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Abstract

High-performance, general-purpose microprocessors serve as compute engines for com-
puters ranging from personal computers to supercomputers. Sequential programs consti-
tute a major portion of real-world software that run on the computers. State-of-the-art
microprocessors exploit instruction level parallelism (ILP) to achieve high performance on
such applications by searching for independent instructions in a dynamic window of
instructions and executing them on a wide-issue pipeline. Increasing the window size and
the issue width to extract more ILP may hinder achieving high clock speeds, limiting over-

all performance.

The Multiscalar architecture employs multiple small windows and many narrow-issue
processing units to exploit ILP at high clock speeds. Sequential programs are partitioned
into code fragments called tasks, which are speculatively executed in parallel. Inter-task
register dependences are honored via communication and synchronization and inter-task
control flow and memory dependences are handled by speculation and verification in hard-

ware.

Since this thesis is the first attempt at investigating the problem of compiling for the
Multiscalar architecture, I identify the fundamental interactions between applications and
the Multiscalar architecture from the standpoint of performance and explore a few com-
piler optimization opportunities instead of proposing the best technique for a specific

problem.

Control flow speculation, register communication, memory dependence speculation,
load imbalance, and task overheads are key performance issues. To extract high degrees of
ILP, compiler heuristics partition programs into large tasks, which comprise multiple basic
blocks. To maintain high prediction accuracy and avoid delays due to inter-task register

communication, the heuristics control the number of successors of tasks while including




ii
register dependences within tasks. Inter-task register communication is generated and

scheduled to overlap computation and inter-task register communication.

For the SPEC95 benchmarks, the heuristics increase task sizes significantly while
improving control flow speculation accuracy with respect to basic blocks, enabling large
window spans from which to extract parallelism. Including register dependences within
tasks improves performance considerably. Sophisticated register communication genera-
tion and scheduling are effective in boosting performance. Dead register analysis reduces
register communication traffic considerably. All the optimizations grow in importance for

larger number of PUs.
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Chapter 1

Multiscalar: A Novel Microarchitecture

High-performance, general-purpose microprocessors serve as cost-effective compute
engines for a wide spectrum of computers, ranging from the ubiquitous personal computer
to state-of-the-art, esoteric parallel computer. Software that run on microprocessors repre-
sent a wide variety of application areas such as business and engineering, science and edu-
cation, home and entertainment, most modern industries and government. These
application areas have continually placed an ever-increasing demand on performance of
microprocessors. Improving performance of microprocessors not only enhances the utility
of existing application domains by accelerating the computations involved but also
enables the emergence of new application domains by enabling computations, which were

considered infeasible in the past.

Sequential programs constitute a major portion of software that run on microprocessors
powering the wide spectrum of computers. Ease of programming and transparent portabil-
ity with high performance have been compelling reasons for the pervasiveness and the
magnitude of sequential programs in application software domains. The rest of the soft-

ware are multithreaded or parallel applications that run on microprocessors used in large-
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scale, parallel computers. Even for parallel applications, single sequential thread perfor-
mance is important to avoid the performance limits stipulated by Amdahl’s law [7]. So,
irrespective of the application domain and the scale of the computer, it is critical to achieve

high performance on sequential programs that run on microprocessors.

Execution of a sequential program on a processor is realized as a single stream of
instructions that manipulates data according to the computation specified by the program.
This stream of instructions is called the dynamic instruction stream. In order to improve
performance of the program, processor architects have exploited independence among the
instructions in the dynamic instruction stream [8] [31] [91] [100] [101] [102] [94].
Instruction level parallelism (ILP) [35] advocates the execution of such independent
instructions in parallel. ILP is an implicit form of parallelism present in sequential pro-
grams identified by a combination of the compiler and the hardware, whereas explicit par-

allelism of parallel programs is identified and specified by the programmer.

To exploit ILP, modern microarchitectures called superscalar architectures [11] [21]
[29] [44] [46] [47] [53] [58] [77] [97] [109] [113] identify independent instructions and
execute multiple independent instructions simultaneously. Modern microprocessors
extract ILP by establishing a window of instructions in the dynamic instruction stream.
The first instruction in the window is called the point of search for the window. The win-
dow is said to be established at the point of search in the dynamic instruction stream.
Within the window, superscalar architectures search for independent instructions by deter-
mining dependence relationships among the instructions. Multiple independent instruc-
tions are executed simultaneously by a set of hardware resources. The maximum number
of instructions that may be executed in parallel is called the width of the processor. The
maximum number of instructions that may be contained in the window is called the size of
the window. Figure 1-1 illustrates extraction of ILP by superscalar architectures. The
degree of parallelism extracted depends on the size of the window and the width of the

processor. Larger windows enable more dynamic instructions to be examined, which leads



Dynamic Instruction Stream Time 2 wide processor

Point of Search

Window

Figure 1-1: Extraction of ILP in the superscalar architecture. The window established
at the point of search contains instructions Al, B1, andA2. A2 is dependent on Al. Al and
B1 execute simultaneously on a 2-wide processor and at a later clock cycle, A2 executes.

to the identification of more independent instructions and wider processors can execute
more independent instructions simultaneously. But, larger windows and wider processors

may be harder to engineer at high clock speeds, limiting performance.

The Multiscalar architecture [36] [38] [95] is a novel microarchitecture to achieve high-
performance on general-purpose, sequential programs. To engineer a large window and a
wide processor at high clock speed, the Multiscalar architecture splits one wide processor
into many narrow processing units and one large window into many small windows moni-
tored by each processing unit. Sequential programs are partitioned into code fragments,
which are executed on the processing units in parallel. Dependences among the code frag-
ments are honored by a combination of communication and synchronization for depen-
dences that are known at compile-time or speculation and verification for dependences

that are ambiguous at compile-time.

The goals of this thesis are: (1) to identify the fundamental interactions between applica-
tions and the architecture from the standpoint of performance, (2) to understand the impli-
cations of the interactions for the compiler, and (3) to devise, implement, analyze and

experiment with compiler techniques to improve performance. Since this thesis is the first
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attempt at investigating this problem, I identify the key issues involved in the problem of
compiling for the Multiscalar architecture and explore a few compiler optimization oppor-
tunities instead of proposing the best technique to solve a specific optimization problem.
To make the investigation concrete, I constructed a compiler and evaluated the impact of

compiler techniques on performance of the SPEC95 benchmark suite [98].
1.1 Performance limitations of superscalar processors

Overall performance is the inverse of the product of the parallelism extracted and the
cycle time of the processor. State-of-the-art microprocessors exploit high degree of paral-
lelism by increasing the size of the window and the width of the processor. But larger win-
dow and wider processor may exacerbate circuit delays; implying that more parallelism
may be extracted at the cost of clock speed. Although increasing the window size and the
processor width may increase the degree of parallelism extracted, overall performance
may not improve or may even deteriorate. Thus, this straightforward approach may be

forced to trade-off clock speed for parallelism.

Processor clock speed is determined by the timing constraints of the circuits that are in
the critical path of the processor pipeline implementation. Timings of many critical paths
such as rename logic, wake-up logic, and bypass logic [80] in processor pipeline hardware
are at least linear, if not quadratic, functions of window size and processor width for the
circuit implementations used by state-of-the-art microprocessors. These circuits cannot

easily be pipelined to be clocked faster without incurring pipeline stall cycles.

The continual shrinking of feature size of on-chip devices in modern microprocessors
enable faster and smaller transistors, leading to phenomenal improvements in processor
clock speeds. Unfortunately, wires connecting the transistors do not scale in speed as well
as the transistors themselves because quadratic RC delays dominate total signal delay
[16]. The centralized design of the superscalar architectures imposes lengthening of the

wires in critical circuits like bypass paths and wakeup logic, at least by a factor linearly
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proportional to window size and processor width [80]. Long wires connecting many
devices for bypassing data values and for performing result update in the superscalar pipe-
line datapath may limit clock speed. If time taken to propagate a signal through a wire is
longer than that for a transistor to switch, a signal may take several clock cycles to propa-

gate across such long wires causing significant performance loss.

The Multiscalar architecture proposes to engineer a large window and a wide processor
at high clock speed by splitting the large window into many small windows and the wide
processor into many narrow processing units. Critical path circuits of the processing units
may be clocked fast because of their small window size and narrow processing unit width.
By localizing critical path wires to the compact processing unit, wire delay problems are
mitigated because latency of wire propagation is incurred only on communication among
multiple processing units and not on operations within each processing unit. Due to circuit
speed constraints, the DEC Alpha 21264 uses a distributed organization for the back-end
of the pipeline by grouping functional units into two clusters [42]. The Multiscalar archi-
tecture, which predates the DEC Alpha 21264, uses a distributed organization for the

entire pipeline, from the fetch stage to the commit stage.

1.2 Multiscalar approach

The Multiscalar architecture employs multiple points of search in the dynamic instruc-
tion stream instead of one point of search used by the superscalar architecture. A process-
ing unit establishes a small window at each point of search and searches for independent
instructions within its small window. Together, the processing units execute multiple
instructions simultaneously exploiting ILP. Figure 1-2 illustrates extraction of ILP in the
Multiscalar architecture. Identifying the points of search is an important problem because
they determine the degree of independence among the small windows; dense dependences
among the small windows result in large amounts of communication, incurring perfor-

mance loss.
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Dynamic Instruction Stream

Point of search 1

\L’f
Window 1 ¢

Three 1-wide processing units

Point of search 2

T

Window 2

Point 1 Point 2 Point 3

Point of search 3

T

Window 3 ¢

Figure 1-2: Extraction of ILP in the Multiscalar architecture. There are three
windows established at three points of search. nstructions in the dynamic stream are
named by an alphabet followed by a number; instructions whose names start with the same
alphabet form a dependence chain. Window! contains instructions Al, Bl, and A2.
Window2 contains instructions C1, A3, and B4. Window3 contains instructions D1, El,
and E2. A3 is dependent on A2. T he three points of search are assigned to three 1-wide
processing units for simultaneous execution. Dependence from A2 to A3 is handled to
maintain program semantics.

To map the instructions of a sequential program on the distributed processing units of
the Multiscalar architecture, the program is partitioned into code fragments called tasks
which are assigned to the processing units for execution. While threads of parallel or
multi-threaded applications use private call stacks, tasks of a program share the global
stack, register space, and memory space. Tasks correspond to the points of search for the
processing units. Figure 1-3 illustrates how sequential programs are mapped on the pro-
cessing units of the Multiscalar architecture. To maintain sequential program semantics,
inter-task register dependences, inter-task control flow dependences, and inter-task mem-

ory dependences have to be honored. Inter-task control flow is handled by speculation and



Dynamic Instruction Stream  Program

Point of search 1 Three 1-wide processing units

Window 1

Point of search 2

T

Window 2

Point of search 3

T

Window 3

Figure 1-3: Mapping a sequential program on the Multiscalar architecture. the part
of the program corresponding to the portion of the dynamic instruction stream shown is
partitioned into three tasks, Task A, Task B, and Task C. The three tasks correspond to the
three points of search. The three tasks are assigned to three 1-wide processing units for
simultaneous execution. Each processing unit establishes its small window of instructions
belonging to the task assigned to it.

verification, similar to branch prediction. Inter-task data dependences are dealt with by
two sets of mechanisms: register dependences are honored by communication and syn-
chronization and memory dependences are honored by speculation and verification. Intra-

task dependences are handled by the processing units, similar to superscalar processors.

In the Multiscalar architecture implementation that I investigate, the compiler partitions
sequential programs into tasks. Inter-task register dependences are specified by the com-
piler, inter-task control flow dependences are specified by the compiler and inter-task
memory dependences are handled entirely by the hardware. For register dependences, the

hardware activates communication of register values as per compiler specification. For




8
control flow, the hardware speculates on which dynamic task follows the tasks in execu-

tion so that it may assign the speculated task for execution without delay; speculation and
its verification are based on the information provided by the compiler. Memory accesses
from the tasks in execution proceed in arbitrary order with respect to each other speculat-
ing that loads and stores from different tasks do not access the same address. Hardware
tracks the memory accesses to detect any violation of memory dependences of the applica-
tion program and performs roll back on misspeculations. In the current implementation,

the compiler does not provide any memory dependence information to the hardware.

1.3 Thesis contributions

The physically distributed organization of the processing units and the task-level specu-
lation in hardware combined with imperative, sequential programming model make the
Multiscalar architecture sufficiently different from existing microarchitectures. The goals
of this thesis are to understand the impact of the fundamental interactions between sequen-
tial programs and the novel features of the Multiscalar architecture on overall performance
and to identify the key issues involved in the problem of compiling for the Multiscalar

architecture.

To make the investigation more concrete, I have devised, implemented, experimented
with, and analyzed a few compiler optimizations. I have constructed a compiler to explore
optimization opportunities in the context of the Multiscalar architecture, rather than to
propose the best solution for a problem addressed by the compiler. Specifically, I have
studied task selection, inter-task control flow and register dependence information specifi-
cation, and inter-task register communication generation and scheduling. I have imple-
mented these optimizations in a widely-used compiler (gcc) and measured their impact on
the SPEC95 benchmark suite. The compiler techniques apply well-known, conventional
compiler analyses (e.g. dataflow analysis) in the new context of the Multiscalar architec-

ture.



1.3.1 Task selection

The Multiscalar architecture requires ordinary, sequential programs to be partitioned
into sequential (and not necessarily independent) tasks. From the standpoint of correct-
ness, the architecture does not impose any constraints on the composition of tasks, in
terms of control flow or data dependences. At the same time, the choice of tasks is pivotal
to achieving high performance. Since existing microarchitectures do not require partition-
ing of sequential programs into tasks, this problem has not been studied previously in its
generality. Automatic parallelization techniques usually partition loops, but not any other
control flow structure. In the presence of ambiguous memory dependences, traditional par-
allelization techniques, not supported by any hardware speculation, are restricted to the
options of either completely parallel or entirely sequential execution of loop iterations.
Hardware support for speculation in the Multiscalar architecture creates new opportunities

for the compiler.

I have identified principal factors that affect performance to include inter-task control
flow dependences, inter-task data dependences and task size. I have devised and imple-
mented compiler heuristics that take these factors into account while partitioning pro-
grams. The heuristics use traditional graph traversal and dataflow analysis techniques.
Although the heuristics handle register dependences and memory dependences alike, the
current implementation of the compiler front-end does not provide memory dependence

information.

1.3.2 Inter-task dependence information

The Multiscalar architecture uses information about control flow and data dependences
present in applications to improve performance. I have devised and implemented a simple
compiler scheme to collect inter-task register dependence and inter-task control flow infor-
mation and convey the information to the hardware in a compact form. The compiler anal-

yses involved in collecting the information are traditional but the information is conveyed
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and used differently than conventional architectures. For example, register allocators for
superscalar architecture perform similar register dependence analysis but do not explicitly

convey the information to the hardware for communication purposes.

1.3.3 Register communication

Overlapping register communication with computation is of paramount importance to
alleviate performance loss. I have developed several compiler strategies to study the effect
of register communication delay on overall performance. These strategies vary the degree
of overlap of communication with computation by varying the aggressiveness of the anal-
yses. All of these strategies vary communication timing but do not transform the computa-
tion that generates the values involved in communication. Extending this analysis further,
I have devised and implemented a static scheduler that moves computation to hide inter-
task register communication delay further. Although the scheduler uses traditional trans-
formations to perform code motion similar to superscalar schedulers, the objective, the
cost model and the trade-offs of the scheduling process are different from those of super-
scalar schedulers. Similar to task selection heuristics, the scheduler may be used to hide
inter-task memory dependence delay but the current implementation of the front-end does
not provide sufficient information. In addition to these delay reducing techniques, I have
implemented traditional dead register analysis to reduce register communication band-

width demand.

1.4 Thesis roadmap

I describe the Multiscalar architecture in more detail, including the execution model, the
hardware, the interface between the hardware and the compiler, and performance issues in
Chapter 2. At the end of the chapter, I present an overview of the compiler. I discuss task
selection in Chapter 3. I identify key task characteristics that impact performance and
describe compiler heuristics to partition programs into tasks with suitable characteristics

and their implementation. In Chapter 4, I explain the register communication model and
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describe compiler strategies for register communication generation. I also describe regis-

ter communication scheduling. In Chapter 5, I present experimental evaluation of the tech-
niques described before. I present measurements of task characteristics, effectiveness of
task selection heuristics on overall performance, impact of register communication strate-
gies and scheduling on overall performance. In Chapter 6, I summarize the thesis and

draw some conclusions.




12

Chapter 2

Role of the Hardware and the Compiler

As discussed in Chapter 1, window size and issue-width of superscalar processors can-
not be scaled up easily to exploit more ILP without adversely affecting processor clock
speed. The need to clock processors fast while exploiting more parallelism has driven
architects to investigate distributed hardware organizations. The Multiscalar architecture
employs distributed hardware to get the combined effect of a large window of dynamic
instructions and a wide-issue processor by splitting the large window into many small
windows and the wide-issue processor into many narrow-issue processing units. In this
chapter, I start with some basic concepts of the architecture (Section 2.1), then I describe
the execution model (Section 2.3), the binary interface between the hardware and the
application software (Section 2.4), the hardware (Section 2.5), performance issues

(Section 2.6), and the problem of compiling for the Multiscalar architecture (Section 2.7).
2.1 Basic concepts of the Multiscalar architecture

Instead of establishing a large window at a single point of search, the Multiscalar archi-

tecture establishes multiple small windows, each at a different point of search. Each win-
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dow is mapped onto a narrow-issue PU, which executes the instructions in the window.
Figure 2-1 illustrates the abstraction of the Multiscalar architecture. Figure 2-1(a) shows a
static program partitioned into three tasks and the correspondence between the points of

search and the windows in the dynamic stream and the static tasks. The instructions

Point 1

Window 1

Point 2
T

Window 2

Point 3
T

Window 3

Dynamic Stream  Program

)
@ ©

Figure 2-1: Abstraction of the Multiscalar architecture. (a) A  static = program
partitioned into three tasks and three points of search in the dynamic stream with three
corresponding windows. The windows at the three points of search in the dynamic stream
correspond to the three static tasks. Instructions in the dynamic stream are named by an
alphabet followed by a number; instructions whose names start with the same alphabet
form a dependence chain. (b) The tasks assigned for execution on processing units. (c) The
organization of the hardware. The PUs are connected for communicating data values and
the memory disambiguation unit detects dependence misspeculations.
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between search points 1 and 2 and search points 2 and 3 correspond to tasks A and B,

respectively. Task C corresponds to instructions between search point 3 and the next
search point in the dynamic stream. Figure 2-1(b) shows tasks A,B, and C assigned for
execution on processing units PU 1, PU 2, and PU 3, respectively. Figure 2-1(c) shows the
organization of the hardware for a three PU configuration. The PUs are connected for
communicating values and the memory disambiguation unit detects dependence misspec-

ulations.

If the multiple points of search are chosen so that the instructions in one window are
mostly independent of the instructions in the other windows, then the PUs can execute in
parallel, independent of each other, resulting in high performance. On the other hand, if
there is an instruction in one window which is dependent on another instruction in another
window, then the dependence is satisfied by communication of values from the producer
instruction to the consumer instruction. The consumer instruction waits for the producer
instruction to execute and then communicate the required value. Alternatively, an instruc-
tion may speculate that it does not depend on any other computation and use the value
bound to its register or memory location operand at the time of its execution. If the instruc-
tion is dependent on another instruction (i.e., the instruction should have obtained its oper-
and from the other instruction) then a dependence misspeculation is flagged and execution
of the consumer instruction (and dependent instructions!) is rolled back and restarted.
Such dependences result in significant performance loss due to wasted cycles spent either
waiting for values or squashing misspeculated computation. Continuing with the example,
Task A includes instructions Al, B1 and A2, Task B includes instructions C1, D1 and D2,
and Task C includes E1, E2 and D3, as shown in Figure 2-1(a). In this example, A2, D2,
and D3 are dependent on Al, D1 and D2, respectively. Since Task B is not dependent on
Task A, PU 2 proceeds in parallel with PU 1. Due to the dependence from D2 to D3, Task
C depends on Task B causing PU 3 either to stall until PU 2 sends the required value for

1. In a real implementation, it may be difficult to isolate dependent instructions; in which case all
instructions following the misspeculated instruction are rolled back and restarted.
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D3 or to misspeculate on the dependence from D2 to D3 dependence and eventually to
squash. Therefore, the choice of the points of search is fundamental to the amount of par-

allelism exploited by the Multiscalar architecture.
2.2 Multiscalar tasks

The compiler identifies the points of search by partitioning application programs into
tasks. Each task consists of an entry point, instructions corresponding to the fragment of
the application code, and some exit points. Tasks of a program share register space, stack
and memory space, whereas threads of a parallel or multi-threaded application use private
stacks. By choosing the tasks, the compiler determines the points of search during execu-
tion and is responsible for the amount of parallelism exploited by the processor. A task
corresponds to a contiguous segment of the dynamic instruction stream, starting from one
point of search and ending at the next point of search in the dynamic stream and is exe-
cuted entirely on one PU. The window established by the PU spans the instructions of the
task. The amount of parallelism among dynamic tasks translates to parallelism found in
the distributed windows of the Multiscalar architecture. For example, in Figure 2-1(b),
instruction D3 in task C is dependent on instruction D2 in task B, causing PU 3 to wait
until PU 2 produces and sends the required value. The delay incurred by PU 3 reduces the
amount of parallelism exploited and degrades overall performance. Thus, dependences
from one task to another result in performance loss. On the other hand, if the two tasks are

independent, then the two PUs execute simultaneously and achieve high performance.
2.3 execution model for the Multiscalar architecture

Tasks, obtained by partitioning sequential programs, are assigned to PUs for execution.
Each PU executes the instructions of its task to completion. Simultaneous executioh of
multiple tasks on multiple PUs results in the completion of multiple instructions per cycle.
The architecture ensures that the individual execution of each task as well as the aggregate

execution of all tasks maintain the appearance of sequential program order.
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2.3.1 Control flow

Dynamic prediction unravels the control flow among tasks and each predicted task is
assigned to a PU for execution. Execution proceeds by assigning tasks to PUs. After
assigning a task for execution, a control flow speculation [37] [38] [55] [81] [95] is made
which predicts one of the many possible successors of the task, similar to branch predic-
tion employed by superscalar processors [56] [90] [114] [115]. Since the tasks are derived
from a sequential program and are predicted in the original program order (similar to
branch prediction), the total order among the tasks is unambiguously maintained. Upon
completion, tasks are retired in program order to maintain sequential semantics. If control
flow speculation is incorrect, i.e., one of the tasks assigned for execution was incorrect,
then the incorrect task (and all dependent tasks?) is squashed similar to a branch mispre-
diction in superscalar processors. A combination of hardware and software mechanisms
are used to ensure that control and data dependences are honored as per the original
sequential program specification, regardless of what transpires in the actual parallel execu-
tion. Figure 2-2 illustrates control flow speculation in the Multiscalar architecture.
Figure 2-2(a) shows a part of an application program partitioned into three tasks A, B, and
C. The arrows represent inter-task control flow. Task A branches either to task B or else-
where. Task B branches either to itself of to task C. Figure 2-2(b) shows the tasks execute
on a three PU configuration. From the successors of task A, task B is predicted and
assigned to PU 2, and from the successors of task B, another invocation of task B is
assigned to PU 3. Assuming the second prediction is incorrect, task B executing on PU 3

is squashed and task C is started on PU 3.

2. In areal implementation, it may be difficult to isolate dependent tasks, similar to isolating inde-
pendent instructions, as mentioned before; in which case all tasks following the misspeculated
task are rolled back and restarted.
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Program predict predict

(a) (b)

Figure 2-2: Control flow speculation in the Multiscalar architecture. (a) A part of an
application program partitioned into three tasks. The arrows represent inter-task control
flow. (b) Inter-task control flow speculation. The tasks execute on a three PU
configuration. Task B is predicted on PU 2 and another invocation of Task B is predicted
on PU 3. The second prediction is incorrect, so task B executing on PU 3 is squashed and
task C is started.

2.3.2 Data values

As instructions in tasks execute, data values are produced and consumed within the same
task and among different tasks, corresponding to intra-task and inter-task communication,
respectively. These data values are bound to memory and register storage locations, simi-
lar to superscalar processors. Due to the difference in the size and the nature of register
space and memory space, register values and memory values are handled differently.
Many ISAs use 32 integer registers and 32 floating point registers, whereas many ISAs

support 32-bit (or 64-bit) virtual addresses leading to 232 (or 264) memory locations.
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Register space can be specified by simple bit-vectors since it is small, whereas the large
size of memory space makes compact specification harder. In the case of register storage,
it is straightforward to identify producers and consumers since all register storage names
are known statically via register specifiers. On the other hand, in the case of memory stor-
age, it is difficult to determine precisely the producers and consumers of data values since
memory storage names are determined dynamically via address calculations. In the exam-

ple shown in Figure 2-3, the loop index variable i is allocated a register by the compiler.

for(i=0;1i<n;i++) { Loop:

1d rtmp, Ofrptrl]
beq  rtmp, ri, Not_Eq

if (*ptrl ==1) { Not_Eq:
add  rtmp, i, 1
st rtmp, O[rptr2]

} : Continue:
*ptr2 = i+1; add i, r, 1
} blt ri, rn, Loop
(a) Out:

Figure 2-3: Register dependences and memory dependences. (a) Source code of a
simple loop. Variables ptrl and ptr2 are pointers to unknown addresses. (b) Assembly
code for the loop. Registers rptrl, rptr2, and ri hold the values of ptri, ptr2, and i,
respectively. The dependence between the load and the store instructions is ambiguous
since the addresses that they are accessing is unknown at compile-time. All the
dependences through the register ri are unambiguously known since they are directly
specified.

Since the addresses of the load and the store instructions are not known at compile time, it

is not known whether the load and the store instructions access the same address or not.
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But all the dependences involving the register ri, which holds the variable 7, are unambig-
uously known. Consequently, memory dependences are typically honored via dynamic
speculation and verification by the hardware [37] [38] and register dependences are typi-
cally honored via synchronization and communication [18] [39] [95], as specified by the
compiler. It is important to note that if a memory dependence is known at compile-time
then the dependence need not be speculated on, but may be honored via synchronization
and communication, like register dependences. Similarly, it may be advantageous to
employ speculation on a register dependence, instead of synchronization and communica-
tion. Within the spectrum of all data dependences being synchronized and communicated
or all data dependences being speculated and verified, any combination of synchronization
and communication or speculation and verification of data dependences is possible.
Figure 2-4 illustrates register communication in the Multiscalar architecture. Figure 2-4(a)
show a part of an application program partitioned into three tasks A, B, and C. Task A pro-
duces the value for register d, used by Task B. Figure 2-4(b) shows register communica-
tion from task A to task B. PU 1 forwards register d, when the corresponding instruction in
task A is executed. Meanwhile, PU 2 executes task B and waits for register d, when the

instruction that uses register d is encountered. Task C executes on PU 3 unhindered.

The predicted task speculatively executes on a PU using its private resources unless it
needs values computed by another task executing on a different PU. In the case of inter-
task register data dependencies, when the producer task computes the required value, it
communicates the value to the consumer task. In the case of inter-task memory data
dependencies, memory dependence speculation [39] [40] [95] is employed; each task
speculates that it does not depend on any other task for memory values and performs loads
from the specified addresses. If the speculation is incorrect, (i.e., a previous task performs
a store to the same address as a load) then a memory dependence violation is detected and
the offending load instruction (and dependent instructions) is squashed. To prevent fre-
quent memory dependence misspeculations, a hardware mechanism to perform memory

dependence prediction and synchronization, which dynamically synchronizes dependent
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Figure 2-4: Register Communication in the Multiscalar Architecture. (a) A part of an
application program partitioned into three tasks. Task A produces the value for register d,
used by Task B. (b) Inter-task register communication. PU 1 executes Task A and forwards
register d, when the forwarding instruction is executed. Meanwhile, PU 2 executes Task B
and waits for register d, when the instruction using the register is encountered. Task C
executes on PU 3 unhindered.

loads and stores [73] is employed. In a real implementation, memory dependence
squashes and control flow squashes may be handled identically for the purpose of simpli-

fying hardware.

Figure 2-5 illustrates memory disambiguation in the Multiscalar architecture.
Figure 2-5(a) shows a part of an application program partitioned into three tasks A, B, and
C. Task A stores into address X from which task B loads. Figure 2-5(b) shows detection of
violation of memory dependence from task A to task B. PU 2 executes the load in Task B

at cycle 1; the load is recorded in the memory disambiguation unit and the current value of
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Figure 2-5: Memory disambigunation in the Multiscalar architecture. (a) A part of an
application program partitioned into three tasks. Task A stores into address X from which
Task B loads. (b) Memory disambiguation. PU 2 executes the load in Task B at cycle 1; the
load is recorded in the memory disambiguation unit and the current value of address X is
returned. PU 1 executes the store in Task A at cycle 3; the store is also recorded in the
memory disambiguation unit. Since a later load executed before a previous store, the
memory disambiguation unit detects a memory dependence violation and squashes PU 2
and PU 3. Task B and Task C are restarted on PU 2 and PU 3.

address X is returned. PU 1 executes the store in Task A at cycle 3; the store is also
recorded in the memory disambiguation unit. The memory disambiguation unit derives the
program order between tasks A and B from the order in which the tasks are predicted and
assigned for execution. Since a later load (from the later task B) executed before a previ-
ous store (from the earlier task A), the memory disambiguation unit detects a memory
dependence violation and squashes PU 2 and PU 3. Task B and Task C are restarted on PU
2 and PU 3.
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The amount of computation discarded on a misspeculation (both control flow and data
dependence) is an important factor in determining the degree of aggressiveness of the
mechanisms (both hardware and compiler) used to perform speculation. Depending upon
the granularity of checkpointed state used for rolling back computation on misspecula-
tions, the amount of computation discarded may vary significantly. If entire tasks are
rolled back on any misspeculation, then either the accuracy of speculation should be high
or speculation should be used infrequently, to avoid rolling back egregious amounts of
computation. If only computations that are dependent on misspeculated computation are
rolled back, the opportunities lost due to misspeculations may be significantly fewer, obvi-
ating techniques to improve speculation accuracy and encouraging frequent speculation.
The implementation that I considered to conduct my investigation uses a coarse-grain roll

back of entire tasks on control flow misspeculations and data dependence misspeculations.

