that
are pointed to by different sets of variables are kept apart in different abstract
cells. As discussed in Section 4.4, these algorithms are captured in the framework
by using abstraction predicates of the form pointed-to-by-variable-x (for all z €
PVar).

-~The algorithm of [Jones and Muchnick 1981}, which collapses individuals that are
not reachable from a pointer variable in k or fewer steps, for some fixed k, can
be captured in our framework by using instrumentation predicates of the form
“reachable-from-x-via-access-path-o”, for |af < k.

—The algorithms of [Jones and Muchnick 1982; Chase et al. 1990} can be captured
in the framework by introducing unary core predicates that record the allocation
sites of heap cells.

—The algorithm of [Plevyak et al. 1993] can be captured in the framework using
the predicates csp(v) and cp.5(v) (see Table III and Table IV).

Throughout this paper, we have focused on precision and ignored efficiency. The
above-cited algorithms are more efficient than instantiations of the framework pre-

Parametric Shape Analysis via 3-Valued Logic . 57

sented in this paper; however, Section 1.2 discusses reasons why it should be possible
to incorporate well-known techniques for improving efficiency into our approach. In
addition, the techniques presented in this paper may also provide a new basis for
improving the efficiency of shape-analysis algorithms. In particular, the machinery
we have introduced provides a way both to collapse individuals of 3-valued struc-
tures, via embedding, as well as to materialize them when necessary, via focus.

Roughly speaking, the chief alternative to the use of shape graphs involves rep-
resenting may-aliases between pointer-access paths [Hendren and Nicolau 1990;
Landi and Ryder 1991; Deutsch 1992; 1994; Sagiv et al. 1998]. Compared with
shape graphs, these methods have certain drawbacks. In particular, shape graphs
represent the topological properties of the store directly, which allows certain oper-
ations, such as destructive updates, to be tracked more precisely. In addition, shape
graphs are a more intuitive mechanism for reporting information back to a human,
and thus may be more useful in program-understanding tools. On the other hand,
representations of may-aliases can be more compact than shape graphs, and some
may-alias algorithms are capable of representing information that goes beyond the
capabilities of bounded structures [Deutsch 1992; 1994].

7.2 The Use of Logic for Pointer Analysis

Jensen et al. defined a decidable logic for describing properties of linked data struc-
tures, and showed how it could be used to verify properties of programs written
in a subset of Pascal [Jensen et al. 1997]. Because of the methods on which their
decision procedure is based, the logic is limited to the case of linked lists in which
no sharing of common tails occurs. (Known theoretical results imply that the work
can be extended to handle programs that manipulate unshared trees.) The method
that has been described in the present paper can handle some programs that manip-
ulate shared structures (as well as some circular structures, such as doubly linked
lists).

Benedikt et al. defined a decidable logic, called L, for describing properties of
linked data structures [Benedikt et al. 1999]. They showed how a generalization of
Hendren’s path-matrix descriptors [Hendren 1990; Hendren and Nicolau 1990] can
be represented by L. formulae, as well as how the variant of static shape graphs
defined by Sagiv et al. [Sagiv et al. 1998] can be represented by L. formulae. This
correspondence provides insight into the expressive power of path matrices and
static shape graphs. It also has interesting consequences for extracting information
from the results of program analyses, in that it provides a way to amplify the results
obtained from known analyses:

—By translating the structure descriptors obtained from the techniques given in
[Hendren 1990; Hendren and Nicolau 1990; Sagiv et al. 1998] to L, formulae, it is
possible to determine if there is any store at all that corresponds to a given struc-
ture descriptor. This makes it possible to determine whether a given structure
descriptor contains any useful information.

—Decidability provides a mechanism for reading out information obtained by exist-
ing shape-analysis algorithms, without any additional loss of precision over that
inherent in the shape-analysis algorithm itself.

The 3-valued structures used in this paper are more general than L,; that is, not all

58 . Mooly Sagiv et al

properties that we are able to capture using 3-valued structures can be expressed
in I,. Thus, it is not clear to us whether L, (or a decidable extension of L,) can
be used to amplify the results obtained via the techniques described in the present
paper.

Other formalisms for describing linked data structures include ADDS [Hendren
et al. 1992] and graph granunars [Fradet and Metayer 1997]. Like L., these for-
malisms are annotation languages for expressing loop invariants and pre- and post-
conditions of statements and procedures. It should be noted that L,, ADDS, and
the graph grammars of Fradet and Le Métayer are, in their present stage of de-
velopment, mainly useful as a documentation notation for type definitions, func-
tion arguments, and function return values. In contrast, a decision precedure for
Hoare triples over loop-free code (without arithmetic) is known for the store logic
of [Jensen et al. 1997]. Consequently, the work of [Jensen et al. 1997] can be used
for verifying programs that contain loops when each loop is annotated with a loop
invariant. The instantiations of our parametric shape-analysis framework address
yet another problem—that of inferring shape annotations from a program auto-
matically. In the latter problem, the analysis algorithm is provided with (at most)
a description of a procedure’s inputs.

