Interprocedural Path Profiling

David Melski
Thomas Reps

Technical Report #1382

September 1998

Interprocedural Path Profiling’

David Melski? Thomas Reps®
September 1, 1998

Abstract

In path profiling, a program is instrumented with code that counts the number of times particular
path fragments of the program are executed. This paper extends the intraprocedural path-profiling
technique of Ball and Larus to collect information about interprocedural paths (i.e., paths that may
cross procedure boundaries).

Interprocedural path profiling is complicated by the need to account for a procedure’s calling context.
To handle this complication, we generalize the “path-naming” scheme of the Ball-Larus instrumentation
algorithm. In the Ball-Larus work, each edge is labeled with a number, and the “name” of a path is
the sum of the numbers on the edges of the path. Our instrumentation technique uses an edge-labeling
scheme that is in much the same spirit, but to handle the calling-context problem, edges are labeled
with functions instead of values. In effect, the edge-functions allow edges to be numbered differently
depending on the calling context. A key step in the process of creating the proper edge functions is related
to a method proposed by Sharir and Pnueli for solving context-sensitive interprocedural dataflow-analysis
problems.

Some of the machinery that we develop to handle the calling-context problem for purposes of in-
terprocedural path profiling suggests other variants of both intraprocedural and interprocedural path
profiling, as well as a variety of hybrid intra-/interprocedural schemes.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of Systems—
measurement techniques; D.2.2 [Software Engineering]: Tools and Techniques—programmer work-
bench; D.2.5 [Software Engineering]: Testing and Debugging—diagnostics; tracing; G.2.2 [Discrete
Mathematics]: Graph Theory—graph algorithms; path and circust problems

General Terms: Algorithms, Measurement

Additional Key Words: Control-flow graph, instruction tracing, instrumentation, profiling, algebraic path
problem, valid path

1 Introduction

In path profiling, a program is instrumented with code that counts the number of times particular path
fragments of the program’s control-flow graph—or observable paths—are executed. A path profile for a given
run of a program consists of a count of how often each observable path was executed. This paper extends the
intraprocedural path-profiling technique of Ball and Larus [6] to collect information about interprocedural
paths (i.e., paths that may cross procedure boundaries).

Interprocedural path profiling is complicated by the need to account for a procedure’s calling context.
There are really two issues:

o What is meant by a procedure’s “calling contezt”? Previous work by Ammons et al. [2] investigated a
hybrid intra-/interprocedural scheme that collects separate intraprocedural profiles for a procedure’s
different calling contexts. In their work, the “calling context” of procedure P consists of the sequence

lgupported in part by the National Science Foundation under grants CCR-9625667 and CCR-9619219, by the United States-
Israel Binational Science Foundation under grant 96-00337, by grants from Rockwell and IBM, and by a Vilas Associate Award
from the University of Wisconsin.

2 Address: Computer Sciences Department; University of Wisconsin; 1210 West Dayton Street; Madison, WI 53706; USA.
E-mail: {melski,reps}@cs.wisc.edu.

of call sites pending on entry to P. In general, the sequence of pending call sites is an abstraction of
any of the paths ending at the call on P.

The path-profiling technique presented in this paper profiles true interprocedural paths, which may in-
clude call and return edges between procedures, paths through pending procedures, and paths through
procedures that were called in the past and have completed execution. This means that, in general,
our technique maintains finer distinctions than those maintained by the profiling technique of Ammons
et al. Furthermore, if one thinks of indexing the paths that pass through procedure P by path-prefix
up to a call on P, our technique can be viewed as one in which the “calling context” for a call on P
consists of an observable path ending at the call on P. Again, this causes our technique to maintain
finer distinctions than those maintained by the technique of Ammons et al.

How does the calling-contezt problem impact the profiling machinery? In the method presented in this
paper, the “naming” of paths is carried out via an edge-labeling scheme that is in much the same spirit
as the path-naming scheme of the Ball-Larus technique, where each edge is labeled with a number,
and the “name” of a path is the sum of the numbers on the path’s edges. However, to handle the
calling-context problem, in our method edges are labeled with functions instead of values. In effect,
the use of edge-functions allows edges to be numbered differently depending on the calling context.

At runtime, as each edge e is traversed, the profiling machinery uses the edge function associated with
e to compute a value that is added to the quantity pathNum. At the appropriate program points, the
profile is updated with the value of pathNum.

The principal contribution of the paper is to generalize the Ball-Larus technique to collect interprocedural
path profiles. Specific technical contributions of the paper include:

In the Ball-Larus scheme, a cycle-elimination transformation of the (in general, cyclic) control-flow
graph is introduced for the purpose of numbering paths. We present the interprocedural analog of this
transformation.

In the case of intraprocedural path profiling, the Ball-Larus scheme produces a dense numbering of
the observable paths within a given procedure: That is, in the transformed (i.e., acyclic) version of
the control-flow graph for a procedure P, the sum of the edge labels along each path from P’s entry
vertex to P’s exit vertex falls in the range [0..number of paths in P], and each number in the range
[0..number of paths in P] corresponds to exactly one such path.

The techniques presented in this paper produce a dense numbering of interprocedural observable paths.
The significance of the dense-numbering property is that it ensures that the numbers manipulated by
the instrumentation code have the minimal number of bits possible.

We present a technique that allows edges to be labeled differently depending on the calling context.
This involves labeling edges with functions instead of values. (A key step in the process of creating the
proper edge functions has an interesting connection to a method proposed by Sharir and Pnueli [17]
for solving context-sensitive interprocedural dataflow-analysis problems.)

Some of the machinery that we develop to handle the calling-context problem for purposes of in-
terprocedural path profiling suggests other variants of both intraprocedural and interprocedural path
profiling, as well as a variety of hybrid intra-/interprocedural schemes.

The profiling techniques presented in this paper have a number of applications:

There are several possible applications in program optimization, in conjunction with the partial-inlining
technique of Muth and Debray [12]. This allows inlining of only a selected path or paths of a procedure
P at a call site on P; residual procedures are generated to handle the cases when the infrequently
executed pieces of P are needed at the expanded call site. Information ascertained from interprocedural
path profiling could be used to drive partial inlining, either for interprocedural trace scheduling or for
an interprocedural extension of the work of Ammons et al. on path-qualified dataflow analysis [3].

There are also several applications in software maintenance:

~ Reps et al. [14] showed that when different runs of a program produce different path profiles, the
differences in the path profiles can be used to identify paths in the program along which control
diverges in the two runs. By choosing input datasets to hold all factors constant except one, any
such divergence can be attributed to this factor. This can be useful in locating program errors,
by examining the profile differences between a run that does not exhibit a program error and a
run that does. While any path-profiling technique can be used, the set of paths profiled—the
observable paths—affects the fidelity of the technique. The path-profiling techniques described in
this paper generate more detailed path profiles than any other published technique.

— During alpha- or beta-testing, path profiling can be used to detect “oddball” paths—paths that
were not exercised by a program’s test suite. Note that an oddball path is likely to be an
infrequently-executed (i.e., cold) path, and thus cannot be found by techniques that are used to
estimate hot paths from edge profiles [7].

~ Profiling could be used to allow a debugger to report the last path (or last several paths) executed
before a breakpoint or program crash. This would provide a nice complement to other information
provided by the debugger, such as the current call stack.

Our work encompasses two main algorithms for interprocedural path profiling, which we call contezt path
profiling and piecewise path profiling, as well as several hybrid algorithms that blend aspects of the two main
algorithms. Context path profiling is best suited for the software-maintenance applications listed above,
whereas piecewise path profiling is better suited for providing information about interprocedural hot paths,
and hence is more appropriate for the optimization applications.

The first two-thirds of the paper concentrates on context path profiling. Up through Section 4, the term
“interprocedural path profiling” means “interprocedural context path profiling”. We have chosen to discuss
the context-path-profiling algorithm first because the method is simpler to present than the algorithm for
piecewise path profiling. However, the same basic machinery—which is developed in Section 5—is at the
heart of both algorithms.

The remainder of this paper is organized into eight sections: Section 2 presents background material and
defines terminology needed to describe our results. Section 3 gives an overview of interprocedural context
path profiling. Section 4 describes a generalization of the Ball-Larus path-numbering technique that is
used in each of the interprocedural path-profiling techniques. Section 5 describes the technical details of
our approach to interprocedural context path profiling. Section 6 describes interprocedural piecewise path
profiling. Section 7 summarizes a novel approach to intraprocedural path profiling that is related to our
interprocedural-profiling techniques. Section 8 discusses a variety of hybrid intra-/interprocedural schemes
that are possible. Section 9 discusses some issues that arise in path profiling that are not described in the
rest of the paper, such as how to generate an interprocedural profile in the presence of function pointers.

2 Background

2.1 Summary of the Ball-Larus Technique for Intraprocedural Path Profiling

The Ball-Larus path-numbering scheme applies to an acyclic control-flow graph with a unique entry vertex
Entry and a unique exit vertex Ezit. For purposes of numbering paths, control-flow graphs that contain
cycles are modified by a preprocessing step to turn them into acyclic graphs:

Every cycle must contain one backedge, which can be identified using depth-first search. For each
backedge w ~+ v, add the surrogate edges Entry — v and w — Ewzit to the graph. Then remove
all of the backedges from the graph.

The resulting graph is acyclic. In terms of the ultimate effect of this transformation on profiling, the result
is that we go from having an infinite number of unbounded-length paths in the original control-flow graph
to having a finite number of acyclic bounded-length paths in the modified graph. A path p in the original
graph that proceeds several times around a loop will, in the profile, contribute “execution counts” to several
smaller “observable paths” whose concatenation makes up p. In particular, the paths from Eniry to Ezit in
the modified graph correspond to observable paths in the original graph (where following the edge Entry — v

that was added to the modified graph corresponds to beginning a new observable path that starts with the
backedge w —+ v of the original graph, and following the edge w — Ewit that was added to the modified
graph corresponds to ending an observable path in the original graph at w). Furthermore, each path from
Entry to Ezit in the modified graph defines an observable path in the control-flow graph.

In the discussion below, when we refer to the “control-flow graph”, we mean the transformed (i.e., acyclic)
version of the graph.

The Ball-Larus numbering scheme labels the control-flow graph with two quantities:

1. Each vertex v in the control-flow graph is labeled with a value, numPaths[v], which indicates the
number of paths from v to the control-flow graph’s Ezit vertex.

2. Each edge e in the control-flow graph is labeled with a value derived from the numPaths|] quantities.

For expository convenience, we will describe these two aspects of the numbering scheme as if they are
generated during two separate passes over the graph. In practice, the two labeling passes can be combined
into a single pass.

In the first labeling pass, vertices are considered in reverse topological order. The base case involves the
Ezit vertex: It is labeled with 1, which accounts for the path of length 0 from FEzit to itself. In general,
a vertex w is labeled only after all of its successors wi,ws,...,w; are labeled. When w is considered,
numPaths[w] is computed using the following equation:

k
numPaths[w] = Z numPaths[w;). 1)

f=1
This equation is illustrated in the following diagram:

K
numPaths[w] = ZnumPaths[w A

SN
b

The goal of the second labeling pass is to arrive at a numbering scheme for which, for every path from
Entry to FEzit, the sum of the edge labels along the path corresponds to a unique number in the range
[0..numPaths|Entry] — 1]. That is, we want the following properties to hold:

1. Every path from Entry to Ezit is to correspond to a number in the range [0..numPaths[Entry] — 1].
2. Every number in the range [0..numPaths[Entry] — 1] is to correspond to some path from Entry to Ezit.

Again, the graph is considered in reverse topological order. The general situation is shown below:

x, =0

x, = numPaths[w,]

i—1
X, = ZnumPaths[wj]

Jj=0

k~1
x, = ZnumPaths[wj]

J=0
' ™ ' ™
[0 .. numPaths{w,]~—~ l] [x,. .. x; + numPaths[w,]-~ 1]

At this stage, we may assume that all edges along paths from each successor of w, say w;, to Ezit have been
labeled with values such that the sum of the edge labels along each path corresponds to a unique number in the
range [0..numPaths|w;] — 1]. Therefore, our goal is to attach a number z; on edge w — w; that, when added
to numbers in the range [0..numPaths[w;] — 1], distinguishes the paths of the form w — w; - ... — Ewit
from all paths from w to Ezit that begin with a different edge out of w.

This goal can be achieved by generating numbers 1, %2,...,Z; in the manner indicated in the above
diagram: The number z; is set to the sum of the number of paths to Ezit from all successors of w that are
to the left of w;: :

T = Z numPaths[w;]. (2)
j<i
This “reserves” the range [z;..7; + numPaths[w;] - 1] for the paths of the form w — w; — ... — Egzit. The
sum of the edge labels along each path from w to Ezit that begins with an edge w — wj, where j < 4, will
be a number strictly less than z;. The sum of the edge labels along each path from w to Ezit that begins
with an edge w — Wy, where m > i, will be a number strictly greater than z; + numPaths[w;] — 1.

The final step is to instrument the program, which involves introducing a counter variable and appropriate
increment statements to accumulate the sum of the edge labels as the program executes along a path.

Several additional techniques are employed to reduce the runtime overheads incurred. These exploit the
fact that there is actually a certain amount of flexibility in the placement of the increment statements [5, 6].

2.2 Supergraph

As in many interprocedural program-analysis problems, we work with an interprocedural control-flow graph
called a supergraph. Specifically, a program’s supergraph G* consists of a unique entry vertex Entry g 401, &
unique exit vertex Ezitg,ba1, and a collection of control-flow graphs (one for each procedure), one of which
represents the program’s main procedure. For each procedure P, the flowgraph for P has a unique entry
vertex, Entry p, and a unique exit vertex, Ezitp. The other vertices of the flowgraph represent statements and
predicates of the program in the usual way,! except that each procedure call in the program is represented in
G* by two vertices, a call vertex and a return-site vertex. In addition to the ordinary intraprocedural edges
that connect the vertices of the individual control-flow graphs, for each procedure call (represented, say, by
call vertex c and return-site vertex r) to procedure P, G* contains a call-edge, ¢ — Entryp, and a return-edge,
Ezitp — r. The supergraph also contains the edges Entry ;i pa =+ ENtry pgin a0d ETitmain — ETitglobal- An
example of a supergraph is shown in Figure 1.

Each execution of a program corresponds to an ezecution path in the program’s supergraph, G*, from
Entry gopar t0 ETitgiobar. It is possible that some paths in G* do not correspond to feasible execution paths.
In particular, a path in G* in which control is passed to a procedure P from one call site, but control returns

1The vertices of a flowgraph can represent individual statements and predicates; alternatively, they can represent basic
blocks.

Entry o EXityop Entry g EXityon Entry o EXityg
® [® 9, @ @

pow_ " @ ®
Entry,,. Exit,,

Figure 1: Schematic of the in-

terprocedural linkages in the su-
pergraph of a program in which
main has two call sites on the
procedure pow. {(Figure 4 shows

Figure 2: Example of an invalid
path in a supergraph. The path
enters pow from one call site, but
returns from pow to a different
call site.

Figure 3: Example of a cycle that
may occur in a valid path. The
path enters pow from two distinct
call sites.

the source code for such a pro-
gram.) Intraprocedural control-
flow edges are not shown.

from P to a different call site cannot represent a feasible execution path (see Figure 2). There may also be
logically correlated branch statements in a program such that the outcome of one branch determines the
outcome of the other branch. For example, it may be that if branch b; is taken, then branch by (logically)
cannot be taken. In this case, a path in G* in which both branches are taken cannot represent a feasible
execution path.

For purposes of profiling, we will assume that all branches are logically independent, i.e., the result of
one branch does not affect the ability to take any other branch; however, we do not wish to consider paths
in G* that violate the nature of procedure calls (as the path in Figure 2 does).2 We now develop a language
for describing the set of paths in G* that we wish to consider valid. To do this, let each call site be assigned
a unique index between 1 and NumCallSites, where NumCallSites is the total number of call sites in the
program. Then, for each call site with index i, let the call-edge from the call vertex be labeled with the
symbol “(;”, and let the return-edge to the corresponding return-site vertex be labeled with the symbol “);”.
Let each edge of the form Entrygep, — Entryp be labeled with the symbol “(p” and each edge of the
form Ezitp — Ezitgiopa be labeled with the symbol “)p”. (In G*, the edges Entry op — Eniry e, and
Ezit main — Bxit giobar are the only edges that are labeled in this fashion; however, Section 3.2 introduces a
transformed version of G* that adds additional edges with the forms Entry ., — Entryp and Ezitp —
Exit giopar-) Let all other edges be labeled with the symbol e. Then a path p in G* is a same-level valid path
if and only if the string formed by concatenating the labels of p’s edges is derived from the non-terminal
SLVP in the following context-free grammar:

2This is similar to the assumptions that are made in much of the work on context-sensitive interprocedural dataflow analysis,
e.g-, [17, 8, 11, 10, 15].

SLVP .= (; SLVP); SLVP for 1 <7 < NumCallSites
SLVP ::=(p SLVP)p SLVP for each procedure P
SLVP = e SLVP)

SLVP == ¢

Here, ¢ denotes the empty string. A same-level valid path p represents an execution sequence where every
call-edge is properly matched with a corresponding return-edge, and vice versa. Note that every execution
of the program must follow a same-level valid path from Entry ,,p, to Ezitgiopar.