2.3.3 Sequential semantics

The original program order among the tasks is maintained by keeping track of the order
in which tasks are predicted and assigned for execution on the PUs. For the collection of
predicted tasks, execution may occur speculatively, but modification of architectural state
can only occur non-speculatively. Since tasks execute speculatively, the state (register and
memory) produced by it is buffered and cannot update architectural state. When a task
completes and all speculations (control flow and memory dependence) have been resolved
to be correct, the task is retired, i.e., its speculative state is promoted to architectural state.
In a simple implementation, tasks are retired in the original program order to maintain
sequential semantics; a task is retired only after its predecessor task has been retired. In a
more aggressive implementation, if two tasks are completely independent, which may be
guaranteed by the compiler, they can be retired out of program order. Although out of pro-
gram order retiring may increase the complexity of hardware over sequential retiring, per-

formance benefits may be accrued by relaxing the retiring order.



2.4 Application binary interface

The discussion of the execution model leads to the question of the information that the
hardware requires to execute a program. The information passed from the compiler to the
hardware to execute a program on a conventional superscalar architecture typically
includes instructions and static data. Multiscalar hardware requires additional information

about the tasks of the program.

When a task is assigned to a PU for execution, the hardware needs the start address of
the next task to assign it to another PU for execution. The PU executing a task needs to
know when the task ends. The start and end information of tasks are collectively called as
inter-task control flow information. Apart from task boundaries, if tasks employ synchro-
nization and communication to enforce inter-task data dependences (registers and mem-
ory) then the hardware requires specification of any such synchronization and
communication between the producer task and the consumer task involved in the data
dependence. The PU that executes the consumer task needs to know which values are to be
obtained from other tasks and when the values are available. The PU that executes the pro-
ducer task needs to know which values are to be sent to other tasks and when the values
may be sent. The information of when a data value may be sent from a task and which data
values will be sent by other tasks is collectively called as inter—task data dependence infor-

mation.

The additional information about the tasks may be passed on from the compiler to the
hardware via the program binary. Alternatively, some auxiliary hardware may garner the
information from conventional program binary. Since I wanted to explore compilation
techniques, I opted to use the compiler to obtain and convey such information to hardware.
In summary, program binaries include: (1) the instructions of the program, (2) inter-task
control flow information, and (3) inter-task data dependence information. The instructions

of the program remain the same as a regular superscalar, in the implementation I consider.
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2.4.1 Inter-task control flow information

When a task is assigned for execution, the hardware predicts one of the successors of the
task to be assigned for execution. The hardware needs to know the possible successors of
the task; not predicting the probable successor task until its identity is known incurs per-
formance loss. The compiler explicitly provides a list of successors of the task called tar-
gets and the hardware predicts one of the targets [95]. It is important to note that if the
compiler does not provide all of the targets of a task, the hardware could learn and remem-
ber the unspecified targets as they are encountered in execution. The advantage of not
specifying a target is smaller binary (and instruction memory resources) and the disadvan-
tage is that the first time an unspecified target is encountered, the next task cannot be
assigned until the target is computed, which may lead to performance loss. Apart from the
successors of a task, the PU needs to know where a task ends, so that it may terminate exe-
cution. The compiler tags the instructions at the boundaries of tasks with a few extra bits
called the task-exit bits. When the PU encounters an instruction with the task-exit bits set,
it stops execution and the task ends. Branch instructions lead to two possible control flow

paths and the task-exit bits identify the paths that exit the task.

2.4.2 Inter-task data dependence information

I discuss register dependences first and then memory dependences. If inter-task register
dependences are to be honored by the compiler, then the compiler needs to specify explicit
synchronization and communication among dependent instructions. In order to keep the
discussion simple, let us assume that all inter-task register dependences are enforced by
the compiler via synchronization and communication. In a real implementation, some of
the dependences may be honored by the hardware via speculation and verification and the

rest may be handled by the compiler.

The compiler determines the set of register values that may be produced by a task and

the set of register values that may be consumed by the task. If a task consumes a data value
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produced by another task, then the consumer task waits until the value 1s sent to it. In
accordance with sequential semantics, the last update of a register in a task should be for-
warded [38] [95] to succeeding tasks3. If a register is guaranteed not to be modified by a
task, then it may be propagated to successor tasks as and when it arrives. Since the PU
cannot determine a priori which instructions comprise its assigned task (the instructions
may not even have been fetched), it cannot know (1) which registers are guaranteed not to
be modified, and (2) which instruction performs the last update to a register that needs to
be forwarded. Waiting until all instructions in a task have executed so that all registers are
updated serializes the execution of tasks, incurring performance loss. The compiler pro-
vides the set of registers which may be modified as a bit-vector called the create mask.
The compiler determines the last update of each register and tags the instruction with a
few extra bits called the forward bits, similar to task-exit bits. When a PU encounters an
instruction with forward bits set, called a forWarding instruction, it forwards the value
corresponding to the destination register of the instruction. If a register is forwarded in one
control flow path but there are no instructions that modify the register in another path, an
extra instruction called a release instruction may have to be inserted to send register val-

ues. The targets and the create mask of a task are collected together in its task descriptor.

If memory dependences are handled entirely by the hardware, the compiler need not
provide any information. As explained before, since it is difficult for the compiler to deter-
mine and compactly specify memory dependences, hardware is employed to enforce

memory dependences.

3. If speculation and verification is employed, multiple values for a register may be sent. In that
case, the value corresponding to the last update of the register should be sent last or tagged spe-
cially, to maintain sequential semantics.
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2.4.3 An example of a Multiscalar program

In order to clarify the kind of information required, I present an example of a code snip-
pet and illustrate its execution. Figure 2-6 shows the source code and the assembly code

with information specific to Multiscalar tasks.

The example code in Figure 2-6(a) is a part of a simplified cache simulator; it contains a
loop which scans down the array trace. Trace holds the addresses of the simulated mem-
ory accesses and the array cache simulates the cache. TAG_MASK and IDX_MASK are bit
masks used to select the cache tag bits and cache index bits, respectively. HEAP_MASK is
a bit mask used to identify if an address falls into the heap section of the simulated virtual
memory space. The variables tag and idx hold the cache tag bits and cache index bits,
respectively, of each memory address. Heap_access keeps count of the number of memory
addresses that fall into the heap section. Cache_hit keeps count of the memory accesses
that hit in the cache, i.e., those accesses for which the index maps to a valid cache entry
and the tag matches the tag stored in the cache entry. For accesses that do not hit in the

cache, the cache entry corresponding to the current index is updated with the current tag.

The corresponding assembly code in Figure 2-6(b) shows variables i, n, address, idx,
tag, heap_access, and cache_hit in registers ri, rn, radd, ridx, rtag, rheap, and rhit, respec-
tively. Registers rtrace and rcache hold the address of the cells of trace and the base

address of cache, respectively.

Let us assume that the loop body is partitioned into two tasks, shown by shaded regions
in Figure 2-6(b): one from the label Loop to the add instruction above the label Not_Heap
and the other from the label Not_Heap to the label Continue (the jump instruction at end
of the loop body). There are many other task partitions possible but the partition chosen

here serves to illustrate the kind of information required to execute tasks.
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while (i++ <n) { Targets: Task2, Task3
address = trace[i]; Create Mask: ri, rtrace, radd, ridx,
idx = address & IDX_MASK; rtag, rtmp, rheap

tag = address & TAG_MASK;
if (address & HEAP_MASK)
heap_access++;
if (VALID(cache[idx]) &&
(tag == TAG(cache[idx]))
cache_hit++;
else
TAG(cache[idx]) = tag;

Task1:

F add i, ri, 1

F add  rtrace, rirace, 4

ST bge ri,rn, Task3

F Id radd, O[rtrace]

F andi ridx, radd, IDX_MASK
F andi rtag, radd, TAG_MASK

J © F  andi rtmp, radd, HEAP_ MASK
ST beq rtmp, r0, Not_Heap
Loop: FS add rheap, rheap, 1
Not_Heap:
(c)
Targets: Task1

Create Mask: rblock, rvalid, rtmp, rhit

Task?2:
Not_Heap F add rblock, rcache, ridx
F 1Id rvalid, VALID[rblock]
beq rvalid, rO, Cache_Miss
F I1d rtmp, TAG[rblock]
bne rtag, tmp, Cache_Miss
F add  rhit, rhit, 1
jmp  Continue
Cache_Miiss:
release rhit, rtmp
st rtag, TAG[rblock]

Continue:
S jmp Taskl
Out: Task3:
(b) (d)

Figure 2-6: An example of a Multiscalar program. (a) The source code of a loop of a
simplified cache simulator. (b) The assembly code for the loop. The loop body is
partitioned into two tasks. (c) and (d) The two tasks and their descriptors. F, ST, and S
denote forward register, exit if taken, and exit always, respectively.
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In Figure 2-6(c), the two branch instructions are annotated with task-exit taken bits
(indicated by ST) causing the hardware to terminate the task if either of the branches are
taken. The add instruction at the end also has its task-exit bits set (indicated by S) causing
the task to terminate. In Figure 2-6(d), the jump instruction has its task-exit bit set (indi-

cated by S) causing the task to terminate at the end of the loop.

In Figure 2-6(c), since all the integer instructions and the load instruction of Task] are
last updates of the respective destination registers, they have the forward bits set (indicated
by F). Any register on the create mask that was not forwarded during the execution of the
task is forwarded after the task terminates. For example, if the second branch of Task1 is
taken then rheap is not forwarded by any instruction and it is automatically forwarded at
the end. Task2 is similar to Taskl except for the release instruction which forwards the
registers rhit and remp. If either of the first two branches of Task2 are taken, then the regis-
ters rhit and/or rtmp are not forwarded by any instruction; instead of letting the hardware
forward them at the end (similar to rheap of Taskl), the release instruction forwards them

earlier because subsequent tasks may be waiting for them.

To explain how load and store instructions are executed, let us assume that two iterations
of the loop in Figure 2-6(a) are executed on a four-PU configuration. Task1 and Task2 of
iteration 1 and Task1 and Task?2 of iteration 2 are executed on PU1, PU2, PU3, and PU4,
respectively. PU1 forwards registers ri, rtrace, radd, ridx, rtag, and rheap to PU2 when
the corresponding forwarding instructions are executed. In addition to forwarding registers
rblock, rvalid, and rhit, PU2 also propagates the registers received from PU1 to PU3. PU3
consumes the registers received from PU2 and forwards new values and propagates old
values for the corresponding registers. It is possible that iterations 1 and 2 index into the
same cache entry. If iteration 1 simulates a cache miss and iteration 2 simulates a cache
hit, the store instruction of PU2 (Task2, iteration 1) and the load instruction of PU4
(Task?2, iteration 2) access the same entry of cache. Depending upon the timing of execu-

tion, either the store from PU2 reaches the ARB before the load from PU4 or vice-versa. If
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the store is ahead of the load then the load gets the correct value of the cache entry; other-
wise, when the store is executed, the ARB detects a memory dependence violation and

squashes PU3 and PU4. Task! and Task2 of iteration 2 are reexecuted on PU3 and PU4.

2.4.4 Other alternatives to binary interface

There are alternative schemes to provide task information to the hardware other than tag-
ging instruction with extra bits. Assuming that the program binary does not contain any
task information, instead of a compiler some auxiliary hardware could scan the instruc-
tions as they are fetched and demarcate tasks. Once a task is demarcated, the instructions
can be scanned and inter-task control flow information and inter-task data dependence
information may be determined. Unlike the compiler which stores the task information in
the program binary, the hardware scheme could buffer the information in a special cache
or in the instruction cache itself (similar to an instruction cache which contains pre-
decoded instructions). The compiler may be able to produce better tasks than the hardware
because it can include more analyses than the hardware. Since I am exploring the com-

piler, I will not elaborate on this approach any more.
2.5 Hardware implementation of the Multiscalar architecture

All the information required by the hardware is included in the program binary. The
Multiscalar hardware executes a program by fetching and executing instructions, similar
to a superscalar processor. The task information included in the binary is used by the hard-
ware to coordinate the execution of tasks in the program. The Multiscalar processor is
organized as a collection of processing units (PUs), each of which has its own fetch and
issue logic, register file, pipelined datapath hardware, and load-store queues, similar to a
superscalar processor pipeline core. The PUs are connected to a first level instruction

cache which may be backed up by next level caches. The PUs are connected? together to

4. Although logically any interconnect may be used, since data values and other information can be
communicated from a predecessor task to a successor task only (and not the other way), a simple
unidirectional ring may be easier to engineer.
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Figure 2-7: Hardware for the Multiscalar architecture. The = Sequencer  performs
control flow speculation and assigns tasks to the PUs for execution. The PUs include
narrow-issue pipeline datapaths with fetch, decode, and issue logic as well as a private
register file. All memory accesses from the PUs are sent to the ARB to detect memory
dependence violations. The ARB is backed up by the rest of the data cache hierarchy. The
PUs are also connected to the instruction cache hierarchy.

communicate data values and other information from one unit to another [36] [38]. Apart
from the PUs, there is a hardware predictor which predicts the tasks to be executed. The
sequencer assigns tasks to PUs in the predicted program order and keeps track of the pro-
gram order among them. The PUs are also connected to the memory disambiguation
mechanism called the address resolution buffer or ARB [40] to handle loads and stores.

The ARB enforces the original program order among memory operations performed by
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different PUs; any load and store to the same address performed out of program order is
detected and corrected by the ARB. The ARB also buffers all store values of a task until
the task is retired, at which time the ARB updates the first level cache. The ARB is backed
up by the first level data cache and the rest of the memory hierarchy, which hold only non-

speculative values.

2.5.1 Control flow: Sequencer

The sequencer assigns a task for execution on a PU and fetches the task descriptor of the
task, using the starting PC of the task called the task PC. Task descriptors are cached in
the task cache to reduce latency of access. The sequencer then predicts one of the targets
specified in the descriptor using task prediction tables similar to branch prediction [37]
[38] [55] [90] [95] [114] tables used by superscalar processors. The sequencer probes the
prediction tables with the task PC and the prediction tables generate a target number based
on past history of the targets taken by the task. The sequencer uses the target number to
probe the task descriptor and gets the task PC for the next predicted task and continues

task assignment if the next PU is free.

2.5.2 Register data: Unidirectional communication ring

When the sequencer assigns a task to a PU for execution, the PU starts fetching and exe-
cuting instructions from the task PC. If all the input register operands of an instruction is
not available, then the instruction is kept pending until the required value is received from
some predecessor task. When a register value is received from the previous PU, the corre-
sponding local register is updated with the value. If the register is not in the create mask of
the task (i.e., it is guaranteed not to be modified by the task), then the value is passed on to
the next PU; otherwise, the register value is not passed on any further and it will be sent
when the corresponding forwarding instruction is encountered. When an instruction with

- forward bits set is executed, the destination register value is sent on the ring to the next

PU.




2.5.3 Memory data: Address resolution buffer

Every load and store from any of the PUs access the ARB. The ARB is organized like a
cache and indexed using the memory access address. Every load and store is recorded in
the ARB and stores deposit the values in it and do not update the data cache. A store to an
address from a task checks for loads from the same address that have already been per-
formed by later tasks. If any such load is found (i.e., a memory dependence violation is
said to have occurred) then the task that performed load (and all later tasks) are squashed.
When a task retires, its buffered store values are written back to the data cache and the
ARB entries are cleared. The data cache holds only architectural state and no speculative

state.

2.5.4 Sequential semantics

The hardware maintains the program order among the predicted tasks by assigning them
in the order to the PUs in the direction of the unidirectional communication ring. This
assignment maps the logically ordered tasks on the physically ordered PUs. In order to
continue to maintain this ordering even through squashes, any squash results in the offend-
ing task and all logically succeeding tasks (inferred from the order of the PUs to which
they are assigned) being squashed. This squash model maintains the one-to-one corre-
spondence between the logical order of the tasks and the physical order of the PUs. In
order to maintain correctness of data values, a task is retired only after all register values

are sent and all memory values are written back from the ARB to the data cache.
2.6 Performance Aspects
In this section, I add timing information to the functional description of execution of

tasks to account for execution time of tasks and understand important performance issues.

When a task is assigned for execution, two possibilities arise: (1) the task completes and is
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retired, or (2) an incorrect speculation (control flow or memory dependence) occurs and

the task is squashed.

2.6.1 Scenario 1: Task is retired

When a task is assigned for execution, it starts out by fetching instructions from the start
PC and filling the pipeline of the PU with instructions. The time associated with filling the
pipeline is classified as task start overhead. Each instruction executes as long as its input
operands are available, similar to a superscalar processor. If an input operand is not avail-
able, then the instruction waits until the value is available. If the instruction waits for a
value to be produced and communicated by another task, then the associated wait time is
classified as inter-task data communication delay. If the instruction waits for a value to
be produced by a previous instruction in the same task, then the associated wait time is
classified as intra-task data dependence delay. As soon as the required value is avail-
able, execution proceeds and eventually the task ends. After completion, the task waits to
retire; the associated wait time is classified as load imbalance because the wait time is
incurred due to the difference in the amount of computation performed by the task and its
predecessor tasks. When the task is allowed to retire, it commits its speculative state to
architectural storage; the associated time is classified as task end overhead. After the task
retires, the PU is ready to execute another task. Figure 2-8(a) illustrates the various phases

of scenario 1.

2.6.2 Scenario 2: Task is squashed

When a task is assigned for execution, it proceeds as explained above until an incorrect
speculation is detected. Either the task itself or one of its predecessors is detected to have
misspeculated and the task is squashed and a new task is assigned. The entire time since
the start of the task, irrespective of whether the task was waiting for values or executing
instructions, is classified as control flow misspeculation penalty or memory depen-

dence misspeculation penalty, as the case may be. Since a misspeculation may cause sev-
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Events

Execution Phase

Events Execution Phase

Time Task assigned

Task assigned

Task start
Pipeline full overhead
Useful cycles . .
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Inter-task data
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. elay Squash task
Value received Task restarted
Useful cycles
Use value
Intra-task data
dependence
delay
Value ready
Useful cycles
Task complete
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Task retire
Task end
 / PU free overhead PU free
(a) (b)
Figure 2-8: Time line of the execution of a task. Time extends downwards. Events

occurring during the execution are shown on the left of the timeline. The names for the
various time-phases corresponding to the events are shown on the right of the timeline. (a)
Scenario 1: Task executes to completion. (b) Scenario 2: Task is squashed and restarted.

eral tasks to be squashed (the offending task and all its successors), the misspeculation is

associated with the sum of all the individual penalties of each of the squashed tasks.

Figure 2-8(b) illustrates the various phases of scenario 2.
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2.6.3 Performance improvements through the compiler

The issues listed above are addressed by specific compiler techniques which mitigate the
performance loss associated with each of the categories. Complementary hardware tech-
niques also are employed to alleviate performance problems. Task start overhead and task
end overhead are amortized by selecting large tasks. If the start overhead is two cycles to
fill the pipeline of the PU, then the compiler may be configured to select tasks which are
20 instructions or more to keep the overhead to less than 10%, assuming the PU may issue
at most 1 instruction per cycle. Inter-task data communication delay is tackled by two
techniques: (1) Task selection heuristics select tasks with as few inter-task data depen-
dences as possible to avoid inter-task data communication as much as possible and (2) The
inter-task data dependences that could not be avoided by the task selection heuristics are
handled by scheduling; producers and consumers involved in the inter-task dependences
are moved up (early) and down (late) in their respective tasks. The required data value is
produced early and communicated before it is required by the consumer. Intra-task depen-
dence delay is handled by traditional instruction scheduling. L.oad imbalance is alleviated
by controlling the variation in task sizes. By imposing an upper limit on the number of
instructions included in a task, task selection heuristics may disallow large variations in
task sizes. Performance loss due to misspeculation (both control flow and memory depen-
dence) is mitigated by two techniques: (1) Task selection heuristics partition programs into
tasks with as few control and memory dependences5 as possible to avoid inter-task depen-
dences that are misspeculated and (2) The inter-task dependences that could not be
avoided by the task selection heuristics are handled by scheduling; verification of the spec-

ulated dependences is scheduled early to reduce misspeculation penalty.

5. Memory dependences are hard to determine at compile-time due to ambiguous pointer accesses
and inter-procedural memory accesses. The heuristics described in this thesis (in Chapter 3) use
simple analysis of memory dependences involving global scalar variables referenced by name.




36
2.7 The problem of compiling for the Multiscalar architecture

Compiling for the Multiscalar architecture involves discovering independent computa-
tions in a sequential program. But unlike a VLIW, superscalar or a parallelizing compiler,
the Multiscalar compiler need not provide absolute guarantees of independence because of
the extensive hardware support for speculation6. Control speculation and memory depen-
dence speculation in hardware relieves the compiler of the burden of guaranteeing com-
plete independence or correct synchronization among Multiscalar tasks. The flexible
granularity of tasks allows the compiler to select tasks on the basis of the parallelism
present in the program and does not force the compiler to engineer the code to fit the gran-
ularity of the hardware. Superscalar and VLIW compilers have to engineer (via techniques
like code motion across basic blocks and software pipelining) the inherent (possibly com-
plex, in terms of control and data dependencies) grain of the program into the rigid n-wide

instruction structure, which the architectures execute.

The Multiscalar architecture provides synchronization mechanisms for register depen-
dences, which the compiler can detect. For the cases involving memory dependences, in
which the compiler may not be able to perform an accurate analysis, the architecture
allows the compiler to aggressively speculate on ambiguous dependences. In conventional
architectures, instead, the compiler is forced to generate sequential code. Needless to say,
presence of dependence would prevent application programs from executing faster. Never-
theless, aggressive solutions vastly improve performance in situations where there is par-

allelism which cannot be established with absolute guarantees by the compiler.

In more concrete terms, the Multiscalar compiler identifies computations which are
mostly but not necessarily independent and bundles them into tasks. The compiler parti-

tions and schedules around known control flow and data dependences. For unknown and

6. VLIW and superscalar architectures provide support for speculation via predicated instructions
[54] (e.g., conditional move instructions).



37

ambiguous dependences, the compiler speculates that there are no dependences and parti-
tions programs ignoring such dependences; the compiler attempts to keep the misspecula-
tion penalty low by keeping the size of tasks modest so that misspeculations do not discard

large amounts of computations.

The responsibilities of the compiler include partitioning sequential programs into tasks
with few dependences among each other, maintaining correctness by specifying control
and data dependencies among the tasks to the hardware, and improving performance by
streamlining control and data dependences among the tasks. Corresponding to these
requirements, the problem of compiling for the Multiscalar architecture comprises four
parts: (1) devising heuristics to obtain suitable tasks, (2) specifying inter-task register
communication and inter-task control flow to maintain correctness, (3) scheduling inter-
task data (both memory and register) communication to mitigate performance loss, and (4)

evaluating compiler strategies.

Figure 2-9: Role of the compiler for the Multiscalar architecture. The compiler
compiles sequential applications down to the hardware. The compiler partitions the code
into tasks and performs several optimizations and generates a program binary which
includes task information (register create masks, register forward bits, task-exit bits, and
task targets).
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Task selection involves determining control and data dependences among instructions
and collecting instructions into tasks such that most dependent instructions are included in
the same task. Specifying inter-task register communication and inter-task control flow
includes determining the last update of a register in a task and identifying the branches
that lead control flow from one task to another. Register communication scheduling
involves identifying the producer and consumer instructions of inter-task register depen-
dences. The scheduler moves the producer instructions up and the consumer instructions
down in their respective tasks so that the time taken to produce the value and communicate

it is overlapped with some useful computation in the task of the consumer instruction.

Like other compilers, the Multiscalar compiler faces both correctness and performance
issues. Correctness issues include inter-task register dependences and inter-task control
flow and performance issues include task selection and register communication schedul-

ing.

2.7.1 Correctness issues

Inter-task register dependences and inter-task control flow are completely specified by
the compiler to the hardware. Any instruction that is the last update of a register, irrespec-
tive of the control flow paths within the task, must be tagged to forward its destination reg-
ister’. The compiler cannot guarantee sequential semantics if this rule is violated. Control
flow path that exits a task must lead to the entry point, and not the middle, of another task.
Since register forwarding is set up by the compiler assuming tasks have a single entry
point, sequential semantics cannot be guaranteed if this rule is violated. Similar to other
instruction scheduling schemes, register communication scheduling also involves correct-
ness issues as well. Code motion employed by register communication scheduling must

conform to sequential semantics.

7. If aregister is forwarded multiple times due to hardware or compiler speculation, the last for-
ward must send to the correct value.
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2.7.2 Performance issues

Task selection is the most important performance issue of the Multiscalar architecture.
Since there is no restriction on the control flow and data dependences that may exist within
a task and among tasks, any arbitrary, contiguous sequence of static instructions is a valid
task; the choice of tasks is entirely a performance consideration. To expose as much paral-
lelism as is in the program, task selection should result in as few inter-task dependences as
possible. Any inter-task dependences result in either tasks waiting for values or tasks spec-
ulating that there are no dependences and squashing. If an inter-task dependence is
unavoidable, then tasks should be selected such that the producer instruction of the value
involved in the dependence is close to the beginning of its task and the consumer instruc-
tion of the value is close to the end of its task. Tt;us, producer instruction is executed early
and consumer instruction is executed late resulting in overlap between communication and
computation. If task selection does not succeed in achieving this overlap, then code sched-
uling, which employs static code motion to move the producer up to the beginning of its

task and the consumer down to the end of its task, should be done.

2.7.3 Organization of the compiler

The techniques discussed above are implemented as a series of compiler optimizations
phases. The organization of the compiler, which is derived from gcc, is shown in
Figure 2-10. At the top level, gcc parses, optimizes, and compiles down to assembly one
input function after another. After a series of traditional phases like jump optimizations,
common sub-expression elimination, and loop optimizations, the Multiscalar compiler
performs loop optimizations specific to the Multiscalar architecture called loop restructur-
ing. After the program is partitioned into tasks, the compiler schedules register communi-
cation. Register allocation is performed after that in the usual manner. At the final code
generation phase, the compiler annotates the assembly code with inter-task register com-

munication and control flow information.
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Traditional (gcc) Multiscalar
Parsing

Jump Optimization

Common Sub-Expression

Loop Optimization > Loop Restructuring
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Figure 2-10: Organization of the compiler for the Multiscalar architecture. The
different phases of the compiler and the phase ordering implemented in the compiler. The
traditional phases of Gec are listed on the left and the phases specific to Multiscalar are on
the right.

Task selection and register communication scheduling take advantage of profile infor-
mation (basic block frequencies), if available. Since many decisions made by the compiler
during task selection and register communication scheduling depend on the relative
importance of optimization opportunities, frequency counts obtained from dynamic profil-
ing are used to prioritize the opportunities. Profile information is optional in that the com-

piler generates Multiscalar binaries even if the information is not available.
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Chapter 3

Task Selection

Task selection is one of the most important problems for the compiler; the amount of
parallelism exploited by the Multiscalar hardware while executing a program depends sig-
nificantly on how the program is partitioned into tasks. While a good task selection may
result in the program partitioned into completely independent tasks leading to perfor-
mance improvements linear with respect to the number of processing units, a poor task
selection may lead to the program partitioned into dependent tasks resulting in perfor-
mance worse than that of a single processing unit, due to overheads resulting from distrib-
uting hardware resources. For example, if register dependences through a critical path are
exposed across tasks, register communication may add extra latency cycles to the critical
path. Centralized register value bypassing used in superscalar processors may not incur

this overhead?.

The guiding principle used to select tasks is that control and data dependent computation

should be grouped into a task so that synchronization and communication or speculation

1. This example does not take clock speed differences into consideration.
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and verification are minimized. Any inter-task communication or speculation may result
in loss of performance due to communication delays or misspeculation penalties. There
are two issues in applying the principle: (1) it is hard to determine all the data dependences
in a given application due to ambiguous memory dependences (as explained in
Section 2.3.2) and (2) even if the dependence information is accurate, data dependences,
control dependences, load imbalance, and task overheads (as explained in Section 2.6)
often impose conflicting requirements. Sarkar [89] showed that partitioning simple func-
tional programs into tasks to execute on a multiprocessor is NP-Complete. He modeled
program execution time as a function of the amount of work done by each task and data
communication delay due to inter-task dependences. Even without including consider-
ations about speculation in the model?, the problem of partitioning programs into tasks for

optimal performance is intractable.

I handle the first issue by determining register dependences and a few simple memory
dependences involving statically named variable accesses. Any ambiguous memory
dependence involving pointers and heap structures are not analyzed and are ignored. Hard-
ware support for memory dependence speculation allows the compiler to ignore ambigu-
ous memory dependences, as explained in Section 2.7. To address the second issue, I have

devised a set of heuristics to select tasks for high performance.

This chapter describes the problems involved in partitioning a sequential program into
Multiscalar tasks and my solutions to the problems. I define tasks in Section 3.1 and dis-
cuss the relationship between performance issues and task characteristics in Section 3.2.
In Section 3.3, I discuss important criteria used to select tasks with favorable characteris-
tics. I describe heuristics which incorporate the criteria in Section 3.4, and present some

details of my implementation in Section 3.5.