Morris studied the use of a reachability predicate “z — v | K” for establishing
properties of programs that manipulate linked lists and trees [Morris 1982]. The
predicate z — v | K means “v is a node reachable from variable z via a path
that avoids nodes pointed to by variables in set K”. Morris discussed techniques
that, given a statement and a post-condition, generate a formula that captures
the weakest-precondition. It is not clear to us how this relates to our predicate-
update formulae, which update the values of predicates after the execution of a
pointer-manipulation statement.

7.3 The Embedding Theorem

Despite the naturalness and simplicity of the Embedding Theorem, this theorem ap-
pears not to have been known previously [Kunen 1998; Lifschitz 1998]. The closest
concept that we have found in the literature is the notion of embedding discussed
by Bell and Machover [Bell and Machover 1977, page 165]. For them, an embedding
of one 2-valued structure into another is a one-to-one, truth-preserving mapping.
However, this notion is unsuitable for abstract interpretation of programs that ma-
nipulate heap-allocated storage, because in abstract interpretation it is necessary to
have a way to associate the structures that arise in the concrete semantics, which
are of arbitrary size, with abstract structures of some fized size. To accomplish
this, we have introduced “truth-blurring” onto mappings (e.g., tight embeddings).
The Embedding Theorem ensures that the meaning of a formula in the “blurred”
(abstract) world is consistent with the formula’s meaning in the original (concrete)
world.

7.4 Relationship to First-Order Incremental Evaluation Systems

The issue of devising predicate-update formulae for instrumentation predicates, dis-
cussed in Sections 4, 5, and 6, is related to previous work on “first-order incremental
evaluation schemes” (FOIES) [Dong and Su 1995; 1998] and on “dynamic descrip-
tive complexity” [Patnaik and Immerman 1997; Immerman 1999]. These papers

Parametric Shape Analysis via 3-Valued Logic . 59

address the problem of maintaining one or more “auxiliary” predicates after new
tuples are inserted into or deleted from the base predicates of a logical structure.
For a variety of different problems, they present appropriate predicate-update for-
mulae. In our work, the evaluation of a given statement st in the program adds
tuples to, or deletes tuples from, the core predicates (in each of the first-order struc-
tures that arise just before st). The predicate-update formulae serve to generate
the updated values of the instrumentation predicates.

Section 6.1 discusses predicate-update formulae that maintain reachability and
cyclicity instrumentation predicates. In the case of shape analysis of programs that
manipulate data structures of type List, the predicate-update problem is closely
related to the work by Dong and Su on maintaining reachability properties in “1-
path graphs”——graphs in which two nodes s and ¢ are connected by at most one
path [Dong and Su 1995; 1998]. In the case of List-manipulation programs, because
each individual can have at most one outgoing n-edge, all 2-valued structures of
the concrete semantics are necessarily 1-path graphs.”

We were unable to adopt the Dong-Su solution to the reachability-maintenance
problem for 1-path graphs given in [Dong and Su 1995]. It involves the use of
an additional auxiliary predicate, DEP(z, o, 8,%), which records, for each pair of
individuals z and y, whether z reaches y along an acyclic path that uses edge (a, §)-
Unfortunately, when a tight embedding is performed on a structure augmented with
the DEP predicate, much of the DEP information goes to 1/2 (e.g., when one or
more of z, a, 3, and y are summary nodes). Because the DEP predicate is updated
in terms of the DEP predicate [Dong and Su 1995], many tuples stored in DEP (as
well as the reachability information derived from DEP) rapidly acquire the value
1/2.

In contrast, the instrumentation predicates adopted in Section 6.1 track reacha-
bility information with respect to individuals that are pointed to by program vari-
ables: Because the core predicates include the pointed-to-by-variable-x predicates
for all z € PVar, such individuals are never abstracted to summary nodes, and
consequently accurate reachability information can be maintained in the 3-valued
structures of the abstract semantics. There is one case in which we throw up our
hands and re-evaluate reachability directly; however, this only involves nodes that
are part of (or were once part of) a cycle.

8. CONCLUSIONS

We conclude with a few general observations about the material that has been
developed in the paper.

8.1 The Advantages of Using Logic

With the methodology of abstract interpretation, it is not always an easy task
to obtain an appropriate abstract semantics; abstract-interpretation papers often
contain exhaustive (and exhausting) proofs to show the soundness of a given ab-
stract semantics with respect to a given concrete semantics. With the approach

“For programs that manipulate List structures, the 2-valued structures of the concrete semantics
also fall into the smaller class of “deterministic graphs” mentioned by Patnaik and Immerman [Pat-
naik and Immerman 1997; Immerman 1999].

