Scalable Integration of Data Collections
on the Web

Raghu Ramakrishnan
Avi Silberschatz

Technical Report #1376

June 1998

Scalable Integration of Data Collections on the Web

Raghu Ramakrishnan Avi Silberschatz

CS Dept., University of Wisconsin-Madison, and Lucent Bell Labs
email: raghu@cs.wisc.edu, avi@bell-labs.com
The contact author is Raghu Ramakrishnan

Abstract

The Web today is essentially a collection of HTML objects, and the primary mode of query-
ing is through HTML links. However, large data collections—not just individual HTML pages
or objects—are becoming increasingly accessible over the Web, and traversing HTML links is in-
adequate as a retrieval and query mechanism. We argue that our model of the Web must change
fundamentally to support a collection of tables instead of just a collection of HTML objects in
order to handle large data collections. This model is a natural extension of distributed relational
databases, but with quantum shifts in the degree of autonomy and number of nodes. Support-
ing this model offers numerous challenges for the database research community. As networks
become the backbone of information exchange, how we meet these challenges can determine
whether database technology continues to be an integral part of information management or
becomes “roadkill on the information superhighway.”

In this paper, we argue the importance of supporting tables on the Web in order to deal
with data collections, and outline the new challenges that this goal raises. In particular, we
discuss the following issues and how they are affected by the new environment: (1) Creating
and managing integrated data repositories and sharing collections across an organization, (2)
Query optimization and execution.

We also propose a novel Publish-Register-Subscribe framework as a solution to one of the
problems that we identify, namely data integration on the Web: (1) Consumers can publish
container descriptions for desired data, and search for and register into existing containers, (2)
Producers can publish descriptions of data sources, and register their sources into published
containers. In this approach, the task of creating a complex network of information is gracefully
distributed by enabling each producer to contribute to one or more containers without knowledge
of other sources of data.

1 Introduction

The World-Wide Web has dramatically increased the number of data sources available to users in a
variety of domains, and offers a powerful distribution vehicle for organizations that want to publish
or co-ordinate the use of multiple data sources. It is especially attractive in situations where the
sources are largely autonomous, evolve dynamically, and therefore do not lend themselves to data
warehousing approaches to integration.

The Web today is essentially a collection of HTML documents, and the primary mode of query-
ing is through hypertext-like links. However, large data collections—not just individual HTML
pages or objects—are becoming increasingly accessible over the Web, and traversing HTML links
is inadequate as a retrieval and query mechanism. Typical collections include image repositories,

experimental datasets in numerous specialized formats, and text corpora, as well as structured
datasets in DBMSs.

We argue that the model of the Web must change fundamentally from a collection of HTML
objects in order to provide adequate support for large data collections; while this model has proved to
be very successful, it must be enriched to handle data collections, and we argue that the appropriate
extension is to support collection of tables on the Web (in which some records might contain URLS
of HTML objects).

In order to meet the challenges of querying tables over the Web, DBMSs must be brought “out of
their boxes” [SZ98] and made accessible over the Web in ways that go well beyond simply providing
(form-based or SQL-based) gateways to conventional DBMSs. While others have considered how the
link-oriented structure of HTML documents can itself be queried in SQL-like languages [MMM97,
LSS96, KS95], or restructured using relational views [AMM97], we discuss the issues involved in
handling large numbers of tabular data sources. Of course, the ability to also query the link-
oriented network of HTML documents in tabular terms, as these complementary research efforts
demonstrate, further underscores the importance of relational querying over the Web. (Incidentally,
while we talk about the Web, our discussion is equally relevant to any kind of network, such as
corporate intranets.)

This model is a natural extension of distributed databases, but with quantum shifts in the
degree of autonomy and number of nodes, and supporting it offers numerous challenges for the
database research community. As networks become the backbone of information exchange, how we
meet these challenges can determine whether database technology continues to be an integral part
of information management or becomes “roadkill on the information superhighway.”

In this paper, we argue why the Web must be viewed as a collection of tables in order to deal
with data, collections, and outline the new challenges that this view raises. In particular, we discuss
the following issues and how they are affected by the new environment: (1) Creating integrated
data repositories and sharing collections across an organization, (2) Searching for relevant data, (3)
Query optimization and execution.

We propose an approach to integrated data access over the Web that relies upon co-operation
between consumers of data and producers of data, and by giving greater responsibility to data
producers, enables many evolving data sources to be meaningfully and dynamically configured in
response to specific consumer requirements. We refer to such intelligently integrated, co-operatively
managed repositories of data as gestalts.

We describe the organization of this paper at the end of the next section, after first presenting
our view of the Web as a collection of tables.

2 The Web as a Collection of Tables

We now make the case that the Web must be modelled as a collection of tables in order to handle
large data collections of arbitrary type. More precisely, the Web is a collection of objects identified
by URLS, and we argue that (1) tables should be identifiable through URLs, (2) records can contain
URLs, and (3) any collection of objects should be modelled as one or more metadata or summary
tables, with some records containing the URLs of objects that they describe. In varying degrees,
each of these three desiderata already appear in practice, and our purpose here is to argue that the
proliferation of such data on the Web will necessitate significant extensions of DBMS technology.

To begin with, consider that the Web contains large collections of data objects of various types,
including multimedia repositories and text corpora. How can we query such collections of data,
rather than just retrieve individual objects through an HTML link?

In the field of DBMSs, the relational model has proved to be the most suitable way to think of
data collections from the standpoints of ease of querying and data distribution. Object-relational
extensions still retain the essential tabular abstraction of data collections. We believe that the
only viable approach to querying data collections on the Web is to model each collection as a
set of tables, and to view the Web itself as a loosely federated distributed database. Emerging
standards such as OLE-DB [B96] already aim to support tabular interfaces to data sources such as
spreadsheets.

An objection to this approach might be that it does not encompass collections of non-tabular
data, such as multimedia repositories. We claim that in fact such repositories must be queried using
associated tabular “metadata”. A collection of images, for example, could be modelled as a table
of records, where each record describes an image and contains a pointer (e.g., URL) to the image
object. The “description” of the image could be a feature vector extracted by image processing
algorithms, information such as source and type of image, or a combination: the essential point
is that a collection of images is queried by querying the associated table, followed by retrieving
specific images corresponding to records in the answer set. (An image collection might well be
modelled using more than one table; this is not central to our discussion.)