We also need to describe paths that correspond to incomplete execution sequences in which not all of the
procedure calls have been completed (for example, a path that begins in a procedure P, crosses a call-edge

to a procedure @, and ends in Q). Such a path is called an unbalanced-left path. In general, path p is an
unbalanced-left path if and only if the string formed by concatenating tue 1ulcic an p’s odges is derivea a...u

the non-terminal UnbalLeft in the following context-free grammar:

UnbalLeft ::= UnbalLeft (; UnbalLeft for 1 < i < Num(CallSites
UnbalLeft ::= UnbalLeft (p UnbalLeft for each procedure P
UnbalLeft ::= SLVP

where SLVP is defined by the productions given above.

We will also use paths that are the dual of unbalanced-left paths. A path p is called an unbalanced-
right path if and only if the string formed by concatenating the labels of p’s edges can be derived from the
non-terminal UnbalRight in the following the context-free grammar:

UnbalRight ::= UnbalRight); UnbalRight for 1 < 1 < NumCallSites
UnbalRight ::= UnbalRight)p UnbalRight for each procedure P
UnbalRight ::= SLVP

An unbalanced-right path represents part of an incomplete execution sequence. Specifically, an unbalanced-
right path p may leave a procedure P (where the execution sequence that reached P is not part of p). For
example a path that begins in a procedure P, crosses a return-edge to a procedure @, and ends in @ is an
unbalanced-right path.

Finally, we will also be interested in paths that are the concatenation of an unbalanced-right path and
an unbalanced-left path. A path is called an unbalanced-right-left path if and only if the string formed
by concatenating the labels of p’s edges can be derived from the non-terminal UnbalRtLf in the following
context-free grammar:

UnbalRtLf ::= UnbalRight UnbalLeft

3 Overview of Interprocedural Context Path Profiling

3.1 An Introductory Example

In this section, we give a brief example that illustrates some of the difficulties that arise in collecting an
interprocedural path profile. In particular, we consider the code shown in Figure 4. Figure 1 shows a
schematic of the supergraph G* for this program. One difficulty that arises in interprocedural path profiling
comes from interprocedural cycles. Even if all intraprocedural cycles are broken, G* will still contain cyclic
paths, namely, those paths that enter a procedure from distinct call sites (see Figure 3). This complicates
any interprocedural extension to the Ball-Larus technique, because the Ball-Larus numbering scheme works
on acyclic graphs. There are several possible approaches to overcoming this difficulty:

o One possible approach is to remove all but one pair of call and return edges to a procedure P, and insert
some appropriate surrogate edges. This approach has the drawback of breaking most interprocedural
paths into intraprocedural paths.

e A second approach is to inline every non-recursive procedure, and break call and return edges to
recursive procedures. The Ball-Larus technique can then be used to collect intraprocedural path profiles
for the procedures that are left. Each intraprocedural path will correspond to an interprocedural path
in the original program. Unfortunately, such extensive inlining is usually not feasible.

7

double pow(double base, long exp) {
double power = 1.0;
while(exp > 0) {
power *= base;
exp--;
}

return power;

}

int main() {
double t, result = 0.0;
int i = 1;
while(i <= 18) {
if((i%2) == 0) {
t = pow(i, 2);
result += t;

}

if((1%3) == 0) {
t = pow(i, 2);
result += t;

}
it++;
}
return 0;

}

Figure 4: Example program used to illustrate the path-profiling technique. (The program computes the
quantity (T3, (2 9)) + (it 3 £)%).)

e A third approach is to create a unique copy of each procedure for each call site, again with recursive
call and return edges removed. In our example program, we would create the copies pow! and pow?2
of the pow function. The first call to pow in main would be changed to call pow! and the second call
would be changed to call pow2. Then pow! can be instrumented as if it had been inlined in main, and
likewise for pow2. Clearly, this approach is just as impractical as extensive inlining.

e A fourth approach—which is the one developed in this paper—is to parameterize the instrumentation
code added to each procedure to behave differently for different calling contexts. In our example, pow
is changed to take an extra parameter. When pow is called from the first call site in main, the value
of the new parameter causes the instrumentation of pow to mimic the behavior of the instrumentation
of powl in the third approach above; when pow is called from the second call site in main, the value
of the new parameter causes pow’s instrumentation to mimic behavior of the instrumentation of pows.
Thus, by means of an appropriate parameterization, we gain the advantages of the third approach
without paying the costs in space of duplicating code.

In fact, there are some technical details that make the fourth approach difficult. (In particular, it is not
clear how the instrumentation of pow can efficiently generate the edge-increment value that, in the third
approach, would occur on a surrogate edge from Entry,,,,;, into a duplicate of pow.) However, the description
above captures the flavor of our interprocedural path-profiling technique. There are three main issues that
must be addressed:

1. how to deal with intraprocedural backedges;
2. how to deal with recursion; and
3. how parameterization is carried out.

The following section (Section 3.2) discusses transformations on the supergraph that are used in interproce-
dural profiling to address the first and second issues. The third issue is addressed at a high level in Section 3.3

8

and in detail in Section 5.5.

3.2 Modifying G* to Eliminate Backedges and Handle Recursion

Recall that, for purposes of numbering paths, the Ball-Larus technique modifies a procedure’s control-flow
graph to remove cycles. This section describes the analogous step for interprocedural context profiling.
Specifically, this section describes modifications to G* that remove cycles from each procedure and from the
call graph associated with G*. The resulting graph is called G%,,. Each unbalanced-left path through G,
corresponds to an “observable path” in G* that can be logged in an interprocedural profile. As will be seen,
the number of unbalanced-left paths through G}, is finite, which is the reason for the subscript “fin”.

In total, there are three transformations that are performed to create G, Figure 5 shows the transformed
graph GF;, that is constructed for the example program in Figure 4. The first transformation is as follows:

Transformation 1: For each procedure P, add a special vertex GEzitp to the control-flow graph for P
and an edge GEzitp — Exitgoba to the supergraph. (The vertex G Ezitp serves as a local copy of the
vertex E:L‘itg[obal.)

The second transformation removes cycles in each procedure’s control-flow graph. As in the Ball-Larus
technique, the procedure’s control-flow graph does not need to be reducible; backedges can be determined
by a depth-first search of the control-flow graph.

Transformation 2: For each procedure P, perform the following steps:

1. For each backedge target v in P, add a surrogate edge Entryp — v.
2. For each backedge source w in P, add an edge w — GEzitp.
3. Remove all of P’s backedges.

The third transformation “short-circuits” paths around recursive call sites, effectively removing cycles in
the call graph. First, each call site is classified as recursive or nonrecursive. This can be done by identifying
backedges in the call graph using depth-first search; the call graph need not be reducible.

Transformation 3: The following modifications are made:

1. For each procedure R called from a recursive call site, the edges Entryg,pa — Entryg and
Ezitgp — Ezitgoba are added.

9. For each pair of vertices ¢ and r representing a recursive call site that calls procedure R, the edges
¢ — Entryg and Ezitp — r are removed, and the summary edge ¢ — r is added. (Note that
¢ — 1 is called a “summary” edge, but not a “surrogate” edge; this slight distinction is used when
we describe the meaning of a context path profile. See Section 3.4.)

The following example discusses these transformations as they apply to Figure 5:

Example 3.1 Figure 5 shows the transformed graph GF,, that is constructed for the program in Figure 4.
In Figure 5, the vertices v14 and ug are inserted by Transformation 1. The edges v; — v4 and viz — V14
are inserted by Transformation 2 (and backedge v1z — v4 is removed). Similarly, Transformation 2 inserts
the edges u; — us and us — ug, and removes the backedge us — uz. Transformation 3 is not illustrated in
Figure 5, because the program from Figure 4 does not use recursion. O

As was mentioned above, the reason we are interested in these transformations is that each observable
path—an item that we log in an interprocedural path profile—corresponds to an unbalanced-left path through
G%,- Note that the observable paths should not correspond to just the same-level valid paths through Gfn: as
a result of Transformation 2, an observable path p may end in the middle of a procedure, leaving unclosed left
parentheses. Furthermore, a path in G, that is not unbalanced-left cannot represent any feasible execution
path in the original graph G*.

A crucial fact on which this approach to interprocedural path profiling rests is that the number of
unbalanced-left paths through G}, is finite. To prove this we start with the following observation:

itg: while({exp > O)Fﬂ

return power;

pow

'1g: power *= base;!

