Modular Pointer Analysis

Susan Horwitz
Marc Shapiro

Technical Report #1378

July 1998

Modular Pointer Analysis *

Susan Horwitz and Marc Shapiro
Computer Sciences Department, University of Wisconsin-Madison
1210 West Dayton Street, Madison, WI 53706 USA
Electronic mail: {mds, horwitz}@cs.wisc.edu

1 Introduction

Modern languages (such as C and C++) that in-
clude pointers can be very difficult to analyze. Most
of the traditional analyses (e.g., reaching definitions,
live variables, constant propagation) rely on know-
ing which variables are used and which variables
are defined at each program point. They also rely
on knowing which variables might be used or de-
fined by a called function, which in turn requires
knowing which function is being called at each call
site. In the presence of pointers, determining which
variables are used/defined at a program point, and
which function is called at a call site are non-trivial
problems; a pointer analysis must be performed to
answer those questions before any subsequent anal-
yses can be done.

There has been a great deal of recent work on
techniques for pointer analysis. One promising ap-
proach involves flow-insensitive, context-insensitive
algorithms; i.e., algorithms that treat a program as
an unordered set of statements rather than taking
the program’s actual flow of control into account.
The disadvantage of using a flow-insensitive analy-
sis is that the results can be much more conservative
than the results produced by a flow-sensitive anal-
ysis (i.e., the points-to sets computed using a flow-
insensitive approach can be much larger than those
computed using a flow-sensitive approach). How-
ever, the advantage of using a flow-insensitive anal-
ysis is that it usually takes much less time and space
than a flow-sensitive analysis.

Even within the somewhat limited context of
flow-insensitive algorithms there is a range of ap-
proaches that trade precision for speed. At one end
is the algorithm defined by Andersen [And94] which
may require O(N?3) time, where N is the size of the
program. At the other end is the algorithm de-
fined by Steensgaard [Ste96] which runs in almost
linear time, but which usually produces less precise
results (i.e., larger points-to sets) than Andersen’s
analysis. (Both algorithms concentrate on tracking
stack-allocated storage. A safe approximation to
heap-allocated storage is maintained by treating all
storage allocated at an individual allocation site as

*This work was supported in part by the National Science
Foundation under grant CCR-9625656, and by the Army Re-
search Office under grant DAAH04-85-1-0482.

a single location.)

In previous work [SH97b] [SH97a], we carried
out several sets of experiments that explored how
well Andersen’s and Steensgaard’s approaches work
in practice. Our results indicate that neither algo-
rithm is likely to scale up well enough to be applied
to large programs (hundreds of thousands of lines).
Steensgaard’s algorithm produces results that are
too conservative (i.e., the points-to sets tend to be
quite large, which in turn leads to overly conserva-
tive results in subsequent analyses that make use
of the points-to information). While Andersen’s al-
gorithm produces much better results, it seems to
be limited by its space requirements: when run on
a Sparc 20/71 with 256 MB of RAM, it sometimes
ran out of memory when applied to medium-sized
programs (tens of thousands of lines of code). Even
when it did not actually run out of memory, it of-
ten took a very long time (wall-clock time, not CPU
time) to finish, due to thrashing.

One reason for the large memory requirements of
pointer-analysis algorithms like Andersen’s is that
they work on data structures that represent the as-
signment statements and the points-to information
for the entire program. This is because, in general,
the statements and the points-to relations of the
variables in one function can affect what is pointed
to by pointers in all other functions. In a language
like C that permits casting, even assignments to
non-pointer variables must be considered. For ex-
ample:

int a, b, ¢, *p;

a = (int)&c;
b=ua
p = (intx)b;

In this code fragment, although variables a and b are
declared to be of type int, they are actually used to
store the address of c¢. If the assignments to a and
b were ignored, it could not be determined that p
points to c.

In this paper, we explore techniques for modular
pointer analysis: analyzing small pieces of the pro-
gram (e.g., individual functions or files), then com-
bining the results of the individual analyses. We
expect our modular approach to have two impor-
tant benefits:

o It will permit algorithms like Andersen’s to be
applied to much larger programs than would

otherwise be possible, thus permitting reason-
ably precise analysis of at least medium-sized
programs.

e It will provide a way to summarize the effects
{on pointers) of auxiliary files such as libraries.
This means that programs that use libraries
can be analyzed in the context of this summary
information, rather than requiring source code
for the library functions.