Indeed, we observe that such tabular metadata is already ubiquitous. Collections of imagery or
multimedia objects almost always have associated metadata that is tabular, and individual objects
of interest are identified by first analyzing the metadata. This pattern of access does not hold for a
major class of objects on the Web today, namely HTML files and objects referenced solely through
links in such files; this class of objects is not our focus.

2.1 New Web Infrastructure

We now discuss the infrastructure required to adequately support Web sites containing tabular data
or any data repository with tabular summaries. The commercial state-of-the-art is that vendors
are developing:

e Gateways to DBMS products, and interface standards such as ODBC.

¢ Middleware products such as Datajoiner that allow relational queries over multiple databases;
however, the number of databases involved is assumed to be small.

e Easy to use HTML form-based interfaces for generating queries and for returning answers.

In other words, the focus is on making traditional DBMSs more easily accessible over the Web,
which we expect will inevitably lead to rapidly increasing numbers of DBMSs on the Web. We
believe that considerable additional research is needed to complement this trend in two ways:

1. Develop a comprehensive framework for organizing and managing the increasing numbers
of DBMSs and other structured data sources becoming accessible through the Web. This
includes searching for relevant sources, and creating loosely-coupled federations of related
sources.

2. Develop the query processing technology to operate in this environment, which poses many
novel challenges.

In the rest of this paper, we outline the capabilities that we believe are missing, and that the DB
research community should address:

1. Creating semantically meaningful integrated views of data from multiple tabular sources is a
hard problem that becomes much harder as the number of sources grows; current approaches
to relational database integration, where the integrated views are built in a centralized fashion,
break down very quickly.

2. Novel profiling issues arise. Both consumers and providers of data must provide profiles that,
in addition to describing the data involved (through conventional schemas and statistics),
must specify such factors as desired currency and ranking criteria.

3. Evaluating queries that span a large number of networked sources raises many problems;
for example, ranked answers; exploiting hierarchies of sources; greatly extended forms of
caching; using approximate reasoning techniques; identifying and using appropriate statistics
such as user and source profiles; and spatial reasoning (often, queries over localized regions
are required). Most importantly, perhaps, we must give up the assumption that the DBMS
has total control over the storage and retrieval of all data.

4. Dealing with changes, both in the sources that become (un)available and in the data that
they contain, becomes very important.

5. User interfaces for DBMSs must evolve dramatically to deal with the look and feel of Internet
browsers. This means that visual presentations of data and visual exploration will become ex-
tremely important, and that references to data outside the DBMS must be handled gracefully
through some form of extensibility such as Netscape’s “plug-ins”.

The problem of creating semantically integrated views is a good starting point for the rest of
our discussion for several reasons. First, it is a central problem in its own right. Second, it is
implicit in several of the other issues listed above. For example, a query in this environment is in
general executed against such a view, and understanding how such views are created offers insight
into query characteristics. Similarly, user and data profiles are closely related to the creation of
integrated views and query evaluation over such views. We can even think of searching for relevant
data sources as a first step towards creating an integrated view that can be queried to obtain the
desired information.

The remainder of this paper is organized as follows. In Section 3, we propose a novel approach to
creating integrated views over large numbers of autonomous, distributed tables. We call these views
gestalts to emphasize that they differ from views in a traditional DBMS setting in important ways.
We motivate our approach to creating integrated views in Section 5. In Section 6, we discuss the
new challenges raised by data collections over the Web within the context of the Gestalt framework.

3 The Gestalt Approach to Integration

A fundamental question that arises is how users can find data sources that might provide informa-
tion relevant to their needs. The problem is similar to that addressed by search engines such as
Alta Vista, but has some additional aspects:

¢ Keyword search does not utilize information in DBMS catalogs, i.e., the structural and se-
mantic information in schema descriptions and data dictionaries.

¢ Since the goal is to ask relational queries over collections of tables, “finding” relevant data
goes beyond simply locating interesting tables; we must also map the query onto these newly
identified tables.

Extending keyword search to incorporate an understanding of DBMS catalog structure, and
extending DBMS APIs to provide Web “crawlers” with the appropriate entry points, are necessary
but relatively straightforward extensions to existing technology. (Of course, just as with document
searches, the task can be made ever more challenging by seeking to exploit domain ontologies and
other semantic information aggressively.)

We therefore focus on the second issue, namely how to map a query onto a collection of “related”
tables. This is really just the semantic data integration problem in another guise: the user has an
abstract table in mind, and issues the query over this table, and we must now map this query onto
a collection of concrete tables in one or more databases.

In the traditional approach to database integration, an integrator defines the desired integrated
view by examining all the sources to be integrated. This is clearly not feasible for more than a
few sources; certainly, it is not feasible at the scale of the number of sources available on the Web.
In contrast (and as a complement) to this “pull” style to defining integrated views, we propose a
“push” approach in which:

1. The integrator publishes a description of desired data, e.g., a relational schema plus a data
dictionary for the attribute names involved. This creates a container for the desired data,
which we refer to as a gestalt.

2. Owners or collectors of data then define local views to compute tuples of the desired form,
and register these local views into the gestalt.

3. A gestalt can itself be used to define views that are registered into other gestalts, leading to
a hierarchy of gestalts.

To register a data source into a gestalt, an owner has to understand his or her data source and
the gestalt description, but does not have to understand other data sources. This is the step at
which semantic integration is done. By distributing the responsibility for this step, our approach
allows the creation of gestalts with any number of registered sources! A gestalt created in this
manner can be regarded as a view definition that contains the union of a large number of views.

We illustrate gestalts through an example:

1. Publishing Requests-For-Data: We regard the definition of a schema for an integrated
view as the creation of a container for desired data, or a Request-for-Data (RFD). The RFD
is published by the consumer of this information.

We treat such an integrated view specially in some respects, (e.g., we can associate detailed
visualization information with it exploiting DEVise’s existing visualization capabilities) and
we propose a very different approach to creating such integrated views.

A container in our framework, or RFD, is similar to a relational view, but differs in some
important respects:

¢ The integrated view is created in a very different way from the usual centralized approach
in which one integrator defines the view in its entirety: the integrator just defines the
schema, in our framework, and the actual view definition is created co-operatively by the
(owners of) the underlying data sources.

e Containers form the basis for change notification and management, as described below,
and must be capable of receiving and managing notifications of changes at the underlying
changes. In this respect, we can think of a container as an agent, and a federation of
containers as a large-scale network of information agents.

e In the context of the Web, it is likely that additional presentation information will be
stored with containers for the use of Web browsers and other visualization tools used to
render the data in the container.