2. In other words, the assumption that speculation always succeeds would keep the simple model
unchanged.
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3.1 Definition

A Multiscalar task is defined to be a connected, single-entry subgraph of the static con-
trol flow graph (CFG) [1] of a sequential program. A task corresponds to a contiguous
fragment of the dynamic instruction stream that may be entered only at the first instruction
of the fragment. There are no other constraints on tasks except that they cannot comprise
disconnected parts of the dynamic instruction stream. A task may comprise a basic block®
[1], multiple basic blocks, loop bodies, entire loops, or even entire function invocations. If
a task contains a function call that expands to many dynamic instructions, the correspond-
ing function definition is considered to be a part of the task. Note that more than one task
may contain a call to the same function, in which case the tasks share the static code of the
corresponding function definition. Arbitrary control flow and data dependences may exist
among instructions of a task or different tasks; specifically, tasks are not necessarily inde-
pendent. The nonrestrictive nature of tasks allows the Multiscalar architecture to exploit
any grain of parallelism, ranging from instructions within a basic block to instructions of

different function invocations, present in application programs.

Although tasks are defined to be static objects, there is an important relationship
between the sequence of dynamic instructions corresponding to a task executed by a PU
and the static task. The PU follows a particular dynamic control flow path through the
static task, depending on the data values involved in the computation performed by the
task. Since the compiler does not have access to dynamic control flow paths, it treats a set
of static control flow paths, some of which give rise to dynamic control flow paths during
execution, connected together in a subgraph of the CFG as a task. Thus, a static task, as I

have defined it, is inexact in that it contains computation that is a superset of the computa-

3. Since an instruction is the smallest unit of execution that may be assigned to a PU, each instruc-
tion may be defined to be a basic block. But in Chapter 5, which presents experimental results, I
use the term basic block tasks to denote the traditional single-entry, single-exit piece of code that
may contain more than one instruction.
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tion performed by each dynamic invocation of the task. Although inexact, this definition

allows the compiler to conveniently perform various analyses and optimizations.

Two simple examples of tasks are: (1) a task that contains the entire program, and (2) a
task that contains just one basic block. With such a wide range of options to choose from,
task selection uses heuristics to steer towards tasks that deliver high performance.
Figure 3-1 illustrates a few examples of Multiscalar tasks indicated by shaded regions,
using a simple loop that performs a string compare. Figure 3-1(a) shows the loop body
partitioned into three tasks: the first task comprises the case of A[i] < BJ[i], the second task
comprises the case of A[i] > B[i], and the third task comprises increment to i and the loop
exit branch. Figure 3-1(b) shows the loop body partitioned into two tasks: the first task
comprises the comparison of A[i] and BJi], and the second task comprises increment to i
and loop exit branch. Figure 3-1(c) shows the entire loop body included in one task and
Figure 3-1(d) shows the entire function definition included in one task. These four parti-
tions have different performance characteristics. The partition in Figure 3-1(a) exploits the
fine-grain parallelism present within the loop body, the partition in Figure 3-1(b) com-
bines two tasks of Figure 3-1(a) into a larger task, the partition in Figure 3-1(c) demar-
cates each loop iteration into a task, and the partition in Figure 3-1(d) includes the entire

function invocation.

I introduce a few more definitions for the rest of the discussion on Multiscalar tasks. A
basic block is defined to be included within a task if the basic block is contained in the
subgraph of the CFG corresponding to the task. A control flow edge (u,v) of the CFG,
where u and v are basic blocks, is defined to be included within a task if the basic blocks
u and v are both included within the task. A control flow edge (u,v) is defined to be
exposed if the basic blocks u and v are included in different tasks. Similarly a data depen-
dence edge (p,c) from the producer instruction, p, to the consumer instruction, c, is defined
to be exposed if any of p, ¢, and all basic blocks that are in the control flow paths from p to

c are included in different tasks.
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int match(ch *A, ch *B, int N) { int match(ch *A, ch *B, int N) {

(a) (b)
int match(ch *A, ch *B, int N) { int match(ch *A, ch *B, int N) {

(c) (d)

Figure 3-1: Examples of Multiscalar tasks. Source code of a string matching function.
The strings are stored in arrays A and B and the function returns a -1, 1, or O depending
upon whether A is smaller than, larger than or equal to B, respectively. Each shaded areas
corresponds to a task. (a) A task selection containing four tasks: the if portion of the loop
body, the else portion of the loop body, the increment of the loop index and the loop-exit
test, as shown by the for statement, and the return statement. (b) A task selection
containing three tasks: the if and else portion of the loop body, the increment of the loop
index and the loop-exit test, and the return statement, as before. (c) A task selection
containing two tasks: the entire loop body including the increment of the loop index and
the loop-exit test. (d) A task selection containing one task: the entire function definition,
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3.2 Performance issues and task characteristics

From the discussion of the task execution time line in Section 2.6, major reasons for per-
formance degradation are: control flow misspeculation, inter-task data dependence, mem-
ory dependence misspeculation, load imbalance and task overheads. Each performance
issue is related to one or more task characteristic. I now examine each of these categories,
distinguish between the categories and their superscalar counterparts, and relate the cate-

gories to the task characteristics that cause them.

3.2.1 Control flow misspeculation

Control flow dependences among tasks cause control flow misspeculations. Although
control flow misspeculation seems similar to superscalar branch misprediction, the penalty
incurred is different. In most superscalar machines, branch prediction is done at every
branch one after the other in the predicted path. Typically branches are resolved within a
few pipeline stages (usually less than a few tens of cycles) after they are fetched. Conse-
quently, branch misprediction penalties are of the order of a few cycles. But in the Multi-
scalar architecture, control flow prediction is done well before the actual branch
instruction that transfers control from one task to another is even fetched. Resolution of
control flow from a task to its successor can be typically done only at the end of the task
because the branch instruction may be encountered only at the end of the task. The result
of this late resolution is that control flow misspeculation penalties are of the order of the
execution time of tasks, which mhay be much larger than a few cycles of lost opportunity.
Even if inter-task control flow may be resolved before the end of the task, misspeculation

penalties may still remain a significant fraction of the execution time of tasks.

Figure 3-2 illustrates the impact of control flow speculation on overall performance of
the Multiscalar architecture. Figure 3-2(a) shows a part of the CFG of a program. If the
program is partitioned so that each of the basic blocks A, B, C, and D is a separate task by

itself, then performance may be lost due to many control flow misspeculations.
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Execution scenario if each of A, B, C, and D
are separate tasks

PU1 PU2 PU3

Program

Squashed

Restarted
(b)

Execution scenario if A, B, and C are one task
and D is a separate task

PU1 PU2

(a)

(c)

Figure 3-2: Impact of control flow. (a) A part of the CFG of a program containing four
basic blocks A, B, C, and D. (b) An execution scenario on three processing units,
assuming that each of the basic blocks is a task by itself. Control flow speculation assigns
tasks A, B, and D to processing units PU1, PU2, and PU3, respectively. Misspeculation is
detected and tasks B and D are squashed and tasks C and D are reassigned. (¢) An
execution scenario on two processing units, assuming basic blocks A, B, and C are
included in one task and D is a task by itself. Since the first task has only one successor,
there cannot be any control flow misspeculation.

Figure 3-2(b) shows an example of control flow misspeculation during execution. Process-
ing units PU1, PU2, and PU3 are assigned tasks A, B, and D, respectively, via control flow

speculation. When control flow is resolved, a misspeculation is detected and the incorrect
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tasks B and D are squashed and the correct tasks C and D are assigned to execute. The

main reason for this misspeculation is that task partitioning exposed the branch at the end
of basic block A. If the branch is included within a task, there would be no misspeculation.
Figure 3-2(c) shows another task partition which avoids control flow misspeculation.
Basic blocks A, B, and C are included within one task and basic block D is in another task.
Since Task1 has only one successor since it includes the branch in basic block A, control

flow speculation is always correct.

3.2.2 Inter-task data dependence

Inter-task data dependences cause either inter-task data dependence delay or memory
dependence misspeculation. Let us consider inter-task data dependence delay first. In
superscalar machines, consumer instruction is delayed the most when the corresponding
producer instruction is close to it in the dynamic instruction stream. The delay experienced
by the consumer is typically proportional to the latency of the producer. On the other hand,
in the Multiscalar architecture, the consumer may experience delays much longer than the
latency of the producer if the producer and the consumer belong to different tasks. If the
producer is executed at the end of its task and the consumer is executed at the beginning of
its task, then the delay incurred is proportional to the execution time of the producer task.
Data dependence that may lead to only a few cycles delay in a superscalar machine may
get aggravated to much longer delay if such a dependence is spread out across large tasks.
Figure 3-3 illustrates the impact of data dependences on overall performance of the Multi-
scalar architecture. Figure 3-3(a) shows a loop in which the variable Y is defined and then
used. In Figure 3-3(a), the loop body is partitioned into two tasks, A and B, resulting in the
data dependence edge from the define of variable Y to the use of variable Y to be exposed.
The tasks are assigned to execute on processing units PUl and PU2, as shown in
Figure 3-3(b). During execution, PU2 waits for the value of Y which is produced at the
end of task A, reducing the overlap of execution on PU1 and PU2. The idling of PU2

results in loss of performance. Figure 3-3(c) shows an execution scenario similar to
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Program

Execution Scenario 1 Execution Scenario 2

PU1 pU2 pPU1 PU2

(b)

Execution Scenario 3 Execution Scenario 4

PU1 PU2 PU1 pPU2

No cycles

(e)

Figure 3-3: Impact of data dependences. (a) A part of the CFG of a program containing
a loop with a definition and a use of the variable Y. The loop body contains two parts
shown by shaded regions A and B. =f@= indicates control flow. —> indicates data
dependence. (b) An execution scenario on two processing units, assuming that regions A
and B are separate tasks. Tasks A and B are assigned to processing units PU1 and PU2,
respectively. Since task B uses the value of Y at the beginning, it is stalled until task A
produces the value. (c) An execution scenario similar to that in (b), except instead of
waiting for the value, task B proceeds under data dependence speculation that there is no
data dependence. When task A produces the value, a data dependence misspeculation is
detected and task B is squashed and restarted. (d) An execution scenario on two processing
units, assuming that the entire loop body, i.e., regions A and B are included in one task.
Two iterations of the loop are assigned for execution on the two processing units. Since the
data dependence is included within the task, the two tasks proceed without any stalling or
squashing. (e) An execution scenario similar to that in (b), except the value is produced
early in task A and consumed late in task B. Tasks A and B proceed without any stalling or
squashing and task A produces and sends the value before task B needs to use it.
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Figure 3-3(b) but instead of waiting for the value of Y, PU2 speculates that there is no data

dependence between tasks A and B and uses a stale value of Y; when PU1 produces a new
value for Y, a data dependence misspeculation is detected and PU2 is squashed and
restarted. Irrespective of whether PU2 waits or misspeculates, the inter-task data depen-
dence results in a loss of performance. Figure 3-3(d) shows the entire loop body included
in one task so that the data dependence edge is included within the task. Since no data
dependence edge is exposed, the two processing units execute simultaneously, achieving
better performance. Figure 3-3(e) illustrates the relationship between task partitioning and
scheduling of inter-task data dependence. If the define and the use of Y are scheduled so
that the define appears early in the schedule of the instructions of task A and the use
appears late in the schedule of the instructions of task B, then even if the data dependence
is exposed, it will not cause any loss of performance. Figure 3-3(e) shows tasks A and B
assigned to processing units PUl and PU2, respectively. Unlike the scenario in
Figure 3-3(a), PUI produces the value of Y well before PU2 uses the value and the com-
munication due to the inter-task dependence is completely overlapped with useful compu-

tation.

If an inter-task data dependence is misspeculated (instead of waiting), then, again simi-
lar performance loss is incurred. Misspeculation is detected when the producer instruction
executes and the required value is sent to the consumer instruction; the consumer signals
the occurrence of a data dependence violation and a squash is triggered. If the producer is
executed at the end of its task and the consumer is executed at the beginning of its task,
then the squash penalty incurred is proportional to the execution time of the producer task.
Here, again, a few cycle delay in a superscalar machine may get aggravated to much larger

squash penalties.
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3.2.3 Load imbalance

When a PU completes executing a task, the PU may commit the register and memory
state modified by the task only after the predecessor task has been completed and commit-
ted. Committing tasks in program order is a straightforward way to ensure sequential
semantics. If a small task follows a large task in program order, then the PU executing the
small task idles after completing the small task, waiting for the large task to complete.
This loss of performance arises primarily because of load imbalance, i.e., the amount of
computation performed in the two tasks are not equal. For example, let us assume that two
tasks executing on adjacent processing units take 20 and 10 cycles, respectively. On the
average, 50% of the time the second processing unit is idle, resulting in overall utilization

of 75%.

Load imbalance causes performance loss for large scale parallel machines [68]. Since
distributed processor organizations also partition their physical resources among tasks
similar to parallel machines, they are confronted with load imbalance problems. Large
variations in the amount of computation of adjacent tasks causes load imbalance resulting
in successor tasks waiting for predecessor task to retire. A task assigned for execution may
only use its own PU; resources of other PUs can not be used even if they are free. To the
first order, load imbalance results from large variations in the number of dynamic instruc-
tions executed by tasks assigned to adjacent processing units. Since superscalar machines
employ centralized shared resources, an instruction needing a resource can utilize it if it is
free. Load imbalance can be alleviated by allowing new tasks to execute on PUs that have
completed their old tasks; the speculative state of the old tasks have to be buffered sepa-
rately from the new tasks and committed appropriately, which may complicate the buffer-
ing scheme. Similar to the previous categories, cycles wasted due to load imbalance also

may be proportional to the execution time of tasks.
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3.2.4 Task overheads

There are two kinds of overheads associated with tasks: (1) task start overhead, and (2)
task end overhead. Task start overhead is similar to the problem of short vectors in a vector
machine [87]. Small tasks incur task start overheads to be a significant fraction of their
execution time resulting in considerable performance loss. Unlike the other categories,
task start overhead depends on hardware parameters of PUs (instruction fetch unit laten-
cies, number of pipeline stages for fetch and decode, etc), although it is significant only if
tasks are small. Overlapping the start of another task with the execution of a task may

reduce the overhead but may complicate the design of the PUs.

At the end of a task, all speculative state of the task is committed to the architectural
storage; if task commits involve actual movement of data (as opposed to just tagging of
data as committed without physical movement) extra cycles are spent. Depending upon
the amount of data that is moved, a significant percentage of the cycles required to execute
the task may be spent in committing its state. Tagging of data to avoid physical movement
may complicate speculative state management. Large tasks typically have large amount of

speculative state to be committed.

If tasks contain a large number of dynamic instructions, then several problems arise: (1)
Large tasks increase both the number of misspeculations and the penalty associated with
each misspeculation. Large tasks typically contain a large number of memory instructions
and speculating over a large number of memory operations usually results in an increase in
misspeculations because there is a large likelihood of misspeculating a true data depen-
dence. When a large task gets squashed, a large amount of work gets thrown away result-
ing in large squash penalties. (2) Large tasks cause the buffers that hold the speculative
state to fill up causing the task to stall until the speculation is resolved. In the case of the

LARB, this filling up is called ARB overflow. (3) Large tasks result in a loss of opportunity
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to exploit the parallelism within them because tasks execute on narrow PUs that may not

be wide enough to put large amounts of intra-task parallelism to use.

3.2.5 Summary: Task characteristics that affect performance

Based on the above discussion, it can be seen that task characteristics that affect perfor-

mance are: inter-task control flow, inter-task data dependences and task size.

Control flow misspeculation is affected by the predictability and the position (dynami-
cally encountered/executed early or late during the execution of the task) of the control
flow dependences that are exposed by task selection. Inter-task data dependence delay is
determined by the position (dynamically encountered/executed early or late during the
execution of the task) of the data dependences that are exposed by task selection. Load
imbalance is primarily due to variance in dynamic task sizes. Task overheads are influ-
enced by task size; task start overhead is due to short tasks and task end overhead is due to

long tasks with a large amount of speculative state.

These parameters are used to navigate task selection. Ideally, task selection should be
guided by a precise timing model of the underlying Multiscalar hardware so that the tasks
that achieve the highest performance (as predicted by the model) may be selected. But
there are several problems that cause a deviation from this ideal: (1) An accurate timing
model of the hardware is hard to construct if the hardware includes many dynamic compo-
nents like out-of-order issue, many levels of cache hierarchy, branch prediction and arbi-
trated queues and buses. (2) Even if an accurate model is available, selecting the tasks that
achieve the highest performance as predicted by the timing model is an intractable prob-

lem.

Instead of using a timing model to guide task selection, I use a heuristic for each charac-

teristic. Each heuristic attempts to improve the task characteristic it is designed for and all
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the heuristics are combined together in one task selection process. Any conflicts among
the heuristics are resolved by prioritizing the heuristics. The reasons for the choice of the
heuristics implemented and the chain of arguments that channel the heuristics in a pro-

gression are given later in Section 3.4.

3.3 Task selection criteria

Before describing the actual heuristics that I have implemented, I discuss some general
criteria for options available to the compiler to control task characteristics and select suit-
able tasks. I group task selection criteria based on the task characteristic they influence. 1

discuss criteria corresponding to task size, control flow, and data dependence.

3.3.1 Task size criteria

Tasks can be neither large nor small. As discussed before, small tasks may incur high
start-up overheads and large tasks may cause memory dependence squashes and ARB
overflow. I discuss some of the options available starting from simple tasks each of which

comprise a single basic block.

Basic blocks are well-known structures used by compilers in various analyses. Unfortu-
nately, basic block tasks may not achieve high performance for several reasons. For many
application programs, basic blocks may not contain enough instructions to offset task
overheads. Also, most register dependences usually extend beyond a single basic block
causing basic block tasks to wait for register values. Although basic block tasks usually
have only two successors, which may not tax the prediction hardware, they may expose

unpredictable branches to the prediction mechanism.

Multiple basic blocks that comprise a subgraph of the CFG can be assembled into tasks.

Since there no correctness constraints on how many basic blocks may be included in a
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task, tasks comprising arbitrarily many basic blocks can be generated. But, generating

tasks comprising many basic blocks may lead to the problem of large tasks.

Apart from including many basic blocks within tasks, including entire loops and func-
tion invocations within tasks also may lead to large tasks. Terminating tasks at function
invocations as well as entry and exit of loops naturally limits task size. Most modular
applications tend to have function calls, which naturally prevent large tasks. But frequent
function invocations with little computation between them and loops with small loop bod-
ies may lead to small tasks. Loops can be unrolled so that multiple iterations of short loops
can be included to increase the size of short loop-body tasks; short function invocations
can be included entirely within tasks to avoid small tasks. Including or not including a
function invocation permits a limited degree of freedom (all-or-nothing) to handle func-
tion invocations in task selection policy. A better range of options are possible by inlining

function invocations and selecting tasks out of the merged computation.

The criteria used to control task size may generate tasks with varying sizes (number of
dynamic instructions) leading to load imbalance problems. To alleviate load imbalance
problems, variation in task size may be controlled by bounding the maximum task size to
a predefined threshold. Task selection process can control task size? by generating tasks
whose size does not cross the threshold. In the presence of complex control flow within
tasks, estimating task size is more involved than counting the number of static instruc-
tions. Dynamic instruction count, based on profiling information, may be used as an esti-

mate for task size.

3.3.2 Control flow criteria

Since a task is assigned for execution via control flow speculation, it is important that

tasks are selected with as many successors as can be tracked by the hardware prediction

4. if control flow path frequency information is available via profiling then the dynamic size may
be monitored; otherwise, the static size is monitored.




56
tables. These hardware tables are built to track some fixed number (N) of successors. If

tasks are selected to have more than N successors, dynamic control flow speculation accu-
racy may decrease, leading to loss of performance. In most structured applications,
although the CFG of a subroutine diverges at the beginning due to conditional statements,
control flow paths reconverge eventually before the end of the subroutine. Therefore, con-
straining the number of successors may seem trivial. But imposing task size criteria may
result in a task being terminated at loops and function invocations, which are default suc-
cessors of the task; the top of the loop corresponding to a loop back edge and the invoked
function corresponding to a function invocation are examples of such default successors.

Figure 3-4 illustrates default successors. The task shown in the figure has three default

int func( ) {

if (condl)

f10)
else if (cond2)

f2()

for ( )

} ¥ 4

for loop £ v flV forloop  p * fl*

(a) (b) (c)

Figure 3-4: Number of successors. (a) Parts of the source code of a function. (b) Part of
the CFG corresponding to the if-else-if statement. The dashed arrows represent exposed
control flow edges and shaded regions represent tasks. The shaded region shows a task that
includes all the four basic blocks and has three successors: f1, £2, and the for loop. (¢) If
only two successors are allowed, then a possible partition with two tasks is shown.
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successors: function f1, function f2, and entry into the for loop. If the number of targets
tracked by the hardware is less than three, then the task may have to be split into two

smaller tasks with two successors each, as shown in Figure 3-4(c).

The number of default successors of a task may be more than N, which may lead to con-
trol flow misspeculations. But generating tasks with a few successors may lead to small
tasks. For example, if tasks are restricted to have only two successors, then tasks mostly
contain just a single basic block. So, controlling the number of successors even while
including multiple basic blocks within tasks is an important constraint for task selection
process. Task selection process can track the number of successors of tasks generated so
that tasks are formed with at most N successors. If a task has more than N default succes-
sors, then the task can be split into smaller tasks such that the smaller tasks have at most N
successors. While controlling the number of successors, task selection process can take
advantage of reconvergent control flow paths and branches that are easier to predict than

others.

Reconvergent control flow paths (e.g., the if-path and the else-path of a conditional state-
ment) are advantageous in two ways: (1) A branch can be included within a task (i.e., the
task contains both the taken path and the not-taken path of the branch until they recon-
verge). The included branch does not affect inter-task control flow and cannot cause con-
trol flow misspeculations, and (2) By utilizing reconvergent paths, the size of a task can be

increased without taxing the prediction hardware with larger number of successors.

One of the advantages of task level prediction over ordinary branch prediction is that not
every branch in the program is predicted; only those branches that form task boundaries
are predicted and branches internal to a task do not affect the prediction process. Branches
that are internal to a task do not affect the inter-task prediction process. Branches that are
easier to predict (e.g., the exit-test branch of a loop) can be exposed (defined in

Section 3.1) and branches that are harder to predict (e.g., data dependent branches) can be
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included within tasks. The task including the entire loop body in Figure 3-1(c) is an exam-

ple of a task which includes data dependent branches.

3.3.3 Data dependence criteria

Data dependences from producer instruction contained in one task to consumer instruc-
tion contained in another task manifest as inter-task data dependences from producer task
to consumer task. If a dependence is included within a task, then no inter-task communica-
tion is required to honor that dependence. Intra-task data dependences, i.e., data depen-
dences among instructions within a task, do not impact performance more than the usual
pipeline stalls. Inter-task data dependences that extend beyond the window established by
the hardware (i.e., the producer task executes and commits before the consumer task is

predicted and assigned for execution), also do not impact performance.

The main cause of performance loss due to communication delay is that instructions that
are involved in data dependences, namely the producer instruction and the consumer
instructions, are not scheduled favorably; producer instructions need to be executed early
and consumer instructions need to be executed late in their respective tasks. With respect
to the time a task starts to execute, the time a producer instruction in the task is executed
depends on (1) whether the instruction depends on values from predecessor tasks and if so,
the time the values get produced and are communicated and (2) how many other instruc-
tions in the task are ahead of the instruction as per program order, since instructions in a
task are executed on a PU in the usual uniprocessor style of execution. A producer instruc-
tion, therefore, may execute much later than the start of the task if the values it needs are

available later or if the task contains many other instructions that precede the instruction.

There are many ways to handle data dependences during task selection: (1) All data
dependences are included within tasks and tasks selected are completely data independent,

(2) the program is partitioned so that all inter-task dependences extend beyond the hard-
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ware window, and (3) the program is partitioned so that all inter-task dependences are
scheduled perfectly, i.e., the producer of the inter-task dependence executes before the
consumer does and the value reaches the consumer before it executes, so that the con-

sumer does not stall.

There are several impediments to achieving the ideal selection: (1) Several memory
dependences are unknown or ambiguous at compile-time, (2) including a data dependence
within a task (as defined in Section 3.1) may result in a task with more successors than
desired, and (3) partitioning the program so that all inter-task dependences extend beyond
the dynamic window may result in tasks that are too small’. Figure 3-5 illustrates task par-
titions that may result when a data dependence edge is considered. Figure 3-5(a) shows a
part of the CFG of a program including a data dependence edge from the top basic block
to the bottom basic block. For this example, let us assume that the number of hardware tar-
gets is 4. Figure 3-5(b) shows a task that includes the data dependence edge by including
all the basic blocks in the control flow path from the producer basic block to the consumer
basic block. But the task has five successors which exceed the number of hardware targets
(assuming each of the control flow edge that is exposed leads to a different successor).
Figure 3-5(c) shows a task partition in which each basic block is a task of its own. If a
hardware configuration contains four processing units, then the data dependence edge

extends beyond its dynamic window of instructions. But the tasks are small.

Exposing a data dependence to avoid exceeding the number of successors may be inevi-
table in certain cases. One way of alleviating performance problems due to an exposed
data dependence is to avoid including many preceding instructions in the same task as the
producer instruction, involved in the dependence. Similar arguments may be made for
consumer instructions as well. Task selection, thus, may enable favorable scheduling of

inter-task communication by controlling the choice of basic blocks that are included in a

5. The compiler may have to be aware of the number of PUs used in the hardware configuration,
which makes transparent performance scaling of the hardware difficult.
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(a) (b) (c)

Figure 3-5: Task selection and data dependence edges. (a) A part of the CFG of a
program. - indicates a control flow edge and — indicates a data dependence edge.
Dashed arrows represent terminal control flow edges and shaded regions represent tasks.
(b) A task selection resulting in one task that includes the data dependence edge and has
five successors. (c) A task selection resulting in five tasks each of which has two
successors. The data dependence edge is not included within a task but if the hardware
contains only four processing units then the data dependence edge extends beyond the
hardware window of instructions.

task. Figure 3-6 illustrates how task partitioning may affect inter-task data dependences.
Figure 3-6(a) shows a part of a CFG with a data dependence edge from the top basic block

to the bottom basic block. Figure 3-6(b) shows a task partition obtained by control flow
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Taskl
Taskl1
Task?2
Task?
Task3
Task3
(a) (b) (c)

Figure 3-6: Task selection and inter-task data communication scheduling. (a) A part
of the CFG of a program. - indicates a control flow edge and —> indicates a data
dependence edge. Dashed arrows represent terminal control flow edges and shaded regions
represent tasks. (b) A task selection resulting in three tasks. The producer of the data
dependence is at the end of Taskl and the consumer is at the top of Task3, which leads to
Task3 waiting for the value from Task1 during execution. (c) A task selection resulting in
three tasks. The producer of the data dependence is at the top of Task2 and the consumer is

at the bottom of Task3, causing the value to be communicated from Task2 to Task3 before
Task3 needs it.
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heuristics, assuming the number of hardware successors to be four. Since control flow
heuristics do not take data dependences into consideration, the producer of the data depen-
dence is included at the end of Taskl and the consumer is included at the beginning of
Task3, aggravating data dependence delay. Figure 3-6(c) shows a task partition obtained
by data dependence heuristics consisting of two tasks in which although the data depen-
dence edge is exposed, the tasks are such that the resultant inter-task communication is
scheduled favorably; the producer instruction is placed early in its task at the first basic
block of the task and the consumer instruction is placed late in its task at the last basic
block of the task. If the data dependence edge is included within one task then the task
gets five successors exceeding the number of hardware targets of four, as shown in
Figure 3-5(c). Data dependence heuristics, instead, partition the CFG such that the pro-
ducer of the data dependence is at the top of Task2, facilitating communication of the
dependence value without significant delay. Moreover, the tasks have three successors

each, which are fewer than the number of hardware targets.

Task selection can track register and simple memory dependences and include such
dependences within tasks. If a basic block starts a data dependence chain, then the entire
dependence chain can be included within a task; if, for reasons mentioned above, the
entire dependence chain cannot be included or a data dependence recurrence (e.g., a linear
recurrence through a loop) is detected, then the dependence chain can be broken into sev-
eral tasks. Each of the data dependence edge from the chain can be exposed such that the

producer instruction is positioned early in its task.

3.3.4 Interaction among the criteria

Each of the criteria discussed above may favor different task selections. It is difficult to
estimate the performance benefits of each of them separately and then select the best. In
practice, key conflicts occur between control flow loop criteria and data dependence crite-

ria. Data dependence criteria may partition a loop body into several tasks because the loop
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body contains several independent chains of computation. But control flow criteria may
demarcate the entire loop body as one task, causing iterations of the loop to overlap.
Although control flow criteria do not take advantage of the parallelism present within the
loop body, the single loop body task may perform better than multiple loop body tasks
because its control flow speculation accuracy is significantly higher and load imbalance is
considerably less. Data dependence tasks incur control misspeculations because they
expose branches that are hard to predict, as opposed to the loop back branch exposed by
control flow criteria. In addition to control misspeculations, data dependence tasks may
not be load-balanced due to natural variations in the amount of computation involved in
data dependence chains; loop iterations, on the other hand, may be naturally better load-

balanced.
3.4 Task selection heuristics

In this section, I describe heuristics to select tasks based on the criteria described above.
I start with the basic process of CFG traversal used by task selection. Then I discuss how
the heuristics are incorporated to steer the traversal. The heuristics were implemented in a
progression starting with tasks containing single basic block. In an attempt to alleviate the
performance problems caused by the small size of basic block tasks, multiple basic blocks
were included within tasks. But tasks containing multiple basic block tasks incurred
excessive inter-task control flow misspeculations. To mitigate control flow misspecula-
tions, the number of successors of a task were controlled through control flow heuristic.
Even though control flow speculation was improved, inter-task data dependences were
aggravated, resulting in performance loss. To curb this loss, data dependences were
included within tasks through data dependence heuristic. The heuristics are integrated

together so that suitable tasks are carved out of programs.
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3.4.1 Basic task selection process

Task selection proceeds by traversing the CFG of the application starting at the root of
the CFG. Basic blocks are included in a task by progressively examining whether succes-
sors of the basic blocks that have already been included in the task may also be added to
the task. The heuristics are incorporated in the selection process via decision-making func-
tions that determine whether a particular basic block should be included in a task or not. If
the heuristics terminate a control flow path by not including a basic block, then another
task is grown starting at the basic block. The basic block at which each task is entered is

called the root of the task.