|

=0}

m
. EY
~~~~~~~~~~~~~ . e
- . s
|
\
v U R T R A A | EE e
. S o .
/ - . e
E ey
{ © < .
-
i n B .y .~
" i = =
£
3 : . S g
§ g2 s de 3
= - - D
< 23] p P [}
= I u
R - — -
»d .
. .
S = BN
- L

main

*® S

Figure 5: G7%, for the code in Figure 4. Dashed edges represent surrogate edges; the supergraph for the
program in Figure 4 includes the backedges v;s — w4 and us — w3, which have been removed here by
Transformation 2.

Observation 3.1 The maximum number of times a vertex v in a procedure P can appear on an unbalanced-

left path p (in G%,) is equal to the number of times p enters the procedure P by reaching the vertex Entryp.
O

This follows from the fact that G;‘in contains no intraprocedural loops. It also relies on the fact that p is an
unbalanced-left path; a path ¢ that is not unbalanced-left may reach some vertices an arbitrary number of
times. For example, consider a vertex u in a procedure P where u lies in the middle of a path that connects
one call site on Q to a second call site on ). Then a path that is not an unbalanced-left path can contain
an arbitrary number of traversals of the cycle that runs from u to the second call site on @, enters @ from
the second call site, then returns to the first call site, and then reaches u. Note that this cycle cannot occur

10



in an unbalanced-left path.

Next, we wish to calculate the number mazEnters|P}, which is an upper bound on number of times the
vertex Entryp can occur on an unbalanced-left path. (As we shall see, mazEnters[P] is well defined and
finite.) We observe that for P # main, the number of times Entryp occurs on an unbalanced-left path p is
bounded by the maximum number of times a vertex for a call site on P can occur on the path p. Together
with Observation 3.1 (which applies to call vertices), this implies that for all P # main,

mazEnters|P] = Z mazEnters[Q] - (number of non-recursive call sites on P in Q).
Q

We also have mazEnters[main] = 1. For P # main, mazEnters[P] is well defined and has a finite value
because there are no recursive calls in G%,,; thus, we can solve for the mazEnters[P] values by considering
the vertices of the call graph associated with G, (which is acyclic) in topological order.

Observation 3.1, together with the fact that mazEnters[P] is finite for all P, means that that for all
vertices v, there is a finite bound on the number of times v may occur in an unbalanced-left path p. This
implies that there is an upper bound on the length of an unbalanced-left path, and that the number of
unbalanced-left paths is finite.

In the following section, we motivate the use of G, in collecting an interprocedural context profile by
considering the example code in Figure 4. Section 5.1 discusses in detail how to obtain a dense numbering
of the unbalanced-left paths in G%,,, in the general case.

3.3 Numbering Unbalanced-Left Paths: A Motivating Example

Extending the Ball-Larus technique to number unbalanced-left paths in G%, is complicated by the following
facts:

1. While the number of unbalanced-left paths is finite, an unbalanced-left path may contain cycles (such
as the one shown in Figure 3).

2. The number of paths that may be used to extend a given path that reaches a vertex v is dependent
on the path taken to reach v: For a given path p to vertex v, not every path ¢ from v forms an
unbalanced-left path when concatenated with p.

These facts mean that it is not possible to assign a single integer value to each vertex and edge of G%, as
the Ball-Larus technique does. Instead, each occurrence of an edge e in a path p will contribute a value to
the path number of p, but the value that an occurrence of e contributes will be dependent on the part of p
that precedes that occurrence of e.

To motivate our approach to solving these problems, we return to the sample program shown in Figure 4.
Figure 5 shows the graph Gj, constructed for this program. (For the remainder of this section, “G%,”
refers to the graph in Figure 5.) Notice that G, contains cyclic, unbalanced-left paths. For example, the
unbalanced-left path

Entryglobal—)'ul -')'1)2—-)‘1)3"-)’04—)’05*)’06—)11,1--)’u,3-—)’LL7-—)'LL8——)U7-—-)'03-->‘U9-¥’010—>U1 — U3
@)
contains the cycle
Uy —r Uz — Uy — Ug —+ U7 —F Vg —F Vg — VU1p —F U1

as a subpath.

Figure 6 shows a modified version of G},, with two copies of the procedure pow, one for each call site on
pow in main. This modified graph is acyclic, and is amenable to the Ball-Larus numbering scheme; in fact
the numbers annotating the vertices and edges of the graph in Figure 6 are the Ball-Larus numbers. Note
that there is a one-to-one and onto mapping between the paths through this graph and the unbalanced-left
paths through G%,. For example the path

Entry gopar — V1 =¥ V4 = Us — Up = V1o > Up ~F U3 —F Ug > Us - ug —+ Ezit giopal

11




power *= baseé
1

while(exp > 0)
return power: i

pow2

a.
HH
uts

5 3

“,

u
u

]
;é——

18

Vit EBirY g,
while( i <
vis: return 0Og

v,

main

while{exp > 0)i¢”
return power;

powl

u

1w

Figure 6: Modified version of G, from Figure 5 in which two copies of pow have been created. Labels on
the vertices and edges show the results of applying the Ball-Larus numbering technique to the graph. Fach
vertex label is shown in a circle, and each edge label is shown in a double circle. Labels have not been shown
for edges that are given the value 0 by the Ball-Larus numbering scheme.

12



in G, (see Figure 5) corresponds to the path
Entry gopar — V1 = V4 = Vs ~ Vg —* V1o — uf = uf > uf = ug -+ ug = Ezitgiopal

in the graph from Figure 6. This correspondence can be used to number the unbalanced-left paths through
Gfn: each unbalanced-left path p through G%,, is assigned the path number of its corresponding path g
through the graph in Figure 6. As will be seen shortly, this is one way to view our approach to numbering
unbalanced-left paths in G%,.

The essence of our technique can be understood from the following two observations:

o Because the labeling passes of the Ball-Larus scheme work in reverse topological order, the values
assigned to the vertices and edges of a procedure are dependent upon the values assigned to the exit
vertices of the procedure. For instance, in Figure 6, the values assigned to the vertices and edges
of pow! are determined by the values assigned to Ezitpow: and GEzityoy; (i.e., the values 5 and 1,
respectively), while the values assigned to the vertices and edges of pow2 are determined by the values
assigned to Ezitpowe and GEzitpewe (i.e., the values 1 and 1, respectively). As will become apparent
from the discussion in Section 5.2, numPaths[GEzitp] = 1 for any procedure P. Thus, thus the reason
for the differences between the values on the edges and the vertices of pow! and the values on the
corresponding edges and vertices of pow?2 is that numPaths[Ezit pows] # numPaths[Ezitpouws].

e Given that a program transformation based on duplicating procedures is undesirable, a mechanism
is needed that assigns vertices and edges different numbers depending on the calling context. To
accomplish this, each vertex u of each procedure P is assigned a linear function 1, that, when given a
value for numPaths[Ezit p], returns the value of numPaths[u]. Similarly, each edge e of each procedure
P is assigned a linear function p. that, when given a value for numPaths[Ezit p], returns the Ball-Larus
value for e.

The 1 functions are similar to the ¢ functions of Sharir and Pnueli’s functional approach to interproce-
dural dataflow analysis [17]. In their work, the function ¢, summarizes how dataflow facts at a vertex v are
related to the dataflow facts at the entry vertex Entryp. In our technique, the function 1, summarizes how
the value of numPaths[v] on a vertex v is related to the value numPaths[Egzitp] on the exit vertex Ewitp.
The p functions have no direct analog in the Sharir and Pnueli framework, but are similar in spirit: the
function p. summarizes how the Ball-Larus value on the edge e is related to the value numPaths[Ezitp] on
the exit vertex Ezitp.

Figure 7 shows G7,, labeled with the appropriate ¥ and p functions. Note that we have the desired
correspondence between the linear functions in Figure 7 and the integer values in Figure 6:

o For an example of the correspondence between vertices, consider the vertex u; in Figure 7, with its
linear function ), = Az.2-z+2. This function, when supplied with the value numPaths[Ezit pow1] = 5
from Figure 6 evaluates to the value 12, which is equal to numPaths [u}] in Figure 6. However, when
Az.2-z+2 is given the value numPaths|Ezitpows] = 1, it evaluates to 4, which is equal to numPaths[u}]
in Figure 6.

e For an example of the correspondence between edges, consider the edge u; — u3 and its linear function
Pauy—sus = AZ.T + 1. This function, when supplied with the value numPaths[Ezitpows] = 5 evaluates to
6, which is the value on the edge u} -+ uj. When Az.x + 1 is given the value numPaths[Ezit pows] = 1,
it evaluates to 2, which is the value on the edge uf — uj.

To collect the number associated with an unbalanced-left path p in G%,,, as p is traversed, each edge e
contributes a value to p’s path number. As shown in the following example, the value that e contributes is
dependent on the path taken to e:

Example 3.2 For example, consider the edge u; — u3 in G%,, and an unbalanced-left path s that begins
with the following path prefix:

Entry g1opar = V1 = V4 —F Us = U - UL —F U3 4)

13




base:

=l ©)

ex
return power: i

Uz

power *

pow

U,

1,z

@5

vo: 1f( (1%3}

12

if( (i%2)

vg:

i v,: while( 1 <= 18 4/;
(1.17)
(0,17)
)

main

Ve
Vy

Figure 7: Labeled version of G¥%, from Figure 5. Here the ordered pair {a,b) represents the linear function
Az.a-z+b. Bach vertex label is shown in a rounded box, and each edge label is shown in a doubled, rounded
box. Unlabeled intraprocedural edges have the function (0, 0); interprocedural edges are not labeled. Only
six edges are labeled with functions other than (0,0): vy — v ((1,17)), va = v15 ({0,17)), vs — vy ({0,12)),
ve — v13 ({0,4)), u3 — uz ((1,1)), and ug — ur ((0,1)).

In this case, the edge u; — uz contributes a value of 6 to s’s path number. That this is the appropriate
value follows from the fact that u; — us is replaced by the edge uj — uj in the path prefix in Figure 6 that
corresponds to (4):

Eniry giopar — V1 = Vg = Us = Vg — Uy —> Ug

In Figure 6, the value on edge u} — uj is 6.
In contrast, in an unbalanced-left path ¢ that begins with the path prefix

BEniry gjopar = V1 = Vg =+ Us —> Vg = V10 —F Uy —* U3 (5)

14



unsigned int profile[36]; /* 36 possible paths in total */

double pow(double base, long exp,
unsigned int &pathNum, unsigned int numValidCompsFromEzit)
{

unsigned int pathNumOnEntry = pathNum; /* Save pathNum’s value
% to capture the calling context */
double power = 1.0;

while( exp > 0 ) {
power *= base;
exp--;
profilel[pathNum]++;
/* From surrogate edge ul->u3: */
pathNum = 1 * numValidCompsFromEzit + 1 + pathNumOnEntry;
}
pathNum += 0 * numValidCompsFromEzit + I; /* From edge u3->u7 */
return power;

}

Figure 8: Part of the instrumented version of the program that computes (23:1 2-9)%H + (Zzzl (3-k)?).
The original program is shown in Figure 4. The instrumented version of main is shown in Figure 9. Instru-
mentation code is shown in italics.

the edge u; — uz will contribute a value of 2 to t’s path number. To see that this is the correct value,
consider the path prefix in Figure 6 that corresponds to (5):

Eniry giopar = U1 — Vs —> Us = Vg = U1g —* uy = uy

In Figure 6, the value on edge uf — uj is 2.

It can even be the case that an edge e occurs more than once in a path p, with each occurrence contributing
a different value to p’s path number. For example, there are some unbalanced-left paths in G%,, in which
the edge u; — ug appears twice, contributing a value of 6 for the first occurrence and a value of 2 for the
second occurrence. (For example, see the path (3) that contains two occurrences of the edge u; — u3.)

To determine the value that an occurrence of the edge e should contribute to a path number, the profiling
instrumentation will use the function p. and the appropriate value for numPaths[Ezitp], where P is the
procedure containing e. Thus, as noted above, an occurrence of the edge u; — us may contribute the value
(Az.z + 1)(1) = 2 or the value (Az.z + 1)(5) = 6 to a path number, depending on the path prefix that
precedes the occurrence of u; - us.

(The method for making the appropriate values for numPaths|Ezit p] available at runtime is presented
in Section 5.4.) O

Figures 8 and 9 show the program from Figure 4 with additional instrumentation code—based on the
linear functions given in Figure 7—that collects an interprocedural path profile. (In Figures 8 and 9, various
simple optimizations—such as eliminating multiplication by 1 or dropping subterms containing multiplication
by 0—have not been performed in order to make the correspondence clearer between the instrumentation
code shown in Figures 8 and 9, and the edge functions shown in Figure 7.) The output from the instrumented
program is as follows:

0: 0 1: 0 2: 0 3: 0 4: 0 5: 0 6: 0 7: 0 8: 0
9: 0 10: O 11: © 12: 0 13: 0 14: 0 15: 0 16: 1 17: 0O
18: 9 19: 0 20: 0 21: 0 22: 0 23:0 24:9 25:3 26: 0
27: 3 28: 3 29: 6 30:3 31: 0 32:'3 33:3 34:5 35: 1

The instrumentation in this program is based on the linear functions shown in Figure 7. In a sense, the instru-
mentation emulates the instrumentation that would have resulted from transforming the original program
to have two copies of pow and using the integer values found in Figure 6.

15




int main() {
unsigned int pathNum = 0;
unsigned int pathNumOnEntry = 0;
unsigned int numValidCompsFromEzit = 1;
double t, result = 0.0;
int 1 = 1;

while( i <= 18 ) {

ifC (4%2) == 0 ) {
t = pow( i, 2, pathNum, O * numValidCompsFromExit + 5 /* From vertex v7 */);
/* On entry to pow: pathNum is O or 18; fourth arg. always 5 */
/% On exit from pow: pathNum is 1, 7, 19, or 25 %/
result += t;

} else
pathNum += 0 * numValidCompsFromEzit + 12;

1£( (i%3) == 0 ) {
t = pow( i, 2, pathNum, O * numValidCompsFromEzit + 1 /* From vertex vil */);
/* On entry to pow: pathNum is 1, 7, 12, 19, 25, or 30; fourth arg. always 1 %/
/% On exit from pow: pathNum is 2, 3, 8, 9, 13, 14, 20, 21, 26, 27, 31, or 32 */
result += t;

} else

pathWum += 0 * numValidCompsFromEzit + 4; /% From edge v9->vi3 */
i+
profilel[pathNum]++;

/* From surrogate edge vi->véd: x/

pathNum = 1 * numValidCompsFromEzit + 17 + pathNumUnEntry;
}
pathNum += 0 * numValidCompsFromExit + 17; /* From edge v4->v15 */
profilel[pathNum]++;

for (i = 0; i < 36; i++) {
cout. . width(3); cout << 4 << ":";
cout.width(2); cout << profilelz] << " *";
if ((i+1) % 9 == 0) cout << endl;

}

return 0;

}

Figure 9: Part of the instrumented version of the program that computes (Z?=1(2 )+ (8 (3 k).
The original program is shown in Figure 4. The instrumented version of the function pow and the global
declaration of profile is shown in Figure 8. Instrumentation code is shown in italics.

Section 5 presents the technical details of an algorithm for generating the appropriate linear functions.
This algorithm assigns linear functions to the vertices and edges of G, directly, without creating a modified
version of G}, such as the one shown in Figure 6, in which procedures are duplicated.

3.4 What Do You Learn From a Profile of Unbalanced-Left Paths?

Before examining the details of interprocedural path profile, it is useful to understand the information that
is gathered in this approach. As mentioned above, the approach to interprocedural path profiling that is
presented here is centered on unbalanced-left paths through G%,:

e Each unbalanced-left path p from Entry ;.40 t0 ETit globat cOrresponds to an observable path—an object
that can be logged in the profile—and is associated with a counter.

16



e Each unbalanced-left path p from Entry ;4 t0 EZit globar can be thought of as consisting of a context-
prefiz and an active-suffiz. The active-suffix ¢" of p is a maximal-size, surrogate-free subpath at the tail
of p (though the active-suffix may contain summary edges of the form ¢ =, where ¢ and r represent
a recursive call site). The context-prefix ¢' of p is the prefix of p that ends at the last surrogate edge
before p’s active suffix. (It is possible that the context-prefix ¢’ will be the empty path at Entry ,par-)

e The counter associated with the unbalanced-left path p counts the number of times during a program’s
execution that the active-suffix of p occurs in the context summarized by p’s context-prefix.

In some sense, the Ball-Larus technique is a degenerate case of the technique that has been described
here. In particular, every path profiled by the Ball-Larus technique has an empty context-prefix. Because
the profiled objects in our approach to interprocedural path profiling can have non-empty context-prefixes,
we call the approach illustrated above “interprocedural contezt path profiling”. In contrast, we call the
Ball-Larus technique an example of “intraprocedural piecewise path profiling”. A piecewise path-profiling
technique defines a set of observable paths that partition any execution path and, reports how many times
each observable path occurred during execution.

Section 6 presents a technique for “interprocedural piecewise path profiling” in which every profiled path
has an empty context-prefix. Section 7 describes a modification to the Ball-Larus technique that results in a
technique for “intraprocedural context profiling”; in this technique, a typical path consists of a context-prefix
from a procedure P’s entry vertex to a loop header and an active-suffix through a loop body.

4 Numbering Paths in a Context-Free Directed Acyclic Graph

The Ball-Larus path-numbering technique applies to directed acyclic graphs (DAGs). In this section, we
discuss how to generalize the Ball-Larus technique to apply to a Contezt-Free DAG. A context-free DAG is
defined as follows:

Definition 4.1 Let CF be a context-free grammar over an alphabet . Let G be a directed graph whose
edges are labeled with members of X. Let G have a unique entry vertex, Entry, and a unique exit vertex,
Ezit. Each path in G defines a word over I, namely, the word obtained by concatenating, in order, the
labels of the edges on the path. A path in G is an L-path if its word is in the language L defined by CF.
The graph G and the context-free grammar CF constitute a Contezt-Free DAG if and only if the number of
L-paths in G from Entry to Ezit is finite. O

In Section 3.2, we showed that the number of unbalanced-left paths through G%, is finite. Thus, the graph
Ghns together with the context-free grammar for unbalanced-left strings, constitutes a context-free DAG
where Entry is the vertex Entry o5, and Ezit is the vertex Ezitgiopar. Note that a context-free DAG need
not be acyclic, and hence might not be a DAG; however, just as the number of paths through a DAG is
finite, the number of L-paths through a context-free DAG is finite.

We are now ready to describe a mechanism for numbering L-paths in a context-free DAG. The number-
ing of L-paths in a context-free DAG is necessarily more complex than assigning a single integer to each
vertex and edge, as is done in the Ball-Larus technique (because a context-free DAG may contain cycles).
Nevertheless, a number of comparisons can be made between our technique for numbering L-paths and the
Ball-Larus technique for numbering paths in an acyclic graph. In the remainder of this section, we describe
the functions num ValidComps and edge ValueInContest that correspond, in a sense, to the vertex and edge