60 . Mooly Sagiv et al

taken in this paper, however, this is not the case: The abstract semantics falls
out automatically from the concrete semantics; soundness follows from a single
meta-theorem (the Embedding Theorem), which shows that information extracted
from a 3-valued structure is sound with respect to information extracted from a
corresponding 2-valued structure.

Because it is not generally true of abstract interpretation that the abstract se-
mantics falls out automatically from the concrete semantics, it is worthwhile to
reiterate the principle on which our work is based:

OBSERVATION 8.1. [Reinterpretation Principle]. The advantage of using
Kleene’s 3-valued logic is that it allows us to make a statement about both the
concrete and abstract worlds via the same formula—the same syntactic erpression
can be interpreted either as a statement about the 2-valued world or the 3-valued
world. The consistency of these two views is ensured by the Embedding Theorem.

3-valued logic also provides a way to tune the amount of space used by a shape-
analysis algorithm: If too many different structures arise at a given program point,
one can always reduce the number of structures by promoting definite values of
tuples to 1/2, applying t-embed, and retaining only maximal structures, until the
number of structures falls to the desired number.

8.2 Propagation of Formulae Versus Propagation of Structures

It is interesting to compare the machinery developed in this paper with the ap-
proach taken in methodologies for program development based on weakest pre-
conditions [Dijkstra 1976; Gries 1981], and also in systems for automatic program
verification [King 1969; Deutsch 1973; Constable et al. 1982], where assertions (for-
mulae) are pushed backwards through statements. The justification for propagating
information in the backwards direction is that it avoids the existential quantifiers
that arise when assertions are pushed in the forwards direction to generate strongest
postconditions. Ordinarily, strongest postconditions present difficulties because
quantifiers accumulate, forcing one to work with larger and larger formulae.

In the shape-analysis framework developed in this paper, an abstract shape trans-
former can be viewed as computing a safe approximation to a statement’s strongest
post-condition: The application of an abstract statement transformer to a 3-valued
logical structure describing a set of stores S that arise before a given statement st
creates a set of 3-valued logical structures that covers all of the stores that could
arise from applying st to members of S. However, the shape-analysis framework
works at the semantic level—that is, it operates directly on explicit representations
of logical structures, rather than on an implicit representation, such as a logical
formula.® It is true that new abstract heap-cells are materialized when necessary
via the Focus operation; however, because the fixed-point-finding algorithm keeps
performing abstraction (via t_embed), 3-valued logical structures cannot grow to
be of unbounded size.

8However, see [Benedikt et al. 1999] for a discussion of how shape graphs can be converted to
logical formulae

Parametric Shape Analysis via 3-Valued Logic . 61

8.3 Biased Versus Unbiased Static Program Analysis

Many of the classical dataflow-analysis algorithms use bit vectors to represent the
characteristic functions of set-valued dataflow values. This corresponds to a logical
interpretation (in the abstract semantics) that uses two values. It is definite on
one of the bit values and conservative on the other. That is, either “false” means
“false” and “true”’ means “may be true/may be false, or “true” means “true” and
“false” means “may be true/may be false”. Many other static-analysis algorithms
have a similar character.

Conventional wisdom holds that static analysis must inherently have such a one-
sided bias. However, the material developed in this paper shows that while indef-
initeness is inherent (i.e., a static analysis is unable, in general, to give a definite
answer), one-sidedness is not: By basing the abstract semantics on 3-valued logic,
definite truth and definite falseness can both be tracked, with the third value, 1/2,
capturing indefiniteness.

This outlook provides some insight into the true nature of the values that arise
in other work on static analysis:

— A one-sided analysis that is precise with respect to “false” and conservative with
respect to “true” is really a 3-valued analysis over 0, 1, and 1 /2 that conflates 1
and 1/2 (and uses “true” in place of 1/2).

— Likewise, an analysis that is precise with respect to “true” and conservative with
respect to “false” is really a 3-valued analysis over 0, 1, and 1 /2 that conflates 0
and 1/2 (and uses “false” in place of 1/2).

In contrast, the analyses developed in this paper are unbiased: They are precise
with respect to both 0 and 1, and use 1/2 to capture indefiniteness.

Acknowledgements

We are grateful to T. Lev-Ami for his implementation and his suggested improvements
to the precision of the algorithms presented in this paper. We are also grateful for the
helpful comments of A. Avron, T. Ball, M. Benedikt, N. Dor, M. Fahndrich, M. Gitik,
K. Kunen, V. Lifschitz, F. Nielson, H.R. Nielson, M. O’Donnell, A. Rabinovich, and K.
Sieber. We thank K.H. Rose for the XY LaTeX package.