Demarcating basic blocks as tasks is easy for the compiler because basic blocks are
already identified. Tasks so obtained are called basic block tasks. No special decision-
making functions are required to generate basic block tasks. Each basic block is the root of

its task.

3.4.2 Control flow heuristic

To overcome some of the performance problems of basic block tasks, programs are par-
titioned into tasks containing multiple basic blocks. Tasks so obtained are called control
flow tasks. If multiple basic blocks are included within a task, then a decision-making
function that decides whether to include a particular basic block within a task or not is
needed. To this end, basic blocks and control flow edges are categorized as terminal or
non-terminal. If a basic block is terminal, then none of its successors (in the CFG) are
included in the task that contains the basic block. Terminal edges are those which are not
included within a task (i.e., if (u,v) is a control flow edge, then u and v are not included in
the same task). Non-terminal edges may or may not be included within a task, depending
upon the heuristics. Loop back edges and edges that lead into a loop, and basic blocks that
end in a function call or a function return are terminal. For example, Figure 3-4(b) shows a

subgraph with three terminal control flow edges leading to three successors.
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During the CFG traversal, if any terminal edges or terminal basic blocks are encoun-
tered, then the path is not explored any further and the basic blocks that terminate the path
are marked as successors. In order to ensure that tasks have at most N successors, the num-
ber of successors is tracked when basic blocks are included within tasks; the largest col-
lection of basic blocks that correspond to at most N successors called the feasible task is
also tracked. After a basic block is added to the task, if the resulting number of successors
is at most N, then the basic block is added to the feasible task. By taking advantage of
reconvergent control flow paths, tasks are made larger without necessarily increasing the
number of successors. But during the traversal, it is not known a priori which paths recon-
verge and which do not. Control flow heuristic uses a greedy approach; the traversal con-
tinues to explore control flow paths even if the number of successors exceeds the allowed
limit. When all the control flow paths are terminated, the feasible task so obtained demar-

cates the task.

To determine the importance of controlling the number of successors, I experimented
with tasks containing multiple basic blocks without bounding the number of successors.
Control flow speculation accuracy of such tasks is significantly low, affecting performance
adversely because most of the tasks have a large number (> 10) successors, which taxes
the prediction mechanism. Overall performance degrades considerably, making this

approach inferior, compared to control flow heuristic.

3.4.3 Data dependence heuristic

The key problem with exposing data dependences is that if the producer is encountered
late and the consumer is encountered early, then many cycles may be wasted waiting for
the value to be communicated. The main goal of data dependence driven task selection is
that for a given data dependence extending across several basic blocks, either the depen-
dence is included within a task or it is exposed so that the exposed dependence does not

cause communication delays.
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In order to alleviate performance loss due to inter-task register dependences, data depen-
dences are identified and programs are partitioned such that data dependences (register
dependences and memory dependences that can be disambiguated using simple schemes)
that span multiple basic blocks are included within tasks. Tasks so obtained are called
data dependence tasks. Since control flow task heuristics already contain mechanisms to
select tasks that contain multiple basic blocks, data dependence task heuristics build on
control flow task heuristics. During the selection of a task, data dependence heuristics
steer the exploration of control flow paths to those basic blocks that are dependent on the
basic blocks that have been included in the task. Control flow heuristics include basic
blocks in tasks regardless of whether they are dependent on other basic blocks contained
in the task. Data dependence heuristics, instead, include a basic block only if it is depen-
dent on other basic blocks included in the task. Thus, data dependence heuristics explore
only those control flow paths that lead to dependent basic blocks and terminate the other

paths.

Data dependences are determined using traditional static analyses. Register dependences
and simple memory dependences (involving named scalar variables) are established by
standard dataflow analyses [1] [3] [12] [13] [19] [20] [24] [25] [50] [57] [59] [60] [69]
[74] [75] [84] [85] [88]. Data dependence information restricted to identifying the pro-
ducer and the consumer instruction is not sufficient to include the dependence within a
task. If the producer and the consumer instructions are not in adjacent basic blocks in the
control flow graph, then other basic blocks in the control flow path from the producer to
the consumer also have to be included. Therefore, the compiler identifies the set of basic
blocks that have to be included in a task so that a data dependence may be included within
the task. This set of basic blocks is called the codependence set. Figure 3-7 illustrates
inclusion of a data dependence within a task. Figure 3-7(a) shows a task which includes
the data dependence edge with five successors. The task contains only the basic blocks

that are in the codependence set of the data dependence. By including a few more basic
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(a)

Figure 3-7: Including a data dependence within a task. (a) A part of the CFG of a
program. - indicates a control flow edge and — indicates a data dependence edge.
Shaded regions represent tasks. The task includes the data dependence edge but has five
successors. (b) By including more basic blocks in the task, the number of successors is
reduced to one. The task includes the data dependence and has only one successor.

blocks which may not be in the codependence set within the task, the number of succes-

sors may be reduced, as shown in Figure 3-7(b).
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The set of dataflow equations, given in Figure 3-8, identify the set of basic blocks that

have to be included: the basic blocks that lie in the control flow paths from the producer to

the consumer. The equations for DefReach compute the basic blocks in which the defini-

DefReach(r, Producer) = TRUE

DefReach(r,c) = z DefReach(r, p) " BBdef(r, p), c # Producer
p € parents(c)

Codependent(r, Consumer) = TRUE

Codependent(r,p) = Z Codependent(r, ¢c) n DefReach(r, p)
¢ € children(p)

Figure 3-8: Data dependence heuristics. BBdef(i,r) is true if register r is modified in
basic block i. DefReach(r, b) is true for any successor b of basic block Producer if the
definition of register r reaches b without being overwritten by any other definition of r.

Codependent(r, p) is true for any predecessor p of basic block Consumer if DefReach(r,p)
is true.

tion of the register r by the producer is reached. DefReach is true at a basic block for a reg-
ister if it is true at one of its parents and the parent does not overwrite the register.
DefReach identifies all those basic blocks in which the definition from the producer is
reached, not necessarily only those that lie in control flow paths between the producer and
the consumer. To get the restricted set of basic blocks for which DefReach is true and
which lie in control flow paths between the producer and the consumer, the dataflow prop-

erty Codependent is used. The dataflow property Codependent defined for a register r and
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a basic block is true for those basic blocks for which DefReach is true and which lie in

control flow paths between the producer and the consumer. If all of the set of basic blocks
is included within the task, then the dependence is included within the task completely. If
any of the set of basic blocks are not included in the task then some control flow path from
the producer to the consumer is exposed, resulting in the dependence to be exposed. If the
set of basic blocks contribute more than N successors, then the task is further expanded by
exploring those control flow paths that were terminated because they did not lie between
the producer and the consumer. If the expansion decreases the number of successors to N
then the dependence is successfully included; otherwise the dependence cannot be
included, and to facilitate favorable scheduling of the resultant inter-task communication,

the basic block containing the producer is marked to be the root of its task.

There is a trade-off between control speculation accuracy and data dependence delay
illustrated by those dependences that if included result in more than N successors: If the
task is made to include the dependence, then there is no inter-task communication delay
(since there is no inter-task communication) but control speculation accuracy may be
worsened due to the larger number of successors; otherwise, control speculation accuracy

is not affected but inter-task data communication delay may be worsened.

The process described above produces tasks that include or not include one data depen-
dence. If more than one dependence is taken into consideration, then including one depen-
dence may exclude another because inclusion of a certain dependence may result in some
control flow paths to be terminated and inclusion of another dependence may require some
of the previously terminated paths to be not terminated. A simple solution to this difficulty
is to prioritize the dependences and favor including dependences of higher priority before
considering lower priority dependences. A simple prioritizing function is the execution
frequency of the dependences. A simple approximation to the execution frequency of a
dependence is the minimum of the execution frequencies of the producer and the con-

sumer involved in the dependence. All the data dependences are ordered on the basis of
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the approximation. Going from the highest priority dependence to the lowest priority

dependence, tasks are formed to include dependences, expanding any previously formed
task that includes a higher priority dependence to include a lower priority dependence; if a
previously formed task cannot be expanded to include a lower priority dependence with-

out needing more than N successors, then the lower priority dependence remains exposed.

3.4.4 Special heuristics

Loop recurrences of any sort are treated as a special case for task selection. If a loop
body with a recurrence is formed into a task, the recurrence causes the iterations of the
loop to stall. The key problem is that the separation among the instructions involved in a
recurrence decreases the overlap among successive iterations of the loop significantly
leading to a substantial loss of performance. Figure 3-9 illustrates the impact of loop
recurrences on performance. There are two options to avoid performance loss due to
recurrences: (1) To schedule the instructions involved in recurrences so that the separation
is closed statically or (2) to partition the loop body so that the separation is closed dynam-
ically during execution. Scheduling techniques (described later in Section 4.4) may not
succeed in statically closing the separation due to arbitrary control flow dependences and
ambiguous data dependences. Partitioning the loop body may succeed better than schedul-
ing by exploiting task-level hardware speculation support to overcome arbitrary depen-
dences. Instead of incurring performance loss by selecting the entire loop body as a task,
the recurrence (and hence the loop body) is partitioned into multiple tasks so that all the
basic blocks in the recurrence are roots of their respective tasks. By partitioning the loop
body, the recurrence, which is the critical path through the loop body, is executed without

delay.

3.4.5 Short function invocations

As discussed before, basic blocks ending in function calls have been deemed terminal to

avoid large tasks. This policy forces every function call to be partitioned as possibly many
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Figure 3-9: Effect of loop recurrences. (a) A loop body with a recurrence through
register rl is selected as a task resulting in the parallel execution of the iterations of the
loop. F indicates forward of register r1. Use r1 denotes the instruction r2 := rl+a and Fwd
rl denotes the instruction rl := r2+b. The arrows indicate data dependence. During
execution, the loop iterations wait until the previous iteration produces and sends rl,
leading to significant performance loss. (b) The loop body is partitioned into two tasks so
that r1 is produced and sent before the next iteration needs it.

tasks. If, however, a function invocation executes only a few instructions then partitioning
the few instructions into many tasks usually results in small tasks with many inter-task
dependences. As a special case, these function invocations are included entirely within
tasks. Function invocation that is included entirely within a task is called a suppressed

function call.

Including entire function invocations raises additional concerns. Function definitions are

partitioned into tasks and its instructions are annotated with Multiscalar task information
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(like register forward and task-exit bits) under the assumption that the hardware would
execute these tasks in separate PUs. When a suppressed function call is executed, the tasks
corresponding to the called function are executed in the same PU as the callee task, violat-
ing the assumption. So, execution of suppressed function calls may result in incorrect val-
ues of registers being sent, since the PUs are not executing subsequent tasks from the
callee function but from the caller function. In addition to register forwards, task-exits of
the tasks corresponding to the suppressed function call have to be ignored if all of those

tasks are to be executed in one PU.

There are two ways of solving the problems with suppressed function calls: (1) Create
two versions of those function definitions that are invoked through a suppressed function
call; one version contains the usual Multiscalar annotations and the other is compiled
without any Multiscalar annotations. The suppressed function calls use the non-Multisca-
lar version and the function calls that are not suppressed use the Multiscalar version. (2)
Alternatively, correct execution can be achieved with a single version of function defini-
tions using some hardware support. If a function call is suppressed, then hardware ignores
any Multiscalar annotations as long as execution is in suppressed mode. Ignoring task-exit
bits produces the desired effect of executing all the tasks of the suppressed function in one
PU, and due to register-saving conventions used in function calls, ignoring register for-
wards produces the desired effect of forwarding register values that are visible after the
return of the suppressed function call. The hardware easily identifies any function call as a
suppressed function call if the task-exit bits of the call instruction are not set. If more func-
tion calls are made while executing within suppressed function calls, the entire chain of
calls executes under suppressed mode. To track suppressed mode during nested sup-
pressed function calls, the hardware matches function calls with returns by counting and
as long as the count, maintained in the suppress register, is non-zero, the hardware con-
tinues to operate in suppressed mode. The suppress register is an implicit operand of every
instruction and is an architectural register because it needs to be saved and restored during

context switches and setjumps and longjumps.
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With function call suppressing in place, I experimented with suppressing function calls
that were in loops, so that entire loop bodies with function calls are demarcated as tasks.
This strategy incurs significant performance loss due to memory dependences because the
tasks contain several hundreds of instructions that modify global and heap variables.
Memory dependence prediction and synchronization technique either stalls loads to be
synchronized with stores or fails to prevent misspeculations due to the filling up of hard-
ware tables used by the technique. Overall performance degrades considerably, making

this approach inferior, compared to suppressing only short function invocations.
3.5 Implementation of task selection

Task selection grows tasks by starting with a single basic block and successively adding
more basic blocks. The CFG is traversed visiting children nodes from parent node in the
direction of control flow. As a node is visited, the task grows by including the node. At
every edge of the CFG, a decision to include the current edge or not is made. If an edge is
included, then the node it leads to is included in the current task and if the edge is exposed,
then the node it leads to starts a new task. The process of growing a task simplifies to
deciding, one at a time, whether or not to include a control flow edge. At every edge, the

heuristics are consulted to reach a decision.

3.5.1 Implementing control flow heuristics

Figure 3-10 shows the pseudo-code implementation of the control flow heuristics dis-
cussed in Section 3.4.2. Task selection proceeds by maintaining two queues: Task_g and
explore_q. Task_g contains the basic blocks that are the successors of terminal nodes and
terminal edges of the tasks that have been explored. A new task is grown with each of the
basic blocks contained in task_gq as the root node. Explore_g contains the basic blocks that
are members of the task being grown but have not been explored. Whenever a basic block
is added to the task by putting on task_g to be explored further, the number of successors

is checked and if it is fewer than the number of hardware targets, then the basic block is
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task_selection() { control_task(blk, root) {
add_to_task_qg(basic_block_0); if (! is_a_terminal_node(blk) {
while (root = dequeue(task_q) { for each child ch of blk {
while (explore_q_is_not_empty) if (! is_a_terminal_edge(blk, ch)) {
control_task(root, root); add_explore_g(ch);
} t = adjust_targets(root, blk, ch);
} if (t < TARGET_NUM) {
feasible_task(root, blk, ch);
is_a_terminal_node(blk) { } else {
return (does_not_end_in_call(blk) add_to_task_q(ch);
&& not_a_loop_end(blk) }
&& not_a_loop_head(blk)); }
} } else {
is_a_terminal_edge(blk, ch) { for each child ch of blk {
return(dfs_num(blk) < dfs_num(ch)); add_to_task_qg(ch);
} }
}
}

Figure 3-10: Control flow heuristics. task_selection() is the top level driver.
control_task() explores one basic block per invocation and queues the children of the basic
block under consideration for further exploration. control_task() invokes
is_a_terminal_node() and is_a_terminal_edge() which determine whether a node and an
are terminal, respectively. feasible_task() tracks the basic blocks that correspond to fewer
than TARGET_NUM successors.

added to the corresponding feasible task. Figure 3-10 shows the functions
is_a_terminal_node() and is_a_terminal_edge(), which determine whether a given basic

block or a control flow edge are terminal, respectively.

3.5.2 Implementing data dependence heuristics

Figure 3-11 shows the pseudo-code implementation of the control flow heuristics dis-
cussed in Section 3.4.3. To add data dependence heuristics to the task selection process
described above, information about data dependences is obtained first. Producers and con-
sumers corresponding to data dependences are identified by using standard compiler anal-

yses. To include a data dependence edge from a producer basic block to a consumer basic
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task_selection() { datadep_task(blk, root, dep_edge) {
dep_list = sort_datadep_by_freq(); if (! is_a_terminal_node(blk) {
for each (u,v) in dep_list { for each child ch of blk {
for each t = including_task of u { if (! is_a_terminal_edge(blk, ch)
expand_task(u, t, (u,v)); && ! datadep_task_rooted(ch)) {
if (linclude_dep_edge(t, (u,v))) { if (codependent(ch, dep_edge))
blk = early_codependent(t, (u,v)); add_explore_g_head(ch);
new_datadep_task(blk, (u,v)); else
} add_explore_g_tail(ch);
for each (p,u) in CFG && t = adjust_targets(root, blk, ch);
not_in_any_datadep_task(p,u) { if (t < TARGET_NUM) {
new_datadep_task(u, (u,v)); feasible_task(root, blk, ch);
} } else {
} add_to_task_q(ch);
if (! datadep_task_rooted(blk _0) }
add_to_task_q(blk_0); }
while (root = dequeue(task_q) { } else {
if (! datadep_task_rooted(root) for each child ch of blk {
while (explore_q_not_empty) add_to_task_q(ch);
datadep_task(root, root, 0); }

} }

} }
new_datadep_task(blk, dep_edge) {

expand_task(blk, task, dep_edge) { root = add_to_task_q(blk);
explore_q = task->explore_g; add_explore_q(blk);
root = task->root; adjust_targets(root, blk);
while (explore_q_not_empty && while (explore_q_not_empty) &&
! include_dep_edge(root, dep_edge)) !include_dep_edge(root, dep_edge))
datadep_task(blk, root, dep_edge); datadep_task(blk, root, dep_edge);

} }

Figure 3-11: Data dependence heuristics. task_selection() is the top level driver.
datadep_task() explores one basic block per invocation. Similar to control_task(),
datadep_task() invokes is_a_terminal_node() and is_a_terminal_edge() to explore more
basic blocks. codependent() determines whether a basic block is in the codependence set
of a data dependence edge or not. expand_task() expands an existing task to include
another data dependence edge. datadep_task_rooted() determines if a basic block is the
root of a task or not.
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block within a task, the dataflow equations given in Figure 3-8 are solved to identify the

codependence set of the data dependence. The codependence set is used to guide the
exploration of control flow paths by the control flow heuristics. If a data dependence edge
starts from a basic block that is already included in a data dependence task, then the task is
grown further to include the data dependence. Any basic blocks that are still left after data

dependences are considered are explored using control flow heuristics.

When a data dependence is being included within a task, if a basic block that is not in the
corresponding codependence set is included before all the basic blocks in the codepen-
dence set is explored and included, the extra basic block may introduce extra successors
making the task infeasible; it may be the case that if just the codependence set is included
before any other basic blocks, a feasible task is obtained. In order to ensure that the code-
pendence set is included in the task before exploring other basic blocks during the inclu-
sion of a data dependence in a task, datadep_task() inserts the basic blocks in the
codependence set in explore_qg ahead of other basic blocks. Include_dep_edge() deter-
mines if the codependence set is included within a feasible task; if so, the task is not grown
any further, so that basic blocks do not get included within the task needlessly causing
other data dependences to be exposed. If a data dependence cannot be included within a
task due to exceeding the number of hardware targets, one of the following actions is
taken: (1) if the producer is not already in a task, then a task is grown with the producer
basic block as the root, or (2) if the producer is already in a task, then a new task is grown
so that the consumer is placed late in the new task. The first case is straightforward but in
the second case, the compiler has to determine the basic block to be used as the root of the
new task, which is grown to include the consumer. Early_codependent() determines the
basic block with the smallest depth-first-search number that is in the codependence set of
the data dependence but not included within the task in which the producer is included.
This basic block is used as the root to grow a task in which the consumer is included. This
strategy facilitates overlap of computation with communication of values corresponding to

the data dependences that were exposed, as discussed in Section 3.3.3.
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3.5.3 Code replication

Since Multiscalar tasks can be entered at only one point, basic blocks that are common
between two tasks have to be replicated. Figure 3-12 illustrates code replication in task

selection. This replication is similar to tail-duplication of superblocks [48] and trace

Figure 3-12: Code replication during task selection. (a) A part of the CFG of a
program. Shaded regions represent tasks. Task selection partitions the CFG into two tasks
such that basic blocks C, D, and E. (b) In the actual code layout, the basic blocks C, D, and
E are replicated into C*, D’, and E’, respectively in one of the two tasks.
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scheduling [33] [34]. If two control flow edges converge to a basic block and one of them

is included in one task and the other in another task, then the basic block and successor

basic blocks are replicated in each of the tasks.

3.5.4 Code layout

After task selection is done, the intermediate representation of the code is laid out lin-
early so that code segment corresponding to each task is contiguous. Tasks are ordered lin-
early based on the depth-first-search number of the roots of each task. Within each task,
the basic blocks are ordered linearly based on their depth-first-search number. It is possi-
ble that for a branch, the taken edge may be included in the task containing the branch and
not the fall-through edge; when the code for the task is laid out, the taken path is laid out
following the branch and the sense of the branch condition is reversed so that no extra
jumps are added due to the new code layout. Figure 3-13 illustrates the problem of code

layout after task selection.

3.6 Related work

There has been a myriad of compiler techniques developed to automatically discover
parallelism in non-numeric programs written in imperative languages. As far as discovery
of parallelism is concerned, the problem remains the same but support for speculation in
the Multiscalar architecture changes the extent to which the compiler may be aggressive

and thereby, presents hitherto unexplored opportunities.

Previous work on partitioning functional language programs to execute on multiproces-
sors differs from this work in many ways. Since the programs considered were functional,
considerations of data dependencies were much simpler. The algorithms considered tasks
at the granularity of entire function definitions and not at the fine granularity of a few basic

blocks, as is the case for Multiscalar tasks. Sarkar [89] showed that the problem of opti-
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(a) (b) * (c)

Figure 3-13: Code layout after task selection. (a) A part of the CFG of a program. The
shaded region represents a task. The taken edge (A,B) is included in the task and the not-
taken edge (A,D) is not included in the same task. (b) The original layout of the code. (c)
Code layout for the task. The sense of the branch at the end of basic block A is reversed.

mally partitioning simple functional programs to execute on a Multiprocessor considering

only the amount of work and data communication is NP-Complete.

In the past, several compilation structures, for example, trace in Trace Scheduling [33]
[34], superblock [48] and hyperblock [67] in IMPACT [22], region in region scheduling
[2] [45] have been proposed to facilitate the development of many scheduling techniques.
Multiscalar tasks differ from these structures fundamentally in that tasks are execution
structures whereas the others are compilation structures. Since different tasks get executed
on different processing units, inter-task control and data independence is of primary

importance. Inter-structure dependences between different traces, superblocks, hyper-
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blocks and regions are of little significance. Since all these structures are used in global
scheduling, intra-structure dependencies are the only significant dependences. Since tasks
are execution structures intimately connected to the prediction mechanism, they may not
have arbitrarily many number of successors. The other structures do not have any such
constraints. The criteria used to select the other structures are usually execution frequency
of control flow paths, type of control flow (for e.g., traces stop at backward branches),
presence of function calls, etc. The criteria used to select tasks are number of successors,
data dependences crossing task boundaries, control flow among tasks (entire loop bodies
are better suited to be single tasks rather than multiple tasks because of intra-iteration

dependences) and the number of instructions.

Much of the work on automatic parallelization [6] [9] [10] [63] [65] [110] [111] [112]
[116] and vectorization [4] [5] [14] of Fortran programs is related to Multiscalar compila-
tion. While automatic parallelization attempts to partition numeric code so that loop itera-
tions in parallel, most of Multiscalar task selection attempts to partition mainly non-
numeric code with complex and ambiguous control and data dependencies. Most of the
automatic parallelization involves accurate detection of memory independencies, in
numerical programs with complex array indices and more straightforward control depen-
dences; where as most of Multiscalar task selection involves task selection in the presence
of ambiguous dependences. Moreover, automatic parallelization did not have much of the
architectural support like speculative execution, register and memory renaming and
dynamic memory disambiguation that the Multiscalar architecture provides. Hence, many
loops that would not be considered for automatic parallelization are speculatively executed

in parallel in the Multiscalar scenario.
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Chapter 4

Register Communication

As tasks execute, data values are produced and consumed within the same task and
among different tasks, corresponding to intra-task and inter-task communication, respec-
tively. These data values are bound to memory and register storage locations. In the case of
memory storage, it is difficult to determine precisely the producers and consumers of data
values since memory storage names are determined dynamically (via address calcula-
tions). On the other hand, in the case of register storage, it is straightforward to identify
producers and consumers since all register storage names are known statically (via register

specifiers).

Regardless of the type of storage involved, data values passed between instructions rep-
resent a critical factor, impacting two key aspects of program execution: correctness and
performance. To ensure maintaining correctness, data values must be communicated from
producing to consuming instructions as dictated by program semantics. To. avoid con-
straining performance, data values must be communicated from producing to consuming
instructions as soon as possible. Inter-task communication of data values impacts overall

performance because critical paths through tasks typically involve computation that con-
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sumes register values from predecessor tasks and produces values for successor tasks and

performance may suffer if these critical paths are aggravated unnecessarily.

In this chapter, I focus on the communication of data values bound to register storage for
two reasons (both related to the prevalence of the load-store model of computation). First,
this type of communication is the most common. Second, it is the most amenable to analy-
sis. We investigate a number of alternative register communication strategies for the Mul-
tiscalar architecture. In Section4.l, 1 present the Multiscalar register model and
correctness criteria. In Section 4.2, I describe a range of alternative register communica-
tion strategies. I begin with a simple base strategy that guarantees correctness; I progres-
sively incorporate compiler strategies to achieve higher performance [106]. In Section 4.3,
I discuss the implications of dead registers and compiler register assignment. All of the
strategies vary the timing of communication but do not move the computation that gener-
ates the values involved in the communication. Extending this analysis further, I describe
scheduling techniques to mitigate register communication delay [105], in Section 4.4. In
Section 4.5, T describe the details of the implementation of register communication gener-

ation. In Section 4.6, I discuss related work.
4.1 Register communication model

The Multiscalar architecture provides a distributed physical register file implementation
of a single logical register file [18]. I now explain the abstract model of communication of
register values among the different physical register files to maintain the semantics of a

single logical register file.

In the set of all architectural registers, there are two mutually exclusive and collectively
exhaustive subsets: (1) The set of registers that may be modified in the current task, called
the ModSet and (2) the set of registers that are guaranteed to be not modified in the task,
called the UnModSet. During execution, every task eventually receives values for all the

architectural registers from its predecessor and eventually sends values for all the architec-
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tural registers to its successors'. Also, assume that each task operates on its own set of
hardware registers. The Multiscalar architecture supports this assumption by providing
each PU with its own physical register file. When a register value arrives at a task, the
hardware identifies the register either as a ModSet register or as a UnModset register, by
consulting the ModSet. The task binds the register value to the hardware register of the
PU, regardless of whether it is a ModSet register or a UnModSet register. Any register
value generated during the course of executing the instructions of the task is also bound to
its appropriate hardware register. The distinction between a ModSet and a UnModSet reg-
ister is important only when the task sends the register value to successor tasks. For a
UnModSet register, the same value that was received, is propagated to successor tasks. But
for a ModSet register, the value that was received, is stopped from propagating further; the
value bound to the register after the last modification of the register is done in the task is

sent. Figure 4-1 illustrates the Multiscalar register communication model.

The ModSet may be determined by some hardware or the compiler. If tasks are large and
span several basic blocks and include arbitrary control flow, then the compiler can assist
hardware by providing the ModSet on a per task basis. The create mask described in
Chapter 2 is a bit vector representation of the ModSet. (The UnModSet is the complement
of the ModSet and need not be provided separately). In addition to determining the Mod-
Set for each task, the compiler or hardware also has to identify where in the task each
ModSet register may be sent to successor tasks. This is the point in the task beyond which

the register is guaranteed not to be modified by the instructions of the task.

The problem of identifying the ModSet is simple and straightforward; it is the union of
the sets of registers that may get modified in any path through the task. Since tasks may
have complex control flow within them, the problem of identifying which value of a Mod-

Set register to send is more involved. There are two correctness constraints: (1) every path

1. In an actual implementation, many hardware optimizations may reduce the bandwidth demands
of register values. By doing some bookkeeping, in hardware, the UnModSet registers need not
be propagated repeatedly if they have already been sent to all PUs.
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Figure 4-1: Register communication model. (a) Register communication abstraction.
All of the registers arriving at a task are filtered by the ModSet so that the old values of the
UnModSet registers are propagated and the new values of the Modset registers are sent, as
and when generated by the task. (b) Register communication correctness criteria. The task
comprises basic blocks B1, B2, B3 and B4. The task modifies registers r1 and r3.
Depending on the path taken through the task, value of r1 corresponding to B2 or B3 must
be sent; value of r3 corresponding to B3 or propagated from the predecessor task must be
sent.

through the task must send all the registers in the ModSet and (2) for each register in the
ModSet, the value corresponding to the basic blocks beyond which the register remains
unmodified, irrespective of the path taken through the task, must be sent. The first con-
straint ensures that successor tasks do not geth starved for a register, irrespective of the path
taken through the task and the second constraint guarantees that each task sends its succes-
sor tasks the last updated register values, which are the correct values as per sequential
semantics of the program. It is important to note that the second constraint does not pre-
clude sending of multiple speculative values of a register, but the last value sent must be

the correct value as per sequential semantics. Any task that receives a register value that it
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has already received may squash the computation dependent on the register and recompute
with the latter value. Such squashes are the result of register data speculation. Together,

the two constraints guarantee forward progress and correctness.