values of the Ball-Larus technique. (These functions are used in Section 5.1.1 to give a theoretical justification
for the ¥ and p functions that were introduced in the previous section for numbering unbalanced-left paths
(¢.e., L-paths) in G, (a context-free DAG). However, in another sense, in the interprocedural path-profiling
techniques it is the 1) and p functions that correspond to the vertex and edge values of the Ball-Larus tech-
nique, in that the % and p functions are employed at runtime to calculate the edge-increment values used
by the profiling instrumentation code, whereas numValidComps and edge ValueInContext are only referred
to in order to argue the correctness of the interprocedural profiling techniques.)

The following list describes aspects of the Ball-Larus technique, and the corresponding aspect of our
technique for numbering L-paths:

17




1. In the Ball-Larus technique, each vertex v is labeled with the number numPaths[v] of paths from v
to Ezit. In our technique, it is necessary to define a function numValidComps that takes an L-path
prefix p from Entry to a vertex v and returns the number of paths from v to Ezit that form an L-path
when concatenated with p. Thus, num ValidComps(p) returns the number of valid completions of p.

Furthermore, num ValidComps has two properties that are similar to corresponding properties of the
numPaths values:

e In the Ball-Larus technique, numPaths[Ezit] is 1 because the only path from Ezit to Ezit is the
path of length 0. For an L-path ¢ from Entry to Ezit, numValidComps(q) is defined to be 1
because the only valid completion of ¢ is the path of length 0 from Ewit to itself. (In the rest of
the paper, a path of length 0 is called an empty path. The empty path from a vertex v to itself is
denoted by “[e: v].”)

e In the Ball-Larus technique, the value numPaths|[Entry] is the total number of paths through the
acyclic control-flow graph. In our technique, the value numValidComps([e : Entry]) is the total
number of L-paths through G.

Note that the definition of the function num ValidComps is dependent on the specific context-free DAG
in question.

2. In the Ball-Larus technique, each edge e is labeled with an integer value that is used when computing
path numbers. We define a function edgeValuelnContest that takes an L-path prefix p and an edge e,
and returns an integer value for the edge e in the context given by p. (As in the case for numbering
unbalanced-left paths, the value that an edge e contributes to an path number may depend on the path
prefix up to e.) The definition of edge ValueInContext is based on the concept of a valid successor: let p
be an L-path prefix from Entry to a vertex v. A vertex w is a valid successor of p if w is a successor of
v, and [p || v = w] is an L-path prefix.? We are now ready to define the function edge ValuelInContezt

in terms of the function num ValidComps: let wy, ..., wy be the valid successors of the path p, where
p is an L-path prefix from Entry to a vertex v. Then edgeValueInContezt(p,v — w;) is defined as
follows:

0 ifi=1
edge ValueInContest(p,v — w;) = { > j<i numValidComps(p || v — w;) otherwise (6)

Note that this equation is similar to Equation (2), which is used in the Ball-Larus technique to assign
values to edges. Equation (6) is illustrated in Figure 10.

As mentioned above, the function edge ValueInContezt is used in computing path numbers. Note that
for an edge v — w, the path [p || v = w] must be an L-path prefix, otherwise edge ValueInContext(p, v — w)
is not defined.

3. In the Ball-Larus technique, the path number for a path p is the sum of the values that appear on p’s
edges. We define the path number of an L-path p to be the following sum:

Z edge ValueInContezt(p', v — w). (7)

[p'lv—w] a prefix of p

(In our interprocedural path-profiling techniques, at runtime, a running total is kept of the contributions
of the edges of p/, and as the edge v — w is traversed, the value of edgeValueInContext(p',v — w) is
added to this sum. The challenge is to devise a method by which the contribution of edge v — w to the
running sum, which is a function of the path p’ seen so far (namely, edgeValueInContezt(p',v — w)),
can be determined quickly, without an expensive examination of p’. A method for doing this using v
and p functions is presented in Section 5.5.)

4. Just as the Ball-Larus technique generates a dense numbering of the paths in an acyclic control-flow
graph, we have the following theorem:

3We use the notation [p || ¢] to denote the concatenation of the paths p and ¢; however, when [p || ] appears as an argument
to a function, e.g., numValidComps(p || ), we drop the enclosing square brackets.

18



Entry lobal

path p
v
v

= Exltglaba

[ ™
numvalidComps(p! | v—w,) = num. numValidComps(pl | v—w,) = num.
valid completions of pl|v—w valid completions of pllv—ow,
x, = edgeValuelInContext(p, v=-w,) = 0
x, = edgeValueInContext(p, v->w,) = numValidComps(pl||v—>w,)
%, = edgeValuelnContext(p, v-w;) = X, .numValidComps(pl|v—w,)
x, = edgeValueInContext(p, v-w,) = X,,aumValidComps(p!|v->w;)

Figure 10: Tllustration of the definition of edge ValueInContezt given in Equation (6).

Theorem 4.1 (Dense Numbering of L-paths) Given the correct definition of the function numValid-
Comps, Equations (6) and (7) generate a dense numbering of the L-paths through G. That is, for every
L-path p through G, the path number of p is a wunigue wvalue in the range
[0..(num ValidComps([e : Entry]) — 1)]. Furthermore, each value in this range is the path number of
an L-path through G. O

Theorem 4.1 is proven in Appendix A.

Our interprocedural path-profiling techniques are based on the above technique for numbering L-paths in
a context-free DAG. As mentioned above, G, is a context-free DAG, where unbalanced-left paths correspond
to L-paths. In Section 3.3, we showed how to number unbalanced-left paths through G, by use of the
and p functions. As shown in Section 5.1.1, the 9 and p functions are actually being used to compute
num ValidComps and edge ValueInContext.

In Section 6, a modified version of G, is introduced, and we will be interested in unbalanced-right-left
paths in this graph. In Section 6, we will show how to use the 9 and p functions to compute num ValidComps
and edge ValueInContext for the modified version of G%,,, with the context-free grammar for unbalanced-
right-left paths.

19




5 Interprocedural Context Path Profiling

The first step in collecting an interprocedural path profile is to construct G,,, as described in Section 3.2, and
this section assumes that G%,, has been so constructed. The remainder of this section is organized as follows:
Section 5.1 discusses the technical aspects of numbering the unbalanced-left paths in G%,,. Section 5.2
describes how to assign the ¢ and p functions that are used in numbering unbalanced-left paths in G%,.
Section 5.3 describes how to compute edgeValueInContext for interprocedural edges of G;}n. Section 5.4
reviews how the 1 and p functions are used to calculate the path number of an unbalanced-left path.
Section 5.5 describes the instrumentation code that is added to a program to collect an interprocedural path
profile. Finally, Section 5.6 shows how to recover the path associated with a given path number.

5.1 Numbering Unbalanced-Left Paths in G},
5.1.1 Motivation Behind the i Functions

The graph G%,, together with the context-free grammar for unbalanced-left strings, is an example of a
context-free DAG. This means that the technique presented in Section 4 can be used to number unbalanced-
left paths in G%,. In particular, the L-paths of Section 4 are the unbalanced-left paths in G}in that start at
BEniry goper and end at Ezitgiopar. The function numValidComps discussed in Section 4 takes an unbalanced-
left path p (that starts at Entry e in G,) and return the number of valid completions of p. The function
edge ValueInContezt and the definition of a path number are exactly as described in Section 4.

In Section 5.2, we describe a technique that assigns a function 1, to each vertex v, and a function p.
to each intraprocedural edge e. These functions are used by the runtime instrumentation code to compute
path numbers, which involves computing numValidComps and edgeValueInContest. This section starts by
discussing properties of num ValidComps that motivate the definition of the 7 functions. This is followed by
a discussion that motivates the p functions.

First, observe that the following relation holds for num ValidComps:

Let p be an unbalanced-left path from Entry .. t0 v, such that v # Ezit giopar. Let wy ... wg
be the set of valid successors of p. Then

k
num ValidComps(p) = Z num ValidComps (p||v — w;). (8)

i=1

This relation is very similar to the definition of numPaths (see Equation (1)). In particular, for any vertex v
such that v is not an Ezitp vertex, the set of valid successors for any path to v is the set of all successors of
v, and so Equation (8) is identical to the definition of numPaths. For an Ezitp vertex there is only one valid
successor: for an unbalanced-left path p from Entry .., to Ezitp, the label on the first edge of any valid
completion of p must match the last open parenthesis that labels an edge of p. Note that this means that
the number of valid completions for an unbalanced-left path p is completely determined by the last vertex
of p and the sequence of unbalanced-left parentheses in p.

Now consider an unbalanced-left path p from Entry .., to a vertex v and a same-level valid path ¢
from v to a vertex u in the same procedure as v. Note that [p || ¢] is an unbalanced-left path and that
the sequence of unbalanced-left parentheses in [p || ¢ is the same as in p alone. This implies that for an
unbalanced-left path p from Eniry 1,5, to v and a vertex u, the value of numValidComps(p || q) is the same
for any same-level valid path ¢ from v to u.

These observations help to motivate our approach for computing num ValidComps for unbalanced-left
paths. Consider an unbalanced-left path p from Entry,,,, to a vertex v in procedure P. The path p
determines (as described below) the value num ValidComps(p || ¢') where ¢’ is any same-level valid path from
v to Ezitp. We also observe that the value numValidComps(p || ¢") = 1, where ¢" is any same-level valid
path from v to GEzitp. (The fact that numValidComps(p || ¢") is always 1 follows from the fact that the
only successor of G Ezitp is Ezit giopar.) Given the number of valid completions from Ezitp and from GEzitp
(for a given p), it is possible to compute num ValidComps(p || s) for any same-level valid path s from v to
any vertex u (that is reachable from v) in procedure P. To aid in these computations, for each vertex v of
procedure P, we define a function 9, that, when given the number of valid completions from Ezitp, returns

20



Er VY piobat Exltglubal
[ [ ]

Figure 11: Schematic that illustrates the paths used to motivate the 1 functions. Vertices with labels of the
form ep, zp, and gp represent the vertices Entryp, Ezitp, and G Ezitp, respectively.

Entry . Exit

global

oc, er,

R ee, oX

o

‘s>

Figure 12: Schematic of the paths used to explain the use of 9 functions to compute num ValidComps(q),
where ¢ is an unbalanced-left path from Entry 4, to Ezitp. The unbalanced-left path s starts at Entry gopa
and ends at Ezitg, and has q as a prefix. Vertices with labels of the form ep, zp, and gp represent the
vertices Entryp, Ezitp, and G Ezitp, respectively.

the number of valid completions from v. Note that the function 1, does not need to take the number of valid
completions from G Ezitp as an explicit argument, because the number of valid completions of any path to
G Ezitp is always 1.

The 1 functions will be used in calculating num ValidComps(p) for an unbalanced-left path p that ends

21




at a vertex v # FExitp. They are also used to compute numValidComps(g) for an unbalanced-left path ¢
from Entry ,,u, to a vertex Ezitp. We now consider the latter use of the 4 functions. Recall that there is
only one valid successor of g—the return vertex r; such that the label on the edge Eritp — r; matches the
last open parenthesis of g. Thus, we have the following:

num ValidComps(q) = numValidComps(q || Ezitp — 7).
Suppose r; occurs in procedure (. Then the above value is equal to
Y, (numValidComps(q || Ezitp — 1 || ¢')),

where ¢' is any same-level valid path from r; to Ezitg. Recall that the function %, counts the valid
completions of [q || Ezitp — r1] that exit @ via GEzitg, even though v,, only takes as an argument the
number of valid completions for paths that exit Q via Ezitg.

As before, there is only one valid successor of [g || Ezitp — 71 || ¢']: the return vertex ro such that
Ezxitg — ry is labeled with the parenthesis that closes the second-to-last open parenthesis in g. Suppose
that r is in procedure R. Then the value of numValidComps(q) is equal to

Yr, (Yry (numValidComps(q || Ezitp — r1 || ¢' || Ezito — 72 || ¢'))),

where ¢" is any same-level valid path from ry to Fzitp. Again, 9., counts valid completions that leave R
via either GEzitp or Exitp.

This argument can be continued until a path s has been constructed from Eniry ., to Ezits, where
S is the first procedure that g (and s) enters. The path s has g as a prefix, and has only one unmatched
parenthesis, “(s”, which is the same as the first unmatched parenthesis in g. The parenthesis “(5” is matched
by the parenthesis “)s”, which can only appear on the edge Ezits — Exit giopas. Thus, the number of valid
completions of s is 1. This implies that

num ValidComps(q) = ¥, (¥r, (. . . ¢r, (numValidComps(s)) .. .)) ©)
= Yy (r, (- P (1))

where 71 ...7} is the sequence of return vertices determined by the unmatched parentheses in ¢g. Figure 12
shows a schematic of the path s that is constructed to compute num ValidComps(g).

The 9 functions are also used to calculate the total number of unbalanced-left paths through G b€,
num ValidComps([e : Entry g op01)):

numValidComps([e : Entry y1op01]) = Z num ValidComps (Entry yi,pe —+ Entryp).  (10)

Entry p €succ( Entry yopa)

The value of numValidComps(Entry o, —+ Entryp) can be computed using the function % pgnsy,: For a
same-level valid path p from Entryp to Ezitp, the value of numValidComps(Entry ,,p, — Entryp || p) is 1,
because the only valid completion of [Entry b, —+ Entryp || p] is the edge Ezitp — Ezitgiopar; thus, for
a path consisting of the edge Eniry ;i b4 — Entryp, the value of numValidComps(Entry ;.50 — Entryp) is
given by

num ValidComps(Entry j1op01 — Entryp) = YEniry, (1) (11)

Substituting Equation (11) into Equation (10) yields the following:
num ValidComps([e : Entry y,pql) = Z YEntry, (1).
Entry p €succ(Entry yop.)
5.1.2 Motivation Behind the p Functions

In addition to the v functions on vertices, functions are also assigned to edges. In particular, each intrapro-
cedural edge e is assigned a function p.. While the function v, is used to compute num ValidComps(p) for a
path p ending at vertex v, the function p,. is used to compute edgeValueInContezt(p,e) for a path p to the
source vertex of e. Specifically, for each edge e of a procedure P, the function p. takes the number of valid

22



completions from Ezitp (for an unbalanced-left path p' to Entryp concatenated with any same-level valid
path to Ezitp) and returns the value of edgeValueInContezt(p' || q,e), where g is any same-level valid path
from Entryp to the edge e.

In the following section, we first describe how to define the 1 functions and then show how to define the
p functions. In Section 5.5, we show how to use these functions to instrument a program in order to collect
an interprocedural profile.

5.2 Assigning v and p Functions
5.2.1 The Relationship of Sharir and Pnueli’s ¢ Functions to 3 Functions

Recall that in the Ball-Larus technique, each vertex v is assigned an integer value numPaths[v] that indicates
the number of paths from v to the exit vertex. In this section, we first show that the problem of finding
the value numPaths[v] for each vertex v of a control-flow graph can be cast in a form that is similar
to a backwards, intraprocedural dataflow-analysis problem. We then show that our scheme for assigning
¥ functions to vertices is similar to Sharir and Pnueli’s functional approach to interprocedural dataflow
analysis [17].

A distributive, backwards dataflow-analysis problem includes a semi-lattice L with meet operator I, a
set F of distributive functions from L to L, a graph G, and a dataflow fact ¢ associated with the exit vertex
Ezit of G. Each edge v — w of the graph is labeled with a function f,. € F. Kildall showed that the
meet-over-all-paths solution to a distributive, backwards dataflow-analysis problem is given by the maximal
fixed point of the following equations [9]:

vallv] = M fomw(vallw]) for v #Ezit (12)

wE succ(v)

val[Ezit] = ¢ (13)

For a DAG, finding the quantity numPaths[v] amounts to a technique for summing over all paths between
v and Ezit, where each path contributes a value of one to the sum. Thus, numPaths[v] can be considered to
be a “sum-over-all-paths” value. To find the numPaths values, the Ball-Larus technique finds the maximum
fixed point of the following equations (over the integers together with co):

numPaths[v] = Z id (numPaths[w]) for v #FEzit (14)
wEsuee(v)

numPaths[Ezit] = 1 (15)

The form of Equation (14) is similar to Equation (12), with the identity function ¢d standing in for each edge
function fy—w, and the addition operator + playing the role of the meet operator M. When we simplify the
right-hand side of Equation (14) t0 37, ¢ (o) MumPaths[w], this is precisely the definition of numPaths[v]
given in Section 2.1 in Equation (1).

Thus, the problem of calculating numPaths values is similar to a dataflow-analysis problem (on a DAG),
differing only in that addition is not an idempotent meet operator. (In fact, the problem of calculating
numPaths values is an example of an algebraic path problem on a DAG. For a more general discussion of
the relationship between algebraic path problems and dataflow-analysis problems, see [13].)

We now review the appropriate part of Sharir and Pnueli’s work [17], with some rephrasing of their work
to describe backwards dataflow-analysis problems instead of forwards dataflow-analysis problems. We then
show how their ¢ functions are related to our % functions.

In Sharir and Pnueli’s functional approach to interprocedural dataflow analysis, for each procedure P,
and each vertex v of P, the function ¢, captures the transformation of dataflow facts from Ezitp to v.t The
¢ functions are found by setting up and solving a system of equations. For an exit vertex Ezitp, ¢p is the
identity function:®

¢Ezitp = id. (16)
4Information flows counter to the direction of control-flow graph edges in a backwards dataflow-analysis problem.

5 According to [17}, this equation should be ¢pgi;, T id. Since we do not allow an exit vertex to be the source of an
intraprocedural edge, it is safe to replace T with =.

23




For a call vertex ¢ associated with return-site vertex r to the procedure @, we have the following equation:

¢c = ¢EntryQ o Pr. (17)
Finally, for any other vertex m in P, we have the following equation:

m = [—I m—n © @Pn.
’ n&succ(m) f i (18)
In a similar fashion, we wish to define, for each procedure P and each vertex v in P, a function v, that
calculates the number of valid completions from v to Ezit g based on the number of valid completions
from Ezitp to Ezitgiosa. The problem of finding the 1 functions differs from the one solved by Sharir and
Pnueli in that the ¢ functions describe how dataflow facts are propagated in a dataflow-analysis problem
and the 1 functions describe how values are propagated in the problem of assigning Ball-Larus-like values