REFERENCES

AssMANN, U. AND WEINHARDT. M. 1993. Interprocedural heap analysis for parallelizing im-
perative programs. In Programming Models For Massively Parallel Computers, W. K. Giloi,
S. Jihnichen, and B. D Shriver, Eds IEEE Press, Washington, DC, 74~-82.

BELL. J. AND MACHOVER, M. 1977. A Course in Mathematical Logic. North-Holland Publishing
Co.

BENEDIKT. M., REPS, T., AND SAGIV, M. 1999. A decidable logic for describing linked data
structures. In Proceedings of the 1999 European Symposium On Programming. 2-19.

CHASE. D., WEGMAN, M., AND ZADECK. F. 1990. Analysis of pointers and structures. In SIGPLAN
Conf. on Prog. Lang. Design and Impl ACM Press, New York, NY, 296-310.

CONSTABLE. R., JOHNSON, S, AND EICHENLAUB, C. 1982. Introduction to the PL/CV2 Program-
ming Logic. Lec. Notes in Comp. Sci., vol. 135. Springer-Verlag.

CousoT. P. AND CousorT. R. 1979. Systematic design of program analysis frameworks. In Symp.
on Princ. of Prog. Lang. ACM Press, New York, NY, 260-282.

DEUTSCH. A. 1992. A storeless model for aliasing and its abstractions using finite representations of
right-regular equivalence relations. In IEEE International Conference on Computer Languages.
IEEE Press, Washington, DC, 2-13

62 : Mooly Sagiv et al.

DEUTSCH, A. 1994, Interprocedural may-alias analysis for pointers: Beyond k-limiting. In SIG-
PLAN Conf. on Prog. Lang. Design and Impl. ACM Press, New York, NY, 230-241.

DruTscH, L. 1973. An interactive program verifier. Ph.D. thesis, Univ. of California, Berkeley,
CA.

DuKSTRA, E. 1976. A Discipline of Programming. Prentice-Hall

Dong., G. AND Su. J. 1995 Incremental and decremental evaluation of transitive closure by
first-order queries. Inf. & Comput. 120, 101-106.

DonG. G. AND Su. J. 1998. Arity bounds in first-order incremental evaluation and definition of
polynomial time database queries. Journal of Computer and Sysiem Sciences 57, 3 (Dec.),
289-308.

Evans. D. 1996. Static detection of dynamic memory errors. In SIGPLAN Conf. on Prog.
Lang. Design and Impl. Available at “http://larch-www lcs.mit.edu:8001/~ evs/pldi96-
abstract.html”.

FRADET, P. AND METAYER. D. L. 1997. Shape types. In Symp. on Princ. of Prog. Lang. ACM
Press, New York, NY.

GINSBERG, M. 1988. Multivalued logics: A uniform approach to inference in artificial intelligence.
Comp. Intell. 4, 265-316

GRIES. D. 1981. The Science of Programming. Springer-Verlag.

HENDREN, L. 1990. Parallelizing programs with recursive data structures. Ph.D. thesis, Cornell
Univ., Ithaca, NY

HENDREN. L., HUMMEL. J , AND NICOLAU, A. 1992. Abstractions for recursive pointer data struc-
tures: Improving the analysis and the transformation of imperative programs. In SIGPLAN
Conf. on Prog. Lang. Design und Impl. ACM Press, New York, NY, 249-260

HENDREN, L. AND NIcoLAU, A. 1990, Parallelizing programs with recursive data structures. JEEE
Trans. on Par. and Dist. Syst. I, 1 (January), 35-47.

HoARE, C. 1975. Recursive data structures. Int. J. of Comp. and Inf. Sci. 4, 2, 105-132.

HorwiTz. S., PFEIFFER, P., aND REPs. T. 1989. Dependence analysis for pointer variables. In
SIGPLAN Conf. on Prog. Lang. Design and Impl. ACM Press, New York, NY, 28-40

IMMERMAN, N. 1999. Descriptive Complexity. Springer-Verlag.

JENSEN, J., JOERGENSEN, M., N.IXLARLUND, AND SCHWARTZBACH., M. 1997. Automatic verification
of pointer programs using monadic second-order logic. In SIGPLAN Conf. on Prog. Lang
Design and Impl.

Jongs. N. AND MUCHNICK. S. 1981. Flow analysis and optimization of Lisp-like structures. In
Program Flow Analysis: Theory and Applications, 8. Muchnick and N. Jones, Eds. Prentice-
Hall, Englewood Cliffs, N.J, Chapter 4, 102-131.

JoNEs, N. AND MUCHNICK, S. 1982, A flexible approach to interprocedural data flow analysis and
programs with recursive data structures. In Symp. on Princ. of Prog. Lang. ACM Press, New
York, NY, 66-74

KNG, J. 1969. A program verifier. Ph.D. thesis, Carnegie-Mellon Univ., Pittsburgh, PA.