Figure 4-1(b) illustrates the two correctness criteria through an example.The example
shows a task with four basic blocks B1, B2, B3, and B4. Registers rl and r3 are modified
by the task, so the ModSet contains rl1 and r3. There are two paths through the task:
B1B2B4 and B1B3B4. The first criterion states that both rl and r3 must be sent from
either paths; otherwise, successor tasks will deadlock if they need the value of either rl or
r3. Applying the second criterion to r3 is simple because it is modified only in B3. If the
path B1B3B4 is taken, then the value of r3 after it is modified in B3 must be sent; other-
wise, the value of r3 received from the predecessor task must be propagated to successor
tasks. Applying the second criterion to rl is more interesting than r3. If the path B1B3B4
is taken, then the value of r1 after it is modified in B3 must be sent; otherwise, the value of
rl after it is modified in B2 must be sent. It is possible to send the value of 13 received
from the predecessor task before the branch in B1 is resolved speculating that the path
B1B2B4 will be taken by the task, but if the path B1B3B4 is taken, then the updated value

of r3 must be sent.

The correctness criteria identify the register values that need to be sent to successor tasks
to maintain sequential semantics. Performance criteria influence when the correct register
values may be sent. In the example of Figure 4-1(b), values of r1 and r3 may be sent at the
end of the task. If successor tasks use the values then they stall until the values are
received. In order to avoid stalling consumer tasks for register values, it is crucial that reg-

ister values are sent as soon as possible.
4.2 Strategies for orchestrating register communication

In this section, I consider a progression of four strategies for register communication to

achieve high performance. The four strategies are end_send, eager_send, last_send, and
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spec_send. The strategies differ in how early the ModSet register values are sent to suc-
cessor tasks. Before going into the details of the various strategies, I illustrate them
through an example. Consider the task in Figure 4-2 comprising basic blocks B1, B2, B3
and B4. Let us assume that the edge B1B2 is ta}ken with probability 0.9 and the edge B1B3
is taken with probability 0.1.

The simplest strategy which ensures correctness, called end_send, is to send the values
of all the ModSet registers at the end of the task. In end_send (Figure 4-2(a)), both r1 and

r3 are sent at the end causing subsequent tasks that need r1 or r3 to wait.

A possible improvement in performance over this simple strategy is to send the value of
a ModSet register every time it is modified. This strategy, called eager_send, sends Mod-
Set register values as soon as and every time they are modified, causing computation in
successor tasks that use all but the last value to be squashed and restarted. Since the value
corresponding to the last modification of each register is sent last?, this strategy preserves
the semantics of the program. Although eager_send may send register values earlier than
end_send, eager_send may send the same register multiple times, resulting in squashing of
subsequent tasks. Eager_send (Figure 4-2(b)) sends rl as soon as it is defined in B1. Since
there is a define of rl in both B2 and B3, rl is sent again, causing a squash. If B3 is taken
then r3 is sent as soon as it is defined, otherwise it is sent at the end. Thus, eager_send
sends 13 earlier than end_send if B3 is taken but incurs extra squashes due to sending
incorrect values of rl. In last_send (Figure 4-2(c)), both r1 and r3 are sent from B2 or B3,
since they are the last modifications of the registers. Since B2 does not define r3, an extra

instruction may be inserted to send r3.

If the last modification of each ModSet register is known, however, multiple sends of the

same register (and the resultant squashes) can be avoided. To this end, last_send sends

2. The hardware is responsible for preserving the order among multiple sends of the values of the
same register.
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Figure 4-2: An example illustrating the four strategies. The task comprises basic
blocks B1, B2, B3 and B4. The edge B1B2 is taken with probability 0.9 and the edge
B1B3 is taken with probability 0.1. The ModSet for this task contains registers rl and r3.
(a) End_send: Both r1 and 13 are sent at the end. (b) Eager_send: r1 is sent in B1 but since
there is a define of r1 in B2 and B3, rl causes a squash and is sent again. If B2 is taken then
r3 is sent at the end otherwise r3 is sent in B3. (¢) Last_send: rl and r3 are sent from B2
and B3. Sending 13 from B2 may require an extra instruction and in the other cases the
existing instructions may be annotated to send their destination registers. (d) Spec_send:
Since B2 is more frequent than B3, r3 is speculatively sent from B1 and r1 is sent from B2
and B3 like last_send. If B3 is taken then 13 causes a squash and is sent again. Sending 13
from B1 may require an extra instruction and in the other cases the existing instructions
annotated like last_send.
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ModSet register values as soon as there is a guarantee that the register will not be modified

again. the compiler identifies the last modification of each ModSet register and marks it
explicitly for communication. Although last_send avoids squashes by sending only after
the last modification of the registers, in the presence of control flow, it is conservative and
may delay sending register values. Last_send avoids the squashes incurred by eager_send
by sending only the correct values of rl and sends r3 earlier than eager send via an

explicit instruction.

The last strategy, known as spec_send is a more controlled version of eager_send in that
it sends ModSet register values as soon as there is a high probability that the register will
not be modified again. spec_send speculatively sends register values corresponding to last
modifications from “high frequency” paths and resorts to squashes if any “low frequency”
paths modify a previously sent register. Spec_send attempts to avoid both delaying register
values due to infrequent paths and also excessive squashing due to incorrect speculation.
Spec_send (Figure 4-2(d)) speculatively sends 13 from B1, since B3 is infrequently taken
and the frequent path of B1B2B4 does not define r3. If B3 is taken then r3 is sent again,
causing a squash. rl is sent from B2 or B3 like last_send. Spec_send accelerates 13 even
more than last_send by taking advantage of speculation. In the frequent case of B2 being
taken, r3 is sent earlier from B1 via an explicit instruction and in the infrequent case of B3,

13 causes a squash.

4.2.1 End_send and eager_send

I now describe the issues in the realization of each of these four strategies. Both
end_send and eager_send strategies may be implemented with relatively simple hardware.
These two strategies require no explicit send instructions either, implying little ISA
change. Since the Multiscalar architecture employs both memory data speculation and
control speculation, hardware to squash incorrect speculation in eager_send is already

present. Therefore, squashes due to multiple register sends can be performed without any
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additional hardware. On one hand, this scheme sends the register values earlier than the
previous scheme, but on the other, a register may get sent too early speculatively and may
result in a squash. There is a trade-off between avoiding communication stalls by sending
a register value early speculatively and incurring squashing loss due to incorrect register

speculation. The compiler is employed to perform this trade-off in spec_send.

Last_send and spec_send may require compiler analyses to determine the last modifica-
tion of each register, in the presence of complex control flow. Moreover, hardware or ISA
support as described in Sectipn 2.4, may be needed to efficiently convey information from
the compiler to the hardware. The analyses required to generate register communication
may be formulated in terms of existing dataflow frameworks. I present the dataflow equa-
tions to explain how the compiler determines and generates the required register commu-
nication. In all the following discussion of dataflow equations, it is assumed that if there
are multiple modifications of a register within a basic block, then the last modification is

marked for communication.

4.2.2 Last_send

The key issue in both last_send and spec_send is to determine the basic blocks after
which each ModSet register is guaranteed to be not modified in the presence of complex
control flow in the task and to generate sends for the register in the earliest such basic
block down any path through the task. Nomoredef identifies the set of the basic blocks
after which a register is guaranteed not to be modified any further in each task. Send iden-
tifies the earliest basic block down any path through the task among such basic blocks.

Figure 4-3 lists the dataflow equations for last_send.

Nomoredef(i,r) is true if beyond basic block i, register r is not modified in the current
task. BBdef{(i,r) is true if register r is modified in basic block i. The equation asserts that for

every child of basic block i, if there is no modification of a register beyond the child and
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Nomoredef(i,r) = H {Nomoredef(j,r) M BBdeij}—)}
je children(i)

Send(i, r) = { Z Nomoredef(], r)}m Nomoredef(i, r)
] € parents(i)

INITIAL VALUES: Nomoredef(i,r) = TRUE

Figure 4-3: Dataflow equations for last_send. BBdef{i,r) is true if register r is modified
in basic block i. Nomoredef{i,r) is true if there is a guarantee that register r is not modified
in any successor of basic block i in the current task. Send(i,r) is true if Nomoredef{(i,r) is
true and register r has not been sent in at least one path from the root of the task to basic
block i.

the child does not modify the register, then there is no modification of the register beyond
basic block i. A key property of Nomoredef is that if Nomoredef is true for a basic block,

then it is true for all its successors in the task.

The second equation in Figure 4-3 computes the vector Send. Send(i,r) is true if the reg-
ister r is not sent in at least one path from the root of the task to basic block i and Nomore-
def(i,r) is true. The equation asserts that if there is no modification of a register beyond
basic block i and for at least one of the parents of basic block i, Nomoredef is false, then
the register is sent from basic block i. Send identifies the basic block in any path from the
root of the task, at which Nomoredef changes from false to true. Since Nomoredef is true
for all the successors of the basic block (due to the property stated above), that is the earli-
est basic block in the path at which the register may be sent. Note that in a path from the
root of the task, there may be multiple basic blocks for which Nomoredef changes from
false to true; therefore, Send may be true for multiple basic blocks in a path. The hardware

ignores any sends of a register encountered after a send for the same register.
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4.2.3 Spec_send

With the analysis of last_send, a register is not sent until it is guaranteed that there are no
more modifications to the register. This guarantee implies that if an infrequent basic block
that modifies a register much later in the task, then the register is delayed until much later
in the task. Frequency information used by this analysis may be obtained from static or
dynamic profiling. If the register is sent earlier in the task, however, and a special “resend”
of the register is done in the infrequent basic block, on an average, the register is not
delayed as before. In the infrequent case of the basic block being executed, the resend of
the register causes a squash and restart with the correct value but in the frequent case of
the basic block not being executed, the register is sent much earlier and no squash is suf-
fered. Figure 4-4 lists the equations for spec_send. The key difference between the analy-
sis for last_send and spec_send is that spec_send ignores the “low frequency” defines of
registers and computes Spnomoredef and Spsend exactly like Nomoredef and Send. Valida-
tesend determines the extra “resends” corresponding to the “low frequency” defines

ignored in Spsend.

Spnomoredef(i,r) is true if beyond basic block i, register r is not modified in any “high
frequency” basic block in the current task. Hifreqdef(i,r) is true if register r is modified in
basic block i and the execution frequency of the basic block is greater than a fraction
(SpThreshold) of the frequency of the root of its task. The equation asserts that for every
child of basic block i, if there is no “high frequency” modification of a register beyond the
child and the child does not “high frequency” modify the register, then there is no “high
frequency” modification of the register beyond basic block i. Validatesend(i,r) is true if 1 is
a “low frequency” basic block which modifies r and Spnomoredef(i,r) is true. Validatesend
computes extra resends of registers that were ignored due to their “low frequency”. Note
that Validatesend may cause multiple resends of the same register resulting in multiple

squashes. Such multiple squashes can be avoided by constraining Validatesend more.
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Spnomodef(i, r) = H {Spnomodef(j, r) N Hifreqdef(j, 1)}
j € children(i)

Spsend(i, r) = { 2 Spnomoredef(], r)} M Spnomodef(i, r)
j € parents(i) '

Hifreqdef(i,r) = BBdef(i,r) " Hifrnode(i)
Hifrnode(i) = (freq(i))/(freq(root)) > SpThreshold

Validatesend(i, r) = Spnomoredef(i, r) N BBdef(i, r) m Hifrnode(i)

INITIAL VALUES: Spnomoredef(i,r) = TRUE

Figure 4-4: Dataflow equations for spec_send. Hifreqdef(i,r) is true if register r is
modified in basic block i and the execution frequency of the basic block is greater than a
fraction (SpThreshold) of the frequency of the root of its task. Spnomoredef(i,r) is true if
there is a guarantee that register r is not modified in any “high frequency” successor of
basic block i in the current task. Spsend(i,r) is true if Spnomoredef{i,r) is true and register r
has not been sent in at least one path from the root of the task to basic block i.
Validatedef(i,r) is true if i is a “low frequency” basic block that modifies the register r.

The compiler solves the system of dataflow equations to determine the basic blocks for
which Send or Spsend and Validatesend are true. If such a basic block contains an instruc-
tion that modifies the register, then the instruction is annotated to forward the register and
otherwise, an extra release instruction (introduced in Section 2.4.2) is inserted at the top of
the basic block to send the register value. Since register communication is fairly dense,
avoiding extra release instructions through annotation of existing instructions is impera-
tive. In Figure 4-5, there are two examples of tasks with register communication annota-

tions using last_send.
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(a) (b)

Figure 4-5: Register communication annotation. Two examples of tasks with register
communication annotations are shown. Forwards of registers are indicated by F’s beside
the instructions. In example (a), in the path B1B2B4, rl is last modified in B2 and is
forwarded from B2 and in the path B1B3B4, rl is not modified past B1 and is released in
B3. 3 is last modified in B2 and B3, in paths B1B3B4 and B1B2B4 respectively and is
forwarded from them. 12 is modified only in B4 and is forwarded from there. In example
(b), rl is last modified in B2 in the path B1B2B4 and is forwarded from B2 since there is a
loop in the path BIB3B4, r1 is guaranteed to not change only on exit of the loop and so is
released in B4.

4.3 Implications of dead registers and register assignment
Irrespective of the register communication strategy used, dead register information can

be used to improve register communication and register assignment may unnecessarily

disallow sending of a register value early in the task.

4.3.1 Dead registers

A register is said to be dead at a basic block if its value is not used beyond the basic

block [1]. If a register is dead beyond a task, then the register value need not be sent to
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successor tasks. Dead register information is used to reduce register communication band-
width demand and avoid the overhead of extra release instructions as well. Register com-
munication bandwidth on the register communication interconnect (Section 2.5) is an
important resource which if over-burdened may lead to queuing up of register values
aggravating performance loss due to register communication delays. In Figure 4-5(a), if r1
is dead beyond B4, i.e., the value of r1 is not used by any successor of B4, then r1 need not
be sent to successor tasks, saving register communication bandwidth and avoiding the

extra release instruction in B3.

Dead register information may be conveyed to the hardware by providing an explicit
dead register mask in the task descriptor, similar to create mask. Registers in the dead reg-
ister mask are neither forwarded nor released. Since the register is dead, no successor task
waits for the register value and so, not propagating the register does not cause any starva-
tion. All four register communication strategies can take advantage of the dead register

mask.

The dead register mask adds to the overhead of static code size increase due to task
descriptors. Alternatively, dead register information may be provided by overloading the
ModSet. Registers that are dead beyond a task are included in the ModSet of the task,
regardless of whether they are defined in the task or not; but no forward or release is done.
If the register does get defined in the task, then the value is used within the task and does
not get propagated to successor tasks. If the register does not get defined in the task, then
the value from a predecessor task is used within the task but does not get propagated to
successor tasks. Only last_send and spec_send can take advantage of ModSet overloaded
with register dead information. end_send and eager_send cannot distinguish between dead
ModSet registers and live ModSet registers since they do not use any specification to iden-

tify register value sends.
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Another issue with taking advantage of dead register information is debugging. Dead
register optimization may cause register-allocated variables to hold a value that does not
correspond to the last modification of the register. The value of a dead register is not prop-
agated beyond the task beyond which the register is dead; if the register is inspected dur-
ing debugging at a program point beyond the task, the register may hold a bogus value.
But this problem exists for dead register optimization used by register allocators for super-
scalar processors. The solutions adopted by superscalar architectures may be used, which

is to turn off dead register optimizations during debugging.

4.3.2 Register assignment

Anti-dependencies introduced by register assignment may delay forward of a register
value in any of the strategies. If register assignment uses the same register name for two
live ranges that co-exist in mutually exclusive® (like the if-path and the else-path of a
branch) control flow paths, then the value bound to the register name cannot be forwarded
until the control flow is resolved. Figure 4-6 illustrates the problem through an example.
Figure 4-6(a) shows a task with four basic blocks. Pseudo-register rl is dead in B4 but is
live out of B3. Pseudo-register 12 is live out of B4. Pseudo-registers r1 and r2 have non-
overlapping live ranges and hence, can be assigned the same physical register.
Figure 4-6(b) shows such a register assignment. Assuming last_send, this assignment
causes value of $1 to be sent only in B3. Round-robin assignment of registers may miti-
gate the problem. Under last_send, a round-robin assignment, as shown in Figure 4-6(c),
avoids delaying the forward of $1 by assigning another register to r2. Under eager_send
and spec_send, if $1 value is sent from B1 and the path B2B4 is taken, then squashes
ensue for the assignment in Figure 4-6(b) but the round-robin assignment, as shown in

Figure 4-6(c), would not incur any such squashes.

3. Note that the same register name cannot be used for live ranges that co-exist on control flow
paths that are not mutually exclusive; such a register assignment violates program semantics.
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/ \ rl dead

rl live

Figure 4-6: An example of register assignment delaying register forward. (a) A task
with 4 basic blocks before register allocation. rl and r2 are pseudo-registers. rl is dead at
the beginning of B4 but live at the end of B3. (b) Both rl and r2 are assigned the same
register $1, resulting in the release of $1 in B3. (c) r1 is assigned $1 and r2 is assigned $2.
$1 is forwarded in B1, much earlier than B3.

4.4 Register communication scheduling

In Section 4.2, I explained how register value communication is identified and specified
to the hardware. All of these strategies vary the timing of communication but do not move
the computation that generates the values involved in the communication. Extending this
analysis further, I have devised and implemented a static scheduler that moves computa-
tion to hide inter-task register communication delay further. In this section, I consider how

the compiler can schedule the communication to improve performance.
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Critical paths through tasks typically involve dependence chains that consume register
values produced by predecessor tasks and produce register values to be consumed by suc-
cessor tasks. An unnecessary aggravation of these critical paths can result in performance

loss, as illustrated in Figure 4-7. This loss can be mitigated by alleviating the unnecessary

Time Tyuq1 Task2 Task3 Producer Consumer

Task Task
move
S

——

Zero
stalls

(b)

Figure 4-7: Register communication dynamics. a) Performance loss due to register
communication. The forward of r1 in Task] causes the use of r1 in Task? to stall. Fwd r2 is
dependent on Use rl, which causes the forward of 12 to be delayed. The delays cascade
causing Task3 to stall for r2. (b) Scheduling register communication. The forward of r1 is
moved up to be done early and the use of rl is down to be done late so that stalls are
reduced.

aggravation of the critical path, i.e., by sending the register value early during the execu-
tion of the producer task and consuming the register value late during the execution of the
consumer task. If a register value has to be sent early, the instruction that produces the
value (called the producer instruction) has to be executed early. The instruction may be

executed early, if it is statically scheduled to be as close to the beginning of its task as pos-
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sible*. Similarly, a register value may be consumed late, if the instruction that consumes

the value (called the consumer instruction) is statically scheduled to be as close to the

end of its task as possible.

Figure 4-8 illustrates the above concepts using the run time dynamics of an example. In
the example, Task1 produces the value for the variable smp late which causes Task?2 to be
stalled because it needs the value. Moving the instruction that produces #mp up in Taskl

causes Task1 to send the value early, which enables Task2 to proceed without stalling.

Moving a producer instruction of a task up in the static code may require moving the
instructions (within the task) it depends on (i.e., the backward slice [52] [108] of the pro-
ducer instruction within the task), up. Similarly, moving a consumer instruction of a task
down may require moving the instructions (within the task) that are dependent on it (i.e.,
the forward slice [108] of the consumer instruction within the task) down. Typically, criti-
cal paths through tasks constitute dependence chains that start with a consumer instruction
and end with a producer instruction. A complication that arises is that the instructions on
such dependence chains need to be moved both up and down because on one hand, they
are on the backward slice of the producer and on the other, they are on the forward slice of
the consumer. The decision to move such instructions up or down depends on whether the

instructions cause more stalls due to production or consumption.

4.4.1 Scheduling strategy

The main components of the scheduling algorithm: (1) identification of which instruc-
tions to move in which direction, (2) transformations to perform code motion of the
instructions in the appropriate direction, and (3) estimation of the stall each instruction

incurs due to register communication through a cost model.

4. Even for out-of-order issue engines, if instruction I; is statically placed before instruction Lin
program order, then instruction I is dispatched before instruction L.
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Figure 4-8: Run time dynamics of the example. (a) In the example, task2 is stalled for
the register value tmp because task1, which is the producer, produces the value late. (b) In
task1, the instruction that produces tmp is moved up. In task2, the instruction that
consumes tmp cannot be moved down. Nevertheless, taskl sends tmp early and task2
proceeds without stalling.
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4.4.2 Identifying the instructions for scheduling

The scheduler identifies two categories of instructions. In the Multiscalar architecture,
the instructions that produce register values for other tasks are called forwarding instruc-
tions (as defined in Section 2.4.2). The instructions that consume register values from the
forwarding instructions of prior tasks are called receiving instructions. All forwarding
instructions and their backward slices are categorized as sourcing instructions. All sourc-
ing instructions are to be moved up in the static code. All receiving instructions and their
forward slices are categorized as sinking instructions. All sinking instructions are to be

moved down in the static code.

If an instruction is both a sourcing and a sinking instruction, then depending on whether
it causes a larger delay as a source or a sink, (as estimated by the cost model) it is desig-

nated as such.

4.4.3 Code motion

In order to keep the implementation of the code motion simple, the scheduler moves
instructions one basic block at a time. The scheduler performs the required code motion
using the set of upward and downward transformations illustrated in Figure 4-9 and
Figure 4-10, respectively. Figure 4-9(a) shows an instruction, which modifies register r,
being moved up from a basic block B2 to its parent basic block B1. B1 has another child,
B3, and the move is valid only if r is dead at the top of B3. If B2 has more than one parent
then the move is valid only if the condition is met for each parent. Figure 4-9(b) shows
two copies of an instruction in basic blocks B2 and B3 being moved up and merged into
one copy in parent basic block B1. If B1 has more children and each child has a copy of
the instruction then all the copies can be merged into one copy in B1. If any child of B1
does not have a copy of the instruction, then the transformation in Figure 4-9(a) is applied.
Figure 4-9(c) shows an instruction in basic block B3 being moved up and duplicated in

parent basic blocks B1 and B2. If B1 or B2 have other children, then the transformation in
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(a)

Figure 4-9: Upward transformations. —® indicates control flow. =™ indicates code
motion. (a) An instruction is moved from a basic block to its parent if the destination
register is dead down the other siblings of the basic block. (b) Two instructions that are
copies are merged into a single copy in the parent basic block. (¢) An instruction is
duplicated into each of the parents. (d) An instruction is moved from a basic block to its
only parent.

Figure 4-9(a) is applied. Figure 4-9(d) shows an instruction being moved up from a basic

block, B2, to its only parent basic block, B1.

Figure 4-10(a) shows an instruction, which modifies register r, being moved down from
basic block B1 to its child B3. B3 has another parent B2 and the move is valid only if r is
dead at the top of B3. Figure 4-10(b) shows two copies of an instruction in basic blocks
B1 and B2 being moved down and merged in child basic block, B3. If any parent of B3
does not have a copy of the instruction, then the transformation in Figure 4-10(a) is
applied. Figure 4-10(c) shows an instruction being moved down from basic block B1 and
duplicated in children basic blocks B2 and B3. If B2 or B3 have other parents, then the
transformation in Figure 4-10(a) is applied. Figure 4-10(d) shows an instruction being

moved down from basic block, B1, to its only child basic block, B2.




102

(a) (b) (c) (d)

Figure 4-10: Downward transformations. =® indicates control flow.— indicates
code motion. An instruction can be moved down from basic block A to basic block B only
if the reaching definitions of the source operands of the instruction are the same in blocks
A and B. (a) An instruction is moved from a basic block to its successor if the destination
register is dead down the other sibling blocks. (b) Two instructions that are copies can be
merged into a single instruction in the successor block. (c) An instruction is duplicated
into each of the successor blocks. (d) An instruction is moved from a basic block to its
only successor.

The actual code motion itself is performed in two phases. First, the sourcing instructions
are moved up and then the sinking instructions are moved down. The scheduler moves
the chosen instructions in the chosen direction one basic block at a time. In the upward
phase, the scheduler starts with the leaf basic blocks of the task and works upward to the
root of the task in reverse topological order. In every basic block, it pushes the sourcing
instructions up and across the top of the basic block into the end of the predecessors of the
current basic block. When all the sourcing instructions in the current basic block have
been considered for upward motion, the next basic block in reverse topological order is
visited. In the second phase, the scheduler starts with the root basic block of the task and
works downward to the leaves of the task in depth-first-search order. In every basic block,

it pushes the sinking instructions down and across the bottom of the basic block into the
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top of the successors of the current basic block. When all the sinking instructions in the
current basic block have been considered for downward motion, the next basic block in

depth-first-search order is visited.

4.4.3.1 Issues related to code motion

Static code motion is hindered by ambiguous memory dependences; loads and stores
cannot be moved past stores unless it is guaranteed that the instructions do not access the
same address. Although the ARB provides support for inter-task memory disambiguation,
Multiscalar hardware does not support speculative code motion of ambiguous loads and
stores within a task; if a load instruction is moved past a store instruction to the same
address as the load, program semantics is violated. Better static memory disambiguation

allows more loads and stores to be moved past other stores.

One of the important issues of static code motion is safety of transformations. Moving
loads and stores past branches may cause spurious exceptions although the original pro-
gram does not experience any exceptions. For example, if a load is moved up past a
branch, then the load may dereference a null pointer, while in unmodified code, execution
branches around the load. The two key issues are: (1) differentiating between spurious
(caused by “unsafe” global code motion) and real exceptions, and (2) recovery of the cor-
rect state on a real exception. The Multiscalar architecture provides checkpointed state at
the beginning of every task. When an outstanding exception (which are assumed to be
infrequent) is signalled, execution may be rolled back to the start of the task and a copy of
the original code (without any scheduling transformations) may be re-executed. During
the rerun of the original code, if the exception occurs again, then it may be taken because
re-execution of the original code guarantees that only real exceptions occur. The address
of the task corresponding to the original code may be included in the task descriptor and

the code itself may be attached at the end of all scheduled tasks.
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In the context of scheduling for superscalar processors, many techniques have been pro-
posed to solve this problem. An approach similar to those proposed in boosting [93] and
sentinel scheduling [66] may be adopted. Instructions that have not been moved may be
annotated to signal any outstanding real exceptions. Bookkeeping code may be generated

to restore precise state to handle real exceptions.

4.4.4 Cost model

The scheduler employs a cost model to determine the extent to which instructions have
to be moved. The cost model uses static or dynamic profiling information to determine the
branch taken and branch not-taken probabilities. The cost model estimates the stall cycles
incurred by each forwarding (receiving) instruction by estimating the difference between
the time of execution of the forwarding (receiving) instruction and the time of execution of
the sinking (sourcing) instruction that consumes (produces) the register value produced
(consumed) by the forwarding (receiving) instruction. The time of execution of an instruc-
tion contained in a task is estimated as the number of dynamic instructions executed

before the instruction from the start of the task and is called the position of the instruction.

To the first order, the number of dynamic instructions executed before an instruction is a
reasonable estimate for the time of execution of the instruction with respect to the start of
its task. Instructions that take multiple cycles (e.g., loads) to complete introduce error in
this estimate, but obtaining accurate profiling information about cycle counts for such
instructions is difficult because the profiler may have to perform a detailed timing simula-
tion of the target hardware. Using dynamic instruction count is convenient because the tar-

get system need not be simulated.

The estimation is based on the equations given in Figure 4-11. Pathprob of a basic block
1is the probability that the basic block i is executed if the task to which the basic block

belongs is executed, without including back edges of the CFG of the task. acycliclen of a
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pathprob(i) = > {pathprob(j) X prob(i. )}
j € parent(i)

acycliclen(i) = 2 {acycliclen(j) X pathrob(j)}
j € parent(i)

looplen(l) = acycliclen(loopend(1))/(1 —backprob(l))

For the nth static instruction in the task which is not at the top of its basic block, i:

position(In) = position(ln__ 1) + pathprob(i), postion(IO) =0

For the nth static instruction in the task which is at the top of its basic block, i:
position(ln) = 2 {position(Iend(j)) X pathprob(j)} + L(i)

j € parent(i)

For a basic block i that belongs to a possibly nested loop, where 1 is the outermost loop:
L(i) = looplen(l)

Figure 4-11: Cost model. prob(i,j) is the probability that control flow edge (i,j) is taken
during execution; it is obtained through profiling. pathprob of basic block i is the
probability of reaching i from the root of its task. acycliclen of loop i is the average
number of instructions executed by a single iteration of i. looplen of loop [ is the average
number of instructions executed by the loop. position of an instruction is the average
number of instructions executed by the task before the instruction. end(j) is the static
location of the last instruction in basic block j. L(i) is O if i does not belong to any nested
loops within the task.

basic block i is the average dynamic number of instructions executed before basic block i
is reached in the task, without including back edges of the CFG of the task. Prob(i,j) is the
probability of the edge (i,j) in the CFG being taken during execution. If a task does not
include any loops, then position of the instructions in the task is estimated by acycliclen.
In order to account for loops in tasks, a hierarchical approach is taken. Loops are consid-
ered from inner most nesting depth to outer nesting depth. The average number of

dynamic instructions executed by a loop is estimated by using the expression for looplen.
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Going from inner to outer loop nesting in the task, loops are replaced with their equivalent
looplen and the acycliclen of the next outer loop nest is computed. The process terminates
when acycliclen of the outermost level is computed. Finally, computing the position of an
instruction depends on its location within its basic block. If an instruction is not at the top
of its basic block, then its position is the sum of the position of the previous instruction in
the basic block and pathprob-weighted count of one instruction. If an instruction is at the
top of its basic block then its position is the pathprob-weighted average of the last instruc-
tion of predecessor basic blocks. All possibly loops included within tasks are replaced by
the equivalent looplen of the outermost loop. For all instructions in a possibly nested loop,

looplen of the outermost loop is added to compute their position.