To provide some intuition into our approach,
consider the two functions shown in Figure 1. Both
functions involve assignments to pointers and as-
signments via pointer dereferences; however (as sug-
gested by their names), function Local Ptrs has only
local effects, while function GlobalPirs has global
effects (it may change what is pointed to by g1,
which is visible outside that function). Also note
that the five assignment statements involving local
variables a, b, ¢ and p are not needed to capture
the global effects of function GlobalPtrs; those ef-
fects can be summarized using the single statement
“*gl o *gz;”.

Our algorithm for modular pointer analysis takes
advantage of these observations to reduce memory
requirements. In particular, we propose a three-step
approach:

step 1: For each function:

(a) Compute local points-to sets for each vari-
able.

(b) Use the local points-to sets to create a set
of statements that reflect the global effects
of the function.

step 2: Do global analysis using the collection of
global statements from all of the functions.

step 3: Use the results of the global analysis to
transform the local points-to sets into final
points-to sets for all variables.

This approach is similar to the standard approach
to so-called global dataflow analysis (meaning within
one function, across basic blocks), in which infor-
mation is first computed for each basic block, then
dataflow analysis is done across all basic blocks,
then the results of the analysis are propagated back
to the individual statements within each basic block.

We expect that the number of statements that
reflect the global effects of all functions will be much
smaller than the total size of the program (for ex-
ample, the program in Figure 1 has 10 assignment
statements, but the global effects of the two func-
tions can be summarized using a single assignment
statement). Therefore, it seems likely that this ap-
proach will permit much larger programs to be an-
alyzed.

The remainder of the paper is organized as fol-
lows: The three steps of our algorithm are described
in detail in Section 2, assuming that functions have
no parameters and return no results, and that there
are no “indirect” function calls (calls via function
pointers). Section 3 explains how to handle parame-
ters and non-void functions, and Section 4 describes

int % * g1, * % g2;
void Local Ptrs()

int % % q, *p, a, b;

int % gI, * % g2;
void Global Ptrs()
{

int * % q, *p, a, b;

a = (int)&p; a = (int)&p;
b= a; b=a

g = (int)b; q=gl;

if (...) *q = *g1; (int *)xb = *g2;
else xq = xg2; *q = p;

Figure 1: Local Ptrs does not affect points-to infor-
mation in other functions, but Global Ptrs does.

two ways to handle indirect calls. Section 5 presents
conclusions.

2 Basic Algorithm

In this section, we present our basic algorithm for
modular pointer analysis. To simplify the presen-
tation, we begin by assuming that functions have
no parameters, and return no results. We use the
program shown in Figure 2(a) as a running example
to illustrate each step of the algorithm.

2.1 Step 1(a): Compute local points-to
sets

As mentioned in the Introduction, the first step
of our algorithm involves analyzing each individ-
ual function, computing that function’s local points-
to sets. Since we are interested in flow-insensitive
analysis, branches (and the predicates that control
them) can be ignored. Declarations are also irrele-
vant; as discussed in the Introduction, it is not safe
to use declarations to exclude non-pointer variables
from pointer analysis.

Since we are interested in context-insensitive anal-
ysis, and since we are assuming in this section that
functions have no parameters and return no results,
function calls can also be ignored (for the moment).

Example: Figure 2(b) shows the sets of as-
signment statements that represent functions f and
main. O

Once a function has been transformed to a set
of assignment statements, it can be analyzed us-
ing any flow-insensitive pointer-analysis algorithm.
The only subtlety is how to handle the points-to sets
of the global variables that are used in the function.
For example, function f includes the statement

g = gl;

When this function is analyzed, it should be deter-
mined that ¢’s points-to set includes everything in
gl’s points-to set. However, the points-to set of gl
is not known when function f is analyzed. There-
fore, we use the special symbol @gl to represent
g1’s points-to set and we add the assignment:

gl = &Qgl;

int * * g1, * % g2; f’s local
points-to sets:
void f() f:
{ q— i Qg1 }
int % * g, *p; p— { QQg2 }
q =gl g = gl; Qg1 —+ { @@g2 }
p = *g2; p = *g2;
if (...) *¢ = p; *q = p;
void main() main: main’s local
{ points-to sets:
int a, b, xx, *y;
z = &a; z = &aq; z-+{a}
y = &b; y = &b; y—>{b}
gl = &a; gl = &uz; gl—={z}
92 = &y; 92 = &y; 92 —={y}
) FOs
(a) Original Code (b) Ignoring Declarations (c) Local Points-to Sets
and Conditions