KLEENE, S. 1987. Introduction to Metamathematics, Second ed. North-Holland.

KuUNEN. K. 1998. Personal communication.

LANDI, W. AND RYDER. B. 1991. Pointer induced aliasing: A problem classification. In Symp. on
Princ. of Prog. Lang. ACM Press, New York, NY, 93-103.

LARUS. J. AND HILFINGER. P. 1988, Detecting conflicts between structure accesses. In SIGPLAN
Conf. on Prog. Lang. Design and Impl. ACM Press, New York, NY, 21-34.

LEv-Ami, T. 2000. TVLA: A framework for Kleene based static analysis. M.S. thesis, Tel-Aviv
University. Available at http://www.math.tau.acil/~tla.

Lev-AmI, T., Reps, T., SaGiv. M., AND WILHELM, R. 2000. Putting static analysis to work for
verification: A case study Submitted for publication.

LIFSCHITZ, V. 1998. Personal communication.

Luk. C-K. aND Mowry, T 1996. Compiler-based prefetching for recursive data structures. I{l
Proceedings of the Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems. 222-233.

Parametric Shape Analysis via 3-Valued Logic . 63

Morris, J. 1982. Assignment and linked data structures. In Theoretical Foundations of Pro-
gramming Methodology, M. Broy and G. Schmidt, Eds. D. Reidel Publishing Co., Boston, MA,
35-41.

NieLsoN, F., NigLson, H, anp Saciv, M. 1999. A Kleene analysis of mobile ambients. In
Proceedings of the 2000 European Symposium On Programming.

PATNAIK, S. AND IMMERMAN. N. 1097, Dyn-FO: A parallel, dynamic complexity class. Journal of
Computer and System Sciences 55, 2 (Oct.), 199-200.

PLEVYAK. J., CHIEN. A, AND KARAMCHETIL, V. 1993, Analysis of dynamic structures for efficient
parallel execution. In Languages and Compilers for Parallel Computing, U. Banerjee, D. Gel-
ernter, A Nicolau. and D. Padua. Eds Lec. Notes in Comp. Sci., vol. 768. Springer-Verlag,
Portland, OR, 37-57.

SaGlv. M., Reps, T., AND WILHELM. R. 1996. Solving shape-analysis problems in languages with
destructive updating. In Symp. on Princ. of Prog. Lang. ACM Press, New York, NY.

Saciv. M., Reps. T., AND WILHELA. R. 1998. Solving shape-analysis problems in languages with
destructive updating, Trons. on Prog. Lang. and Syst. 20, 1 (Jan.), 1-50.

Saarv. M., Reps. T., aND WILHELM, R. 1999. Parametric shape analysis via 3-valued logic. In
Symp. on Princ. of Prog. Lang. Available at “http://www.cs.wisc edu/wpis/papers/popl99.ps”.

Saciv. S., FRANCEZ, N, Ropes. M., AND WILHELM, R. 1998 A logic-based approach to data
fow analysis problems. Acta Inf. 35, 6 (June), 457-504.

STRANSKY, J. 1992. A lattice for abstract interpretation of dynamic (Lisp-like) structures. Inf.
and Comp. 101, 1 (Nov.), 70-102.

WaANG. E. Y.-B. 1994. Analysis of recursive types in an imperative language. Ph D. thesis, Univ.
of Calif., Berkeley, CA

A. PROOF OF THE EMBEDDING THEOREM

Theorem 3.11 Let S = (US,15) and ' = (US',15') be two structures, and let
f:US - U S be a function such that S ©f S'. Then, for every formula ¢ and
complete assignment Z for v, [¢]5(2) T €5 (f o 2).

Proof: By the De Morgan laws it is sufficient to show the theorem for formulae
involving A, =, 3, and TC. The proof is by structural induction on ¢:

Basis: For atomic formula p(vi,ve,. .. ,Uk), U1, U2, .. Uk € US, and Z = [v; —
Up, Vs — Uz, . .- , Uk — U] we have

[[p(vl, Vo, ... ,'Uk)ﬂg(Z)

=5(p)(ur,uz, ... uk) (Definition 3.4)
S () (f(u), fus), ..., f(ug)) (Definition 3.8)
[p(vr,va, -, uk) $'(f © Z) (Definition 3.4)

Also, for [€ {0,1,1/2}, we have:

I

[13(2)
=1 (Definition 3.4)
iy (Definition 3.1)

=[1]5'(f o Z) (Definition 3.4)
Let us now show that
[o1 = v]5(2) T [vr = wl§ (f © 2).