After the position of the instructions is determined, the scheduler moves the forwarding
(and the sourcing) instructions up and the receiving (and the sinking) instructions down
until the position of the forwarding instruction is smaller than that of the receiving instruc-
tion or the instructions cannot be moved any further. When the instructions are moved via
the upward and downward transformations, their position is swapped with the position of
the instruction they move past, so that code motion is stopped as soon as a good schedule
is achieved. Figure 4-6 shows an example of register communication scheduling. Task 1
computes and forwards register r and Task 2 uses the value. The scheduler moves the for-
warding instruction (r ;= a + b) up into the predecessor basic block by applying the trans-
formation of Figure 4-9(a). The forwarding instruction and a sourcing instruction (a:= )
are moved up Task 1 by applying the transformation of Figure 4-9(d). Let us assume that
the instructions in Task 1 cannot be moved any more. In Task 2, the scheduler moves the
receiving instruction (¢ := r + s) down into the successor basic block by applying the
transformation of Figure 4-10(d). The receiving instruction and a sinking instruction (x =
¢ + d) are moved down into the successor basic blocks by applying the transformation of

Figure 4-10(c).
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Task 1 Task 2 Task 1 Task 2

r dead

Figure 4-12: An example of register communication scheduling. Register r is produced
(and forwarded) by Task 1 and consumed by Task 2. The forwarding instruction (r := a +
b) along with one other sourcing instruction (a:= ) is moved up Task 1. The receiving
instruction (c :=r + s) and a sinking instruction (x := ¢ + d) is moved down to the bottom of
Task 2.

The scheduling requirements of multiple instructions may conflict with one another. It is
possible that minimizing the stall due to one dependence may actually increase the stall
caused by another dependence. Similar to task selection, the scheduler also prioritizes
dependences and the corresponding instructions, based on statically or dynamically pro-
filed execution frequencies and performs scheduling in the order of priority. Instructions
with lower priority are scheduled before instruction with higher priority, so that the sched-

ule of the more important instructions are not disrupted by the others.
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4.4.5 Controlling instruction count increase

After an instruction is identified to be moved, it is moved in the appropriate direction as
long as the estimated stall is non-zero. The cost model tracks the change in the estimated
stall cycles of the instructions through all the transformations. Thus, the cost model deter-
mines which direction an instruction needs to be moved and how far it needs to be moved.
Moving an instruction past the point of zero stall cycles is undesirable because any further
code motion may increase the count of dynamic instructions without any improvement in
the number of stall cycles (transformations of Figure 4-9(a) and Figure 4-10(a) may
increase the instruction count because they may move an instruction into paths that did not

execute the instruction before).

There are many ways to control this increase. One of the guiding principles in control-
ling the instruction count increase is that the only goal of upward motion is to hoist for-
warding instructions up. If for some reason, the forwarding instruction does not move past
a basic block, then it is detrimental to move the sourcing instructions in its backward slice
past that basic block because that may increase the instruction count without hastening the
forwarding instruction. A similar argument applies to downward code motion as well; if
for some reason, a receiving instruction does not move past a basic block, then it is detri-
mental to move the sinking instructions in its forward slice past that basic block. Before
applying the transformations, a look-ahead is performed within the current basic block to
check if for every sourcing(sinking) instruction, at least one of the forwarding(receiving)
instructions in its backward(forward) slice will be eventually be able to move up(down)
across the top(bottom) of current basic block. If not, then the sourcing(sinking) instruction

is not moved up. The look-ahead needs to be done only within the current basic block.

There is an important interaction between control flow and register communication
which may also be exploited to control instruction count. If there is a define of a register

down one of the paths past a branch and none down the other path, then the register cannot
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be forwarded/released before the branch because only after the branch, there is a guarantee
that the register is not modified down the other path. This observation implies that when
hoisting a forwarding instruction up past a branch from one path, if the other path past the
branch defines the register then this hoisting will be detrimental. If there is a use of a reg-
ister in all the paths reaching a receiving instruction (from the root of its task) that con-
sumes the register, then there is no advantage in pushing the receiving instruction down.

Figure 4-13 illustrates these two arguments.

r should not

be modified

past the edge ll there should be
B1B3 in the \ at least one path
current task \ . from the root of

current task to B1
with no use of r1
before B1

(b)

Figure 4-13: Conditions to prevent unnecessary dynamic instruction increase. -y
indicates control flow.—> indicates code motion. (a) If a forwarding instruction is moved
up from block B2 to block B1, then there should be no other definitions of r past B1 in the
current task. (b) If an instruction consuming rl is moved from block B1 to block B2, then
there should be no previous use of the rl in all paths reaching B1 from the root of the
current task.

Apart from these considerations, the cost model is also used to effectively control the
instruction count increase. Associated with all the relevant instructions is the estimated

number of stall cycles that the instruction would cause and throughout the code motion,
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this number is tracked for each instruction that is moved and as soon as the estimated num-

ber of stall cycles has decreased to a zero, code motion terminates.

4.4.6 Scheduling loop induction variables

Induction variables of loops are an important special case for scheduling register com-
munication. Specific control flow pattern of loops can be exploited to schedule induction
variables more effectively through a different technique. If the entire loop body is selected
as a task, then the different iterations of the loop are assigned to different PUs to be exe-
cuted in parallel. But induction variables are usually produced at the end in one iteration
and used in the next iteration right at the beginning. This code arrangement causes each
iteration to wait until the previous iteration sends the induction registers, serializing the
iterations. Since the sequence of values that induction variables take is predictable at com-
pile time, a better schedule can be obtained. Induction variables can be forwarded early by
restructuring the loop so that the induction variables are incremented first and then used by
the loop body; the loop is restructured so that the induction variables are incremented at
the top of the loop. The exit-test branch also gets moved to the top of the loop and an extra
jump is added at the bottom of the loop. The first iteration is peeled off without the induc-
tion variable increments, to maintain correctness. The restructured loop enables each itera-
tion to forward the induction registers in the first few instructions, supplying the next
iteration with the values it needs without any delay. Figure 4-14 shows the general scheme

of restructuring loops.

4.4.7 Interaction with other optimizations

Register communication scheduling interacts with live ranges of registers and pipeline
delay-slot scheduling. Apart from these interactions, register communication scheduling

has phase ordering problems with register allocation and task selection.
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(a) (b)

Figure 4-14: Induction variables in loops. (a) Increments of induction variables at the
end of the loop body serializes the loop iterations. (b) Loops are restructured so that
induction variable increments and the branch exit test are moved to the top of the loop and
an extra jump is added at the bottom. To maintain the same number of iterations, the first
iteration is peeled off.

Any instruction scheduling, in general, fundamentally changes the expanse of live
ranges of registers. Any expansion of live ranges increases register pressure and may
result in increased spilling. The set of transformations employed by register communica-
tion scheduling expand the live ranges of one set of registers and contract the live ranges
of another set of registers. Defines and uses of the registers that are communicated from
one task to another are moved up and down control flow, respectively, leading to expan-
sion of the live ranges of the registers. Defines and uses of the registers in dependence
chains that start with a receiving instruction and end with a forwarding instruction are

moved toward each other, leading to contraction of the live ranges of the registers.
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Register communication scheduling may disrupt the pipeline/superscalar schedule of the
code, resulting in pipeline bubbles. In the current implementation, integrating pipeline/

superscalar scheduling with register communication scheduling may address the issue.

I implemented the scheduling algorithm before the register allocation phase. The advan-
tage of such phase ordering is that there are very few anti-dependencies between instruc-
tions with pseudo-register operands and renaming does not have to consider the problem
of spilling registers. The disadvantage of such phase ordering is that anti-dependencies
introduced by register assignment may delay forward of a register, (as described in
Section 4.3.2) which is taken into account by the scheduler. Round-robin assignment of
registers may mitigate the problem. As with many other compiler optimizations, better

memory disambiguation would probably result in better scheduling.

There is a phase ordering problem between task selection and register communication
scheduling; tasks should be selected so that a good schedule of any inter-task register com-
munication is obtained but inter-task register communication can be identified only after
tasks are selected. In the current implementation, task selection is done before register
communication scheduling is done. Task selection attempts to avoid many inter-task data
dependences by including as many data dependences as possible within tasks. After task
selection is done, those data dependences that are not successfully included within tasks
are handled by the scheduler to mitigate the detrimental effects of inter-task register com-
munication. Other phase-ordering or an integrated task selection and scheduler may be

possible.
4.5 Implementation

The most important part of generating register communication is to solve the dataflow
equations in Figure 4-3 and Figure 4-4. The equations compute the dataflow properties of
basic blocks and not individual instructions. Individual instructions are annotated to

orchestrate register communication. The dataflow property Send identifies the basic blocks
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which should send register values of the registers they define. Within each such basic
block, the instructions are scanned and the instruction that defines the appropriate register
last is annotated to send the register value. Figure 4-15 shows the pseudo-code to generate

register communication. Annotate_reg_comm( ) scans through every task and annotates the

annotate_reg_commy) { solve_equations() {

for each task t {
solve_equations();
for each basic block b{
if (send(b,r) &&
not_write(b,r))
insert_release(b,r);
for each instructioniin b {
if (send(b, r) &&

change = TRUE;

while (change) {

change = FALSE;

for each basic block i, last to first {
for each child j of i {

if Nomoredef(i) ¢ Nomoredef(j) n BBdef(j)

change = TRUE;

last_write(i,r))
annotate_forward(i);
} )
J }
} }
} for each basic block i, first to last {
for each parent j of i {

tmp = Nomoredef(j) N BBdef(j)
Nomoredef(i) = Nomoredef(i) mtmp

tmp = Nomoredef(j) U tmp

}

send(i) = Nomoredef(i) »tmp

}
}

Figure 4-15: Pseudo-code for register communication  generation.
Annotate_reg_comm() is the top level driver for register communication generation.
solve_equations() solves the dataflow equations given in Figure 4-3.

appropriate instructions. Solve_equations() computes the dataflow property Nomoredef, as

per the equations in Figure 4-3. Solve_equations() solves for Nomoredef by iterating over
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Nomoredef until convergence. Since Nomoredef is a backward flow problem,
solve_equations() iterates over basic blocks in reverse CFG depth-first-search numbering

order to converge quickly.

Figure 4-16 shows the pseudo-code for scheduling register communication. The sinking
and the sourcing instructions that need to be considered for scheduling are identified by
simple dataflow dependence analyses. Sort_dependences() prioritizes the dependences.
Using the expressions in Figure 4-11, compute_position() determines the position of each
instruction in the task. Then the instructions are scheduled in increasing order of priority
by using the transformations in Figure 4-9 and Figure 4-10. move_code() moves the sourc-
ing instructions up and the sinking instructions down until the position of the forwarding
instruction is smaller than that of the receiving instruction. move_up() moves instructions
up from one basic block to its predecessors. move_up() performs the transformations
shown in Figure 4-9 and Figure 4-10. move_up() moves up all instructions in the basic
block that the forwarding instruction is dependent on and then moves the forwarding
instruction up. move_up() moves each of the sourcing instructions up into predecessor
basic blocks only if all of the sourcing instructions in the basic block can be moved up into
predecessor basic blocks; even if one of the sourcing instructions cannot be moved up,

then none of them is moved. move_down() is similar to move_up().
4.6 Related work

Dataflow analyses have been applied to a large number of problems in compiler optimi-
zations. The basic register communication problem falls under the category of simple
dataflow problems [1] [28] [30] [72]. Compilers of data parallel languages like Fortran D
and HPF generate data communication for distributed memory machines [49] [51]. Some
of the correctness criteria of Multiscalar register communication and distributed memory
communication are similar. The important differences are that multiple sends of a value is
disallowed in distributed memory communication. And these works do not include any

speculative communication.
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schedule_comm() { move_up(i) {

sort_dependences(); for each instruction j in basic block {

compute_position(); if (dependent(i, j)) {

for each dependence (u,v) { move_to_top_of_basicblock(j);

move_code(u,v); for each parent basicblock p of i {

} if !(legal(j, p) && instr_count_ok(j, p))
} return FAIL;

}
compute_position() { }
for each task t { }
for each level of nesting L { for each parent basicblock p of i {
compute_acycliclen(); if (dependent(i, j))
} make_copies(j, p);

for each instruction i in task t { }
consume(i) = acycliclen(i); }
produce(i) = looplen(i);

} move_down(i) {
} for each instruction j in basic block {
} if (dependent(i, j)) {
move_to_bottom_of_basicblock(j);
move_code(p, ¢) { for each child basicblock of i {
while (consume(c) < produce(p)) { if !(legal(j, ¢) && instr_count_ok(j, c))
move_up(p); return FAIL;
move_down(c); }
if (cannot_move(c) && }
cannot_move(p)) }
break; for each child basicblock c of i {
} if (dependent(i, j))
} make_copies(j, ¢);
}
}

Figure 4-16: Pseudo-code for scheduling register communication. Schedule_comm() is
the top level driver for the scheduler. compute_position() computes the position of the
various instructions. move_code() moves the instructions in the appropriate direction.
move_up() and move_down() perform the actual transformations.

Annotating instructions with register communication information has precursors. Other

approaches like boosting [92] [93] have annotated instructions with extra information.
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There are a myriad of compiler scheduling techniques for superscalar, VLIW and pipe-
lined architectures. In general, most compiler scheduling techniques have two compo-
nents: (i) the set of transformations used for code motion, and (ii) the cost model used to
decide when to apply the transformations. The purpose of most scheduling techniques like
instruction scheduling [17] [41] [43], global scheduling [15] [71], percolation scheduling
[76], trace scheduling [34], balanced scheduling [61], boosting [92], hyperblock schedul-
ing [67], and superblock scheduling [22] is to fill a given empty issue slot with a profitable
instruction. The set of transformations create a large set of ready instructions, and the cost
model decides the most profitable instruction among the ready instructions to fill the
empty slot. In contrast, register communication scheduling requirement is to move a given
instruction to a suitable position. The set of transformations used by register communica-
tion scheduling can move the instruction to a number of different positions. Register com-
munication cost model decides the most profitable position among the possible positions
to move the instruction. Thus, there is a reversal of what is fixed (or given) and what is
varied. Moreover, conventional scheduling techniques do not move entire slices of compu-
tation. The cost models of conventional techniques compute the probability of execution
of the ready instructions with respect to the empty slot and choose the most profitable
ready instruction. Register communication cost model estimates the delay incurred by for-
warding/receiving instructions and decides which direction the instruction has to be
moved. Register communication cost model also controls the extent to which each instruc-

tion gets moved.

Static speculation has been applied in scheduling for superscalar, VLIW and superpipe-
lined machines. Techniques like global scheduling [15], percolation scheduling [76], trace
scheduling [34], boosting [15] [92], hyperblock scheduling [16], superblock scheduling
[17], guarded execution [82], sentinel scheduling [66], and modulo scheduling [83]
employ varying degrees of static speculation. Utilizing speculative execution in instruction
scheduling constitutes two issues: (i) decision of when to perform computation under

speculation, and (ii) recovery from incorrect speculation. The first issue applies to compil-
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ing speculative register communication in the Multiscalar architecture as well. The second
issue is addressed by a combination of hardware and compiler. The compiler inserts code
(in the form of “re-sends”) to detect any incorrect static speculation and the hardware per-
forms recovery. Unlike most VLIW machines, no bookkeeping code need be inserted in
the program but recovery may be more expensive since larger number of instructions may

get squashed.

Loop restructuring is similar to some of the transformations done by software pipelining

techniques [32] [64] [83] to prepare the unrolled loop for software pipelining.

Work in parallelization and scheduling of Do-across loops [23] [26] [27] generate syn-
chronizations between iterations of loops that allow arbitrary communication between
iterations. The major difference between our problem and doacross parallelization/sched-
uling is that Multiscalar tasks are arbitrary sub-graphs of the control flow graph and need
not be loop bodies. Moreover, the machine models of the doacross work do not include

control and data speculation, which are the default in the Multiscalar architecture.

Although, I have described our scheduling technique in the context of the Multiscalar
architecture, it can be applied to other architectures like dynamic trace-based processors
[86] [104], multithreaded architectures [103], small scale fine-grain parallel architectures
[78] and any architecture with multiple flows of control and fine-grain data communica-
tion. In the Multiscalar architecture, the unit of work executed on each PU is a task,
whereas in multithreaded architectures, it is a thread. The threads in multithreaded archi-
tectures communicate values that may be fairly small in grain size and performance
requirements of streamlining the communication are similar to those in the Multiscalar
architecture. In multithreaded architectures also, producers have to be scheduled early and
consumers have to be scheduled late. The cost model to estimate the delays caused by
communication fits in the multithreaded paradigm as well. Register communication sched-

uling technique may be applied to these other architectures.
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Chapter 5

Experimental Evaluation

An important goal of this research is to construct a compiler for the Multiscalar architec-
ture so that various hardware and compiler techniques are experimented with and evalu-
ated on large benchmarks. To that end, the optimizations described in the preceding
chapters have been implemented in the Gnu C Compiler, gec. I conducted many experi-
ments to determine the effectiveness of the compiler techniques by performing extensive
simulations on a simulator that faithfully represents the Multiscalar hardware. In
Section 5.1, I motivate and describe the measurements I make. In Section 5.2, I describe
the experimental framework and list the parameters of the hardware and the compiler con-
figurations used in the experiments. In Section 5.3, I describe the experiments measuring
various aspects of task selection and register data communication and present results of
the effect of each of the compiler optimizations on overall performance. In addition to per-
formance, I present measurements of selected metrics that isolate the impact of each opti-
mization. I study the interaction between relevant hardware optimizations and compiler
optimizations. I also present analyses of the results to correlate program behavior, effec-

tiveness of compiler optimizations, and overall performance.
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5.1 Overview of experiments

In this section, I describe the quantities measured in the experiments with the bench-
marks from the SPEC95 [98] suite to analyze performance issues of the Multiscalar archi-
tecture and demonstrate the impact of the compiler techniques. I evaluate: (1) overall
performance, (2) task characteristics relevant to performance, and (3) dynamic window

established.

In order to understand the relative importance of the various task selection heuristics, [
isolate the performance achieved by each heuristic by presenting successive improvements
in performance. I generate tasks using the heuristics described in Chapter 3. I start with
tasks made of single basic blocks and progressively add control flow heuristic and then
data dependence heuristic. Basic block tasks are simple and serve as a natural yardstick to
experiment with extraction of parallelism. Recall that control flow heuristic generates
tasks with at most some fixed number of targets taking advantage of reconvergent control
flow paths and loops and data dependence heuristic generates tasks by including data
dependence chains! entirely within. Task size heuristic includes short function calls within
tasks to avoid terminating tasks at all function calls. Setting the threshold level to include
entire function invocations, which execute fewer than 15 instructions, within tasks avoids
generating tasks that incur frequent ARB overflow, inordinate number of memory depen-

dence squashes, and excessive load imbalance.

Then, I analyze the performance achieved by each benchmark in light of its task charac-
teristics and its average window span. The important task characteristics that affect perfor-
mance of the Multiscalar architecture are: task size, inter-task control flow, and inter-task

data dependence.

1. The current implementation handles register dependence chains and simple memory depen-
dences.
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For each task characteristic, I measure a metric that closely correlates to performance. I
measure the average dynamic task size. For inter-task control flow, I measure prediction
accuracies to estimate the magnitude of control flow misspeculation. I also present the dis-
tribution of the number of targets actually taken by the benchmark to determine the kind of
targets that the heuristics expose to the prediction hardware. For inter-task data depen-
dence, I report the time spent by an instruction waiting for register values from other tasks.
I also measure the number of dynamic inter-task data dependencies (register and mem-
ory), i.e., the number of instances where a value produced by one task is consumed by

another.

Due to loop restructuring, which involves inverting loop bodies and adding a jump
instruction at the bottom of the loop, and register communication generation, which
involves adding release instructions in some control flow paths, Multiscalar programs may
execute more instructions than the superscalar versions. I present the dynamic instruction

count overhead for the Multiscalar versions.

By studying the nature of the dynamic window established by Multiscalar organizations,
we can estimate the amount of parallelism that the machine can exploit. For superscalar
machines, the average window size is a good metric of quality of the dynamic window.
Since the Multiscalar architecture does not establish a single continuous window, I extend
window size to another metric. For the Multiscalar architecture, the total number of
dynamic instructions that belong to all the tasks in execution simultaneously called the
window span is a metric that indicates the amount of expected overlap among the execu-
tion of the instructions. Window span captures the amount of parallelism exploited by the
machine. I present the average window span for the benchmarks and correlate it to perfor-

mance.

Register communication delay and register communication traffic demand significantly

affect overall performance of the Multiscalar architecture. I have implemented various
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compiler techniques to reduce the delay and the traffic. Register communication strategies
and scheduling discussed in Chapter 4 reduce the delay. The various register communica-
tion strategies offer a spectrum of hardware and compiler involvement with varying
degrees of performance. Recall that end_send strategy conservatively posts forwards of
register values at task end, eager_send strategy posts speculative forwards of register val-
ues as soon as a register is modified, even though it may not be the last modification,
last_send strategy posts forwards of register values only after the last modification, and
spec_send strategy posts speculative forwards of register values after a register is modi-
fied, if it is likely to be the last modification. I quantify the effect of register communica-
tion delay by studying impact of the various register communication strategies on overall
performance. To isolate the impact of the various strategies, I also present measurements

of the number of cycles spent by PUs waiting for a register value to be sent.

Register communication scheduling further reduces the delay by overlapping communi-
cation with computation. In addition to the communication strategies, I also measure the
impact of register communication scheduling on performance. To isolate the impact of
scheduling, I measure of the number of cycles spent by PUs waiting for a register value to

arrive.

Register communication bandwidth is an important resource that needs to be utilized
judiciously. High bandwidth demand could lead to queuing delay in register communica-
tion leading to worse performance. To this end, I present measurements of register com-
munication traffic of the benchmarks and the impact of dead-register optimization on the

traffic.
5.2 Experimental methodology

Before presenting experimental results, I describe the experimental framework, the
parameters values used to configure the hardware simulator and the benchmarks used in

the evaluations.
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5.2.1 Framework

I implemented a C compiler derived from the Gnu C Compiler, gcc. Benchmark source
files are input to the compiler which produces executables. To evaluate compiler strategies
described before, I used an instruction driven simulator of the Multiscalar architecture.
The binary generated by the compiler is executed by the simulator which faithfully cap-
tures the behavior of the Multiscalar architecture on a cycle per cycle basis and produces
output result files for verification. The simulator executes all instructions of the bench-
marks except for system calls, in order to maintain high accuracy of performance results

obtained.

5.2.2 Simulation parameters

The simulator models details of the processing units, the sequencer, the control flow pre-
diction hardware, the register communication ring, the memory hierarchy consisting of the
ARB, L1 data and instruction cache, L2 cache and main memory. Apart from these hard-
ware components the simulator models the interconnection between the processing units
and the ARB and L1 instruction and data caches, the L1 caches and the L2 caches, as well
as the system bus connecting the 1.2 caches and the main memory. Both access latencies

and bandwidths are modeled at each of these components and interconnects.
5.2.2.1 Processing units

The PUs issue instructions out-of-order or in-order using a register update unit with 16
reorder buffer entries and an issue list of 8 instructions. Each PU can fetch up to 4 instruc-
tions, issue up to 2 instructions, and commit up to 4 instructions, in one cycle, respec-
tively. Each PU executes instructions on a collection of fully pipelined functional units: 2
simple integer FUs, 1 complex integer FU, 1 floating point FU, 1 branch FU, and 1 mem-
ory FU. For intra-task branch prediction, the PUs use a gshare branch prediction scheme

[70] with a 16-bit history register indexing into a 64K-entry table of 2-bit counters. Since
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the main objective of the Multiscalar architecture research is to design distributed PUs

each of which may be clocked fast, I use narrow-issue PUs for my experiments.
5.2.2.2 Control flow prediction

The global sequencer employs a 2-way set associative, 32KB task cache with 64 byte
blocks for task descriptors. On a hit, the task cache returns a task descriptor in one cycle.
So, tasks are initiated at most one per cycle. Misses from the task cache are sent to the
common L2 cache. To assign tasks to PUs, the control flow prediction hardware of the
sequencer uses a dynamic path-based [56] scheme to predict one out of at most four tar-
gets of tasks. The path-based predictor uses 7 path histories XOR-folded into a 16-bit of
path register indexing into a 64K-entry table of 2-bit counters and 2-bit target numbers.
The path based-predictor is complemented by a 64 entry return-address stack to handle

function call returns.
5.2.2.3 Register communication

Each PU can send as many register values as the number of instructions that can be
issued in one cycle. Outputs of functional units of one PU available at the end of a cycle
are bypassed to the inputs of functional units of the next PU in the beginning of the next

cycle through the unidirectional point-to-point register communication ring.
5.2.2.4 Memory subsystem

The PUs fetch instructions from a 2-way associative, fully pipelined, lockup-free [62]
[96], shared L1 instruction cache with 32 byte blocks interleaved into as many banKs as
there are PUs. Each cache bank contains 16KB of storage. For 4-PU and 8-PU configura-
tions, the size of the L1 I-cache is 64KB and 128KB, respectively. The L1 I-cache banks
are connected to the PUs through a crossbar and contention at the banks is modeled. On
hits, the L1 I-cache returns 4 instructions to the requesting PU in one cycle, if there is no

contention at the banks. Although crossbar traversal and I-cache access in one cycle may
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seemn optimistic, another organization of private I-caches with each PU may make the

assumption feasible.

The PUs access a 2-way associative, fully pipelined, lockup-free, shared L1 data cache
with 32 byte blocks interleaved into as many banks as there are PUs. Each cache bank
contains 16k of storage. For 4-PU and §-PU configurations, the size of the L1 D-cache is
64KB and 128KB, respectively. The L1 D-cache banks are connected to the PUs through a
crossbar and contention at the banks is modeled. On hits, the L.1 D-cache returns a word of
data to the requesting PU in two cycles, if there is no contention at the banks. I assume a 2-

cycle hit latency to account for the crossbar traversal and the D-cache access.

Loads and stores from the PUs access the ARB and the L1 D-cache simultaneously. The
ARB is a fully associative, fully pipelined, lockup-free, shared buffer interleaved into as
many banks are there are PUs. Each ARB bank contains 32 entries each of which have as
many blocks are there are PUs and the ARB blocks are of the same size as L1 D-cache
blocks. For 4-PU and 8-PU configurations, the size of the ARB is 4KB and 8KB, respec-
tively. On hits, the ARB returns a word of data to the requesting PU in 2 cycles. The ARB
banks are connected to the PUs through a crossbar and contention at the banks is modeled.
On task squashes, the ARB entries are invalidated in one cycle and on task commits, dirty
ARB entries are written back to the L1 D-cache in the background?, overlapped with the

execution of the next task assigned to the PU.

Misses from the L1 I-cache, L.1 D-cache and the ARB are sent to the unified L2 cache.
The L2 cache is a 2-way associative, fully pipelined, lockup-free cache interleaved into 4
banks with 128 byte blocks. Each bank contains 1Mb of storage. For both 4-PU and 8-PU
configurations, the size of the L2 cache is 4MB. The L2 cache hits return data to the
requesting PU after 12 cycles, if there is no contention. The transfer rate between the L.1

caches and the L2 cache is 16 bytes per cycle. The L1 caches and the 1.2 cache are con-

2. Task commits do not incur the latency of writing back dirty ARB entries.
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nected through a bus (assumed to be running at the same clock rate as the PU) and conten-

tion at the bus and the L2 cache banks are modeled. I assume a 12 cycle hit latency to
account for L1 miss, L.1-L2 bus protocol, L2 cache access, L.1-L.2 bus transfer and data

return to PU.

Main memory is 4-way interleaved and is connected to the L2 cache through the system
bus. Main memory is assumed to be infinite sized. Main memory returns data to the
requesting PU after 58 cycles, if there is no contention. The transfer rate between the 1.2
cache and the main memory is 16 bytes per system bus cycle. The system bus is assumed
to be clocked at half the clock rate of the PU. I assume a 58 cycle access latency to account
for the L1 miss, L1-L.2 bus acquire, L2 miss, system bus protocol, main memory access,

system bus transfer, L1-L2 bus transfer and data return to PU.

Apart from the usual components of the memory hierarchy, the implementation of the
Multiscalar architecture that I consider includes a hardware mechanism to perform mem-
ory dependence prediction and synchronization [73]. Instead of blindly speculating that
loads and stores from different tasks are always independent (and squashing on misspecu-
lations), the mechanism predicts dependences among memory accesses (and resulting
misspeculations) by dynamically tracking the history of previously misspeculated memory
dependences, similar to branch prediction. The mechanism enforces producer-consumer
ordering on those loads and stores that are predicted to misspeculate by dynamically syn-
chronizing them. The hardware tables used to perform memory dependence prediction

contains 256 entries.

Hardware parameters are summarized inTable 5-1.
5.2.2.5 Compiler optimizations

All of the binaries for the experiments are generated with the highest level of gcc 2.7.2

optimizations. The usual compiler phases of jump optimization, common sub-expression
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Table 5-1: Hardware parameters used in experimental evaluation.