Jf's global
statements

xgl = xg2;

main’s global
statements

z = &a;
y = &b;
gl = &z;
g2 = &y;

gl—>{z
g2 -1y
z—={a b}
y—+{b}

(d) Global Statements

(e) Result of Global

Analysis

(f) Final Points-to Sets
Global + Local

Figure 2: Simple example illustrating our approach to modular pointer analysis.

to the set of statements for f to “communicate”
this to the pointer-analysis algorithm that is ap-
plied to the statements that represent f. (As men-
tioned above, we want to be able to use any pointer-
analysis algorithm for this step — i.e., we want to
use the pointer-analysis algorithm as a “black box”;
if we did not include the assignment g1 = &@Qg1,
an analysis might simply determine that ¢ does not
point to anything, or it might signal an error when
attempting to process the statement “g = g1;”.)

Note however, that simply adding the statement
“g = &Qg;” for each global variable g that is used
in the current function, may not be enough in some
cases. For example, function f also includes the
statement:

P = *92;

Just adding “g2 = &@g2” is not good enough in
this case; we also need something to represent the
points-to set of the points-to set of g2. We can solve
this by also including the assignment

Qg2 = &QQg2;

but this naturally leads to the question “How many
such statements need to be included?”, and “Might
the number sometimes be unbounded?”. Unfortu-
nately, the answer to the second question is yes, and
even when the number is bounded there is no obvi-
ous way to determine the bound without essentially
doing the pointer analysis. If we are willing to aban-
don our goal of using an existing pointer analysis as
a black box, we can add such statements as needed.
However, we must still deal with cases where an un-
bounded number of those statements is needed. For
example, consider the following function:

Listnode = L;

void f{) {
Listnode * p;

p=L;
while (...} {
p = (*p).next;

}

Assuming that the fields of a structure are “col-
lapsed” ?a single variable is used to represent all
fields), the assignment statements for this function
would be:

p=1L

p=*p

and pointer analysis would discover:
p — {@QL,QQL,QQQL,...}

To handle this situation, we propose to use a
kind of “k-limiting”: for each global variable g that
is used in the function, add assignments that set up
a points-to chain of length & starting from g, and
one more assignment to add a cycle to the end of
that chain. (Some ramifications of this approach
are discussed below in Section 2.4.) For example,
for the Listnode code given above, with k = 3, we

would add the assignments:

L= &@I/;

QL = &QQAL;
0QL = &@QQL;
Q@aL = &0earL;

which would represent the points-to chain:

Lo @L g @COL @@gD

and pointer analysis would discover:
p— {QL,QQL,@GQL}

Example: Figure 2(c) shows the results of pointer
analysis on the assignment statements of Figure 2(b),
using this approach. (Note: points-to facts like
“gl — {@g1}”, which are derived directly from the
extra assignments that we add to set up points-to
sets for the global variables, e.g., “gl = &@g1;”,
are omitted from Figure 2(c).) O

2.2 Step 1(b): Create statements rep-
resenting global effects

The next step of our algorithm is to use the local
points-to sets to create a set of statements that re-
flect the global effects of the function. This set of
statements must capture the effects of the function
on the values of the global variables as well as on the
value of any variable in the points-to set of a global
(since a local variable that is in the points-to set of
a global may influence the points-to sets of variables
outside this function). As pointed out in the Intro-
duction, it can be very inefficient simply to include
all statements that involve these variables. Instead,
the following steps can be performed to create an
appropriate set of assignments:

1. Put all global variables (including variables like
@g created to represent the points-to sets of
globals) onto a worklist.

2. While the worklist is not empty do:

Select and remove one variable z from the
worklist.

For each variable y in z’s points-to set do:
Add the assignment “z = &y” to the set
of “global effects” assignments.
If y is a local variable then
make y global
add y to the worklist

When creating “global effects” assignment state-
ments, the symbol “@” is treated like a star (in-
cluding canceling with a “&”). So for example, if
p’s points-to set includes “@gl” and “@Q@Qg2", the
corresponding “global effects” statements would be:

p =gl
D = *g2;

Also, statements of the form “g = ¢” (which
arise from points-to facts like “g — @g”) can be
ignored.

Example: In function f of the running example
program, only variable @g1 is global. In function
main, gl and g2 are initially global; ¢ and y become
global because they are in the points-to sets of gl
and g2, respectively. Figure 2(d) shows the “global
effects” statements for functions f and main. O

2.3 Step 2: Do global analysis

Step two of our algorithm involves global points-
to analysis. As for the local analysis done in step
1, this can be performed by any flow-insensitive
pointer-analysis algorithm. The input is the union
of the sets of “global effects” assignment statements
created for each function, and the output is the
points-to sets for all (global) variables.