We therefore call our containers or RFDs gestalts in order to distinguish them from conven-
tional RDBMS view definitions.

As an example, we might define a gestalt called FighterPlanes(Planeld, BaseAirfield, Range,
Speed, Level). There may well be collections of fighter planes in several databases, for exam-
ple, an Air Force database and a Navy database. (Of course, we expect to see far more than
two databases!) These collections must now be made accessible through the gestalt.

. Subscribing to gestalts: A consumer of information may want to search for relevant
gestalts. If there is already a gestalt called StrikePlanes(Planeld, Range, Speed, Level,
Squadron), the creator of FighterPlanes may want to subscribe to the StrikePlanes gestalt.
Even though there are some differences (e.g., the BaseAirfield attribute is missing and the
extra attribute Squadron is present), StrikePlanes tuples can be easily transformed into Fight-
erPlanes tuples (adding null values in the BaseAirfield attribute). By registering for the
StrikePlanes gestalt, the FighterPlanes gestalt accomplishes two things:

(a) Queries over FighterPlanes will retrieve tuples from StrikePlanes as well.
(b) FighterPlanes will be notified of changes to StrikePlanes.

. Registration of data sources into gestalts: In order for a query on the FighterPlanes
gestalt to retrieve information from the Air Force and Navy databases, these databases must
be registered into the gestalt. First, we must define views, say FP_AF and FP_Navy, over
these databases to generate tuples with the same schema as FighterPlanes. There may be no
one relation in the Navy database containing all the fields of FighterPlanes; we may have to
join two tables, for example, to compute this information. Once these views are registered,
FighterPlanes is defined to be the union of FP_AF and FP_Navy.

. Queries over gestalts: At any time, a user can issue a query against a gestalt table, e.g.,
FighterPlanes, treating it just like a table in a database. Queries are answered by generating
queries against each registered data source and combining the results at the integration agent.

. Change management: In the Web environment, new data sources could come on-line, and
old sources might be discontinued. In addition, the data in a given source may be updated.
How can such changes be dealt with? In our example, changes to the Navy database that affect
the view FP_Navy are relevant to the FighterPlanes gestalt, and there must be mechanisms
to notify the gestalt about such changes, and for the gestalt to request updated information.
Local trigger mechanisms, available in current commercial DBMSs, can be used to detect
changes to the Navy database that affect the view FP_Navy. These must be complemented

by messaging and monitoring services that allow the Navy source to notify the FighterPlanes
gestalt, and by mechanisms that allow the gestalt to maintain and process a history of such
change notifications. '

4 Other Approaches to Integration

Integrating heterogeneous databases has received much attention. While the Gestalt framework
shares some goals with many of these efforts, it differs significantly from each. In particular, our
work is different from related efforts in: (1) Our separation of gestalt creation from the registration
of data sources; (2) Our focus on creating/maintaining/querying integrated views over very large
numbers of sources. These differences are crucial to success in the Web environment, with large
numbers of autonomous, dynamically evolving data sources.

Some of the major related projects are Garlic at IBM Almaden, [LMH97, STR97], Hermes at U.
Maryland, [Ada96], Information Manifold at AT&T Research, [LOR96], Kleisli at U. Pennsylvania,
[Bun95], Disco [RTV96] at INRIA, Infomaster [GKD97], Lorel and Tsimmis [Pap95, PV97, HPG96]
at Stanford, SIMS [AKH96] at USC-ISI, InfoSleuth [Bay97] at MCC, and Rodin/COD at UW
Madison. [Alb96].

Like us, these projects follow the mediation philosophy of wrapping data sources and providing
mediated access through an integration agent [Wie89, Wie90]. Garlic and Hermes have objectives
similar to ours, but there are many differences in the approach taken; specifically, we emphasize
integrated queries spanning large numbers of networked sources. Hermes has not emphasised query
optimization issues. Garlic has done some of the best work on distributed query optimization over
networked heterogeneous sources, but does not consider issues of scaling with number of sources or
cooperative processing in a network of autonomous DBMSs. Neither project has dealt with change
notification/management.

Information Manifold concentrates on access to networked sources and uses source descriptions
to guide query decomposition. Our Gestalt approach refines this by decoupling integrated view
definition (i.e., the description of the gestalt, and its publication) from the registration of sources
into the integrated view, and thereby enables scalable integration of large numbers of sources.
The IM results can be used to support semantic query optimization for relational queries in the
gestalt framework; we additionally consider issues of scale, ranked queries, and change notifica-
tion/management. The SIMS project has also concentrated on semantic query optimization in a
traditional distributed environment with few sources.

Infomaster, like Information Manifold, uses source descriptions to identify sources containing
data relevant to a query and to translate results into a common form; query planning is done using
a model-elimination resolution theorem prover. Of the related work discussed here, it comes closest
to Gestalts in that it uses the concept of base or reference relations to uniformly describe all source
relations. In other words, a source can be described in terms of just the base relations, analogous
to how a source definition is registered into a Gestalt independent of other sources.

Infosleuth is an agent-based infrastructure for integrated querying. Broker agents maintain
information about sources, and are used to decompose queries and to assemble the results. The
difference with respect to us is again in our approach to constructing integrated views in a dis-
tributed fashion, and in our emphasis on scale with respect to the number of sources, and change
management.

W3QS [KS95], WebLog, [L.SS96] and WebSQL [MMM97] are all SQL-like query languages for
searching the web. For example, WebSQL models the contents of the web in terms of two relations:

Doc(URL, title, type, length, text, modification-time)
Anchor(current, references, label).

The first relation contains one tuple per object on the web, and the second relation contains one
tuple per link (in some HTML document current, referring to another object). This makes it
possible to issue SQL-like queries that fetch documents based on selection criteria that refer to
fields like title and length, and on selection criteria that specify paths of links leading to and from
desired documents. The issues addressed by these efforts complement, but do not overlap, the
goals of this proposal: our focus is on tebular data sources accessible over the web. (Of course,
the sources we are concerned with could include tables like Doc and Anchor, containing links to
images, videos and other complex objects, and this complicates issues such as cost estimation.)

Kleisli and Lorel focus on integrating semi-structured data and data having complex types
(e.g., lists, nested collections), and thus are complementary to our approach. The Disco project
also supports registration of remote data sources, and supports a query language based on OQL.
The emphasis thus far appears to be on single-site processing, and issues of scaling to a large
number of sources have not been addressed.