Component Description

PUs 2-way issue, 16-entry reorder buffer, 8-entry ready list

FUs 2 integer, 1 complex, 1 floating point, | branch, 1 memory

Intra-task gshare with 16-bit history, 64K-entry table of 2-bit counters

prediction

Inter-task path-based with 16-bit history, 64K-entry table of 2-bit counters

prediction and 2-bit target numbers

Task cache 32KB, 2-way associative

Register Ring 2 values per cycle, bypass same cycle between adjacent PUs

L1 I-cache 64KB (4PU)/128KB (8PU), 2-way associative, 32 byte blocks, 1
cycle hit, interleaved as many banks as the number of PUs, lock-
up free, fully pipelined

L1 D-cache 64KB (4PU)/128KB (8PU), 2-way associative, 32 byte blocks, 2
cycle hit, interleaved as many banks as the number of PUs, lock-
up free, fully pipelined

ARB 32 entries/PU, 32 x #PU bytes/entry, 4KB (4PU)/8KB (8PU),
fully associative, 2 cycle hit, interleaved as many banks as the
number of PUs, lock-up free, fully pipelined

Memory 256 entries

synchronization

L2 cache 4MB, 2-way associative, 12 cycle hit, 16 bytes per cycle transfer

Main memory

Infinite, 58 cycle latency, 8 bytes per cycle transfer

elimination, dead code elimination, loop optimizations including strength reduction,

induction variable elimination and loop unrolling, basic block pipeline scheduling, global

register allocation, and peephole optimizations are used. Multiscalar optimizations includ-

ing task selection, loop restructuring, dead register analysis for register communication,

and register communication scheduling and generation are also used. The compiler uses

basic block frequency, obtained via dynamic profiling, for register communication sched-

uling and task selection. Profiling was done using profile inputs specified by the SPEC95

suite,
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5.2.3 Benchmarks

I use the SPEC95 benchmark suite throughout my experimental evaluation. The
SPEC95 suite consists of both integer and floating point programs, drawn from a variety
of application areas. The integer programs (CINT95) are 099.go, 124.m88ksim, 126.gcc,
129.compress, 130.1i, 132.ijpeg, 134.perl, and 147.vortex. The floating point programs
(CFP95) are 101.tomcatv, 102.swim, 103.su2cor, 104.hydro2d, 107.mgrid, 110.applu,
125.turb3d, 141.apsi, 145.fpppp, and 146.wave5. A detailed description of the bench-
marks can be found in the SPEC newsletters [98]. For each benchmark, I tabulate the

inputs used for the experiments and the inputs for profiling in Table 5-2 and Table 5-3.
5.3 Experiments

In one set of experiments, I study the effect of compiler task partitioning heuristics and
task characteristics of Multiscalar programs. In another set of experiments, I study the
effectiveness of compiler strategies for register communication and compiler scheduling
to streamline register communication. I also measure the impact of dead register analysis

on register communication traffic.

Since the number of instructions executed by a program changes due to compiler tech-
niques, all relevant quantities have been scaled appropriately. Register communication
scheduling was performed in all the experiments measuring the effectiveness task selec-
tion heuristics and task characteristics. Data dependence tasks were used in all the experi-
ments measuring register communication strategies and scheduling. This combination was

used so that results are not skewed by unoptimized code.

To isolate the effect of the different task selection heuristics, I present measurements
based on four types of tasks: (1) Basic block tasks which are obtained by demarcating
each basic block to a task on its own (i.e., each task contains a single basic block), (2) con-

trol flow tasks which are obtained by including multiple basic blocks without exceeding




128

Table 5-2: Inputs for CINT benchmarks. The column titled input shows the input used
to run the benchmark for each experiment. The column titled profile shows the input used
to profile the benchmark. Note that in some cases the SPEC standard test inputs are used
to profile and the SPEC standard train inputs are used to run, to keep the simulation runs to
fewer than many billion instructions.

Benchmarks Input Profile Description

099.go 2stone9 | null Plays the game of go against itself, great deal
of pattern matching and look-ahead logic,
cache activity is small.

124.m88ksim || dhry dcrand | A clock-level simulator (includes cache laten-
cies) for the Motorola 88100, known to be not
vectorizable.

126.gcc cecep jump A GNU C compiler version 2.5.3, converts

preprocessed files to optimized Sparc assem-
bly, known to be not vectorizable.

129.compress || train test Reduces the size of the named files using adap-
tive Lempel-Ziv coding, modified to work out
of memory instead of using files, sensitive to
data cache size.

130.11 train test A Lisp interpreter written in C, known to be
not vectorizable.

132.ijpeg vigo specmu | Performs image compression/decompression
on in-memory images based on the JPEG facil-
ities, modified to work out of memory instead
of using files.

134.perl jumble | scrabbl | An interpreter for the Perl language, inputs are
scripts that perform some basic math calcula-
tions and word lookups in associative arrays,
may spend as much as 10% of total time in
library routines like malloc, free, memcpy, etc.

147.vortex train test A subset of a full object-oriented database pro-
gram called VORTEX, builds and manipulates
three separate, but inter-related databases,
database size restricted to 40MB, has not been
vectorized as of SPEC95 release.

four targets, as described in Section 3.4.2, (3) data dependence tasks which are obtained

by including data dependence chains (mostly register dependences) combined with con-
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Table 5-3: Inputs for CFP benchmarks. The column titled input shows the input used to
run the benchmark for each experiment. The column titled profile shows the input used to
profile the benchmark. Note that in some cases the SPEC standard test inputs are used to
profile and the SPEC standard train inputs are used to run, to keep the simulation runs to

fewer than many billion instructions.

Benchmarks Input Profile

Description

101.tomcatv test train

A vectorizable mesh generation program, sen-
sitive to memory subsystem performance, par-
allelizable.

102.swim test train

A shallow water model with a 1024 x 1024
grid of finite difference approximations, vec-
torizable and parallelizable.

103.su2cor test train

Computes masses of elementary particles
applying a monte carlo method, vectorizable
and parallelizable.

104.hydro2d test train

Solves hydrodynamical Navier Stokes equa-
tions to compute galactical jets, vectorizable
and parallelizable.

107.mgrid test train

A multi-grid solver in 3D potential field, paral-
lelizable.

110.applu train test

A parabolic/elliptic partial differential equa-
tions solver, parallelizable.

125.turb3d test train

Simulates isotropic, homogeneous turbulence
in a cube, uses a large 1D FFT computation,
parallelizable.

141.apsi train test

Solves problems regarding temperature, wind,
velocity, and distribution of pollutants, not eas-
ily parallelizable.

145.fpppp train test

Solves an integral derivative that models inter-
actions among a number of atoms, minimal
cache footprint, not easily parallelizable.

146.wave5 train test

Solves Maxwell’s equations on a cartesian
mesh, considerable indirect addressing used,
not easily parallelizable.
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trol flow heuristic, as described in Section 3.4.3, and (4) task size heuristic tasks which are
obtained by including entire function invocations (which execute fewer than 15 instruc-

tions) within tasks.

5.3.1 Effectiveness of compiler heuristics

In order to study the effectiveness of the heuristics, I used basic block tasks as the base
case. Basic block tasks are small and incur performance loss from all quarters. All
branches are exposed to the prediction hardware without taking advantage of reconvergent
control flow paths. Data dependencies (register) from one basic block to its successor are
dense and cause long communication delays. Memory data misspeculations do not occur
because not many memory dependencies are speculated. Overheads are significant
because of the small size of basic block tasks. The window of instructions established by

basic block tasks is not large enough to expose enough parallelism.

The heuristics are able to alleviate the problems of basic block tasks to a certain extent
by establishing a larger window. Heuristic tasks are larger and more independent because

they include more control and data dependencies within them instead of exposing them.

The heuristics capture both regular and irregular parallelism. For the integer bench-
marks, tasks obtained using the heuristics range from a few basic blocks to entire function
invocations. Let us consider each benchmark separately to understand its behavior.
129.compress and 134.perl contain data dependence recurrences in the frequently exe-
cuted parts of the programs causing the heuristics to split loops into multiple tasks. Conse-
quently, 129.compress and 134.perl aggravate control and data dependencies. 130.1i
contains a high frequency of recursive function invocations. If included within tasks, the
function calls cause load imbalance and otherwise, cause function bodies to be split into
small tasks, exacerbating inter-task data dependencies and overheads. 126.gcc contains

dense, irregular data dependencies which are hard to include within tasks because they are



131

numerous. 126.gcc also incurs performance loss due to large number of function calls like
130.1i. 132.ijpeg contains abundant regular loop-parallelism which the heuristics exploit
although the loops access memory via pointers. 124.m88ksim and 147.vortex contain

irregular parallelism that can be captured by non-loop tasks.

For the floating point benchmarks, the heuristics consistently exploit loop-parallelism.
Most of the tasks are loop bodies and any loop-recurrences are synchronized by the hard-
ware [73] avoiding data dependence misspeculations. The fine grain synchronization is
overlapped with intra-iteration parallelism. Even basic block tasks perform well attesting

to the high level of parallelism in floating point programs.

Figure 5-1 shows the improvements in IPC using control flow heuristic, data dependence
heuristic, and task size heuristic for out-of-order PU configurations executing the integer
benchmarks over the base case of basic block tasks. Figure 5-2 shows the improvements in
IPC using control flow heuristic, data dependence heuristic, and task size heuristic for out-
of-order PU configurations executing the floating point benchmarks over the base case of

basic block tasks.

The compiler heuristics (control flow, data dependence and task size together) are effec-
tive in capturing parallelism beyond basic block tasks. Using out-of-order PUs, the integer
benchmarks improved by 19%-38% and 25%-39% on 4 and 8 PUs, respectively, over
basic block tasks (Figure 5-1), while the floating point benchmarks were boosted by 21%-
52% and 25%-53% on 4 and 8 PUs, respectively, over basic block tasks (Figure 5-2). The
floating point benchmarks have more regular parallelism than the integer benchmarks, as a
result of which the heuristics succeed in extracting more parallelism from the floating

point benchmarks.

For the integer benchmarks, control flow heuristic improves performance 23%-54% and

23%-53% for 4 and 8 out-of-order PU configurations, respectively, over basic block tasks
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Figure 5-1: Impact of compiler heuristics on CINT benchmarks with out-of-order
PUs. The two experiments marked a and b use 4 and 8 out-of-order PUs, respectively.

(Figure 5-1). It is important to note that the measurements shown here for data depen-
dence heuristic are over and above control flow heuristic, i.e., data dependence heuristic is
applied in conjunction with control flow heuristic. Data dependence heuristic adds modest
performance improvements (<1%-6% and <1%-15% for 4 and 8 PUs, respectively) over
control flow heuristic. There are many reasons for the improvements being modest: (1)
Out-of-order PUs can tolerate latencies due to register communication delays significantly

and (2) By including adjacent basic blocks within a task, control flow heuristic already
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Figure 5-2: Impact of compiler heuristics on CFP benchmarks with out-of-order
PUs. The two experiments marked a and b use 4 and 8 out-of-order PUs, respectively.

includes data dependence chains within tasks; data dependence heuristic has fewer oppor-

tunities to further capture data dependences.

Figure 5-3 shows the impact of control flow heuristic, data dependence heuristic, and
task size heuristic on the integer benchmarks for in-order PUs. Put together, the heuristics
improve performance by 23%-70% and 31%-83% for 4 and 8 PU configurations over

basic block tasks. These improvements are better than those for out-of-order PUs because
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Figure 5-3: Impact of compiler heuristics on CINT benchmarks with in-order PUs.
The two experiments marked a and b use 4 and 8 in-order PUs, respectively.

in-order PUs do not have as much latency tolerance as out-of-order PUs; the heuristics are
effective in avoiding inter-task dependences, which stifle the in-order PUs more than the
out-of-order PUs. Using in-order PUs, data dependence heuristic improves performance
by 3%-15% and 5%-25% for 4 and 8 PU configurations, respectively, over control flow
heuristic. Out-of-order PUs can tolerate more latencies than in-order PUs. As expected,
data dependence heuristic improves performance more for in-order PU configurations than
for out-of-order configurations. For data dependence tasks, 8 in-order PUs consistently

perform better than 4 out-of-order PUS>.
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For the floating point benchmarks, control flow heuristic improves performance by 24%-
106% and 24%-117% for 4 and 8 out-of-order PU configurations, respectively, over basic
block tasks (Figure 5-2). Impact of data dependence heuristic is less pronounced because
control flow heuristic generates tasks which exploit loop-level parallelism. This trend is
true for in-order PUs as well. Figure 5-4 shows the impact of control flow heuristic, data
dependence heuristic, and task size heuristic on the floating point benchmarks for in-order
PU configuration.The only exception to exploiting loop-level parallelism is 145.fpppp,
where data dependence heuristic improves performance significantly. Put together, the
heuristics improve performance by 29%-106% and 24%-114% for 4 and 8 PU configura-
tions over basic block tasks. For control flow tasks, 8 in-order PUs consistently perform

better than 4 out-of-order PUs.

Task size heuristic improves performance of 129.compress by including short (5 instruc-
tions) function invocations in the most frequent loop of the program and 145.fpppp by
splitting large (~1000 instructions) basic blocks into smaller basic blocks. Task size heu-

ristic does not impact the other benchmarks due to lack of opportunity.

5.3.2 Task characteristics and metrics

I now present measurements of overall performance various task characteristics for tasks
selected by the different heuristics. First, I measure performance achieved by tasks
selected by the different heuristics. I measure (1) task size in terms of dynamic instruc-
tions, (2) inter-task control flow, and (3) inter-task data communication and speculation.
Task size heuristic affects only two of the benchmarks: 129.compress and 145.fpppp. So, I
include task size heuristic only for these benchmarks in the analyses of task characteris-

tics.

3. An important point to note is that 8 PUs have more bandwidth to the memory subsystem than 4
PUs.
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Figure 5-4: Impact of compiler heuristics on CFP benchmarks with in-order PUs.
The two experiments marked a and b use 4 and 8 in-order PUs, respectively.

5.3.2.1 Task size metrics

To characterize tasks further, I measure the total number of dynamic instructions and the
number of control transfer instructions (i.e., branches, jumps, indirect jumps, function
calls, and function returns) executed in a task. While the total is a measure of task size, the
control transfer count measures the number of basic blocks included in control flow tasks
and data dependence tasks. I also present the number of cycles spent by an instruction due

to load imbalance.
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In Table 5-4 and Table 5-5, I present the average dynamic size of basic block tasks, con-

trol flow tasks and data dependence tasks for the integer and floating point benchmarks.

Table 5-4: Dynamic task size for CINT benchmarks. Columns titled Basic Block
Tasks, Control Flow Tasks, and Data Dependence Tasks show task sizes in number of
dynamic instructions for the corresponding heuristic. Columns titled total show the
number of dynamic instructions and columns titled control show the number of dynamic
control transfer instructions per task. Since 129.compress responds to task size heuristic,
both control flow tasks and data dependence tasks are augmented with task size heuristic
for this benchmark.

Benchmarks Basic Block Control Flow Data Dependence
total control | total control | total
099.go 6.4 2.53 18.2 2.04 12.7
124.m88ksim 4.3 297 14.8 2.42 10.3
126.gcc 5.8 2.52 12.4 2.32 11.6
129.compress™ 5.7 1.78 10.2 2.77 15.0
130.1i 3.9 1.89 8.1 1.64 7.1
132.ijpeg 10.6 242 23.3 243 23.8
134.perl 6.5 2.26 14.9 2.20 10.6
147.vortex 6.9 241 17.2 2.19 14.0

For the integer benchmarks, basic block tasks contain fewer than 10 instructions
(Table 5-4). Control flow tasks and data dependence tasks contain usually more than twice
as many instructions as basic block tasks. For the floating point benchmarks, even basic
block tasks contain more than 20 instructions, except for 107.hydro2d (Table 5-5). Similar
to their integer counterparts, control flow and data dependence tasks of floating point pro-
grams contain usually more than twice as many instructions as basic block tasks. The main
reason for data dependence tasks to contain fewer dynamic instructions than control flow
tasks is that control flow heuristic is greedy and includes basic blocks past data depen-

dence chains, whereas data dependence heuristic terminates tasks as soon as a data depen-
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Table 5-5: Dynamic task size for CFP benchmarks. Columns titled Basic Block,
Control Flow, and Data Dependence show task size for the corresponding heuristic.
Columns titled control show the number of dynamic instructions and columns titled
control show the number of dynamic control transfer instructions per task. Since
145.fpppp responds to task size heuristic, both control flow tasks and data dependence
tasks are augmented with task size heuristic for this benchmarks.

Benchmarks Basic Block Control Flow Data Dependence
total control | total control | total
101.tomcatv 44.1 4.96 114.9 3.24 84.8
102.swim 42.0 4.13 87.7 4.13 87.7
103.su2cor 49.8 8.03 107.8 8.03 107.8
104.hydro2d 11.9 6.0 44.0 5.24 39.5
107.mgrid 514 2.0 105.5 2.01 107.4
110.applu 21.7 1.71 39.0 1.70 38.5
125.turb3d 21.2 2.46 41.7 2.44 40.8
141.apsi 24.8 2.78 51.0 2.63 46.8
145 .fpppp* 957.8 1.45 59.0 2.50 66.5
145.wave5 24.4 4.20 59.1 4.08 56.1

dence is included. 129.compress, 107.mgrid, 144.fpppp do not follow this trend because
data dependence tasks steer task selection to paths different from control flow tasks,

resulting in entirely different tasks.

A few assembly-level macro instructions expand into a sequence of instructions contain-
ing control transfer instructions. For example, an integer divide macro expands into a
sequence of instructions that includes a branch to check for divide by zero. Several float-
ing point programs use library calls for various computations (e.g., trigonometric func-
tions). So, some basic block tasks may include such control transfer instructions which are
hidden from the compiler. Also, control flow tasks and data dependence tasks include
extra jumps from loop restructuring optimization. For these reasons, there may seem to be
a discrepancy between ratio of the size of basic block tasks and that of heuristic tasks and

the number of control transfer instructions in heuristic tasks. Control flow and data depen-
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dence tasks contain between 2 and 3 basic blocks per task as indicated by the number of
control transfer instructions (Table 5-4 and Table 5-5). The number of control transfer
instructions contained in control flow tasks and data dependence tasks is larger than their

integer counterparts.

While the tasks of the integer programs are fairly small, the tasks of the floating point
programs are reasonably large due to high frequency loops that do not contain any func-
tion invocations. In the integer benchmarks, function invocations often result in small
tasks unless entire function calls are included within tasks. Task size heuristic includes
short function calls within tasks. Including large function calls or recursive calls lead to
inordinate number of memory dependence squashes and excessive load imbalance. Large
tasks also fill up the ARB. Setting the threshold level to include entire function invocations
within tasks at fewer than 15 instructions avoids these problems. 129.compress has two
function invocations that execute 5 dynamic instructions in the most frequent loop of the
program. Among the integer benchmarks, only 129.compress responds to task size heuris-
tic. Apart from function invocations, loops with a few iterations and short loops with tight

recurrences lead to small tasks in the integer benchmarks.

In order to isolate the effect of each of the performance issues such as load imbalance,
task overhead, inter-task register dependences and inter-task memory dependences, 1
present the cycles spent due to each of these issues in some of the following sections of
this chapter. Since out-of-order PUs can overlap delays, these measurements were
obtained by monitoring the commit point of the PU. If the instruction at the commit point
waits for register values and no other useful work is done in that cycle, then the cycle is
charged to register communication delay. This method gives only an upper bound on the
number cycles spent and not the exact cycle count accountable to each performance issue
separately because there could be other instructions, whose delay is overlapped with the
instruction at the commit point. For example, if register communication delay is measured

to be 20% of overall execution time, performance may not improve by 12.5% if register
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communication is completely removed because there may be other instructions waiting
due to memory dependences overlapped with the instructions waiting for register values.
Since these measurements do not correspond to exact, isolated performance components, I

present the “observed stall” in CPI instead of IPC to avoid any confusion.

In Figure 5-5 and Figure 5-6, I present the average number of cycles spent by an instruc-
tion due to load imbalance for the integer and the floating point benchmarks, respectively.
Control flow tasks and data dependence tasks exhibit less load imbalance for both the inte-
ger and the floating point benchmarks, as compared to basic block tasks. This disparity is
due to the amortization of load imbalance loss over larger number of instructions of con-
trol flow tasks and data dependence tasks. Control flow tasks are a little worse than data
dependence tasks due to the greedy nature of control flow heuristic. Control flow heuristic
tends to create small tasks when it encounters terminal basic blocks and terminal control
edges, while greedily creating larger tasks with non-terminal basic blocks and non-termi-
nal edges; this tendency causes disparity in task size, whereas data dependence heuristic
terminates tasks as soon as a data dependence chain is included, distributing basic blocks
more evenly among control flow paths. Basic block tasks in 129.compress and 132.ijpeg
incur significantly high load imbalance because high-frequency loops contains varied-

sized basic blocks.

In the case of the floating point programs, many basic blocks contain substantial
amounts of computation in high-frequency loops. But basic blocks containing a few
induction variable increments in those loops contribute to the disparity in the amount of
computation performed per basic block. Basic block tasks incur high load imbalance due
to this reason (Figure 5-6). For control flow tasks and data dependence tasks, load imbal-

ance arises due to variation in the amount of computation done in loop iterations.

Increasing the number of PUs is expected to increase load imbalance because larger

number of tasks have a greater probability of being imbalanced. For example, increasing
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Figure 5-5: Observed load imbalance stall for SPEC CINT benchmarks. All the
experiments use out-of-order PUs. The five experiments marked a, b, ¢, d, and e are basic
block tasks, control flow tasks on 4 PUs, data dependence tasks on 4 PUs, control flow
tasks on 8 PUs, and data dependence tasks on 8 PUs, respectively. For 129.compress,
control flow tasks and data dependence tasks are augmented with task size heuristic.

the number of PUs from 4 to 8 exposes the variation in size of tasks that are 4, 5, 6, or 7
dynamic tasks apart. But Figure 5-11 and Figure 5-12 show that the average time spent by
an instruction due to load imbalance in a 8-PU configuration is not much less than that in a
4-PU configuration for most benchmarks. The main reason for the similarity in load

imbalance is that variation in adjacent dynamic tasks contribute to overall load imbalance
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Figure 5-6: Observed load imbalance stall for SPEC CFP benchmarks. All the
experiments use out-of-order PUs. The five experiments marked a, b, ¢, d, and e are basic
block tasks, control flow tasks on 4 PUs, data dependence tasks on 4 PUs, control flow
tasks on 8 PUs, and data dependence tasks on 8 PUs, respectively. For fpppp, control flow
tasks and data dependence tasks are augmented with task size heuristic.

more than variation in dynamic tasks that are farther apart. Since the overall CPI decreases
on increasing the number of PUs (up to some number of PUs), load imbalance becomes a
more important performance factor, as a percentage of overall CPI, for larger number of
PUs. For control flow tasks load imbalance accounts for 9%-16% and 12%-25% of total

execution time for 4-PU and 8-PU configurations, respectively. For data dependence tasks,
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load imbalance accounts for 9%-16% and 12%-24% of total execution time for 4-PU and

8-PU configurations, respectively.

In Figure 5-7 and Figure 5-8, I present the average number of cycles spent by an instruc-
tion due to task overhead for the integer and the floating point benchmarks, respectively.
Task overhead decreases significantly for control flow tasks and data dependence tasks
over basic block tasks due to their larger size, for the integer benchmarks. Since even basic
block tasks are large for the floating point benchmarks, the programs incur little overhead.
Increasing the number of PUs decreases task overhead because of overlap of overhead

time among more PUs.

5.3.2.2 Inter-task control flow metrics

To characterize inter-task control flow, I measure control flow prediction accuracies for
tasks obtained by the different heuristics and the distribution of dynamic targets taken. In
Table 5-6 and Table 5-7, I present inter-task control flow misprediction rates of basic
block tasks, control flow tasks and data dependence tasks. Prediction accuracy of basic
block tasks is higher than that of superscalar branch prediction accuracy because it
includes branches, jumps, function calls and returns. In general, the prediction hardware is
able to maintain high task prediction accuracies for control flow tasks and data depen-
dence tasks (column Task) in spite of predicting one of four targets, where as basic block

tasks expose only two targets.

Since control flow tasks and data dependence tasks usually contain multiple branches
per task (shown in Table 5-6 and Table 5-7), comparing prediction accuracies of these
tasks with those of basic block tasks requires normalizing the accuracies with respect to
the average number of dynamic branches per task. To this end, I present two kinds of pre-
diction accuracies for control flow tasks and data dependence tasks (columns Task and

Branch): (1) Misprediction accuracy calculated as a ratio of the number of incorrect task
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Figure 5-7: Observed task overhead stall for SPEC CINT benchmarks. All the

experiments use out-of-order PUs. The five experiments marked a, b, ¢, d, and e are basic
block tasks, control flow tasks on 4 PUs, data dependence tasks on 4 PUs, control flow
tasks on 8 PUs, and data dependence tasks on 8 PUs, respectively. For 129.compress,
control flow and data dependence tasks are augmented with task size heuristic.

predictions and the number of all task predictions. (2) Misprediction accuracy calculated

as a ratio of the number of incorrect task predictions and the number of dynamic branches.
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Figure 5-8: Observed task overhead stall for SPEC CFP benchmarks. All the
experiments use out-of-order PUs. The five experiments marked a, b, ¢, d, and e are basic
block tasks, control flow tasks on 4 PUs, data dependence tasks on 4 PUs, control flow
tasks on 8 PUs, and data dependence tasks on 8 PUs, respectively. For fpppp, control flow
and data dependence tasks are augmented with task size heuristic.

Comparing basic block tasks with control flow tasks in terms of task prediction accura-
cies (column Task), there are two kinds of behavior: Task prediction accuracies are higher
for control flow tasks than basic block tasks for those benchmarks which capture loop-
level tasks, namely, 132.jpeg, 10l.tomcatv, 102.swim, 103.su2cor, 104.hydro2d,

107.mgrid, and 145.wave5. In these benchmarks, the most frequent tasks are loop bodies
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Table 5-6: Control Flow Misspeculation Rate for SPEC95 CINT Benchmarks.
Columns titled Basic Block Tasks, Control Flow Tasks, and Data Dependence Tasks show
misprediction rates for the corresponding heuristics. Columns titled Task show the task
prediction accuracies and columns titled Branch show the effective prediction accuracy
normalized with respect to the average number of branches per task. Since 129.compress
responds to task size heuristics, both control flow and data dependence tasks are
augmented with task size heuristics for this benchmark.

Benchmarks Basic Control Data
Block Tasks Flow Tasks Dependence Tasks
Task Branch | Task Branch
099.go 14.4% 14.7% 5.8% 14.6% 7.2%
124.m88ksim 3.1% 4.0% 1.4% 4.9% 2.0%
126.gcc 4.4% 5.8% 2.3% 7.4% 3.2%
129.compress* 5.0% 5.7% 3.2% 7.8% 2.8%
130.1i 3.3% 4.0% 2.1% 5.2% 3.2%
132.ijpeg 6.0% 3.7% 1.5% 5.1% 2.1%
134.perl 2.1% 3.9% 1.7% 4.1% 1.9%
147 .vortex 0.8% 0.7% 0.3% 0.7% 0.3%

which do not expose any of the branches internal to the loop bodies and are easy to pre-
dict. Data dependence tasks have worse task prediction accuracies than control flow task
because including data dependence chains within tasks is preferred over reconvergent con-

trol flow paths or loop bodies.

If task prediction accuracy is normalized over the number of dynamic branches (column
Branch), the effective prediction accuracies are significantly better for control flow tasks
and data dependence tasks, demonstrating the synergy between the heuristics and control
flow speculation hardware. Although the normalized accuracies are higher, an important
caveat is that average misspeculation penalties are larger for heuristic tasks than for basic

block tasks due to their larger sizes.
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Table 5-7: Control flow misspeculation rate for SPEC95 CFP benchmarks. Columns
titled Basic Block Tasks, Control Flow Tasks, and Data Dependence Tasks show
misprediction rates for the corresponding heuristics. Columns titled Task show the task
prediction accuracies and columns titled Branch show the effective prediction accuracy
normalized with respect to the average number of branches per task. Since 145.fpppp
responds to task size heuristics, both control flow and data dependence tasks are
augmented with task size heuristics for this benchmark.

Benchmarks Basic Control Data
Block Tasks Flow Tasks Dependence Tasks
Task Branch | Task Branch
101.tomcatv 1.6% 0.4% 0.1% 0.4% 0.1%
102.swim 0.1% 0.2% 0.0% 0.2% 0.0%
103.su2cor 3.4% 0.5% 0.1% 0.5% 0.1%
104.hydro2d 0.1% 0.3% 0.1% 0.2% 0.0%
107.mgrid 1.1% 2.2% 1.1% 2.2% 1.1%
110.applu 3.9% 3.9% 2.3% 4.2% 2.5%
125.turb3d 3.4% 5.8% 2.4% 6.7% 2.7%
141.apsi 2.9% 4.3% 1.5% 4.1% 1.6%
145.fpppp* 5.6% 1.8% 1.2% 2.8% 1.1%
145.wave5 0.8% 0.8% 0.2% 1.1% 0.3%

In Figure 5-9 and Figure 5-10, I present the distribution of dynamic tasks with respect to
number of targets. The measurements were made on data dependence tasks because they
achieve the highest performance. Almost 60% and 90% of dynamic tasks have two or
fewer targets, for the integer and the floating point benchmarks, respectively. For the inte-
ger benchmarks, the average number of dynamic targets is mostly between 2 and 3, indi-
cating that although multiple basic blocks are included in a task, the heuristics are able to
take advantage of reconvergent control flow paths. 132.ijpeg has unusually large number
of two-target tasks, due to many loop body tasks, which have two targets, namely, the loop
back and the fall through. For the floating point benchmarks, the average number of

dynamic targets is mostly close to 2 because of loop body tasks.
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Figure 5-9: Number of targets for SPEC95 CINT benchmarks. Distribution of

dynamic data dependence tasks as a function of the number of targets.