Example: Figure 2(e) shows the results of global
analysis for the running example program. O

2.4 Step 3: Use results of global analy-
sis to compute final points-to sets

The final step of the algorithm is to use the results of
global analysis to transform the points-to sets com-
puted for the local variables of each function (which
may contain values like @g) to their final forms. In
particular, each variable of the form @g (used to
represent the points-to sets of the global variables)
is replaced with the global variable’s actual points-
to set. For example, given the following points-to
sets for local variable p, and global variables g1 and
g2:

p - {z,Qg1,@Qg2}

gl — {a,b}

92— {q}

q -+ {c}

the final points-to set for p would be: “p — {z,a,b,c}”.

Example: Figure 2(f) shows the final points-to
sets for the running example. The sets for (global)
variables g1, g2, z, and y come from the results of
the global analysis phase, while the sets for (local)
variables ¢ and p are computed by replacing @gl
with the points-to set of g1, and @Q@g2 with the
points-to set of the points-to set of g2, respectively.
0

The process described above for carrying out
step 3 of our algorithm is not quite complete, be-
cause of the k-limiting approach used in Step 1. If a
local variable’s points-to set includes @@Q@g (where
the number of @’s = k), @@Q@Qg must be replaced
with all variables reachable in the points-to relation
from @@Q@g. For example, given k = 3 and:

p — {@QQg}
g - {a}
a — {b}
b— {c}
¢ — {d}

the final points-to set for p would be:
p—{c,d}

Note that, while safe, the use of this k-limiting
approach can lead to a loss of precision in some
cases. For example, consider the following program:

int® % % % gl, %% xg2, *x g3, xg4, g5;
void main()

g4 = &g5;
93 = &g4;
92 = &g3;
gl = &g2;
f0;

}

void f()

{

int * * *xp;

p = *gl;

If £ = 2, then the set of statements that repre-
sents function f is:

gl = &Qgl;

Qg1 = &Q@Qgq1;
@@yl = &@Qgl;
p=*gl;

and the result of local pointer analysis is:
p— {@Qgl1}

The points-to relation computed by global analysis
is:

gl - g2 — g3+ g4->gd
and the variable “@@g1” in p’s points-to set is re-
placed with g3, g4, and g¢5, even though in fact p
only points to g3.

In spite of this example, we believe this approach
will work well in practice, because we think that in
actual programs, pointer chains are built up using
heap-allocated storage (and, as mentioned in the
Introduction, all storage allocated at a given site is
“collapsed” into a single location by the analysis,
anyway) rather than by a sequence of assignments
like those in function main above. Experiments are
clearly needed to verify or refute this hypothesis.

3 Handling parameters and returned val-
ues

In this section, we describe how to extend our al-
gorithm to handle functions with parameters, and
functions that return results. We illustrate the ex-
tensions using a modified version of the program
from Figure 2, shown in Figure 3. In the new ver-
sion, the variables g1 and g2 are made local to
main, but are passed as parameters to function f,
and function f returns a pointer.

QOur approach is to replace function calls and re-
turn statements with plain assignment statements,

int =f{int * * A1, int * x h2) f: f's local
points-to sets:
int * * g, *p; hl = fi;
q = hl; h2 = f hl = {Qf
p = xh2; g = hl; h2 = { Qfy
if (...) xg = p; p = xh2; q - g Qf, }
return(*q); *q = p; p—{QQf; }
fresult = *q; @fl - { @@f2 }
fresuli - '{ @@f17 @@f2 }
void main() main: main’s local
{ points-to sets:
int a, b, *xz, *y; x = &a;
int * * g1, * % g2; y = &b; z—={a}
T = &a; gl = &x; Yy - { b, @fresunt }
y = &b; 92 = &y; gl = { =z
gl = &z; h =gl 92%{y%
92 = &y; f2 = g2; fi—=A{z
y= f(gl, 92); Y = fresult; fa = { Yy }
(a) Original Code (b) Transformed to (c) Local Points-to Sets
Assignments
f’s global
statements
fi{a} z-{ab)
*fi = *f2; for{y} y—+{ab}
fresutt = *f13 fresutt =+ { a, b } gl—={«
result = *f2; T — { a, b } g2 —={y
y_'){a:b} q_}{m}
main’s global p—>1{ab

statements
fi = &z
fo = &y;
z = &a;
y = &b;
y= fresult;

(d) Global Statements

(e) Result of Global
Analysis

(f) Final Points-to Sets

Global + Local

Figure 3: Extended example illustrating how to handle parameters and non-void functions.

and to model function entry with more assignment
statements. Using this approach, the only step of
the algorithm that needs to be modified is the first
part of Step 1(a); in addition to ignoring branches
and declarations, the transformations described be-
low must be performed to produce a set of assign-
ment statements for each function.