First, if Ju; = vgﬂef’(f o Z) = 1/2 then the theorem holds for v; = va, trivially.
Second, if [v = v2]5 (f © Z) = 1 then by Definition 3.4, (i) f(Z(v1)) = f(Z(v2))
and (ii) ¢5 (sm)(f(Z(v1))) = 0. Therefore, by Definition 3.8, Z(vy) = Z(vg) and

64 . Mooly Sagiv et al

1S(sm)(Z(v1)) = 0 both hold. Hence, by Definition 3.4, [vy =wn]§(Z) = L
Finally, suppose that [v; = vo]}3 foZ) = 0 holds. In this case, by Defini-
tion 3.4, f((v1)) # f(Z(va)). Therefore, Z(v1) # Z(v2), and by Definition 3.4
[= »]5(Z) =0.

Induction step: Suppose @ is a fonnula with free variables vy, vs,...vr. Let Z be
a complete assignment for L,D If []§ (Z) = 1/2, then the theorem holds trivially.
Therefore assume that ﬂ(p]]3 f o Z) € {0,1}. We distinguish between the following
cases:

Logical-and. ¢ = @1 A @s. The proof splits into the following subcases:

Case 1: [o1 Awals (f o Z)=0.
In this case, either [1]5 (f o Z) = 0 or [w]§ (f o Z) = 0. Without loss of
generality assume that [¢ 15 "(f o Z) = 0. Then, by the induction hypothesis for
1, we conclude that [¢1]5(Z) = 0. Therefore, by Definition 3.4, [¢1 A ¢2]5(2) =
0.

Case 2: [o1 A @]§ (fo2Z)=1
In this case, both [p1]5 (f o Z) =1 and le2]S (f © Z) = 1. Then, by the induc-
tion hypothesis for ¢; and w2, we conclude that ﬂ(pl]]3 Z) =1 and
[02]5(Z) = 1. Therefore, by Definition 3.4, [p1 A @2]5(2) = 1.

Logical- negatmn p = —y. The proof splits into the following subcases:
Case 1: ﬂm,pl]]s (foZ)=0.
In this case, [¢1]5 (f © Z) = 1.
Then, by the induction hypothesis for cpl, we conclude that [1]5(2) = 1.
Therefore, by Deﬁmtlon 3.4, [~¢1]5(2) = 0.
Case 2: I[-upl]]s foZ)y=1
In this case, [¢1]5 (f o Z) = 0.
Then, by the induction hypothesis for Lpl, we conclude that [[(p1ﬂ3 =0.
Therefore, by Definition 3.4, [~¢1]§(Z) = 1.

Existential- Quantification. ¢ = Bvo : 3. The proof splits into the following
subcases:

Case 1: [Bvy - p1]§ (f o Z) = 0.
In this case, for all u € US, [¢1]§ ((f © Z)[vs = f(u)]) = 0. Then, by the in-
duction hypothesis for ¢y, we conclude that for all uw € US [p1]5(Z[v1 = u]) = 0.

Therefore, by Deﬁmtlon 3.4, [Ty - 901]}3 = 0.
Case 2:[3v; : 1] (f o Z) =1
In this case, there exists a v’ € US such that [@1]5 ((f o Z)[v1 — u) = 1. Be-
cause f is surjective, there exists au € U? such that f(u) = u' and {[@1}]3 o 2 — f(u)]) =
1. Then, by the induction hypothesis for 901, We conclude that [e1]5 ([v1 - ul) =
1. Therefore, by Definition 3.4, [Fvy : ¢1]5(2) = 1.

Transitive Closure. ¢ = (TC vy,vy : Lpl)('l)3,U4). The proof splits into the fol-
lowing subcases:

Case 1: [(TC vi,v2: 991)(1‘3,'04)]] "(f o Z) 1.
By Definition 3.4, there exist uf,us,... ,un; € US' such that for all 1 < i < n,
[eal5 ((f © Z)or = uf,v2 = ujgs]) = 1» (f o Z)(v3) = ui, and (f o Z)(v4) =
ur,,.1- Because f is surjective, there exist w1, ug, ... ,Uns1 € US such that for all
1 <i<n+1, flu;) = ut. Therefore, Z(vs) = u1, Z(v4) = Un+1, and by the

Parametric Shape Analysis via 3-Valued Logic . 65

induction hypothesis, for all 1 < i < n, 1] (Z[v1 = iy vz — uiq1]) = 1. Hence,
by Definition 3.4, [(T'C v1,vs : 1) (v3,v)]5(2) = 1.
Case 2: [(TC v, vz : 91)(v3,va)l§ (f o Z)=0.
We need to show that [(TC v1,vs : 1)(vs,v4)]5(Z) = 0. Assume on the contrary
that [(TC v1,v2 : ©1)(vs,va)[§ (f © Z) = 0, but [(TC v1,vs : p1)(va, va)]5(Z) #
0. Because [(TC v1,vs : gm)(v;;,m)]]g?(Z) # 0, by Definition 3.4 there exist ug, ug, ... ,Un+1 €
US® such that Z(v3) = u1, Z(va) = Un41, andforalll <i < n, leil5 (Zlvr = i, v2 — uig1]) #
0. Hence, by the induction hypothesis there exist uj,u5, .. ,Up4y € US" such
that (f o Z)(w3) = uj. and (f o Z)(vs) = upyq and for all 1 < 4 < =,
[o1l5 ((f © Z)[v1 — ufyva—=ujyy]) # 0. Therefore, by Definition 3.4,
[(TC vi,vs: (pl)(vg,vz;)]g’(f o Z) # 0, which is a contradiction.