to vertices. However, as shown above, the problem of assigning Ball-Larus values to vertices is similar to a
backwards dataflow-analysis problem, and as we show below, the equations that hold for the ¢ functions are
very similar to the equations that hold for the ¢ functions.
As in Sharir and Pnueli’s functional approach to interprocedural dataflow analysis, several equations
must hold. For an exit vertex Ezitp, ¥pg, is the identity function:

Q/JEI'itp - Zd (19>

This is similar to Equation (16).
For a vertex of the form G Ezitp, the following must hold:

YaEity = AT.L. (20)

This equation reflects the fact that the number of valid completions from G Eritp is always 1, regardless of
the number of valid completions from Ezitp. Equation (20) does not have a direct analog in [17], however,
GEzitp could be thought of as a vertex that generates a constant dataflow fact.

For a call vertex ¢ to a procedure @ associated with return-site vertex r, where ¢ and r represent a
non-recursive call site, we have the following:

'lpc = 'lpEntryQ © Qpr- (21)

This is similar to Equation (17).
For all other cases for a vertex m, the following must hold:

Ym= Y idotp. (22)

n€suce(m)

where the addition f+g of function values f and g is defined to be the function Az.f(z)+g(z). Equation (22)
"~ «imilar tQ Ber--**~n (18) with the identity function id standing in for each edge function fr—n-

- . 8) w
Just as bguatlons (16)-(18) arc w.. interprocedural analogs of Equations (12) and (13), Equations (19)-
(22) are the interprocedural analogs of Equations (14) and (15).

We now show that the solution to Equations (19)—(22) yields the desired 1 functions. Recall that
for a vertex v in procedure P, the function 1y takes the number of valid completions from Ezitp (for ar;
unl?alanced-left path p to vertex v in procedure P concatenated with any same-level valid path from v to
Ezitp) and returns the number of valid completions from v (for p). Given this definition of 4, it is clear
that Ec_;uations (19) and (20) must hold. Equation (22) must hold because of Equation (8) and the fact that
for an internal vertex v and any unbalanced-left path p to v, the valid successors of p are the same as the
successors of v.

Equation (21) requires more extensive justification. Let p be an arbitrary unbalanced-left path to Entry P
let p' be an arbitrary same-level valid path from Entryp to a call vertex ¢; let ¢ be associated with the return
vertex r; let ¢ and r represent a nonrecursive call site on procedure @ ; and let ¢ be an arbitrary same-level
valid path from Eniryg to Ezitg. (Figure 13 illustrates these paths and vertices.) The function 1. takes

24



Entry g, Exit
e e

pé
ee,
pé
@c
(

Figure 13: Paths used to illustrate the correctness of Equation (21).

the number N, of valid completions from Ezitp (for the path p concatenated with any same-level valid path
from Entryp to Ezitp) and returns the number of valid completions from ¢ (for [p || p']).

By the definition of 1,, we know that the number of valid completions from vertex r (for p concatenated
with any same-level valid path to r) is given by ¥,(Np). In particular, we have the following:

numValidComps(p || p' || ¢ = Entryg || ¢ || Bzitg = 1) = ¥r(Np).

Now consider the path [p || p' || ¢ — Entryg || g]. The last unmatched parenthesis in this path is on the edge
¢ — Entryg. This gives us the following (see Figure 13):

num ValidComps(p || p' || ¢ = Entryg || q) = ¥»(Np).

Because ¢ is a same-level valid path from Entryp to Ezitp, we have (by the definition of ¢ gniry,) the
following:

numValidComps(p || p' || ¢ = Bntryg) = ¥ Entry, (¢ (Np)).
Because Entry,, is the only successor of ¢, this gives us
numValidComps (p || p') = Y @ntry, (¥r (Np))-
However, by the definition of 3., numValidComps(p || p’) = ¢.(Np). This gives us

Pe(Np) = ¥ patrn . (Wr (N (23)

We have shown that Equation (23) holds fur an arbitrary unbalanced-left path [p H‘p’] to ¢ (to which thef'e
corresponds Np, the number of valid completions from Ezitp for p concatenate.d with any same-level valid
path to Ezitp) and for an arbitrary same-level valid path [c = Entryg || ¢ || Ezitg — r]. It follows that

'l/)c = ¢Entr'yQ o 'l.br'

5.2.2 Solving for ¥ Functions

We now describe how to find % functions that satisfy Equations (19)—(22). Note that each ¢ fu.nctlon is a
linear function of one variable. This follows because id(= Az.z) and Az.1 are both linear .functlons of one
variable, and the space of linear functions of one variable is closed under function composition and function
addition. For the composition of two linear functions, we observe that

25




(Az.a-z+b)o(Ayc-y+d)=Az(a-c)-z+(a-d+D).
For the addition of two linear function values (as defined above), we have
Az.a-z+b)+ (Ayc-y+d) =rz.(Aza-z+b)(2) + (Ayc-y+d)(z) = Az.(a+c) -z + (b+d).

The fact that each 1 function is a linear function of one variable means that they can be compactly repre-
sented as an ordered pair, with one coordinate representing the coeflicient, and one coordinate representing
the constant.

To find the 1 functions, each procedure P is visited in reverse topological order of the call graph, and
each vertex v in P is visited in reverse topological order of P’s control-flow graph. (For purposes of ordering
the vertices of a procedure P, a return vertex r is considered to be a successor of its associated call vertex
c.) As each vertex v is visited, the appropriate equation from Equations (19)-(22) is used to determine the
function 1,.

The order of traversal guarantees that when vertex v is visited, all of the functions that are needed to
determine v, will be available. This follows from the fact that the call graph associated with G%,, is acyclic
and the fact that the control-flow graph of each procedure in G%,, is acyclic. (The fact that the call graph and
control-flow graphs are acyclic also explains why each vertex needs to be visited only once.) For instance,
consider a call vertex c that is associated with return-site vertex r and calls procedure (). When the vertex ¢
is visited, the function %, will be available (because vertices are visited in reverse topological order) and the
function Y gniry,, will be available (because procedures are processed in reverse topological order). Hence,
Equation (21) can be used to determine ..

5.2.3 Solving for p functions

As mentioned above, a linear function is assigned to each intraprocedural edge e to aid in the calculation of
edge ValueInContezt. In particular, for an edge e in procedure P, we define the function p. such that, when
supplied with the number of valid completions from Ezitp (for an unbalanced-left path [p ||e|| ¢], where p is
an unbalanced-left path that ends at the source vertex of edge e and ¢ is any same-level valid path from the
target vertex of e to Ezitp), it returns the value of edgeValueInContext(p, e).

Let v be an intraprocedural vertex that is the source of one or more intraprocedural edges. (That is, v
cannot be a call vertex for a nonrecursive call-site, nor have the form Ezitp, nor have the form GEzitp.)
Let w; ... w;, be the successors of v. Recall that for a vertex such as v, for any unbalanced-left path p that
ends at v, every successor of v is a valid successor of p. This is because no outgoing edge from v is labeled
with a parenthesis. Given the definition of edge ValueInContexzt (see Equation (6)) and the definition of the
1) functions, it follows that the following equation holds:

0 ifi=1
Po—w; = { Zj<i Q/ij otherwise (24)

Clearly, each p function is a linear function of one variable. Furthermore, Equation (24) can be used to
find each p function after the appropriate 1 functions have been determined.

5.3 Computing edge ValueInContext for interprocedural edges

The p functions are only assigned to intraprocedural edges and they can be used to calculate edge Valueln-
Context when the second argument to edgeValueInContexzt is an intraprocedural edge. To compute the
path number for an unbalanced-left path p it is also necessary to compute edge ValueInContext for certain
interprocedural edges. This section describes how to compute edge ValueInContest for interprocedural edges.

In fact, for an interprocedural edge e and an unbalanced-left path p to e, the value of edge ValueInContest(p, e)
is almost always 0. The only situation where this is not the case is when e is of the form Entry ., — Entryg
and p is the path [e : Entry g,p,]- (Recall that as part of creating G¥,,, Transformation 3 of Section 3.2 adds
edges of the form Entryg,pe — Entryg and Ezitg — Ezitgoepa for each recursively called procedure Q.)
This follows from the fact that for an unbalanced-left path p that ends at a call vertex, an Exitp vertex, or
a GEzitp vertex, p has only one valid successor.

26



Let us consider the case of an edge of the form Eniry, ., -— Entryg. The value of
edgeValueInContezt([e : Entry yiopa1), ENETY gropar — Entryg) is computed using Equation (6). This means
that it is necessary to set a fixed (but arbitrary) ordering of the edges of the form Eniry o, — Entryp.
For convenience, we number each edge Entry .5, — Entryp according to this ordering, and use Qs to refer
to the procedure that is the target of the i*" edge. From Equation (6), the value of

edge ValueInContezt([e : Entry yioparls BNty gopar — Entryg,)

is as follows:

0 ifi=0 95
2 i< numValidComps(Entry giopar — Entryg.) otherwise (25)
As noted in Section 5.1.1, the value of num ValidComps(Entry g5 — Entryg;) is given by
num ValidComps (Entry yi,pq — Entryg,) = PEntryg, (1). (26)
Substituting Equation (26) into Equation (25) yields the following
. . 0 ifi=0
edge ValueInContezt([e : Bntry yioparl, EntTY gropar = Entryg,) = S ZbEntrij 1) otherwise (27)

5.4 Calculating the Path Number of an Unbalanced-Left Path

In this section, we show how to calculate the path number of an unbalanced-left path p through GF,
from Entryg,pe t0 EZitgobar. This is be done during a single traversal of p that sums the values of
edge ValueInContext(p', e) for each p' and e such that [p' || €] is a prefix of p (c¢f. Equation (7)).

For interprocedura) edges, the value of edge ValueInContezt is calculated as described in Section 5.3. For
an intraprocedural edge e in procedure P, the value of edge ValueInContezt(p', e) is calculated by applying
the function p. to the number of valid completions from Ezitp. (The number of valid completions from
Ezitp is determined by the path taken to Entryp—in this case a prefix of p'.)

We now come to the crux of the matter: how to determine the contribution of an edge e when the
edge is traversed (i.e., how to determine the value edgeValueInContezt(p', e,)) without incurring a cost for
inspecting the path p’. The trick is that, as p is traversed, we maintain a value, numValidCompsFromExit,
to hold the number of valid completions from the exit vertex Ezitg of the procedure @ that is currently
being visited (the number of valid completions from Ezitg is uniquely determined by p'—specifically, the
sequence of unmatched left parentheses in p'). The value numValidCompsFromExit is maintained by the use
of a stack, NVCStack, and the 9 functions for return-site vertices. The following steps describe the algorithm
to compute the path number for a path p (which is accumulated in the variable pathNum):

o When the traversal of p is begun, numValidCompsFromExit is set to 1. This indicates that there is
only one valid completion from Ezitg, where R is the first procedure that p enters: if p reaches the
exit of the first procedure it enters, then it must follow the edge Ezitp — Ezifgiobal- The value of
pathNum is initialized to the value edgeValueInContezt([e : Entry ,,pq), €) where e is the first edge of p
(see Section 5.3).

o As the traversal of p crosses a call-edge ¢ — Entry from a procedure S to a procedure T, the value
of numValidCompsFromExit is pushed on the stack, and is updated to ¢.(numValidCompsFromEzit),
where r is the return-site vertex in S that corresponds to call vertex c. This reflects the fact that the
number of valid completions from Ezitr is equal to the number of valid completions from .

o As the traversal of p crosses a return-edge Ezity — r from a procedure T to a procedure S, the value
of numValidCompsFromExit is popped from the top of the stack. This reflects the fact that the number
of valid completions from the exit of the calling procedure S is unaffected by the same-level valid path
that was taken through the called procedure T'.

o As the traversal of p crosses an intraprocedural edge e, the value of pathNum is incremented by
pe(numValidCompsFromExit).

27




e At the end of the traversal of p, pathNum is output.
In essence, we have described the following algorithm:

Algorithm 5.1 (Calculate Path Number)
Input: An unbalanced-left path p from Entry .0 to Ezitgiobal-
Output: p’s path number.

initialize numValidCompsFromExit to 1
Initialize stack NVCstack to empty

Let e be the first edge of the path p. Calculate the value of edgeValueInContezt([e : Entry g opal,€) as
described in Section 5.3. Set pathNum to this value.

set e to the second edge of p
while e is not of the form v — Ewitgiopar do
if e is of the form ¢ — Entry, then
push(NVCstack, numValidCompsFromExit)
let r be the return vertex associated with ¢
numValidCompsFromExit := 9, (numValidCompsFromExit)
else if e is of the form Ezitpr — r then
numValidCompsFromExit := pop(NVCstack)
else
pathNum := pathNum+ p.(numValidCompsFromExit)
fi
set e to the next edge of p
od
output pathNum

[

5.5 Runtime Environment for Collecting a Profile

In this section, we describe the instrumentation code that is introduced to collect an interprocedural path
profile. The instrumentation for a program P is based on the graph (i, that is constructed for P as described
in Section 3.2. In essence, the instrumentation code threads the algorithm described in Section 5.4 into the
code of the instrumented program. Thus, the variables pathNum and numValidCompsFromExit become
program variables. There is no explicit stack variable corresponding to NVCstack; instead, the program’s
execution stack is used. The variable pathNum and procedure parameter numValidCompsFromExit play the
following roles in the instrumentation code (see Figures 8 and 9 for a concrete example):

pathNum: pathNum is a local variable of main that is passed by reference to each procedure P # main. It is
used to accumulate the path number of the appropriate path in G,,. As execution proceeds along the
edges of the supergraph G* of P, the value of pathNum is updated. The profile is updated with the
value in pathNum at appropriate places (e.g., before an intraprocedural backedge of G* is traversed).

numValidCompsFromExit: Each procedure P # main is modified to take an additional parameter
numValidCompsFromExit that is passed by value. This parameter is used to tell the instrumenta-
tion code in P the number of valid completions from Ezitp for the path in G, that was used to reach
P. The value in numValidCompsFromExit is used with the p functions to compute edge values for the
edges of P.

Given a program P and the graphs G* and G}, that are associated with P, the modifications described
below are made to P in order to instrument it to collect an interprocedural context path profile. (As before,
the ordered pair (a,b) denotes the linear function Az.a-z +b.) We use C++ terminology and syntax in the
example instrumentation code.

28



1. A global declaration of the array profile is added to the program; profile is an array of unsigned
longs that has numValidComps([e : Entry ,,p,]) elements, ie., one for each unbalanced-left path
through G%, .6

2. Code is added to the beginning of main to initialize each element of profile to 0. Code is added just
before main exits to output the contents of profile. This output constitutes the profile.

3. Declarations for the variables pathNum, pathNumOnEntry, pathNumBeforeCall, and numValidCompsFromExit

are added to the beginning of procedure main. pathNum is an unsigned long’ and is initialized to
the value that is calculated for edgeValueInContezt([e : Entry yiopail, ENrY grobar = BTy nain); se€ Sec-
tion 5.3. pathNumOnEntry is an unsigned long and is initialized to the same value as pathNum.
pathNumBeforeCall is an unsigned long that is used to save the current value of pathNum before
a recursive call is made. numValidCompsFromExit is an unsigned long initialized to 1. (Note that
pathNumOnEntry and numValidCompsFromExit are somewhat redundant in main; they are added for
consistency with the other procedures.)

4. For each procedure P such that P # main, P is modified to accept the following additional parameters:

unsigned long &numPaths /* passed by reference */
unsigned long numValidCompsFromExit /% passed by value */

That is, a function prototype of the form
return.type func(...params...);

becomes
return type func(...params...,

unsigned long &numPaths,
unsigned long numValidCompsFromExit);

5. For each procedure P # main, the declarations

unsigned long pathNumOnEntry = pathNum;
unsigned long pathNumBeforeCall;

are added to the declarations of P’s local variables.

6. Each nonrecursive procedure call is modified to pass additional arguments as follows: Let the vertices
¢ and r represent the following nonrecursive procedure call:

t = func(...args...); (28)
Let 9, = (a,b). Then the function call in (28) is replaced by the following call:

t = func(...args..., pathNum, a * numValidCompsFromExit + b);

7. Each recursive procedure call is modified as follows: Let the vertices ¢ and r represent the following
recursive procedure call from the procedure P to the function func:

t = func(...args...); ‘ (29)

Let = denote the value of edge ValueInContext([e : Bniry gopa1), BOTY giopar — Entryy,,.) (see Section 5.3).
Then the procedure call in (29) is replaced by the following code:

/* A: */ pathNumBeforeCall = pathNum;

/* B: */ pathNum = z;

/* C: %/ t = func(...args..., pathNum, 1);
/* D: %/ profile[pathNum]++;

/% E: */ pathNum = pathNumBeforeCall;

8In practice it is likely that a hash table would be used in place of the array profile.

TIn practice, it is possible that the number of bits needed to represent a path number will not fit in an unsigned long. In
this case, instead of using unsigned longs it may be necessary to use a Counter class and Counter objects to represent path
numbers. The Counter class must behave like an unsigned long but be able to handle arbitrarily large integers.

29




The line labeled “A” saves the value of pathNum for the path that is being recorded before the recursive
call is made. The lines “B” and “C” set up the instrumentation in func to start recording a new path
number for the path that begins with the edge Entry b0 —* Entryys,,.; the line “C” also makes the
original procedure call in (29). The line “D” updates the profile with the unbalanced-left path in G},
that ends with the edge Ezitfunc — Ezitgiobar. The line “E” restores pathNum to the value that it had
before the recursive call was made, indicating that the instrumentation process resumes with the path
prefix [p || ¢ = 7], where p is the path taken to c.

. For each intraprocedural edge v — w that is not a backedge, code is inserted so that as the edge
is traversed, pathNum is incremented by the value py_.,(numValidCompsFromExit). For example,
consider the following if statement (v, w;, and wo are labels from vertices in G, that correspond to
the indicated pieces of code):
viif( ... ) |
Wyr o
} else { (30)
we ...

}

Let pyoyw, = (a,b) and py—w, = (¢, d). Then the if statement given in (30) is replaced by

vif( ... ) |
pathNum += a * numValidCompsFromExit + b;
Wy i e '