We model parameter passing using special inter-
mediate parameter-passing variables for each func-
tion, and we model returning a result using a special
return-result variable for the function. (For func-
tion f, we use f1, fo, etc. as the parameter-passing
variables, and fresuwi: as the return-result variable.)
Function entry is modeled by adding a set of assign-
ments that copy the values of the parameter-passing
variables to the formal parameters. Returning a re-
sult is modeled by replacing the return statement
with an assignment that copies the value of the re-
sult expression to the return-result variable. A func-
tion call is modeled by adding a set of assignments
that copy the values of the actual parameters to the
parameter-passing variables, and replacing the call
itself with the return-result variable.

Thus, entry to a function whose header is of the
form:

f(formaly, formals, ...formal,)
is represented by the set of assignments:

formaly = f1;
formaly = fo;

ﬁn‘maln = fus
Similarly, a return statement of the form:
return exp
is replaced with the assignment:
fresuit = €zp;
And a function call of the form:
z = f(actualy, actuals, ...actual,,);

is transformed to:

f1 = actualy;
fo = actualy;

fn = gctualy,;

z= fresult;

Note that the parameter-passing variables and
the return-result variables must be considered global
to all functions (so that assignments that set their
values appear in the “global effects” statements com-
puted for all functions).

Example: Figure 3(b) shows the transforma-
tion of the code shown in Figure 3(a) to accommo-
date parameters and function results. Figures 3(c)
- (f) show the remaining steps of the algorithm for
this example. O

4 Handling indirect calls

In this section we describe two ways to handle “indi-
rect” calls (calls via pointers). The advantage of the
first approach is that it requires no modification to
the pointer-analysis algorithm used to do the local
and global analyses. The disadvantage is that it can
only be used on “well typed” programs: programs
in which variables that are pointers to functions are
declared consistently with their uses (in particular,
the declared number of parameters must be no less
than the actual number of parameters in any call
via this pointer), and there can be no “hiding” of
function pointers via casting (e.g., assigning from a
function pointer to a variable of a different type).
The second approach overcomes this restriction at
the expense of requiring a minor modification to the
pointer-analysis algorithm.

4.1 Method 1

The basic problem with indirect calls is how to get
the values of the actual parameters into the ap-
propriate parameter-passing variables, and how to
get the result of the call back from the appropriate
return-result variable. For example, consider the
following code, which contains a call via function
pointer P:

int f(int *z, int *y)
if (...) return x;

else return y;

}

void main()

int *(+P)(int*, intx);

int *q;
int a, b;
P=&f;

g = (xP)(&a, &b);

Entry to function f is represented using the state-
ments
z = fi;
y = fa;

to copy values from f’s parameter-passing variables
to its formal parameters. Similarly, the return state-
ments are transformed to:

fresult = I
fresult =Y,

to copy the values of the returned expressions to
f’s return-result variable. However, the call to f is
made via pointer P; when the call is transformed to
a set of assignments, it is not known what function
P points to, so we cannot translate the call to copy
the values of the actual parameters into f; and fs,
and to copy the result from fresuir t0 g.

Instead, we use a chain of assignments to get the
same effect. We transform the assignment “P = & f;”

to:
P=&f;
fi= Py
fa = Py

P‘result = fresuli;
and we transform the call “q = (+P)(&a, &b);” to

Py, = &a;
P2 = &b,
q = Presuit;

Now, for example, the three assignments “P; = &a;
fi = Pi; x = fi1;” serve to copy the value of the
actual parameter &a into the corresponding formal,
z.

Additionally, any time the value of a pointer to a
function (or a pointer to a pointer to a ... to a func-
tion) is copied ~ via an assignment, by being passed
as a function parameter, or by being returned as
the result of a function — a similar set of assign-
ments must be created to copy values from one set
of parameter-passing variables to another, and from
one return-result variable to another. For example,
if p and g are pointers to a non-void function with n
parameters, the assignment “g = p;” is transformed
to:

P1 = g1;
P2 = g2;
Dn = Gn,

Jresult = Presult;

Note that it is the creation of these assignment
statements that requires knowing the type of the
function pointer (in particular, the number of argu-
ments) so that the right number of assignments be-
tween parameter-passing variables can be created.