B. OTHER PROOFS
B.1 Properties of the Generated 3-Valued Constraints

Lemma 5.13 For every puir of structures S% € 2-CSTRUCTIP,F] and S €
8-STRUCTIP] such that S is a tight embedding of St S ET(F).

Proof: Let S € 2-CSTRUCT[P, F} and S € 3-STRUCT[P] be a pair of structures
such that S is a tight embedding of S% via function f: US* — US. We need to
show that S | 7(F).

Let ' € F and let us show that S = r(¢'). If ¢’ =Vu1,v2,... , 06 : 9, then, since
50 = o, for all assignments Z" for v1, v, ..., v drawn from Us", {[(p]]gh(Zh) =1.
Therefore, by the Embedding Theorem [¢]5 (f © Z 1) # 0. But since f is surjective
we conclude that for all assignments Z for vy, vg, .. ., vy drawn from US, [ol5(2) #
0, and therefore S k= r(¢’).

Let us now show that S = r(¢’) for ¢’ = Vv, v2,... , 0k 1 ¢ = ab, where a is an
atomic formula, a # sm(v), and b € {0,1}. Let Z be an assignment for vy, vz, ...,
v drawn from US. If []$(Z) # 1, then by definition S, Z = ¢ > a’. Therefore,
assume that [¢]5(Z) = 1 and let us show that [a’]5(Z) = 1. Note that for every
assignment Z" such that f o Z% = Z, [¢]§(Z) = 1 implies, by the Embedding
Theorem, that [[Lp]]ffh(Z“) = 1. Therefore, because St k= ', we have

[a")5" (2% = 1. (66)

The remainder of the proof splits into the following cases:
Case 1: b =1 and a = p(vy,v2,... ,v1), where [<k, pe P — {sm}. We have:

Hp(Uh'UZv cee ,'Ul)]]g(Z)

=5 (p)(Z(v1), Z(v2), Z(w)) (Definition 3.4)

= || & @2), 2 (v, , Zi(w)) (Definition 3.9)
foZt=Z

= l_J [p(vi,va,. . 7‘01)]}?(2“) (Definition 3.4)
foZh=2

=1 (By equation (66))

Notice that we use the fact that p # sm because the step from the second line to
the third line may not hold for sm (cf. Definition 3.9).

66 . Mooly Sagiv et al.

Case 2: b=0and a = p(vy,va, ... ,v;), where [< k, p € P — {sm}. We have:
[~p(vi,vg,. .. w)]]g Z)
=1- PN Z(v1), Z(va), .-, Z(w)) (Definition 3.4)
=1- L] Sp) (20w),Zb(vg),».. , Z8(vp)) (Definition 3.9)
foZh=Z
=1- U [p(vr, v, . .. ,‘Ul)]]é?h(zh) (Definition 3.4)
foZh=2Z
= LJ [-p(vy,va,. . ,’Ul)]];;qh(Zh) (Definition 3.4)
foZi=Z
=1 (By equation (66))

Case 3: b=1and ¢ = vy = g, for v; # va. We need to show that Z(v1) = Z(vy)
and t(sm)(Z (1)1)) = 0. If Z(v1) # Z(vy) then there exists an assignment Z% such
that f o Z% = Z, and Z%wv;) # Z%vy) contradicting (66). Now assume that

w(sm)(Z{v1)) = 1/2 and thus by definition there exist uj,us € US" such that
uy # ug and f(uy) = f(us) = Z(v1). Therefore, for ZMvy) = u; and Z8(12) = ug,
we get a contradiction to (66).

Case 4: b= 0and a = v; = va. We need to show that Z(v) # Z(va). If
Z(vy) = Z(va) then there exists an assignment Z% such that f o Z' = Z, and
Z8(vy) = Z(vs) contradicting (66).

LEMMA B.1. For every pair of structures Si,S2 € 8-CSTRUCT|P,7(F)] such
that USt = US2 = U, the structure Sy U Sy is also in 8-CSTRUCT{P,7(F)].
Proof: By contradiction. Assume that constraint ¢ > 2 in 7(F) is violated. By
definition, this happens when for some Z, [¢1]3'"%*(Z) = 1 and lp2]5"52(2) # 1.
Because Kleene’s semantlcs 15 monotonic in the information order (Lemma 3.7),
ﬂcpl]] YWZ) =1 and {[cpl]]3 = 1. The1ef01e because S; and S; both satisfy the
constraint ¢ > 2, we have {[Lpo]]B =1 and [[902]]3 (Z) = 1. But because o5 is
an atomic formula or the negation of an atomic formula, [[t,og]}slusz(.?) = 1, which
is a contradiction.