Tsimmis is studying an integration approach based on warehousing, rather than on-demand
query evaluation. Our work in Rodin explored the use of explanations and semantic integration
[MIR94, MIR93, JA97, explain] of tabular data.

Finally, the Mariposa project [Sto96] at Berkeley, while not addressing integration, is investi-
gating distributed query optimization in a dynamic environment like the Web, where the set of
data sources and their capabilities are changing constantly. They assume that each query deals
with a few sources (as in the traditional case), and that each source varies the cost it “charges” a
query based on its current load. This framework enables other sites to evolve (e.g., by replicating
data that is expensive to access) over time so as to make the overall system more efficient.

5 Motivating Applications

Effective integration and interactive analysis of large, heterogeneous datasets is very important
in a variety of environments, for applications ranging from logistics and battlefield awareness to
federations of scientific data sources (e.g., NASA’s WSIPS federation) to supply-chain manage-
ment (e.g., Andersen Consulting study [Mad97, PS98]) to on-line directory services (e.g., Yahoo,
www.INJersey.com).

In this section, we describe some of these applications and the state-of-the-art in terms of the
underlying technology, and outline how our proposed gestalt framework has the potential to change
the way such applications are designed, implemented and maintained.

5.1 Overview of Applications

A rapidly growing trend in manufacturing is on-line supply-chain management. Organizations
depend upon subdivisions or other organizations for many services, parts, etc., and there are
currently fairly rigid and centralized approaches to setting up these “supply chains” and routing

requests and responses through them. A recent study (CDDN) from the U.S. Census Bureau
estimates that the inventory in these supply chains (maintained in order to provide timely responses
to anticipated future requests) is about 1 trillion dollars, with a typical order fulfillment time of 6-9
weeks. It estimates that savings ranging from 10% to 65% can be achieved for a variety of tasks by
taking a more flexible approach to supply chain management. A report from Anderson Consulting
[Mad97] outlines a new approach to supply chain management to realize the potential savings.

Key aspects to the more flexible approach described in the Andersen report are on-line data
services, on-line collaboration between consumers and producers via a “capacity reservation and
demand commit model,” and Internet-based routing of requests. In essence, technology makes infor-
mation necessary for decision making instantly available. Whereas earlier operational frameworks
for supply-chain management focused on reasonable decision-making with incomplete knowledge
and predictions, increasingly the emphasis is on how to use up-to-date, comprehensive information
effectively.

Another potential application is Internet commerce. As an example, companies such as WIZnet
maintain an on-line supplier catalog library that is accessible over the Internet. Earlier this year,
WIZnet reported [Cha97] that its database contained over 61,000 catalogs representing 57,000
suppliers and more than 6,000,000 products. These catalogs are currently organized as HTML
pages, and support primarily variants of keyword search. A far better solution would be for WIZnet
to maintain one or more Catalog gestalts into which individual suppliers could register information
from their catalogs.

A number of federal agencies have also articulated the need for integrating large numbers of data.
sources. NIMA (National Imagery and Mapping Agency) has an ongoing project called DAGS that
aims to connect a large number of sources of geospatial and temporal information, including satellite
imagery and associated metadata. Analysts might want to use DAGS, for example, to study events
in a certain location over a certain time period, using information from diverse sources. DARPA
has several programs whose objective is to integrate large numbers of heterogeneous sources to
build and maintain models of battlespaces. NASA has recently begun to explore alternatives to
the EOSDIS paradigm of a few centralized data repositories (DAACs), and is actively pursuing
the development of a federation of loosely-coupled data sources called WSIPS. Essentially, anyone
generating and maintaining a significant data collection would become a member of the federation,
as opposed to this data being archived through one of a small number of DAACs. The number
of WSIPS could grow very large (easily tens and possibly hundreds). Each WSIP member is
responsible for maintaining their data and for registering it into the federation. NSF has launched
an initiative on networks of knowledge bases.

Clearly, there are many applications that could be enabled if we can manage and access large
numbers of autonomous data sources uniformly. Next, we consider how the gestalt approach can
help address these problems.

5.2 Gestalt-Based Solutions
We consider the supply-chain application in more detail to illustrate how gestalts could be used
to improve the state of the art. The Andersen report presents the following example scenario for

competitive bidding:

1. Manufacturer creats a request for quotes (RFQ), and notifies suppliers over the Internet.

2. Suppliers analyze the RFQ on-line, create a bid in response, and submit the bid (over the
Internet) to the manufacturer with price and conditions.

3. Manufacturer analyzes all bids and chooses a winner.

There could be outstanding bids for many items, with many potential suppliers competing. RFQs
may well be generated automatically based on current inventories (as per the information in the
manufacturer’s databases). The sets of bids and responses represent valuable data, and are poten-
tially very large in size; i.e., they need to be managed in a DBMS. In fact, each supplier may have
a large number of bids in response to the RFQs of a given manufacturer (e.g., General Motors),
stored in the supplier’s database.

Given current technology, RFQs would be stored in the manufacturer’s DBMS, and suppliers
would be allowed to query this database through a convenient form-based interface over the Internet.
Individual bids could also be submitted through such an interface; intuitively, each bid results in
the insertion of a record in some table of bids maintained by the manufacturer.

The main limitation of this approach is that if a supplier wants to submit bids in response to
many RFQs, there is no way to essentially say “Here is my table of bids.” Each bid, or record in
the bid table, must be submitted individually.

If the manufacturer defines a gestalt table to hold all bids, each supplier can register a local
table of bids into this gestalt, solving the problem. Another benefit is that the local views (defining
the bids) are evaluated when the manufacturer considers bids. This allows the computation of the
bid parameters to be deferred until actually required. For example, a supplier of wheels could make
the bid dependent on the price they have to pay (to a supplier further down the chain) for spokes,
and this is evaluated as of the time the manufacturer opens the bid.

This example has many natural variations. For instance, Amazon.com, the online bookstore,
encourages other sites to act as “re-sellers” by maintaining reviews of a specialized category of
books and directing purchase orders to Amazon.com. The company also allows individual reviews
for a book to be registered into their central database through a form-based interface. However,
there is no way for a re-seller site to include a pointer to the set of all reviews maintained at that
site. Again, the problem is easily solved if Amazon.com maintains a gestalt of reviews; each re-seller
then registers their tables of reviews into this gestalt, and a user who visits Amazon.com will be
able to see all relevant reviews for a book, regardless of whether the review is at the company or
at a re-seller.