} else {
pathNum += ¢ * numValidCompsFromExit + d;
Wo ..

}

Note that one of {a,b) and (c,d) will be the function (0,0); clearly, no code needs to be added for an
edge labeled with the function (0, 0).

. For each intraprocedural edge w — v in procedure P that is a backedge, code is inserted that up-
dates the profile for one unbalanced-left path and then begins recording the path number for a new
unbalanced-left path. For a example, consider the following while statement (v and w represent labels
from vertices in G, that correspond to the indicated pieces of code):

vwhile( ... ){
(31)

w: /* source vertex of backedge */

}

In GF,, the backedge w — v has been replaced by the edges Entryp — v and w — GEzitp. Let
PEntry p—v = (a,b). In this example, py—s GEeit, = (0,0) (because the surrogate edge w — GEwitp is
the only edge out of w in G}, ). The while statement in (31) is replaced by

viwhile( ... ){

w: /* source vertex of backedge */
/* A: */ profile[pathNum]++;
/* B: */ pathNum = pathNumOnEntry + a * numValidCompsFromExit + b;

}

The line labeled “A” updates the profile for the unbalanced-left path of G, that ends with w —
GEzitp ~ Bzit giobar, and the line labeled “B” starts recording a new path number for the unbalanced-
left path p that consists of a context-prefix that ends at Entryp and an active-suffix that begins at v.
(The context-prefix is established by the value of pathNum on entry to P, which has been saved in the
variable pathNumOnEntry.)

30



For a second example, consider the following do-while statement (v, w and z represent labels from
vertices in G, that correspond to the indicated pieces of code):

v:do {
w:} 'w.l'x.ile( /* test x/ ); (32)
T,

In G%,, the backedge w — v has been replaced by the edges Entryp -+ v and w — GEzitp. Let
PEntry p—v = (@,b); Pw—s GEzitp = (¢, d), and pu-sz = (e, f). Then the do-while in (32) is replaced by

v:do {

wiif( /* test */ ){

/* A: */ profile[pathNum + ¢ * numValidCompsFromExit + d]++;
/* B: */ pathNum = pathNumOnEntry + a * numValidCompsFromExit + b;
/% C: %/ continue;

} else {
/* D: %/ pathNum += e * numValidCompsFromExit + f;
break;

}

} while( 0 );
T:...

The line labeled “A” updates the profile for the unbalanced-left path of G}, that ends with w —
GEzitp — Ezit giopar- The line labeled “B” starts recording a new path number for the unbalanced-left
path p that consists of a context-prefix that ends at Entryp and an active-suffix that begins at v. The
line “D” updates pathNum using the function p,—z. Again, one of {(¢,d) and (e, f) will be (0,0}, and
no code to update pathNum need be included for the function (0, 0).

5.5.1 Optimizing the Instrumentation

The code that calculates path numbers can be made more efficient than the implementation described
above. As each non-backedge is traversed, this implementation requires one multiplication and two additions.
However, within a given activation of a procedure P, the multiplication is always by the same value of
numValidCompsFromExit, and the products of these multiplications are always added to the sum in pathNum.
This means that the multiplication may be “factored out.” As an example, consider a subpath in P consisting
of the non-backedges e1, ez, and e3 that are associated with functions (2,2), (3,4), and (5, 3). Let pathNum,,,,
be the value of pathNum before this subpath is executed. After e;, ez, and e3 are traversed, we have the
following;:

pathNum pathNum

orig

2 - numValidCompsFromExit + 2
3 - numValidCompsFromExit + 4
5+ numValidCompsFromExit 4 3

pathNum_ . + 10-nunValidCompsFormExit + 9

orig

4+ -+

Instead of incrementing pathNum as each edge is traversed, two temporaries t; and t; are introduced. Both
are initialized to 0. The temporary t; is used to sum the coefficients from the edge functions. The temporary
to is used to sum the constant terms of the edge functions. When pathNum absolutely must be updated (i.e,
before the profile is updated, before a procedure call is made, or before a procedure returns), it is incremented
by t; - numValidCompsFromExit + to. Note that when procedure P calls procedure @, after control returns
to P, both t; and t; should be set to 0; when control returns to P, pathNum will have already been updated
for the current values of t; and t,.

The fact that ¢; and 1, are used to sum values as edges are traversed allows some additional optimizations
to be performed. Recall that in the Ball-Larus technique, there is some flexibility in the placement of
increment statements; this is used to push the increment statements to infrequently executed edges [5]. In
a similar fashion, it is possible to move the statements that increment ¢; and ;.

31




5.6 Recovering a Path From a Path Number

This section describes an algorithm that takes a path number pathNum as input and outputs the corre-
sponding path p; this is the inverse operation of computing a path number. As the algorithm traverses the
path p, it decrements the value in pathNum. After a path prefix p’ has been traversed, pathNum holds the
value that is contributed to p’s original path number by the path p”, where p = p’ || p". At this stage,
edgeValueInContext(p',v — w;) is computed for each valid successor w; € {w; ... w;} of p'. (Note that v is
the last vertex of p’.) The algorithm is based on the following observations:

o Let w; denote the valid successor of p’ that gives the largest value of edge ValuelnContezt(p',v — w;)
that is less than or equal to pathNum. Given the definition of edgeValueInContert, the edge v — w;
must be the next edge of p (i.e., the first edge of p'').

e For z > j, the value of edgeValueInContert(p',v — w;) is greater than pathNum and v — w, cannot
be the first edge of the continuation p".

o For z < j, any valid continuation of p' that starts with v — w, will contribute a value to the path
number that is less than edgeValueInContext(p',v — w;) (see Figure 10), which itself is less than or
equal to pathNum. Since the continuation p" makes a contribution equal to pathNum, v — w, cannot
be the first edge of p".

Thus, the next steps of the algorithm are: (i) set p’ to p' || v = wj; (ii) decrement the value of pathNum by
edge ValueInContezt(p',v — wj;); and (iii) start considering the valid successors of the new p'.

The algorithm uses two stacks: the first is similar to the stack used by Algorithm 5.1 and keeps track of
the value numValidCompsFromExit; the second keeps track of the sequence of return vertices that correspond
to the current call stack.

Algorithm 5.2 (Calculate Path from Path Number)
Input: The path number pathNum for an unbalanced-left path p in Gj*qn from Entry ,opa t0 ETit giopal-
Output: A listing of the edges of the path p.

initialize stack NVCstack to empty
initialize stack returnStack to empty
initialize numValidCompsFromExit to 1
initialize path p to [e : Bntry y,pq)

Find the edge Entry g, — Entryp that gives the largest value for
z = edgeValueInContext([e : Entry jop01)s BTy giopa — Entryp)

that is less than or equal to pathNum (see Section 5.3).

p:=p|| Entrygpe — Entryp
pathNum := pathNum — z
push(returnStack, Eritgiopar )
push(NVCstack, 1)

while p does not end at Exitgiopq do

let v be the last vertex of p

if v is a call vertex ¢ then
let ¢ — Entryp be the call-edge from c
p:=[pll ¢ — Entryp]
let  be the return vertex associated with ¢
push(returnStack, 7)
push(NVCstack, numValidCompsFromExit)
numValidCompsFromExit := 1, (numValidCompsFromExit)

else if v is an exit vertex Ezitp then

32



numValidCompsFromExit := pop(NVCstack)
r :=pop(returnStack)
p:=[p|| Eritp — 7]
else if v is an exit vertex G Ezitp then
p = [p “ GEzitp — Em’itgzobal]
else
let w; ...w denote the successors of v
for (i:=1;i < k—1;i++) do
if (py—swiy, (numValidCompsFromExit) > numPaths) then
break
fi
od
pi=[pllv—w]
numPaths := numPaths — P,y (numValidCompsFromExit)
fi
od
output p

]

6 Interprocedural Piecewise Path Profiling

As mentioned in Section 3.4, the technique described in Section 5 collects an interprocedural context path
profile. In particular, an unbalanced-left path p through G%,, may contain a non-empty context-prefix that
summarizes the context in which the active-suffix of p occurs. This section shows how to modify the technique
of Section 5 to give a technique that collects an interprocedural piecewise path profile.

In piecewise path profiling, we use a fixed set of observable paths that partition any execution path,
and report how many times each observable path occurs during program execution. An execution path
corresponds to a same-level valid path in the original supergraph from Entry,p, t0 EZitgiobar. Since we are
interested in observable paths that may begin and end in the middle of an execution path, we are interested
in unbalanced-right-left paths.

Another way to see that we are interested in unbalanced-right-left paths for interprocedural piecewise
path-profiling is to compare them with the observable paths used for interprocedural context path-profiling:
to modify an observable path p from the context path-profiling technique for use in a piecewise path-profiling
technique, we are interested in throwing out the prefix of p that contains the context-prefix, and keeping
the suffix of p that has the active-suffix; the suffix of an unbalanced-left (observable) path that is used for
context profiling is an unbalanced-right-left path.

For technical reasons, the algorithm for piecewise path profiling uses a slightly different version of G,
from that used in Sections 3 and 5. In particular, a new transformation must be performed before the
transformations given in Section 3.2:

Transformation 0: For each procedure P add the special vertex G Entryp to the flow graph for P and an
~edge Entry i, — GEntryp.

In addition, Transformations 2 and 3 are modified so that each surrogate edge of the form Fntryp — v is
replaced by a surrogate edge of the form GEntryp —» v. For the purpose of classifying a path as a same-level
valid path, an unbalanced-left path, an unbalanced-right path, or an unbalanced-right-left path, edges of
the form Entry o, — Entryp are labeled “(p”, edges of the form Ezitp — FEzitgo.ba are labeled “)p”,
and edges of the form Entry .., — GEntryp and GEzitp — Ezitgoba are labeled “e”. The observable
paths correspond to the unbalanced-right-left paths from Entry j,pq t0 ETitgiobar in the graph G’]’gn created
by Transformations 0-3.

Example 6.1 Figure 14 shows the graph G, that is constructed for collecting a piecewise profile for the
program in Figure 4. In Figure 14, the vertices vi7 and ug are inserted by Transformation 0. The vertices
v1a and ug are inserted by Transformation 1. The edges vi7 — vs and vy ~> vig are inserted by (the

33




\\
A R
o g -
A © 2
£ & a,
b It b 3
3 o g * =
S e N e < I . H
. 3 — 1] 2
18| (2] |¢ ;
H E o, H
4 iy - . "
L B By

\\\\\\\\\

)Y
! Vit GEnnymM]

|

vo: iF( (i%3) == 0 I }

== ()

|

return 0:

Ent ry,ram l
(nmln
v
v Entry,..
result

if( (1%2)

Vis:

|

v,

vg:

| v,: while( i <= 18 ) [«

main

= =

Figure 14: G%, for piecewise-profiling instrumentation for the program given in Figure 4. Dashed edges
represent surrogate edges; the supergraph for the program in Figure 4 includes the backedges v13 — v4 and
us — ug, which have been removed here by Transformation 2.

modified) Transformation 2 (and the backedge v13 — v4 is removed). Similarly, Transformation 2 adds the
edges ug — ug and us — ug, and removes the backedge us — u3. Transformation 3 is not illustrated in this
example, because the program is non-recursive. O

As noted above, under this construction of GF,,, the observable paths correspond to unbalanced-right-
left paths through G%,,. In particular, the observable paths no longer correspond just to the unbalanced-left
paths in G’jin: an unbalanced-right-left path that begins Eniry .4, — GEntryp -+ v —+ ... corresponds to
an observable path that begins at vertex v (i.e., in the middle of procedure P). For instance, consider the

34



following path in Figure 14:
Entry giopq = Ug —> Uz — Ur = Ug ~= U7 —> Ug — Vg — V1o —F Uy — Up -+ Ug —> Ug —> Us —> Ug — Ezit giobal

This path corresponds to an execution sequence that begins at vertex ug in pow, returns to the first call site
in main, and then re-enters pow from the second call site in main. The sequence of parentheses generated
by this path consists of an unmatched right parenthesis on the return-edge us — v7; and an unmatched
left parenthesis on the call-edge vig — u1. Thus, the path is an unbalanced-right-left path, but is not an
unbalanced-left path nor a same-level valid path.

6.1 Numbering Unbalanced-Right-Left Paths in G},

In this section, we describe how to obtain a dense numbering of the unbalanced-right-left paths in G%,.
The number of unbalanced-right-left paths in G, is finite. Thus, the graph G}En together with the context-
free grammar for unbalanced-right-left strings of parentheses constitute a context-free DAG. We will use
the technique presented in Section 4 for numbering L-paths to number unbalanced-right-left paths in the
modified G%,. For this section, the L-paths of Section 4 correspond to unbalanced-right-left paths. The
function num ValidComps takes an unbalanced-right-left path p that starts at Eniry,,,, and returns the
number of valid completions of p. The definitions of edge ValueInContezt and path number are exactly as in
Section 4.

The task of computing numValidComps and edgeValueInContext for an unbalanced-right-left path is
similar to the task of computing these functions for an unbalanced-left path in Section 5. Let p be an
unbalanced-right-left path from Entry ., to a vertex v in procedure P. Our technique is based on the
following observations (which are essentially the same as those made in Section 5):

1. The number of valid completions of p, num ValidComps(p), is determined by the sequence of unmatched
left parentheses in p and the vertex v. If v = Ezitp and p contains an unmatched left parenthesis, then
there is only one valid successor of p: the return vertex r such that Ezitp — r closes the last open
parenthesis in p. Otherwise, any successor of v is a valid successor of p.

2. For a vertex u in P, the value of numValidComps(p || ¢) is the same for any same-level valid path ¢
from v to u. In particular, this holds for v = Eritp.

3. If v = GEwitp, then the number of completions of p is 1, because GEzitp — Exit 105 is the only path
out of GEzitp.

4. Ifwy, ..., wy are the valid successors of p, then the value of num ValidComps(p) is given by the following

sum:
k

num ValidComps(p) = Z num ValidComps(p || v — w;).

i=1

These observations imply that the ¥ and p functions described in Section § are also useful for interprocedural
piecewise path profiling. Let g be any same-level valid path from v to Ezitp. This means that

num ValidComps(p) = . (numValidComps(p || q))-
Furthermore, for an intraprocedural edge v —+ w, we have the following:
edge ValueInContest(p,v = w) = py—yw(numValidComps(p || q)).

As we will see in Sections 6.2 and 6.3, this allows us to use the same device we used in Sections 5.4
and 5.5—namely, to maintain a value numValidCompsFromExit so that edgeValueInContezt(p,v -+ w) can
be computed efficiently, as py.,{numValidCompsFromExit.

Even though the same v and p functions will be used, there are two key differences in how the functions
num ValidComps and edge ValueInContext are computed when dealing with unbalanced-right-left paths:

1. The first difference is in how numValidComps is computed for an unbalanced-right-left path that ends
with an Ezitp vertex.

35




2. The second difference is in how edge ValuelInContezt is computed for an interprocedural edge.

Both of these differences stem from the fact that an unbalanced-right-left path p from Entry ., to Ezitp
may have no unmatched left parentheses (i.e., p may be an unbalanced-right path). In contrast, in Section 5,
when dealing with unbalanced-left paths, we never “ran out” of unmatched left parentheses.

6.1.1 Calculating num ValidComps from Ezxilp

Let ¢ be an unbalanced-right-left path from Eniry .4, to Ezitp. In this section, we discuss how to compute
num ValidComps(q). If ¢ contains an unmatched left parenthesis, then there is only one valid successor of g:
the return vertex r; such that the edge Fzitp — 1 matches the last unmatched left parenthesis of g. This
gives us the following:

num ValidComps(q) = numValidComps(q || Fzitp — m1).
Suppose r; occurs in procedure . Then the above value is equal to
¥, (numValidComps(q || Ezitp — 1 || ¢')),

where ¢’ is any same-level valid path from r; to Ezitg. Recall that the function ¢,, counts the valid
completions of p that exit @ via GEzitg, even though it only takes as an argument the number of valid
completions for paths that exit @ via Ezitg. As before, if [q || Ezitp — 71 || ¢] has an unmatched left
parenthesis, then it will have only one valid successor: the return vertex ro such that Ezitg — ry is labeled
with the parenthesis that closes the second-to-last unmatched left parenthesis in g. Suppose that re is in
procedure R. Then the above value becomes

Pry (r, (num ValidComps (g || Ezitp — 1y || ' || Ezitq = r2 [ ¢))),

where ¢" is any same-level valid path from r; to Ezitg. Again, 1,, counts valid completions that leave
R via either GEzitg or Exitp. This argument can be continued until a path s has been constructed from
Entry ,10pq to Erits, and one of two cases holds:

Case 1: The parenthesis “(s” that appears on the edge Entry g, —+ Eniryg is the only unmatched left
parenthesis in 5. In this case, the only valid successor of s is Bzitgi,pa, and the number of valid
completions of s is 1. This means that

num ValidComps(q) = Yry (Wry (- - - Pr, (num ValidComps(s)) .. .))
= Yr, (¢r2 (-e- Yre (1)--))

where r; ... is the sequence of return vertices determined by the unmatched left parentheses in g.
(Note that this equation is the same as Equation (9), which makes sense because g must have been an
unbalanced-left path.)

Case 2: There are no unmatched left parentheses in s. (In this case, g does not contain the parenthesis
“(s"; note that this case cannot happen for a path ¢ in Section 5, because each unbalanced-left path
g starts with a parenthesis of the form “(s”.) In this case, s is an unbalanced-right path (which
has the unbalanced-right-left path ¢ as a prefix), and so every return vertex that is a successor of
Fritg is a valid successor of s. Furthermore, any unbalanced-right-left path from Ezits to Ezitgobal
is a valid completion of the path s. (In contrast, consider an unbalanced-left path p that is used for
interprocedural context path profiling: each valid completion of p is an unbalanced-right-left path;
however, only an unbalanced-right-left path p' where the sequence of unmatched right parentheses in
p' match the sequence of unmatched left parentheses in p can be a valid completion of p.)

We define the value numUnbalRLPaths[v] to be the total number of unbalanced-right-left paths from
the vertex v to Ezil gopa. This gives us the following:

num ValidComps(q) = ¥r; (Yry (- - . ¥r, (numValidComps(s)) .. .))
= Yr, (Ury (- . . Y (numUnbalRLPaths{Ezits)) . . .))

where 7y ...7 is the sequence of return vertices determined by the unmatched left parentheses in q.
(Note that if there are no unmatched left parentheses in g, then Ezits = Ezitp and the above equation
simplifies to num ValidComps(q) = numUnbalRLPaths[Fzitp].)

36



We now show how to compute numUnbalRLPaths[v]. First, note that if numUnbalRLPaths|Ezitp] is
known, then the ¢ functions can be used to compute numUnbalRLPaths[v] for any vertex v in procedure P:

numUnbalRLPaths[v] = 1, (numUnbalRLPaths[Ezit p])