B.2 Correctness of the Coerce Algorithm
The correctness of algorithm Coerce stems from the following lemma:

LEMMA B.2. Forevery S € 3-STRUCT|P] and structure S’ before each iteration
of Coerce(S), the following conditions hold: (i) S’ E S; (i) If Coerce returns L on
S', then coerce(S) = L; and (i) If coerce(S) # L, then coerce(S) E S.

Proof: By induction on the number of iterations.

Basis: For zero number of iterations the claim holds since (i) §' = S and thus S’
S (i); (ii) Condition (ii) vacuously holds; (iii) If coerce(S) # L then coerce(S)
S = 8’ and thus condition (iii) holds.

Induction hypothesis: Assume that the Lemma holds for ¢ > 0 iterations.
Induction step: Let S’ be the structure before the i-th iteration of Coerce and let
us show that the lenuma still holds after the i-th iteration.

Part I Tt is easy to see that in cases that Coerce does not return L, Coerce only
lowers predicate values and therefore (i) holds after the i-iteration.

Part IT Let us show that (ii) holds in the cases that Coerce returns .. Let us
assume that S” = coerce(S) # L and derive a contradiction. By the induction

L
-

Parametric Shape Analysis via 3-Valued Logic . 67

hypothesis, (i) S & S'. Therefore by Lemma 3.7, [¢1]5"(Z) = 1, and hence since
S§" = F(F), it must be that [¢2]5"(Z) = 1. The proof splits into the following
cases when Coerce returns L:

Case 1: Coerce returns L when Type I constraints in violated. Immediate.

Case 2: Coerce returns L when Type II constraints in violated. There are two
subcases to consider.

Case 2.1: @y = v = vy. Since [v; = w]§ (Z) # 1 and 5 (sm)(Z(vl)) by
Definition 3.4, Z{v1) # Z(v2), and therefore by Definition 3.4, [v; = w]§ (Z) #1
— a contradiction.

Case 2.2: w9 = =(v1 = m). Since [~(vy = v2]]3 (Z) # 1 by Definition 3.4,
Z(v1) = Z(vq), and therefore by Definition 3.4, [-(vi = vo)5 (Z2) # 1 — a contra-
diction.

Case 3: Coercereturns .L \vhen Type Il1 constraints in V1olated Smce [p(v1,va, ...

1,and 5 (p)(Z(v1), Z(va),. ., Z(vk)) # 1/2. By Definition 3.4, S'(p)(Z(vl) Z(va), ...
1 —b. By the induction hypothesis, (i) S” E 5. S (p)(Z('ul) Z(wa)y. .., Z{ug)) =

1 — b and therefore by Definition 3.4, [p(v1i,va,.]lg (Z)#£1,—a contladlc—
tion.

Part III Let us show that (iii) holds. Assume that S” = coerce(S) s# 1. By the
induction hypothesis, S” C S’ Therefore by Lemma 3.7, since [[(plﬂg (Zy =1, and
hence since S” k= 7(F), [{npo]] 5"(Z) = 1. The proof splits into the following cases:

Case 1: Coerce lowers 5 (sm)(Z(v1)) from 1/2 into 0 When wp = vy = Uy. Since
[vr =] (Z) = 1, by Definition 3.4, Z(v1) = Z(vq) and 5" (sm)(Z(vy)) =1 and
therefore after the i-th iteration S C S'.

Case 2: Coerce lowers .5’ (p)(Z(vl) Z(va),- .., Z(vg)) from 1/2 into b when @y =

p°(v1,v9, . .. , k). Since vy = vo]]3 Z) = 1, by Definition 3.4, WS (P} Z(vn), Z(v2), ..

1, and therefo1e after the i-th iteration 8" C §'.

Theorem 5.23 For every S € 8-STRUCTIP), coerce(S) = Coerce(5).
Proof: Let T be the return value of Coerce(S). We discriminate between the
following cases according to the value of T

—Suppose T' = 1. By Lemma B.2, (ii), coerce(S) = L =T,

—If T # 1, then by Lemma B.2, (i) T C S. By the definition of the Coerce
algorithm, T = 7(F), and therefore, by Definition 5.20, coerce(S) # L. Hence,
by Lemma B.2 (iii), coerce(S) € T. Consequently, because coerce(S) is the
maximal structure that models 7(F), it must be that coerce(S) =

) Uk)]l? (Z)

, Z(vk))

I~