As another example, the popularity of on-line information directories such as Yahoo continues
to grow rapidly. Today, these directories are essentially created and maintained by a central or-
ganization. Yahoo (the site) is obviously maintained by Yahoo (the company), but a number of
organizations want to create directories tailored to their services or needs. Junglee is a company
that creates such directories for a fee; for example, they have created a site for the Washington
Post.

The gestalt framework would allow such directories to be populated and maintained in a de-
centralized fashion. For example, to create a directory of services for a city, an organization might
create gestalt tables for restaurants, for movie theaters, for job and real estate advertisements, etc.
(Indeed, many examples of such directories can be found on the web, including the Junglee site
and sites such as www.INJersey.com, which provides a directory for the Jersey area.)

Now, restaurant owners, theater owners, etc. can be informed about the gestalt, and given the
opportunity to register their information into the gestalt. Regional gestalts can then be registered

10

into gestalts covering larger areas, such as state-wide and country-wide gestalts, possibly several
at each level maintained by different organizations. The advantage of this approach is that the
gestalt designer can focus on the overall structure, and the task of maintaining consistency of local
databases is distributed across many participants.

Note that by refining currently available technology for creating dynamic HTML forms from
database contents, the look and feel of a site such as Yahoo can be essentially preserved, even if
the site is created and maintained using the decentralized Gestalt approach.

6 Additional Problems to be Investigated

Thus far, we have argued for treating the Web as a collection of tables, and proposed an approach
to creating integrated views, called gestalts, over a large collection of such tables. As indicated
in Section 2.1, there are many other issues to address. In this section, we discuss some of these
additional problems in more detail, using the terminology of the Gestalt framework for concreteness.

6.1 Semantics for Gestalt Networks

The semantics of cycles in gestalt definitions is not clear. For example, Gestalt A at site 1 may be
defined in terms of a data source at site 2 that is itself a gestalt, say Gestalt B. What if Gestalt B
is defined (possibly indirectly) in terms of A? Since several users contribute to gestalt definitions
over time, it is possible for such cycles to develop inadvertently. One approach is to consider such
definitions to be recursive, with a least fixpoint semantics. This is unsatisfactory because, first, it
seems unlikely that this is actually intended; second, the fixpoint semantics will be very expensive
to compute in this highly distributed environment.

We can disallow such cycles at registration time (in which case registration mechanisms are no
longer straightforward) or define an execution semantics under which cycles are handled in some
reasonable (and efficient) manner. A promising approach is to use node priorities to obtain a unique
traversal order over the reachable nodes in a gestalt definition, and to use this order to define a
corresponding non-recursive query for any query over a gestalt. We will investigate this further to
provide a rigorous foundation for query processing in the Gestalt framework.

6.2 Search and Registration

An owner of a data source must be able to search for gestalts into which the source can potentially
be registered (e.g., suppliers would like to find RFQs for which they can bid). Conversely, creators of
gestalts must be able to search for sources to register into the gestalts. For example, a manufacturer
might want to inform important suppliers about recently posted RFQs. In some applications, the
gestalt creator might actually want to register some sources, to populate the gestalt table initially.
For example, the creatory of a directory gestalt such as INJersey might want to populate the gestalt
with information about some well-known restaurants and theaters.

How can we support such search capabilities? If gestalts and sources are both logically viewed
as tables accessible via the web, the search services must understand the associated catalogs and
data dictionaries. Standard keyword based search is inadequate, but it is not clear what the right
approach should be.

11

Once relevant gestalts or sources are identified, mechanisms must be provided to register a
source into a gestalt. While this is conceptually straightforward, it becomes tricky once issues
such as authorizations are considered. (Just consider the interactions between authorizations and
view definitions in SQL-92, and consider the impact of distributing location and ownership of view
definitions across several DBMSs!)

6.3 Profiling Users and Data Sources

User requirements and the types of data sources cover a very wide spectrum in the Web environment,
and query processing and consistency maintenance must be carried out cooperatively by several
autonomous DBMSs. The role of statistics and additional summary information will be central to
effective data processing. The problems to be addressed include:

¢ Techniques to maintain summary statistics for widely dispersed data. The challenge is to
maintain reasonably accurate information about a large range of external sources as they
evolve, with small overhead costs.

e Techniques to describe aspects such as desired levels of currency and response. For example,
what are the externally defined gestalts whose changes a user wishes to track? At what level
of detail (individual tuples, relation level, aggregate summaries such as counts, etc.) should
these changes be tracked?

o Use of shared ontologies in developing data dictionaries. This can greatly facilitate searching
for relevant data.

e Protocols to describe the availability of local computational resources for processing external
requests. This is essential if cooperative query evaluation by autonomous query engines is to
be effective.

6.4 Distributed Query Processing Over Many Sources

Queries can operate on both local and remote data sources. At remote sites, if software is avail-
able that can provide query profiling and/or evaluation services, the optimizer must exploit this;
otherwise, it must retrieve complete relations and essentially do the rest of the query evaluation at
the site where it is executing. When accessing data at remote sites that do provide query profiling
and/or evaluation, we must (in the usual cost-based manner) produce plans that “push” selections
and projections to remote sites, and consider various join strategies (ship relations between sites,
Bloomjoins).

As a simple scenario that illustrates the dramatic potential benefits of doing database-style
optimization for queries over the Web, suppose that we want to retrieve 5% of a 500KB file, and
that disk bandwidth is 1MB/s and that Internet bandwidth is 1KB/s. The time to ship the entire
file from a remote site is 500 secs, whereas the time to ship the result of the selection is 25 secs.
We have run such queries using DEVise, and the numbers are entirely as expected. Note that
such remote-site query processing benefits both the DEVise user (who wants answers fast) and the
owner of the site (who sees much smaller files being shipped, in exchange for a modest CPU cost).
Thus, there is motivation for sites to download and utilize our query handling software for remote
sites.

12

The above points illustrate the need to incorporate standard distributed query processing strate-
gies into the web environment. This environment and the gestalt framework together introduce
some novel challenges as well:

o Queries with ranked results: The importance of queries whose answers are ranked, or sorted,
cannot be underestimated in this setting. (When was the last time you looked at more than
the first couple of pages of results produced by a search engine such as Altavista?) For
example, a manufacturer probably wants to find the lowest bidders first, and may be satisfied

after finding the first few answers. Some results on evaluating such queries are presented in
[HHW97, CK97].