Example: Figure 4(a) shows a program that
involves passing a function pointer as a parameter,
and assigning from one function pointer to another.
Figure 4(b) shows the corresponding set of assign-
ment statements for each function. D

4.2 Method 2

Our second method for handling indirect calls does
not rely on type information, but does require mod-
ifying the pointer-analysis algorithm that is used to
do the local and global analyses. Using this ap-
proach, no chains of assignments are created; in-
stead, an indirect call like

g = (xP)(&a, &b);

is transformed to a set of assignments very similar
to those produced by the basic method presented in

Section 2:
(#P); = &a;
(*P)g = &b,
q = (*P)resut;

The pointer-analysis algorithm must recognize as-
signments of this form (that use names like (xP);)
as special, and must replace the assignment “(*P); =
exp;” with “f; = exp;” for every function f that

is discovered to be in the points-to set of P (and
similarly for the assignment that copies back from
(*P)resuit). This is clearly a simpler approach than
method 1, but has the disadvantage that a pointer-
analysis algorithm can no longer be used as a “black
box”.

5 Conclusions and Future Work

We have presented an algorithm that permits flow-
insensitive, context-insensitive, stack-based pointer
analysis to be partitioned into three phases:

¢ alocal phase that analyzes each individual mod-
ule, creating a set of assignments that repre-
sent the module’s effects on global variables;

¢ a global phase that uses the “global effects”
assignments to compute points-to sets for all
global variables;

» a local phase that uses the results of the global
phase to finalize local points-to sets.

Although in our presentation we have used individ-
ual functions as modules, it may be that in practice
it is better to work at the file level; individual files
are small enough to process efficiently, and the set
of assignments that represent the global effects of
a file should be smaller than the union of the sets
that represent the global effects of the individual
functions in that file.

We expect that there will be two main advan-
tages to our approach:

o It will permit pointer analysis of larger pro-
grams than would otherwise be possible.

o It will provide a way to summarize the effects
(on pointers) of auxiliary files such as libraries,
thus obviating the need for library source code
during pointer analysis.

Experiments are needed to determine the best
level of granularity for modules, and to confirm that
the approach does reduce memory requirements as
we conjecture.

References

[And94] L. O. Andersen. Program Analysis and Specializa-
tion for the C Programming Language. PhD the-
sis, DIKU, University of Copenhagen, May 1994.
(DIKU report 94/19).

[SH97a] M. Shapiro and S. Horwitz. The effects of the pre-
cision of pointer analysis. In Proceedings of SAS97:
4th International Static Analysis Symposium, vol-
ume 1302 of Lecture Notes in Compuler Science,
pages 16—34, September 1997.

[SH97b] M. Shapiro and S. Horwitz. Fast and accurate flow-
insensitive points-to analysis. In ACM Symposium
on Principles of Programming Languages, pages 1-
14, January 1997.

[Ste96] B. Steensgaard. Points-to analysis in almost linear
time. In ACM Symposium on Principles of Pro-
gramming Languages, pages 32—-41, January 1996.

typedef int *(*FNPTR)(int ¥, int *);

int *f(int *z, int *y)

if (...) return z;
else return y;

}

void g(FNPTR P1)

FNPTR P2;
int xq;
int a, b;

P2 = P1;
q = (*P2)(&a, &b);

void main()

{
g(&f);
}

f:

/* function entry */

z = fi1;

y = fo

/* function body */
result = I

fresult =1

g:

/* function entry

* Pl and g; are fn ptrs so extra assignments are needed */
1=g;

g1, = Ply;

g1, = Pla;

Plresult = Nresutr

/¥ P2 =P1

* P2 and P1 are fn ptrs so extra assignments are needed */
P2 = Pl

Pl] = P21;

P12 = P22;

P2csutt = Plyesuit;

/* call to (xP2) */
P2, = &aq;

P22 = &b,

q= ‘P2result;

main:

[*calltog

* &f and g; are fn ptrs so extra assignments are needed */
g =&f;

J1 =915

f2 = G145

MNoyesutr = fre.‘zult;

(a) Original Code

(b) Translated to Assignments

Figure 4: Example illustrating how to handle indirect function calls, method 1.