This follows from the definition of 1,: let p be any unbalanced-right-left path from Entry ;.. to v such that
p does not contain any unmatched left parentheses and let ¢ be a same-level valid path from v to Ezitp. The
number of valid completions of p is equal to the number of unbalanced-right-left paths from v to Ewit giopai-
This implies that

numUnbalRLPaths[v] = numValidComps(p)
Yy (numValidComps(p || q))

= 1, (numUnbalRLPaths[Ezit p])
The value of numUnbalRLPaths[Ezitp] is given by the following equation:

o

numUnbalRLPaths|Ezit p] = Z numUnbalRLPaths(r] (33)

r€succ(Eritp)

where numUnbalRLPaths|r| is given by

1 ifr= E:L‘itglobaz
Yr(numUnbalRLPaths[Ezitg)) if r is a return-site vertex in procedure Q)
(34)
Equations (33) and (34) can be used to compute numUnbalRLPaths[Ezitp] for each Ezitp vertex and
numUnbalRLPathsr] for each return-site vertex r during a traversal of the call graph associated with G%, in
topological order: Because the call graph associated with G%,, is acyclic, whenever a vertex Ezitp is reached,
each value numUnbalRLPaths(r] that is needed to compute numUnbalRLPaths|Ezitp] will be available.

numUnbalRLPaths[r] = {

6.1.2 Computing edge ValuelInContext for interprocedural edges

For an unbalanced-right-left path p from Eniry .., to Ezitp, and an edge Ezitp — r, the value of
edge ValueInContext(p, Exitp — 1) is not always zero, as it was in Section 5.3. Let ry...7r: be the suc-
cessors of Ezitp. If the path p does contain an unmatched left parenthesis, then there is only a single r; that
is a valid successor of p. This means that

edge ValueInContext (p, Ezitp — 1;) = 0.

Now suppose that p has no unmatched left parentheses (i.e., p is an unbalanced-right path). In this case,
every r; is a valid successor of p. Then the definition of edgeValueInContezt in Equation (6) yields the
following:

0 ifi=1

> i<i numUnbalRLPaths[r;] otherwise (35)

edgeValueInContext(p, Ezitp — ;) = {
Notice that the value computed by Equation (35) is the same for any unbalanced-right-left path p to Ezitp
that has no unmatched left parentheses (i.e., for any unbalanced-right path). For an edge Ezitp — 74, we
define edgeValue[Ezitp —+ ;] to be the value computed by the right-hand side of Equation (35) (for any
unbalanced-right-left path p to Ezitp that has no unmatched left parentheses).
As in Section 5.3, we must also calculate edge ValueInContext for the path [e : Entry op,) and an edge
Entry giopa —+ v- We observe that

num ValidComps (Entry gope —+ Entryp) = Y Entry, (1)

and
num ValidComps (Entry g5 — GEntryp) = ¥GEntry, (numUnbalRL Paths{Ezitp)).

The first of these equations is discussed in Section 5.3. The second holds because the path consisting of the
edge Entry,,p, — GEntryp is an unbalanced-right path. With these observations, it is possible to apply

37




return power:

power *= base:;

iyt exp

pow

1z

uy:

(0.3)

1f( (1%3)

18 ) e
(1.7)

(0.7)

Vot

1£( (i%2)

IJ
vy:

v,: while{ i <

|
|

main

Ve:
Vi

Figure 15: Labeled version of G}, from Figure 14. For each intraprocedural vertex v, the function %, is
shown in a rounded box. For each intraprocedural edge e, the function p. is shown in a doubled, rounded box;
intraprocedural edges that are not labeled have the function (0,0). For the exit vertices Ezit giopai, EZitmain,
and Ezit,ow, and the return-site vertices vy and v;1, the value of numUnbalRL Paths is shown in a circle. For
each interprocedural edge v — w, the value of edgeVelueInContezt(p,v — w) for an unbalanced-right path
p ending at v is shown in a doubled rounded circle. There are a total of Ygnry . (1) + ¢GEntrym,-n(1) +
Pa Entry o, (4) = 8 4+ 8 + 5 = 21 unbalanced-right-left paths from Eniry ., to BTit gopar in G’}"in.

Equation (6) to find the appropriate values of edgeValueInContezt([e : Entry ,1,p01], Entry 1opa —+ v) for the
Entry jopa — Entryp and Eniry ., — GEntryp edges.

Figure 15 shows a labeled version of G, from Figure 14. Figure 15 shows the values on the interpro-
cedural edges that are calculated as discussed in this section. In addition, numUnbalRLPaths is shown for

38



certain vertices.
In general, the total number of unbalanced-right-left paths through G'%, is given by

num ValidComps([e : Entry g,pa1]) = Z num ValidComps(Entry g,pa — v)
vEsucc(Ent'r‘yy,Dbu,)
where
num ValidComps (Entry yyope — Entryp) = YEntry, (1)
and

num ValidComps (Entry 1,5 — GEntryp) = Y GEntry , (numUnbalRLPaths|GEzitp]).

For the graph G}, shown in Figure 15, the total number of unbalanced-right-left paths from Eniry g,pq; to
E.’Eitglobal is

num ValidComps([e : Entry y,p]) = numValidComps(Entry yope — Entry e, )+
num ValidComps (Entry yiope — GENITY 04, )+
numValidComps(Entry j1op —+ GENErY,,,)
'd)Entr“ymﬂiﬂ (1) + ";Z)GE'ntry,,,M,l (1) + "/)GEntrypow (4)
8+8+5

= 21

6.2 Calculating the Path Number of an Unbalanced-Right-Left Path

We are now ready to give the algorithm for computing the path number of an unbalanced-right-left path
p. This algorithm is very similar to the algorithm given in Section 5.4 for calculating the path number
of an unbalanced-left path. One additional program variable, cntOpenLfParens, is used. This variable is
used to keep track of the number of open left parentheses in the prefix p' of p that has been traversed.
If cntDpenLfParens is zero (indicating that p’ is an unbalanced-right path) and the algorithm traverses a
return-edge e, then pathNum may be incremented by a non-zero value (see Section 6.1.2). If cntOpenLfParens
is non-zero and the algorithm traverses a return-edge e, then pathNum is not incremented (which represents
an increment by the value 0).

Algorithm 6.1 (Calculate Path Number for an Unbalanced-right-left Path)
Input: An unbalanced-right-left path p from Entry g,pq t0 Ezit giobal-
Output: p’s path number.

Initialize stack NVCstack to empty

Let e be the first edge of the path p. Calculate the value of edgeValueInContext([e : Entry ,opal €) as
described in Section 6.1.2. Set pathNum to this value.

if e is of the form Entry g, — Entryp then
numValidCompsFromExit =1
cntOpenLfParens =1

else /* e is of the form Entry ., — GEntryp */
numValidCompsFromExit := numUnbalRLPaths|Ezitp]
cntOpenLfParens := 0

fi

set e to be the second edge of p
while e is not of the form v — Ezit yiopa1 do
if e is of the form ¢ —+ Entry; then
push numValidCompsFromExit on NVCstack
let r be the return vertex associated with c
numValidCompsFromExit := 1, (numValidCompsFromExit)

39




cntOpenLfParens+-
else if e is of the form Ezitr — r then
if cntOpenLfParens == 0 then
pathNum += edgeValuele]
let S be the procedure that contains
numValidCompsFromExit := 9, (numUnbalRLPaths|Ezits])
else
numValidCompsFromExit := pop(NVCstack)
cntlpenLfParens— —
fi
else
pathNum := pathNum+ p,(numValidCompsFromExit)
fi
set e to the next edge of p
od
output pathNum

0

6.3 Runtime Environment for Collecting a Profile

As in Section 5.5, the instrumentation code for collecting an interprocedural piecewise path profile essentially
threads Algorithm 6.1 into the code of the instrumented program. The instrumentation code for collecting
an interprocedural piecewise path profile differs from the instrumentation code described in Section 5.5 in
the following ways:

e there is no variable pathNumOnEntry;

e there is a new parameter cntOpenLfParens that is passed to every procedure except main, which has
cntDpenLfParens as a local variable; and

e both pathNum and cntOpenLfParens are saved before a recursive call is made and restored after a
recursive call returns.

Figures 16 and 17 show the program from Figure 4 with additional instrumentation code to collect an
interprocedural piecewise path profile. The output from the instrumented code is as follows:

0: 0 1: 0 2: 0 3: 0 4: 0 5: 0 6: 1 7: 0 8: 9
9: 0 10: O 11: 0 12: 3 13: 0 14: 5 15: 1 16:15 17: 3
18: 0O 19: 6 20: 6

(The algorithm for decoding a path number to obtain the corresponding unbalanced-right-left path is left
as an exercise for the reader.)

7 Intraprocedural Context Path Profiling

This section describes how to modify the Ball-Larus path-profiling technique to collect an intraprocedural
context profile. In Section 5.5, each observable path is divided into a context-prefix and an active-suffix.
When these definitions are adapted to the observable paths in the Ball-Larus (intraprocedural) technique,
each observable path has an empty context-prefix. We now show how to modify the Ball-Larus technique
so that an observable path may have a non-empty context-prefix. Under this new technique, a typical
observable path will consist of a context-prefix that summarizes the path taken to a loop header and an
active suffix that is a path through the loop.

The new technique gives more detailed profiling information than the Ball-Larus path-profiling technique.
For example, suppose there is a correlation between the path taken to a loop header and the path(s) taken
during execution of the loop body. Intraprocedural context profiling will capture the relationship between

40



unsigned int profile[21]; /* 21 possible paths in total */

double pow(double base, long exp,
unsigned int &pathNum, unsigned int numValidCompsFromEzit,
unsigned int &cntOpenLfParen) {
double power = 1.0;

while( exp > 0 ) {
power *= base;
exp--;
profile[pathlum]++;

/* Start a new path with the edges entry_global->u9 and u9->ul */
cntOpenLfParen = 0;
numValidCompsFromEzit = 4; /* from numUnbalRLPaths(u8) */
pathNum = 16; /* from the edge entry_global->u9 %/
/* no additional code is needed for the */
/%  function <0,0> on edge u9->u3 */

}
pathNum += 0 * numValidCompsFromEzit + 1; /* from edge u3->u’7 */
return power;
}
. . . 9 . 6
Figure 16: Part of the instrumented version of the program that computes (37;_;(2- N2+ (i (3-K)%).

The original program is shown in Figure 4; the instrumentation collects an interprocedural piecewise profile.
The instrumented version of main is shown in Figure 17. Instrumentation code is shown in italics.

the path taken to the loop header and the paths taken on each iteration of the loop body. The Ball-Larus
(piecewise) profiling technique will only capture the correspondence between the path taken to the loop
header and the path taken on the first iteration of the loop; for all subsequent iterations, the Ball-Larus
technique records an observable path that begins at the loop header, and ignores the context information
provided by the path used to reach the loop header.

Just as in the Ball-Larus technique, modifications are made to the procedure’s control-flow graph. Unlike
the Ball-Larus technique, we require that the control-flow graph be reducible.® There are two transforma-
tions:

Transformation 1 (split backedge targets): Each vertex v that is a backedge target is split into two
vertices v, and vs. All edges into v are changed to point to vertex v,. All edges that have v as a source
vertex are changed to have v, as the source. An edge v, — v is added to the graph; this edge is not
considered to be a surrogate edge in the following discussion. Figures 18(a) and 18(b) illustrate this
transformation.

Transformation 2 (replace backedges): For each backedge target v., a second edge vo — v is added
to the graph; this edge is considered to be a surrogate edge. (Thus, for each pair of vertices v, and vp
introduced by Transformation 1, there are two edges of the form v, — v, one of which is considered
to be a surrogate edge, and one that is not.) For each backedge source w, the surrogate edge w — Ezit
is added to the graph. Each backedge w —+ v, is removed from the graph. Figure 18(c) illustrates this
transformation.

The graph that results from performing these transformations is acyclic. Once the graph has been modified,

81f the control-flow graph is not reducible, then the graph can be transformed to make it reducible (see, for example, Aho
et al. [1]).

41




}

int main() {

Figure 17: Part of an instrumented version of the program that computes (Z?’:] (2-)2) + (The 3 k)2).
The original program is shown in Figure 4; the instrumentation collects an interprocedural piecewise profile.
The instrumented version of the function pow and the global declaration of profile is shown in Figure 16.
Instrumentation code is shown in italics.

unsigned int pathNum = O;
unsigned ini numValidCompsFromEzit = 1;
unsigned int cnilpenLfParen = 1;

double t, result = 0.0;
int i = 1;

while( i <= 18 ) {
if( (1%2) == 0 ) {
centOpenl fParent+;
t = pow( i, 2, pathNum, O # numValidCompsFromEzit + 3, cntOpenLfParen );
/* On entry to pow: pathNum is O or 8; 4th arg. always 3 */
/* Dn exit from pow: pathNum is 1, 9, or 17 */
if( 0 == cntOpenLfParen ) {
numValidCompsFromEzit = 1; /* from vertex vi6 #*/
} else
cntOpenl fParen—--;
result += t;
} else
pathlNum += 0 * numValidCompsFromEzit + 4; /+* from edge v5->v9 */
ifC (i%3) == 0 ) {
cntlpenL fParent+;
t = pow( i, 2, pathNum, 0 * numValidCompsFromEzit + 1, cntUpenLfParen );
/* On entry to pow: pathNum is 1, 4, 9, 12 or 17; 4th arg. always 1 */
/* On exit from pow: pathNum is 2, 5, 10, 13, 18, or 20 */
1f(0 == cntOpenLfParen) {

pathlNum += 3; /* from edge uB->vii */
numValidCompsFromEzit = 1; /* from vertex vié */
} else

cntOpenLfParen--;
result += t;

} else

pathNum += 0 * numValidCompsFromEzit + 2; /* from edge v9->vi3 */
it+;
profile[pathNum] ++;
/* Start a new path with edges global_entry->vi7 and vi7->v4 */
entOpenL fParen = 0;
numValidCompsFromEzit = 1; /% from vertex vi6 */

pathNum = 8; /* from edge entry_global->vi7 */
}
pathNum += 0 * numValidCompsFromEzit + 7; [* from edge v4->v1E */
profilel[pathNuml++;

For (i = 0; i < 21; i++) {
cout.width(3); cout << 4 << ":";
cout.width(2); cout << profile[i] << " ;
if ((i+1) % 9 == 0) cout << endl;

}

cout << endl;

return O;

42



Figure 18: Tllustration of Transformations 1 and 2 from Section 7. Figure (a)
shows a piece of the control-flow graph for a loop before the transformation, and
Figure (b) shows the same piece of the control-flow graph after the transformation.
Figure (c) shows the two surrogate edges that replace the backedge w — v,. Note
the difference from the Ball-Larus technique: Section 7 uses the surrogate edge
v, — Uy instead of the surrogate edge Entry — v.

the Ball-Larus edge-numbering scheme is used as before. As in the Ball-Larus technique, the path number
for a path p from Entry to Ezit is the sum of the values on p’s edges.

We are now ready to describe the instrumentation that is used to collect a profile. As in the Ball-Larus
technique, an integer variable pathNum is introduced that is used to accumulate the path number of the
currently executing path. At the beginning of the procedure, pathNum is initialized to 0.

Let v be a backedge target in the original control-flow graph, and let v, and v, be the vertices that
represent v in the modified control-flow graph (after Transformation 1). A new integer variable called
pathNumOnEntryToV is introduced. When control reaches v, pathNumOnEntryToV is set to the current value
in pathNum. pathNum is then incremented by the value on the non-surrogate edge v, — vy in the modified
graph. When the backedge w -+ v is traversed, the following steps are taken:

1. pathNum is incremented by the value on the surrogate edge w — Ezit. The profile is updated with this
value of pathNum.

2. pathNum is set to pathNumOnEntryToV, plus the value on the surrogate edge v, — vs.

The second step starts recording the path number for a new path p. The path p contains the edge v, — v, and
will have a context-prefix that ends at v, and an active-suffix that begins at v;. Note that this instrumentation
relies on the fact that the original control-flow graph is reducible. In particular, it assumes that the backedge
target v is reached—and the value of pathNumOnEntryToV is set—Dbefore the backedge w — v is traversed.

The remaining instrumentation is similar to the instrumentation used in the standard Ball-Larus tech-
nique. In particular, as each edge e is traversed, the value in pathNum is incremented by the value on
e.

8 Hybrid Inter/Intra-procedural Approaches

This section describes some additional variations on our interprocedural path-profiling techniques, based on
splitting some of the interprocedural paths by removing certain call and return edges. In other words, we
consider the effect of applying Transformation 3 of Section 3.2 to nonrecursive call sites, with the appropri-
ate modifications in instrumentation. In one sense, this will have the effect of making an interprocedural
technique become closer to an intraprocedural technique because interprocedural paths are split; in the de-
generate case when Transformation 3 is applied to all call sites, the result is an intraprocedural profiling
technique. However, when Transformation 3 is applied to only some call sites, the resulting technique is a

43




hybrid of the interprocedural and intraprocedural techniques. In particular, the set of observable paths still
includes paths that cross procedure boundaries.

One effect of this approach is illustrated in the following example, which shows how the paths in a
leaf procedure P can (in effect) contribute to an intraprocedural profile when called from one call site, and
contribute to an interprocedural profile when called from another call site. The example discussed below is a
modification of the interprocedural context profiling technique of Section 5. (The corresponding modification
of the interprocedural piecewise profiling technique from Section 6 would be similar.)

Example 8.1 Let P be a leaf procedure (i.e., P does not contain any procedure calls). Let the call vertex
c1 and the return-site vertex r; represent one call site on procedure P, and let c; and ro represent a
second call site on P. Now consider the effect of applying Transformation 3 to the first call site and
treating the second call site as nonrecursive call sites are normally treated. For the first call site, the edges
¢1 — Enitryp and Ezitp — r; are removed and the appropriate surrogate edges are added, including the
edges Entry g,p — Entryp and Ezitp — Ezit giopar. The instrumentation at the first call site will reflect the
effects of this transformation: when P is called from the first call site, the instrumentation begins recording
a new path that begins with the surrogate edge Entry 4, — Eniryp; when control returns from P to the
first call site, the instrumentation records a path that ends with the edge Ezitp — Exit giopal.

Note that since P is a leaf procedure, each unbalanced-left path [Entry .o — Entryp || p] through G},
corresponds to an intraprocedural path through P. Furthermore, each unbalanced-left path [Entry .4, —
Entryp || p] has a path number in the range

[z..(z + YEntry, (1) — 1)] (36)

where z is the value on the edge Entry,,p, — Entryp. These observations show that when P is called
from the first call site, an intraprocedural profile is, in essence, recorded for P. Specifically, the path-counts
for the paths in the range in (36) give an intraprocedural profile for P. In contrast, when P is called from
the second call site, the paths in P are profiled as interprocedural paths (with a context-prefix consisting of
some path to the second call site). O

There many different strategies that can be devised to control when to apply Transformation 3 to a call
site. The following is a partial list:

1. One possibility is to only profile “interprocedurally” for calls to procedures that have file scope (e.g.,
static functions in C). Transformation 3 is applied to call sites that represent calls to procedures that
do not have file scope.

2. A second possibility is to only profile interprocedurally for calls to procedures within the same file.
Transformation 3 is applied to call sites representing calls to procedures outside of the current file.