Ranking also arises because of queries over multimedia sources, which are common on the
web. (Although we deal with a framework of tabular sources, we fully expect many such
sources to be really metadata for a collection of documents or images; a query such as “Find
similar images” over a tabular source containing image descriptions (as feature vectors of
some kind) will return ranked results.) Fagin gives an interesting analysis of such ranked
queries in [Fag96], which provides a good starting point for a detailed investigation of this
problem.

The notion of ranking might also be tied to factors such as reliability (e.g., if a node provides
delayed stock quotes, we might prefer to access a source that provides real-time quotes,
although the gestalt definition is a union over both). Yet another notion of ranking is tied
to expected cost: we want to evaluate subqueries in an order that minimizes the time taken
to produce the initial set of results, since additional results can often be computed while the
initial set is being evaluated by the user.

o Scalability with number of sources in a query: How should we schedule each query in a large
union of queries? As the above discussion of ranking reveals, there are many possibilities.
If several queries are concurrently issued, partial results obtained from one could be used to
restrict computation in others. For example, if we want the lowest cost bidder, and we obtain
a $100 bid for item A from vendor V, we are no longer interested in bids for A that cost more;
this information can be “pushed down” into local queries evaluating bids from other vendors.

e Spatial Distribution of Data: Given the highly distributed nature of data, and the large num-
ber of network nodes that are capable of query processing, we believe that novel mechanisms
involving query shipping based on data proximity will become increasingly important. If
queries can be described with references to networked data, a DBMS may well process a
query by handing it off to another (co-operating) DBMS. For example, consider a query is-
sued at Wisconsin over data in New Jersey. If there is an idle site in New York with a high
bandwidth connection to New Jersey, we may request this site (which is autonomous and
has no direct ties to the Wisconsin and New Jersey sites, beyond being a Gestalt engine) to
evaluate the query.

If a query requires all maps of the Chicago region, and map servers are also distributed
geographically (as is the case with many NIMA databases, for example), there is a close
relationship between deciding where to execute the query and the spatial index used to identify
the relevant subset of data. As another example, the information about data sources at a
container node might indicate that a particular data source contains relatively few matches
for a particular query (e.g., relatively few days with temperature below 32F in Seattle, but
many such days in Madison).

13

The combination of ranking and spatial queries creates additional challenges. For example,
if we are interested in information about Madison, WT in December 1997, information about
nearby locations and time periods is also likely to be of interest, but information about
neighboring locations becomes less interesting as we move further away. The known techniques
for handling ranked queries do not cover this class of queries.

Distributed query optimization and the use of spatial indexes in this context present inter-
esting challenges.

o Systems issues: Many new systems issues arise as we investigate query evaluation in this
new environment. For example, if remote sites ship data faster than the query computation
can consume it, the buffer manager must provide the infrastructure to “buffer” (in memory
or disk) varying amounts of an incoming stream, and to consume multiple input streams
(generated by different subqueries) asynchronously. [DFJST96, FZ97, AFB97]

6.5 Wrappers for Tabular Data Sources

Middleware tools such as DataJoiner allow users to issue relational queries against data stored in
several DBMSes at different sites. We seek to provide similar functionality with queries over gestalt
definitions, but with an emphasis on queries spanning many DBMSs. Another differing point of
emphasis is that we consider it important to provide access to tabular datasets on the Web in
operating system files, not just data in traditional DBMSs. There are already many such datasets,
and the number is growing. Further, some sites have realized that they need to provide a query
capability to avoid being swamped by unnecessarily large file retrievals, e.g., the NCDC weather
information repository.

It is in this context that we now briefly discuss software that “wraps” a tabular data source, i.e.,
provides external access through a uniform interface. This is an area where there is considerable
ongoing activity (see, e.g., [STR97]), and we make just two comments: (1) It is important to provide
an interface to ask about estimated costs for a query, user/data profiles, etc., in order to enable
intelligent query optimization. Current standards such as OLE-DB do not go far enough in this
direction. (2) Wrappers must be non-intrusive; for example, “wrapping” data by loading it into a
DBMS is not always acceptable, for a variety of reasons ranging from cost to the need to execute
other applications on the data. Nonetheless, for tabular data, the ability of the wrapper code to
do some query processing at the remote site can be very valuable.

With this motivation, we propose software (essentially, a simple relational query engine) that
sites can download and install to provide such query capability. The owner of the data will “register”
all local tabular datasets with this software, indicate which tables/fields are to be indexed, etc.,
and the necessary index and catalog information will be constructed “on the side”, without in any
way affecting the original data; data records are identified using “handles” supported by the local
data representation (e.g., file offsets). Thus, existing applications can run unchanged, and the data
is not imported into a DBMS. However, there is now an alternative way to get at the data, through
our software’s query interface.

Such a remote wrapper package has been implemented in the DEVise system [LR+97], and
runs as a CGI at a remote site, The interface is as follows: It accepts an ASCII query string and
parameters that indicate whether the query is to be executed or profiled. If the query is profiled, a
string containing estimated cost and result size is sent back; if it is executed, the answers are sent
back as an ASCII stream. The OLE-DB rowset interface can be used to implement versions of our

14

software, but it is a strictly lower level interface (since it does not cover query strings, profiling vs.
execution, etc.).

6.6 Dynamic Data Environments

The Web is dynamic by nature. New data sources could come on-line, and old sources might be
discontinued. In addition, the data in a given source may be updated. How can such changes be
dealt with? In general, we believe that given the heterogeneous, loosely-coupled nature of gestalt
federations, an asynchronous message passing approach to change notification is appropriate. Once
notified of a change, a gestalt must deal with it somehow (by re-evaluating the gestalt definition if
it is materialized, for example). There are two basic aspects to the problem:

1. Gestalts that draw information from a source must describe the changes that they are inter-
ested in.

2. A source must be able to notify all gestalts that it is registered into of relevant changes.

In an environment where many independently evolving nodes collaborate, in dealing with
changes at one node we cannot, in general, assume that another node affected by these changes
will be prepared to immediately respond. Rather, we provide a mechanism for nodes to register
profiles at other nodes; when there is a change at node N that is relevant to node M (as determined
by M’s profile at N), N will notify M. M can deal with this change notification using a policy that
is local to M, and which N need not worry about.

While the appropriate general approach to change notification and change management may
be asynchronous replication based on message-passing, we anticipate that there will be a need for
a synchronous notification capability. For example, consider an example where a user wishes to be
notified of changes in a stock’s price. In general, such changes might be communicated through
asynchronous messages; however, once a significant change is detected, further rapid change might
be anticipated and the user might want to monitor this data source continuously.

Results in warehouse view maintenance and distributed trigger implementations are available
in the literature and are clearly relevant. However, the degree of autonomy across sites and the
number of sources envisaged require us to re-evaluate existing solutions, and develop new solutions
if needed.

In order to maintain a consistent view of data from multiple sources, gestalts must provide
another important feature: the ability to receive and maintain a history of change notifications
from registered sources, and to reason about the implications of these changes. For this, the query
capabilities must be extended to cover sequences (since histories of changes are time sequences),
in addition to relations. (More ambitiously, if a gestalt maintains a history of actual changes at a
particular source, this involves reasoning about how the data evolved at time.)

Another motivation for considering sequences is active sources whose contents are frequently
updated. A gestalt that monitors such a source might want the source to simply send it a stream
of updates, and these are naturally modeled as sequences. This approach, in contrast to the
asynchronous message passing approach, places a greater demand on the gestalt site’s resources.
If the number of monitored sources is large, we cannot afford to allocate each source space in the
buffer pool, and must develop techniques to “poll” active sources, rather than have the sources
“push” change information to the gestalt.

15

In general, both change management and query evaluation need to balance push versus pull
modes of execution. While there is some initial work in this area [AFB97, FZ97], this is clearly
an important area for further research. For example, profiles can be used to estimate how quickly
answers to a query must be evaluated, and parts of the answers (perhaps those that are needed
first for a ranked query) can be cached. When evaluating a query, intelligent caching can be used
to utilize existing results in the cache and to modify the query to compute only the rest of the
answers. Again, work in this area is preliminary; for example, [DFJST96] shows the benefits of
intelligent buffering through a simulation study, but does not address the issues in designing and
implementing an intelligent cache.

6.7 User Interfaces

The typical database user can no longer be assumed to be an SQL expert, or indeed to have the
services of an SQL expert available to him or her. When a query is issued, often the desired
presentation of the result is some graphical form. For example, a user may want to see piecharts,
scatterplots, or more sophisticated and customized representations; indeed, the description of how
the data is to be presented should be considered as part of the query specification.

Specifying how data is to be presented must be intuitive, and presentations must support inter-
active exploration (e.g., drill down to specific records from a scatterplot). If references to external
objects are included in the retrieved answer records, it must be possible to use the appropriate view-
ers (e.g., a Netscape browser to view an HTML object identified by a URL) seamlessly. Conversely,
presentations of tabular information must be accessible through standard Internet browsers.

These challenges argue for a new generation of presentation and retrieval tools that combine
features of relational query interfaces and Internet browsers [LR+97], and developing such tools is
a major challenge.

6.8 Agent Based Architecture

To realize the Gestalt framework, an agent based architecture seems necessary in order to decen-
tralize the decision making. We briefly outline such an architecture:

e Consumer Agents: These agents are associated with clients or users. Their role is to
enable a client to describe desired information, and to then intelligently locate and subscribe
to sources of such information.

e Provider Agents: These agents are associated with data providers. Their role is to advertise
available data, to control access to this data, and to register the data into gestalts that require
this data.

e Search Agents: These agents are used by both Consumer and Provider Agents, and directly
by users, to search for relevant gestalts and data sources. They are similar to Web search
engines, but are designed to search gestalt and data source catalogs that are accessible through
the Web.

e Query Agents: These agents are associated with nodes (gestalts or sources), and process
queries at that node. In doing so, they must interact with other query agents at connected

16

nodes, and use intelligent control strategies to (1) avoid swamping the network with over-
lapping requests, and (2) to restrict the computation by sharing information obtained across
subcomputations.

e Change Agents: These agents are associated with nodes, and are responsible for change
notification and management: (1) Changes at the node should be propagated to nodes that
consume its data. (2) If the node depends on data from other nodes, change notifications
from these other nodes must be processed.

Consumer and provider profiles must guide the activities of these agents, and the design of these
profiles is an important research objective. The particular division of responsibilities implicit in the
above list of agents is not as important as the basic approach taken: in this agent based architecture,
responsibility for maintaining data currency and querying has been completely decentralized, and
agents are expected to co-operatively address their own tasks as well as tasks executed on behalf
of other nodes in the network. This has several implications: It places limits on the forms of data
consistency and currency that are feasible for such widely shared data collections. It raises a host
of functionalities for which agent interfaces must be defined and for which corresponding interfaces
do not exist in a conventional DBMS. It makes explicit the fact that no agent can assume that it
has control over the activities of other agents, and raises issues of local resource management in
the face of external requests and limited co-operation.

Clearly, what we have outlined here is less an architecture than a skeleton that highlights
important unresolved issues.

7 Conclusions

We have argued that the Web should be modelled as a collection of tabular data sources in order to
provide adequate support for querying large data collections of any type, and described a number
of issues that cannot be handled using current techniques.

The Web is becoming the dominant means of accessing data. DBMSs cannot remain specialized
data management “boxes” that are attached to the Web through simple gateways. We must take
DBMS technology “out of the box” and enhance it and apply it directly to change the way data
is organized, maintained and queried on the Web; we cannot afford to let the current paradigm of
hyperlinked HTML objects continue to be the mode of retrieval.

In this paper, we make a contribution towards realizing this new generation of highly distributed
data sources by developing a scalable paradigm for creating integrated views over many sources.
Since querying in a relational model fundamentally involves view definition as the means of identi-
fying relevant data, this is a necessary first step. However, a number of other issues remain to be
resolved, and we have tried to make the case that this represents a fundamental new direction for
the database community to explore.

8 Acknowledgements

We thank Miron Livny for many stimulating discussions on the role of tabular metadata.

17

9 Bibliography
References
[AFB97] Swarup Acharya, Michael J. Franklin, Stanley B. Zdonik. Balancing Push and Pull for

Data Broadcast. in Proc. SIGMOD, pp. 183-194, 1997.

[Ada96] S. Adali et al. Query caching and optimization in distributed mediator systems. In Proc.
SIGMOD, 1996.

[AlIb96] J. Albert. Schema and Data Integration in Heterogeneous Multidatabase Systems. In
Ph.D. Thesis, University of Wisconsin-Madison, 1996.