3. A third possibility in to only profile interprocedurally for calls to leaf procedures.

As noted below (see Section 9.1), profiling may become impractical if there are too many observable paths.
The effect of applying Transformation 3 will usually be to decrease the total number of observable paths.
This means that using any one of strategies 1-3 listed above may yield a more practical technique than
the pure strategies described in Sections 5 and 6. In addition, strategies 1 and 2 may simplify the task of
instrumenting code. In particular, a utility that takes a source program P and outputs the instrumented
version of P can determine the v and p functions on a file-by-file basis; otherwise, all files must be considered
simultaneously.

9 Discussion

9.1 Keeping the Numbering Dense-Saving Bits

In all of the path-profiling techniques discussed in this paper, it is possible for the number of observable paths
to be exponential in the size of the graph that is used for numbering paths (see Figure 19). Thus, for the
interprocedural path-profiling techniques, it is possible for the number of observable paths to be exponential

44



E nt ryglubal E n t’yglabal
@ [

L]
o d——O——

<.> M
Exit EXit

Figure 19: Schematic of a graph Figure 20: Schematic of a graph
where the number of paths from where the number of paths from
Entry giopar 10 EZitgiobar is €xpo-  ENtry o501 $0 EZitgiobar is linear
nential in the number of nodes in in the number of nodes in the
the graph. graph.

in the size of G,, and hence in the size of the program that is being profiled. This can be problematic
because it means that the number of bits needed to represent a path number can be proportional to the size of
the program.® Clearly, if the number of bits needed to represent an observable path is larger than the number
of bits in the architectural word of the machine being used, then the profiling technique in question will be
expensive, and—if the speed of the instrumented code is an issue—possibly infeasible, because the arithmetic
operations that the instrumentation code performs as each edge is traversed become more expensive.

These observations served as motivation for the work in this paper. Section 5 gives a technique for densely
numbering the unbalanced-left paths in G%,. Likewise, Section 6 presents a technique for densely numbering
the unbalanced-right-left paths in G%,.

In a technique that does not use a dense numbering, even more bits are needed to represent a path
number, and care must be taken that the problem described above is not exacerbated. However, it is not
always the case that a non-dense numbering scheme leads to less efficient profiling. In fact, it may be that
the profiling techniques described in this paper can be modified to use a non-dense numbering scheme and
to operate (on average) on fewer bits during each edge traversal. Further research is need to explore this
idea.

Clearly, it is also advantageous to limit the number of observable paths. This means that the inter-
procedural technique in Section 6 is likely to be more feasible than the interprocedural technique given in
Section 5. The technique in Section 6 (which creates graphs that are more similar to Figure 20) has strictly
fewer observable paths that the technique in Section 5 (which creates graphs that are more similar to Fig-
ure 19). Furthermore, the need to reduce the number of observable paths may make it desirable to use a
hybrid technique, such as those discussed in Section 8.

Finally, the experimental results of the Ball-Larus path-profiling technique suggest that there are, in
general, too many observable paths to create an array that has one entry for each observable path because
of memory restrictions. Rather, it is necessary to use a more complicated data structure (e.g., a hash table),
and only store the path counters for those paths that are actually executed. Fortunately, the number of
observable paths that are actually executed tends to be a small fraction of the set of all executable paths,
and use of an appropriate data structure avoids memory difficulties. It remains to be seen whether this is
still the case for our interprocedural path-profiling techniques.

%log, z bits are needed to represent a path number, where z is the number of observable paths. If there are 2" observable
paths, where n is the number of vertices in a program’s supergraph, then n bits are needed to represent an observable path.

45




9.2 Handling other Language Features

In this section, we describe how to handle some additional language features that were not explicitly addressed
in Section 5. Specifically, Section 9.2.1 discusses some of the complications that arise because of signals and
signal handlers. Section 9.2.2 describes how exceptions can be handled, and Section 9.2.3 describes how to
take care of indirect function calls.

9.2.1 Signals

Program signals can cause a problem for path profiling because of their asynchronous nature. For example,
it is possible for a signal handler to be invoked while the program is in the middle of executing an observable
path p. Because it is possible that the signal handler will never return, it is possible that the program will
never complete execution of the (hypothetical) path p, and hence p will not be recorded. Furthermore, it
is possible that there are paths, called pending paths, that are “on hold” at a recursive call site that will
only be completed once control returns to the call site. Thus, the current and pending path prefixes that
are active at the time of the signal will not be recorded in the profile. This is a problem if the purpose of
gathering a path profile is to aid in debugging. Instead, we want to record the prefizes of p and the pending
paths that have executed at the time the signal occurs.

For either of the interprocedural techniques described in Sections 5 and 6, this can be accomplished by
making the following modifications:

e For each procedure P, for each vertex v of P that is not a call vertex and is not Ezitp, add a surrogate
edge v - GEzitp.

o For each new surrogate edge v — GEzit p, the assignment of p functions is done such that p,—, gt =
(0,0). This guarantees that whenever execution reaches the vertex v, the value in pathNum is the path
number for the current path to v concatenated with [v — GEzitp — Ezitgiopai]-

e Add a global stack of unsigned longs called pendingPaths. For each recursive call site, modify the
instrumentation to push the current value of pathNum on pendingPaths before the call is made and
to pop pendingPaths after the call returns.

e For every possible signal, a signal handler is written (or modified) in which the first action of the signal
handler is to update the path profile with the current value of pathNum and with every value that
appears on the stack pendingPaths. Thus, if a signal s interrupts execution of a procedure P at a
vertex v, the signal handler for s will record a path that ends with v — GEzitp — Ezitgopa and,
for every pending path prefix on pendingPaths that ends at the call vertex ¢, a path that ends with
c— GEzitp — E:Eitglobal.

These modifications guarantee that signals will not cause a loss of information in the profile, which, as
mentioned above, is important for some profiling applications. Unfortunately, they also increase the number
of observable paths, which creates its own problems (see Section 9.1). Note that the technique for handling
signals in the intraprocedural case is similar.

It is possible to avoid the issue of pending paths by changing Transformation 3 in the construction of G,
(see the construction for context profiling in Section 3.2). In particular, for a recursive call site represented
by vertices ¢ and r, rather than adding the summary edge ¢ — r, the surrogate edges ¢ — GEzitp and
Entryp —+ r are added.!® In this way, every observable path that contains the summary edge ¢ — 7 is
split into two observable paths. The instrumentation code at a recursive call site records the path that ends
with ¢ — GEzitp = Exitgopa before making the recursive call, and begins recording a new path when the
recursive call returns. When this version of Transformation 3 is used, there are never any pending paths
during runtime.

9.2.2 Exceptions

Programming languages that have exceptions (e.g., C++, Java) can cause complications, particularly for
intraprocedural path-profiling techniques. In particular, consider a procedure P that calls procedure @,

10For piecewise profiling, the edge Entryp —~ r becomes GEntryp — r.

46



which in turn calls procedure R. If R throws an exception that is caught in P, then there will be an
incomplete path in @ that is not recorded. One way to address this is to break every observable path at
each call site.

In an interprocedural path-profiling technique, exceptions can be handled by adding a surrogate edge
from the Entryp vertex (or GEntryp vertex, depending on the interprocedural technique being used) to
the vertex v where the exception is caught, and adding a surrogate edge from the vertex u where the
exception is thrown to GEzitg. (Here P is the procedure containing v, and R is the procedure containing
u.) When the exception is thrown, the profiling instrumentation updates the profile for the path that ends
with [u — GEzitp — Etitg.ea]. When the exception is caught, the profiling instrumentation uses the edge
Entryp — v (or the edge GEntryp — v) to begin recording a new observable path.

Note that in the interprocedural path-profiling techniques we must also deal with the issue of pending path
prefixes. This can be handled in the same way it is handled in Section 9.2.1: a surrogate edge c — GEzitp is
added to each recursive call vertex c in each procedure P, the assignment of p functions is done such that the
Pe—s GEzitp functions are all (0,0), and a stack of pending path prefixes is maintained. When an exception is
thrown, the profile is updated for each value on the stack of pending path prefixes. A stack of pending path
prefixes can also be used to handle exceptions for intraprocedural path profiling techniques (where pending
paths may include paths that are “on hold” at call sites).

9.2.3 Indirect Procedure Calls

The easiest way to handle indirect procedure calls is to treat them as recursive procedure calls, and not
allow interprocedural paths that cross through an indirect procedure call. Another possibility is to turn each
indirect procedure call through a procedure variable £p into an if-then-else chain that has a separate (direct)
procedure call for each possible value of fp. Well-known techniques (e.g., such as flow insensitive points-to
analysis [4, 18, 16]) can be used to obtain a reasonable (but still conservative) estimate of the values that fp
may take on.

A Proof of Theorem 4.1

Before restating Theorem 4.1, we review some definitions.

Let the graph G and the context-free grammar CF be a context-free DAG. Let L be the language
described by CF. Let the function numValidComps take an L-path prefix ¢ in G and return the number of
valid completions of g.

Let ¢ be an L-path prefix in G from Entry to a vertex v. Let wi,...,w; be the valid successors of the
path g. Recall that edgeValueInContert(g,v —+ w;) is defined as follows:

0 ifi=1
edge ValuelnContext(g,v = w;) = { > j<i numValidComps(q || v — w;) otherwise (37)
Equation (37) is the same as Equation (6) and is illustrated in Figure 10.
Let p be an L-path through G. Recall that the path number for p is given by the following sum:
Z edge ValueInContezt(p',v — w) (38)

[P’ flv—w] a prefix of p

Equation (38) is the same as Equation (7).

We are now ready to restate Theorem 4.1:
Theorem 4.1 (Dense Numbering of L-paths) Given the correct definition of the function numValidComps,
the Equations (37) and (38) generate a dense numbering of the L-paths through G. That is, for every L-path
p through G, the path number of p is a unigque value in the range [0..(numValidComps([e : Entry]) — 1)].
Furthermore each value in this range is the path number of an L-path through G. O

The Ball-Larus technique achieves a dense numbering by maintaining the following invariant when as-
signing values to edges:

Ball-Larus Invariant: For any vertex v, for each path ¢ from v to Ezit, the sum of the edges in ¢ is a
unique number in the range [0..(numPaths[v] - 1)].

47




EXitglobal

Figure 21: Schematic of the paths referred to in Equation (39). Roughly speaking, for a valid completion g of
the path p, the value 3 11, sy 4 prefix of ¢ €49 ValueInContezt(p || ¢',u — w) is the sum of the “edge Valueln-
Contezt” values for the edges of ¢ (where each edge e of g is considered with the appropriate context—part
of which is supplied by p).

A consequence of this invariant is that each path from Entry to Ezit has a unique path number in the range
[0..(numPaths[Entry] — 1)].

To prove Theorem 4.1, we show that the definition of edge ValueInContezt given in Equation (37) main-
tains a similar invariant. We have the following lemma:

Lemma A.1 The definition of edgeValueInContext given by Equation (87) satisfies the following invariant:

Invariant 1: For any nonempty L-path prefiz p from Entry to a vertex v, let setOfValidComps(p) be the
(finite) set of valid completions of p. That is, for every path q in setOfValidComps(p), p concate-
nated with g (denoted by p || g) is an L-path from Entry to Ezit. Note that numValidComps(p) =
|setOfValidComps(p)|. Then, for every nonempty path q in setOfValidComps(p), the sum

Z edge ValueInContext(p || ¢',u — w) (39)

¢'flu—w @ prefiz of g

is a unique number in the range [0..(numValidComps(p) — 1)]. (Figure 21 shows the paths referred to
in Equation (89).)

That is, for each valid completion g of the path p, ¢ contributes a “unique” value n in the range
[0..(num ValidComps(p) — 1)] to the path number associated with [p || q]. The value n is unique in that
Jor every valid completion s # g, the value that s contributes to the path number of [p || s] is different
from the value that g contributes to the path number of [p || q].

Proof: The proof is by induction on path length (from longest path to shortest path). Let the length of a
path p be the number of edges in p, and let mazLength be the maximum length of an L-path through G.
(Note that it is not possible to have an infinite L-path, since derivations under a context-free grammar must
be finite; thus, the fact that there are a finite number of L-paths through G means that there is a bound on
the length of L-paths in G.)

For the base case of the induction, we show that for any L-path prefix of length mazLength, Invariant 1
is satisfied. An L-path prefix p of length mazLength must be an L-path and hence must start at Entry
and end at Ezit. An L-path that ends at Ezit has only the empty path as a valid continuation, and hence
satisfies Invariant 1 vacuously. It follows that any path of length mazLength satisfies Invariant 1.

48



For the inductive step, suppose that Invariant 1 is satisfied by any L-path prefix of length n that starts
at Entry, where 1 < n < mazLength. Cousider an L-path prefix p of length n — 1 that starts at Entry and
ends at a vertex v. If v = Ezit, then p satisfies Invariant 1 vacuously. Otherwise, let w1,...,wr be the
valid successors of p. By the inductive hypothesis, for any valid successor w; of p, [p || v = w;] satisfies
Invariant 1; that is, for an L-path prefix of the form [p || v — w;], for every valid completion ¢ of the path
[p || v = wi], g contributes a unique value in the range [0..(num ValidComps(p || v — w;) — 1)} to the path
number of [p || v — w; || ¢]. This fact, combined with the definition of edgeValueInContext, gives us that
any valid completion [v — w; || g] of the path p will contribute to the path number of [p || v — w; || ¢] 2
unique value in the range:

[edge ValueInContezt(p,v — w;).. (edge ValueInContext(p,v — w;) + numValidComps(p || v — w;) — 1)]

By Equation (37), this is equal to the following range:

{(Z num ValidComps(p || v = wJ)) . ((Z num ValidComps(p || v — 'wJ)) + numValidComps(p || v = w;) — 1)]

j<i i<i

Because this holds for each successor w;, 1 < i < k, every valid completion of p contributes a unique value
in the range

k
I:O.. ((Z num ValidComps(p || v — w,)) - 1)} = [0..(numValidComps (p) — 1)]

i==1

(see Figure 10). It follows that Invariant 1 holds for the path p.

In other words, the definition of edgeValuelnContert works for the same reason that the Ball-Larus
edge-numbering scheme works—for each valid successor w; of p, a range of numbers is “reserved” for valid
completions of p that start with v — w;.

Consequently, the definition of edgeValueInContest in Equation (37) satisfies Invariant 1. O

Theorem 4.1 is a consequence of Lemma A.1.

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and Tools. Addison-Wesley,
1985.

[2] G. Ammons, T. Ball, and J. Larus. Exploiting hardware performance counters with flow and context
sensitive profiling. In PLDI’97, June 1997.

[3] G. Ammons and J. Larus. Improving data-flow analysis with path profiles. In Proc. of the ACM
SIGPLAN 98 Conf. on Program. Lang. Design and Implementation, June 1998.

[4] L. O. Andersen. Program Analysis and Specialization for the C Programming Language. PhD thesis,
DIKU, University of Copenhagen, May 1994. (DIKU report 94/19).

[5] T. Ball. Efficiently counting program events. In TOPLAS 1994, 1994.
[6] T. Ball and J. Larus. Efficient path profiling. In MICRO 1996, 1996.

[7] Thomas Ball, Peter Mataga, and Mooly Sagiv. Edge profiling versus path profiling: The showdown. In
ACM Symposium on Principles of Programming Languages, New York, NY, January 1998. ACM Press.

[8] D. Callahan. The program summary graph and flow-sensitive interprocedural data flow analysis. In
SIGPLAN Conference on Programming Languages Design and Implementation, pages 47-56, New York,
NY, 1988. ACM Press.

[9] G.A. Kildall. A unified approach to global program optimization. In ACM Symposium on Principles of
Programming Languages, pages 194-206, New York, NY, 1973. ACM Press.

49




[10] J. Knoop and B. Steffen. The interprocedural coincidence theorem. In International Conference on
Compiler Construction, pages 125~140, 1992.

[11} W. Landi and B.G. Ryder. Pointer induced aliasing: A problem classification. In ACM Symposium on
Principles of Programming Languages, pages 93-103, New York, NY, January 1991. ACM Press.

[12] R. Muth and S. Debray. Partial inlining. (Unpublished technical summary).
[13] G. Ramalingam. Bounded Incremental Computation. Springer-Verlag, 1996.

[14] T. Reps, T. Ball, M. Das, and J. Larus. The use of program profiling for software maintenance with
applications to the year 2000 problem. In M. Jazayeri and H. Schauer, editors, Proc. of ESEC/FSE
'97: Sizth European Softw. Eng. Conf. and Fifth ACM SIGSOFT Symp. on the Found. of Softw. Eng.,
volume 1301 of Lecture Notes in Computer Science, pages 432-449. Springer-Verlag, 1997.

[15] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph reachability. In
ACM Symposium on Principles of Programming Languages, pages 49-61, New York, NY, 1995. ACM
Press. Available at “http://www.cs.wisc.edu/wpis/papers/popl95.ps”.

[16] M. Shapiro and S. Horwitz. Fast and accurate flow-insensitive points-to analysis. In ACM Symposium
on Principles of Programming Languages, pages 1-14, 1997.

[17] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In S.S. Muchnick
and N.D. Jones, editors, Program Flow Analysis: Theory and Applications, chapter 7, pages 189-234.
Prentice-Hall, Englewood Cliffs, NJ, 1981.

[18] B. Steensgaard. Points-to analysis in almost-linear time. In ACM Symposium on Principles of Pro-
gramming Languages, pages 32-41, 1996.

o0