[AKH96] Y. Arens, C.A. Knoblock and C-N. Hsu. Query Processing in the SIMS Information
Mediator. Advanced Planning Technology, editors, Austin Tate, AAAT Press, Menlo Park,
CA, 1996.

[explain] T. Arora, R. Ramakrishnan, W. Roth, P. Seshadri, and D. Srivastava. Explain: Gener-
ating explanations for deductive systems. In Proc. DOOD, 1993.

[AMM97] P. Atzeni, G. Mecca, P. Merialdo. To Weave the Web. In Proc. VLDB, 1997.

[Bay97] R.J. Bayardo Jr. et. al. InfoSleuth: Agent-Based Semantic Integration of Information in
Open and Dynamic Environments. Proc. ACM SIGMOD, 1997.

[B96] J.A. Blakeley. OLE DB: A Component DBMS Architecture. Proc. ICDE, pp. 203-204, 1996.
[Bun95] P. Buneman et al. The Kleisli Project. http://sdmec.iss.nus.sg/kleisli/kleisli/kleisli. html.

[CK97] Michael J. Carey, Donald Kossmann. On Saying “Enough Already!” in SQL. Proc.
SIGMOD, pp. 219-230, 1997.

[Cha97] R.E. Chalmers. Speed Product Design with Supplier Management Software. In Integrated
Design and Manufacturing, pages 26-30, October 1997.

[DFJST96] S. Dar, M.J. Franklin, B.T. Jonsson, D. Srivastava, M. Tan. Semantic Data Caching
and Replacement. In Proc. VLDB, 1996.

[Fag96] R. Fagin. Combining Fuzzy Information from Multiple Systems. In Proceedings of the
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 1996.

[FZ97] Michael J. Franklin, Stanley B. Zdonik. A Framework for Scalable Dissemination-Based
Systems. in Proc. OOPSLA, pp. 94-105, 1997.

[GKD97] M.R. Genesereth, A.M Keller and O. Duschka. Infomaster: An Information Integration
System. Proc. SIGMOD, 1997.

[GRSY97] J. Goldstein, R. Ramakrishnan, U. Shaft, and J. Yu. Processing Queries by Linear Con-
straints. In Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, 1997.

[GRS97] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing Relations and Indexes. In
Proc. ICDE, 1997.

18

[HPG96] Laura M. Haas, Yannis Papakonstantinou, and Ashish Gupta. Capabilities-based Query
Rewriting in Mediator Systems. In Proceedings of the International Conference on Parallel
and Distributed Information Systems, 1996.

[HHW97] J.M. Hellerstein, P.J. Haas, H. Wang. Online Aggregation. Proc. SIGMOD, pp. 171-182,
1997.

[KS95] D. Konopnicki and O. Shmueli. A Query System for the World Wide Web. In Proc. VLDB,
pp. 54-65, 1995.

[LSS96] V.S. Lakshmanan, F. Sadri, and L.N. Subramanian. A Declarative Language for Queryiﬁg
and Restructuring the Web. In Intl. Workshop on Research Issues in Data Engineering, 1996.

[LOR96] Alon Levy, Joanne Ordille, and Anand Rajaraman. Querying Heterogeneous Information
Sources Over the Web. In Proc. VLDB, 1996.

[LR+97] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Donjerkovic, S. Lawande, J. Mylly-
maki and K. Wenger. DEVise: Integrated Querying and Visual Exploration of Large Datasets.
Proc. SIGMOD, 1997.

[Mad97] S. Maddila. Supply Chain Opportunities. Report, Andersen Consulting, 1997.

[MMM97] A. Mendelzon, G. Mihaila, and T. Milo. Querying the World Wide Web. In Intl. Journal
on Digital Libraries 1:1, pages 5467, 1997.

[MIR93] R. Miller, Y. Ioannidis, and R. Ramakrishnan. The role of information capacity in schema
integration. August 1993.

[MIR94] R. Miller, Y. Ioannidis, and R. Ramakrishnan. Translation and Integration of Hetero-
geneous Schemas: Bridging the Gap Between Theory and Practice. Information Systems,
19(1):3-31, January 1994.

[Pap95] Y. Papakonstantinou et al. Object Exchange Across Heterogeneous Information Sources.
In Proceedings of the IEEE Conf. on Data Engineering, 1995.

[PV97] Yannis Papakonstantinou and Vasilis Vassalos. Describing and Using Query Capabilities
of Heterogeneous Sources. In Proceedings of the International Conference on Very Large Data
Bases, pages 256-265, 1997.

[PS98] PeopleSoft White Paper. http://www.peoplesoft.com/products_and_services/scc/indez.htmi.

[JA97] R. Ramakrishnan, J. Albert, Y. Ioannidis. Conjunctive query equivalence of keyed relational
schemas. In Proc. ACM PODS, 1997.

[RTV96] L. Raschid, A. Tomasic and P. Valduriez. Scaling Heterogeneous Databases and the
Design of Disco. In Proceedings of Intl. Conf. on Distributed Computer Systems, 1996.

[STRY7] Peter M. Schwarz, Mary Tork Roth. Don’t scrap it, wrap it! a wrapper architecture for
legacy data sources. In Proc. VLDB, pp. 266-275, 1997.

[SZ98] Abraham Silberschatz, Stanley B. Zdonik. Database Systems—Breaking Out of the Box.
in SIGMOD Record 26(3): 36-50, 1997.

19

[SLR94] Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. Sequence query processing. In
Proc. ACM SIGMOD, pages 430-441, Minneapolis, MN, May 1994.

[Sto96] M. Stonebraker, P.M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Straelin, and A.
Yu. Mariposa: A Wide-Area Distributed Database System. VLDB Journal, 5(1): 48-63, 1996

[Wie89] Gio Wiederhold. The Architecture of Future Information Systems. In Proc. of the Intern.

Symp.on Database Systems for Advanced Applications, KISS and IPSJ, Seoul Korea, pp.7,
April 1989.

[Wie90] G. Wiederhold. Future architectures for information processin g systems. In Rishe, Na-

vathe, and Tal (eds) : Proc. Parbase-90, Int. Conf. on Databases, Parallel Architectures, and
their Implementation, IEEE Computer Society Press, March , pp. 160-176., 1990.

[LMH97] Edward L. Wimmers, Jun Yang, Laura M. Haas, Donald Kossmann. Optimizing queries
across diverse data sources. In Proc. VL.DB, pp. 276-285, 1997.

20