5.3.2.3 Inter-task data dependence metrics

To characterize inter-task data dependences, I measure the average number of cycles
spent by an instruction waiting for register values and memory values and the fraction of
inter-task data dependences in the program as a function of the number of dynamic tasks
that the data dependences span. In Figure 5-11 and Figure 5-12, I present the average

number of cycles spent by an instruction waiting for register values for the integer and



149

Average number 20 206 194 20 1.93

of targets 2.0 2.0 2.0 1.98 1.30
1.0
M 1 target
[ 2 targets
08HH H H H HHHH HIH H NN 3targets
[ EE 4 targets
8
Q
EO06H HHHHHHHHAIHH
C
=,
©
S
c
s 04 HHHHHHAHHIRE
(@]
o s
02— m A M fwd Ferlin
IRAIRIRIN 1t 1
tomcatv su2cor mgrid tub3d fpppp
swim hydro2d applu apsi  waveb
Figure 5-10: Number of targets for SPEC95 CFP benchmarks. Distribution of

dynamic data dependence tasks as a function of the number of targets.

floating point benchmarks, respectively. In general, floating point benchmarks incur fewer
cycles waiting for register communication than integer benchmarks because floating point
tasks are mostly loop bodies and there are few loop-carried register value dependences in
these benchmarks. I analyze the effect of increasing the number of PUs and then contrast

control flow tasks and data dependence tasks.
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Figure 5-11: Observed register dependence stall for SPEC CINT benchmarks. All
the experiments use out-of-order PUs. The five experiments marked a, b, ¢, d, and e are
basic block tasks, control flow tasks on 4 PUs, data dependence tasks on 4 PUs, control
flow tasks on 8 PUs, and data dependence tasks on 8 PUs, respectively. For compress,
control flow and data dependence tasks are augmented with task size heuristics.

Increasing the number of PUs is expected to increase the number of dynamic inter-task
register dependences. For example, increasing the number of PUs from 4 to 8 exposes
inter-task register dependences that are 4, 5, 6, or 7 dynamic tasks apart. But Figure 5-11
and Figure 5-12 show that the average time spent by an instruction waiting for a register

value in a 8 PU configuration is not much greater than that in a 4 PU configuration for
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Figure 5-12: Observed register dependence stall for SPEC CFP benchmarks. All

the experiments use out-of-order PUs. The five experiments marked a, b, ¢, d, and e are
basic block tasks, control flow tasks on 4 PUs, data dependence tasks on 4 PUs, control
flow tasks on 8 PUs, and data dependence tasks on 8 PUs, respectively. For fpppp, control
flow and data dependence tasks are augmented with task size heuristics.

most benchmarks. The main reason for the similarity in the wait times is that most register
values are short-lived and are required only in the next successor task and few are used by
tasks farther in the future. Since the overall CPI decreases on increasing the number of
PUs (up to some number of PUs), inter-task register dependences become more important

performance factors for larger number of PUs. For control flow tasks, register wait time is
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10%-24% and 17%-40% of total execution time for 4 PU and 8 PU configurations, respec-

tively. For data dependence tasks, register wait time is 0%-24% and 12%-40% of total exe-

cution time for 4 PU and 8 PU configurations, respectively.

Data dependence tasks incur fewer wait cycles indicating that by including data depen-
dence chains within tasks, the heuristics are able to reduce register communication delay.
The reduction is significant for 128.m88ksim, 129.compress, 130.1i, 132.ijpeg, 147.vortex,
and 145.fpppp. The usually large reduction for 145.fpppp is because both control flow and
data dependence heuristics are augmented with task size heuristics; task size heuristics
split the inordinately large basic blocks of 145.fpppp into smaller blocks. Tasks generated

out of the smaller blocks essentially incur dense intra-basic block register dependences.

In Figure 5-13 and Figure 5-14, I present the average number of cycles spent by an
instruction waiting for memory values which are synchronized by the memory depen-
dence prediction and synchronization hardware. Memory dependences usually span larger
numb er of dynamic instructions than the size of the window established by basic block
tasks (as discussed in Section 3.3.3). Consequently, basic block tasks do not incur any sig-
nificant performance loss. There is no significant difference in memory wait times
between control flow tasks and data dependence tasks. Although the implementation of
data dependence heuristics take into account only a few memory dependences and all reg-
ister dependences, data dependence tasks do not incur more memory wait time in compar-
ison to control flow tasks. In 124.m88ksim and 145.fpppp a few memory dependences,
which are not identified by simple compiler analyses, are exposed in data dependence

tasks causing an increase in memory wait time.

In Figure 5-15 and Figure 5-16, 1 present the fraction of all register dependences as a
function of the number of dynamic tasks that the dependences span. This measurement
was made on data dependence tasks. For the integer benchmarks except for 132.ijpeg,

almost 50% of all register dependences are included within tasks. Most inter-task register
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Figure 5-13: Observed memory dependence stall for SPEC CINT benchmarks. All
the experiments use out-of-order PUs. The five experiments marked a, b, ¢, d, and e are
basic block tasks, control flow tasks on 4 PUs, data dependence tasks on 4 PUs, control
flow tasks on 8 PUs, and data dependence tasks on 8 PUs, respectively. For compress,
control flow and data dependence tasks are augmented with task size heuristics.

dependences span between tasks that are either 1 to 3 dynamic tasks or more than 20 tasks
(not shown) apart. For the floating point benchmarks and 132.ijpeg, almost 70% of all reg-
ister dependences are included within tasks. Most inter-task register dependences span
between adjacent tasks or tasks that are more than 20 tasks (not shown) apart. These

graphs corroborates measurements previously made by Franklin and Sohi [39].
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Figure 5-14: Observed memory dependence stall for CFP benchmarks. All the

experiments use out-of-order PUs. The five experiments marked a, b, c, d, and e are basic
block tasks, control flow tasks on 4 PUs, data dependence tasks on 4 PUs, control flow
tasks on 8 PUs, and data dependence tasks on 8 PUs, respectively. For fpppp, control flow
and data dependence tasks are augmented with task size heuristics.

In Figure 5-17 and Figure 5-18, I present the fraction of all memory dependences as a
function of the number of dynamic tasks that the dependences span. Unlike register
dependences, memory dependences span between many dynamic tasks. Inter-task mem-
ory dependencies can either cause memory dependence misspeculation or delay due to

communication. While only a small fraction of register values are communicated from one
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Figure 5-15: Inter-task register dependences for CINT benchmarks. The
experiments use data dependence tasks.

task to another, a larger fraction of memory values are communicated. For the integer
benchmarks, about 20%-40% of all memory dependences span up to 10 dynamic tasks but
most of the rest of the dependences span more than 100 dynamic tasks. For floating bench-
marks, there are no sharp knees in the curves indicating that memory dependences for

floating point benchmarks span a wide range of number of dynamic tasks.
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Figure 5-16: Inter-task register dependences for CFP benchmarks. The experiments
use data dependence tasks.

5.3.3 Window span

To study the window established by a Multiscalar hardware configuration, I analyze the
window span for the integer and the floating point benchmarks. Recall that window span is
the range of all dynamic tasks in flight in the entire processor. The average size of tasks,
the number of PUs, and the control flow prediction accuracy determines the size of win-
dow span. Window span is computed using the following equation where Tasksize is the

average task size, Pred is the average inter-task control flow prediction accuracy, and N is
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Figure 5-17: Inter-task memory dependences for CINT benchmarks. The
experiments use data dependence tasks.

the number of PUs:

Although Pred may change slightly with increasing number of PUs, the overall effect on

the window span is minimal.

In Figure 5-19 and Figure 5-20, I plot the window span measured in number of dynamic

instructions as a function of the number of PUs for the integer and the floating point
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Figure 5-18: Inter-task memory dependences for CFP benchmarks. The
experiments use data dependence tasks.

benchmarks, respectively, for data dependence tasks. Due to the small size of tasks, win-
dow span of most integer benchmarks are in the modest range of 25-80 instructions and
45-140 instructions for 4 and 8 PU organizations, respectively. Window spans of 134.perl
and 146.vortex are increase almost linearly with the number of PUs because their predic-
tion accuracies are high. Window span of most floating point benchmarks is considerably
larger than those of their integer counterparts due to the large size of tasks and high predic-
tion accuracy. For the floating point benchmarks, window spans are in the range of 100-

400 instructions and 250-800 instructions for 4 and 8 PU configurations, respectively.
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Figure 5-19: Window span of CINT benchmarks for data dependence tasks.

Figure 5-21 and Figure 5-22 show the window spans of the integer and the floating point
benchmarks, respectively, for control flow tasks. Due to better inter-task control flow spec-
ulation accuracy, control flow tasks have larger spans than their data dependence task
counterparts. Otherwise, the window spans for data dependence tasks and control flow
tasks are similar in that the window spans of the benchmarks either flatten out or grow

alike.

Figure 5-23 and Figure 5-24 show the window spans of the integer and the floating point

benchmarks, respectively, for basic block tasks. Due to the significantly smaller sizes and
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Figure 5-20: Window span of CFP benchmarks for data dependence tasks.

lower prediction accuracies of basic block tasks, the window spans are considerably
smaller than those for control flow tasks and data dependence tasks. The importance of
predicting at the granularity of tasks, without losing prediction accuracy, is demonstrated
by this graph. The graph indicates that the amount of parallelism that is exposed through
branch prediction (which is used by most modern superscalar processors) is significantly

less than that exposed by task-level prediction.
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Figure 5-21: Window span of CINT benchmarks for control flow tasks.

5.3.4 Experiments related to register communication

I now present measurements of various aspects of register communication. I measure (1)
the impact of the various register communication strategies, (2) the impact of register
communication scheduling on overall performance, (3) the overhead of release instruc-

tions, and (4) the effectiveness of dead register analysis.
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Figure 5-22: Window span of CFP benchmarks for control flow tasks.

5.3.4.1 Effectiveness of register communication strategies

The performance achieved by the register communication strategies depends on the
effectiveness of each scheme in avoiding stalling consumers by sending register values
early. Figure 5-25 and Figure 5-26 show the overall performance achieved by the integer
and floating point benchmarks using the various strategies. The performance improvement
achieved by the most sophisticated strategy, last_send, is significant for all the bench-
marks. For the integer benchmarks other than 129.compress, eager_send strategy

improves performance 12%-39%. 129.compress squashes excessively under eager_send
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Figure 5-23: Window span of CINT benchmarks for basic block tasks.

strategy offsetting any performance gain achieved by sending register values early.
Last_send strategy improves performance for the benchmarks with large tasks®. For small
tasks it is likely that any modification of a register is the last modification, so that
eager_send strategy marks register values to be sent early without causing any squashes.
126.gcc and 130.1i demonstrate this behavior, whereas all the other benchmarks improve
6%-22% under last_send strategy when compared with eager_send strategy (Figure 5-25).

Spec_send performs worse than last_send for most cases, except 130.1i, because the

4. If the squash model used by eager_send strategy selectively squashes only dependent instruc-
tions, then eager_send strategy may perform better than last _end strategy.
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Figure 5-24: Window span of CFP benchmarks for basic block tasks.

squashes caused by it, even though infrequent, are expensive. Spec-send essentially
exposes the internal branches of tasks incurring performance loss. Since the floating point
benchmarks have large tasks, last_send strategy is even more effective. Eager_send strat-
egy improves performance 5%-50% and last_send strategy adds 9%-42% over eager_send
strategy (Figure 5-26). Again, spec_send performs worse because the squashes caused by
it discard many instructions because floating point tasks are usually large in size. Selec-
tively squashing only those instructions that are dependent on misspeculated register val-

ues may improve spec_send performance.
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Figure 5-25: Register communication strategies for CINT benchmarks. The
experiment uses data dependence tasks executing on 4 out-of-order PUs. The numbers on
above the bars show the percentage improvement of spec_send over last_send.

5.3.5 Impact of register communication scheduling

In addition to the register communication strategies evaluated above, scheduling moves
computation so that producers are executed early and consumers are executed late, as well
as restructures loops to accelerate communication of induction variable values.
Figure 5-27 and Figure 5-28 show the overall performance improvements achieved by
scheduling register communication, via code motion and loop restructuring, for the integer

and floating point benchmarks using data dependence tasks executing on out-of-order
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Figure 5-26: Register communication strategies for CFP benchmarks. The
experiment uses data dependence tasks executing on 4 out-of-order PUs. The numbers on
above the bars show the percentage improvement of spec_send over last_send.

PUs, respectively. Using out-of-order PUs, the floating point programs respond more to
compiler scheduling than the integer programs. In the context of out-of-order PUs, com-
piler scheduling impacts performance in two ways: (1) Instructions that are crucial to
communication are moved so that they are buffered in the reorder buffer in favorable order
with respect to the other instructions (i.e., early for producers and late for consumers) and
(2) the crucial instructions are prioritized favorably to utilize the resources of the PU by

this ordering (e.g., cache ports).
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Figure 5-27: Register communication scheduling for CINT benchmarks. The  two
experiments marked a and b use data dependence tasks executing on 4 and 8 out-of-order
PUs, respectively. The experiments include both code motion and loop restructuring.

Even for out-of-order PUs, which are capable of hiding latency, compiler scheduling
improves performance significantly for 124.m88ksim and 132.ijpeg. The integer bench-
marks improve <1%-30% and <1%-45% for 4 and 8 PUs, respectively (Figure 5-27).
099.go, 126.gcc, 130.1i, and 134.perl show modest improvements, where as 129.compress
and 147.vortex respond less to scheduling. 129.compress has a tight recurrence in its most
frequent loop which cannot broken by scheduling and other dependences are rescheduled
dynamically. 147.vortex has unusually high branch prediction accuracy (> 99%) and out-
of-order PUs establish an almost accurate window from which they reschedule instruc-
tions almost perfectly. There are several reasons for the modest performance improve-

ments of the integer benchmarks due to scheduling. Unlike loop restructuring, code
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Figure 5-28: Register communication scheduling for CFP benchmarks. The two
experiments marked a and b use data dependence tasks executing on 4 and 8 out-of-order
PUs, respectively. The experiments include both code motion and loop restructuring.

motion is hindered by intra-task control flow dependences and intra-task ambiguous data
dependences. Also, since data dependence tasks already optimize for inter-task data
dependences, scheduling has fewer opportunities to optimize further. For the benchmarks
that respond to scheduling, the improvements grow in both in absolute magnitude and as a

percentage over the base case on increasing the number of PUs from 4 to 8.

The floating point benchmarks improve 12%-58% and 20%-69% for 4 and 8 PUs,
respectively ((Figure 5-28). The floating point benchmarks improve significantly mainly
because loop induction variables are moved to the top of the loops and other computation

dependent on the induction variables also get accelerated. Out-of-order PUs do not have
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large enough reorder buffers to capture entire loop bodies, which are large, and accelerate

induction variables dynamically.

Figure 5-29 and Figure 5-30 show the overall performance improvements achieved by

: no scheduling
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Figure 5-29: Register communication scheduling for CINT benchmarks. The  two
experiments marked a and b use data dependence tasks executing on 4 and 8 in-order
PUs, respectively. The experiments include both code motion and loop restructuring.

scheduling register communication for the integer and floating point benchmarks using
data dependence tasks executing on in-order PUs, respectively. The trends in performance
improvement observed for out-of-order PUs with respect to the number of PUs hold true

for in-order PUs as well. The integer benchmarks improve <1%-33% and <1%-47% for 4
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Figure 5-30: Register communication scheduling for CFP benchmarks. The two

experiments marked a and b use data dependence tasks executing on 4 and 8 in-order
PUs, respectively. The experiments include both code motion and loop restructuring.

and 8 PUs, respectively. The floating point benchmarks improve 27%-65% and 39%-77%
for 4 and 8 PUs, respectively. Compared to out-of-order PUs, in-order PUs achieve perfor-
mance improvement a little more in absolute magnitude and as a percentage of the base
case. The similarity in improvements between in-order and out-of-order PU configurations
indicate that register communication delays are not hidden by out-of-order PUs with mod-

est-sized reorder buffers and ready lists.

5.3.5.1 Overhead of release instructions

In Table 5-8, I present the number of dynamic release instructions executed as a fraction

of all dynamic instructions. These experiments include dead register optimization. The
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Table 5-8: Overhead of dynamic release instructions for SPEC95 benchmarks.

Benchmarks fraction Benchmarks fraction
099.go 2.0% 101.tomcatv 0.0%
124.m88ksim 2.0% 102.swim 0.0%
126.gcc 2.0% 103.suZcor 0.0%
129.compress 1.5% 104.hydro2d 0.0%
130.1 3.7% 107.mgrid 0.0%
132.ijpeg 1.0% 110.applu 0.2%
134.perl 3.3% 125.turb3d 0.0%
147 vortex 1.8% 141.apsi 0.1%
145 fpppp 0.1%
145.wave5 0.0%

overhead due to release instructions depends on the size of the tasks. Larger tasks encap-
sulate more register live ranges within them, reducing the amount of communication per-
formed in the program. Overall, avoiding extra instructions by annotating existing
instructions to convey register communication information and not sending dead registers
are effective in keeping the overhead small. For the integer benchmarks, the overhead is of

the order of 2%-3% and for the floating point benchmarks, there is little overhead.

5.3.5.2 Effectiveness of dead register analysis

In Table 5-9, I present the reduction in register communication traffic by employing
dead register analysis. In this experiment, register communication traffic is measured as
the number of hops a register value makes on the ring per dynamic instruction of the pro-
gram. The reason for using this metric is that dead register optimization reduces traffic in
two ways: (1) By not propagating dead values and (2) by stopping dead values from mak-
ing unnecessary hops on the register communication ring. Dead register optimization is
aimed at reducing the number of register values sent on the ring and the number of hops

each register value makes on the ring. This metric is independent of the IPC achieved, so
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Table 5-9: Impact of dead register optimization on SPEC95 benchmarks. The
experiments use 4 PUs. The column titled base shows the base case as the average number
of hops a register value makes on the ring per dynamic instruction. The column titled
decrease shows the percent reduction in the traffic due to dead register analysis.

Benchmarks base decrease | Benchmarks base decrease
099.go 1.00 33.9% 101.tomcatv 0.22 75.7%
124.m88ksim 0.77 25.6% 102.swim 0.22 86.2%
126.gcc 0.94 26.9% 103.su2cor 0.16 58.2%
129.compress 0.92 5.7% 104.hydro2d 0.32 74.0%
130.1i 0.46 19.9% 107.mgrid 0.30 60.8%
132.ijpeg 0.47 42.6% 110.applu 0.41 67.3%
134.perl 0.80 22.0% 125.turb3d 0.55 66.8%
147.vortex 0.77 20.0% 141.apsi 0.55 58.9%
145.fpppp 0.62 74.3%
145.wave5 0.31 63.5%

that the effectiveness of the compiler, in terms of the number of dead register values
stopped from occupying the ring unnecessarily, is isolated without confusing with timing
issues. The compiler is effective in reducing the traffic for both the integer and floating
point benchmarks. For the integer benchmarks, the compiler analysis reduces the traffic by
5%-42% and for the floating point benchmarks, the reduction is in the range of 58%-75%.
Larger tasks lead to more reduction in register communication traffic under dead register
optimization because larger tasks include more register live ranges resulting in more dead
registers at the exit of the tasks. The reduction indicates that many register values are pro-
duced and consumed within the same task or a few dynamic tasks apart. The reduction is
the ratio between the number of register values local to a task and the number of all regis-
ter values created, as discovered by the compile:r5 . In the floating point benchmarks,
mostly only induction variables remain live across tasks, resulting in substantial reduction

in register communication traffic.

5. Due to control flow, the compiler analysis has to be conservative. There may be registers that are
dead in one control flow path and not another; the compiler cannot mark those registers as dead.



173

Chapter 6

Conclusions

Straightforward approaches of scaling up the centralized hardware structures of super-
scalar processors to extract more parallelism may hinder the speed at which the processors
may be clocked, limiting overall performance. By employing a novel, distributed hardware
organization, the Multiscalar architecture proposes to extract more parallelism at high
clock speeds. Multiscalar provides hardware support for control flow speculation, register
value communication and memory dependence speculation to achieve high performance

on sequential applications.

In this thesis, I studied the fundamental interactions between sequential programs and
the novel features of the Multiscalar architecture, from the standpoint of performance. I
determined and explored the key implications of the interactions for the compiler. I
devised, implemented, analyzed and experimented with compiler techniques to improve
performance. Since this thesis is the first attempt at investigating this problem, I identified
the key issues involved in the problem of compiling for the Multiscalar architecture and
explored a few compiler optimization opportunities instead of proposing the best tech-

nique to solve a specific optimization problem. To make the investigation concrete, I con-
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structed a compiler and evaluated the impact of compiler techniques on performance of

the SPEC95 [98] benchmark suite.
6.1 Thesis summary

The compiler partitions sequential programs into code fragments called tasks, which are
not necessarily independent, to map the programs on distributed processing units for exe-
cution. To maintain sequential program semantics, the responsibility of honoring inter-
task register dependences, inter-task control flow dependences, and inter-task memory
dependences is shared between the hardware and the compiler. In the Multiscalar architec-
ture implementation that I investigated, the compiler partitions sequential programs into
tasks. Inter-task register dependences are specified by the compiler, inter-task control flow
dependences are specified by the compiler and inter-task memory dependences are han-

dled entirely by the ARB.

Task selection crucially affects overall performance achieved by the Multiscalar archi-
tecture. Control flow speculation, register communication, memory dependence specula-
tion, load imbalance, and task overheads are fundamental performance issues. Task size,
inter-task control flow dependences and inter-task data dependences are important charac-

teristics of tasks that impact these performance issues.

Important criteria to consider during task selection are: (1) Tasks should be neither small
not large; a small task may incur overheads that may not be amortized over the execution
of the task and high register communication delays, where as a large task may incur mem-
ory dependence misspeculations and ARB overflows. (2) The number of successors of a
task should be as many as can be tracked by the control flow speculation hardware; recon-
vergent control flow paths can be exploited to generate tasks which include multiple basic
blocks without taxing the prediction hardware and avoid exposing hard-to-predict
branches to the prediction hardware. (3) Data dependences should be included within

tasks to avoid communication and synchronization delays or misspeculation and roll back
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penalties. If a data dependence cannot be included within a task, then the dependence
should be exposed such that the producer and consumer instructions involved in the
dependence are scheduled favorably (i.e., the producer is executed early and the consumer

is executed late in their respective tasks).

Based on these criteria, I devised and implemented the following heuristics to perform
task selection: (1) Terminate tasks at entry and exit of loops and function invocations to
avoid large tasks. (2) Include multiple basic blocks to avoid small tasks without exceeding
the number of successors that may be tracked by the hardware. (3) Expose loop back
edges instead of branches internal to the loop to improve control flow speculation accu-
racy and capture loop-level parallelism. (4) Include register and simple memory depen-
dences that span multiple basic blocks within tasks. (5) If a data dependence is exposed

then generate a task with the producer of the dependence as the root of its task.

Overlapping register communication with computation is of paramount importance to
alleviate performance loss. I have developed several compiler strategies to study the effect
of register communication delay on overall performance. These strategies vary the degree
of overlap of communication with computation by varying the aggressiveness of the anal-
yses. End_send strategy conservétively posts forwards of register values at task end,
eager_send strategy posts speculative forwards of register values as soon as a register is
modified, even though it may not be the last modification, last_send strategy posts for-
wards of register values only after the last modification, and spec_send strategy posts
speculative forwards of register values after a register is modified, if it is likely to be the

last modification.

All of these strategies vary the timing of communication but do not move the computa-
tion that generates the values involved in the communication. Extending this analysis fur-
ther, I have devised and implemented a static scheduler that moves computation to hide

inter-task register communication delay further. The scheduler identifies inter-task register
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dependences and moves the producer instruction up and the consumer instruction down in
their respective tasks. The scheduler uses traditional code motion transformations and a
profiling-based cost model that computes the delay incurred by an inter-task register
dependence by estimating the number of cycles after the start of their respective tasks the

producer and the consumer instructions execute.

I implemented the task selection heuristics, register communication strategies and
scheduling, and dead register optimization in Gee (version 2.7.2) and experimented with
the SPEC95 benchmark suite using a simulator for the Multiscalar architecture. I summa-

rize the results of my experiments and draw some conclusions.
6.2 Thesis conclusions

The important results of this thesis are: (1) The key issues in achieving performance are
increasing the size of tasks to establish a large window, improving inter-task control flow
speculation accuracy, reducing inter-task data dependence delays, and decreasing load
imbalance. (2) With respect to basic block tasks, the task selection heuristics successfully
increase the size of tasks, improve control flow speculation accuracy (normalized to the
number of branches) and reduce inter-task data (mostly register) dependence delays. (3)
Register communication strategies demonstrate the importance of overlapping communi-
cation with computation by sending register values as soon as they are generated. (4) Reg-
ister communication scheduling, through code motion and loop restructuring, further
decreases inter-task register dependence delays, by moving producer instructions up and
consumer instructions down and restructuring loops so that loop induction variables are
incremented at the top of loop bodies. (5) Dead register optimization significantly reduces
register communication traffic by taking advantage of the fact that most register values

created in a task either die within the task or within a few successor tasks.

The heuristics increase task sizes significantly with respect to basic blocks, enabling a

larger window span from which to extract parallelism. The integer benchmarks have mod-
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est (tens of instructions) to large (hundreds of instructions) window spans and the floating
point benchmarks have large window spans. The window spans for heuristic tasks are con-
siderably larger than those for basic block tasks, indicating that the Multiscalar architec-
ture has the potential to extract significantly more ILP through task-level speculation than
superscalar architectures, which rely on branch prediction. In spite of including multiple
basic blocks, the heuristics are effective in improving the accuracy of inter-task control
flow speculation, by controlling the number of successors of tasks. By including data
(mostly register) dependences within tasks, whenever possible, and by exposing the rest of
data dependences so that producers and consumers are placed early and late in their

respective tasks, the heuristics successfully reduce inter-task register dependence delays.

The task selection heuristics are effective in partitioning sequential programs into suit-
able tasks. The performance improvements achieved by the heuristics range a wide spec-
trum for the integer and floating point benchmarks. The heuristics extract modest to high
amount of parallelism from the integer benchmarks. The heuristics are uniformly more
successful in exploiting parallelism in the floating point benchmarks. For the integer
benchmarks, the heuristics demarcate tasks containing a few basic blocks, which have no
particular control flow structure (e.g., loop body). But for the floating point benchmarks,
tasks containing entire loop bodies are predominant. Increasing the number of PUs
increases the improvements for heuristic tasks, indicating that the heuristics better utilize

extra hardware.

Performance improvement for control flow tasks over basic block tasks is more than that
for data dependence tasks over control flow tasks. By including adjacent basic blocks
within tasks, control flow heuristics include data dependences within tasks, leaving little
for data dependence heuristics to optimize. In-order PU configurations show more
improvement for data dependence tasks than out-of-order PUs. Using heuristic tasks, 8 in-

order PUs consistently perform better than 4 out-of-order PUs, indicating that simpler,
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more number of PUs may perform better than fewer, more complicated PUs, if sophisti-

cated compiler techniques are used!.

In spite of including multiple basic blocks, control flow tasks and data dependence tasks
incur fewer control flow misspeculations (counted per branch) than basic block tasks, indi-
cating that the heuristics expose more predictable control flow to the hardware. The syn-
ergy between the heuristics and the prediction hardware is effective in improving the

accuracy of control flow speculation.

The data dependence heuristic alleviates inter-task register communication delays sig-
nificantly for both in-order and out-of-order PUs. Inter-task register communication delay
is a more important performance factor for larger number of PUs. The magnitude of the
delay does not change with the number of PUs, indicating that next-neighbor communica-

tion is the most prevalent pattern of communication.

Task overheads decrease significantly due to the larger sizes of heuristic tasks. Task
overheads are less significant as the number of PUs increases. Load imbalance is a more
significant performance factor for larger number of PUs. The number of cycles lost to load
imbalance does not change with the number of PUs, indicating that load imbalance
between dynamically adjacent tasks is more important than for tasks that are dynamically

farther apart.

Performance difference effected by the register communication strategies emphasize the
importance of overlapping register communication with computation. Sophisticated regis-
ter communication strategy, last_send, out performs simplistic register communication
strategies, end_send and eager_send, by sending register values as soon as they are cre-
ated. Even for out-of-order PUs, last_send out performs end_send and eager_send, indi-

cating that aggressive, latency-tolerant hardware cannot overcome the delay imposed by

1. The 8 PU configuration had more peak memory subsystem bandwidth.
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inter-task register communication. Brute force hardware techniques (similar to
eager_send) may need more complicated speculation support to match the performance

achieved by compile-time techniques (e.g., last_send).

Register communication scheduling, through code motion and loop restructuring, is suc-
cessful in improving performance modestly for the integer benchmarks and significantly
for the floating point benchmarks. Similar improvements are seen for both in-order and
out-of-order PUs, indicating that reducing inter-task data dependence delays is important
even for latency-tolerant PUs. Since the floating point benchmarks contain mostly loop-
body tasks, they Iare benefited largely by loop restructuring, indicating that computation in
loop bodies are dependent on loop induction variables. But the integer benchmarks con-
tain mostly non-loop-body tasks, leading to less significant contribution from loop restruc-
turing. While loop restructuring always moves loop induction variables to the top of their
loop bodies, code motion is often constrained by intra-task dependences (control flow and
data) when moving producers up and consumers down. Since the integer benchmarks use
code motion more than loop restructuring, their improvements are modest. Register com-
munication strategies and register communication scheduling grow in importance for

larger number of PUs.

Lastly, dead register analysis significantly reduces register communication traffic, indi-
cating that most register values are created and consumed within a few successor tasks, if
not the same task. By including register dependences within a task (i.e., the register value
involved in the dependence is dead beyond the task), the task selection heuristics create
more opportunity for dead register analysis. Hence the combination of the heuristics and
the analysis work together well. An implication of dead register optimization for the hard-
ware is that a less aggressive hardware communication ring with modest bandwidth may

suffice, if supplemented with dead register optimization.
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6.3 Future work

Based on the experience gained from experimenting with compiler techniques, I suggest

the following hardware and compiler optimizations to be tried in the future:

Larger tasks may be needed to increase the amount of parallelism exploited in the Multi-
scalar architecture. The main difficulty with large tasks is that the cost of squashes (both
control flow and data dependence) increases with task size. Large tasks discard significant
amounts of computation on squashes and lose performance due to both opportunity-costs
and roll-back of useful computation. Hardware support for selectively squashing instruc-
tions dependent on misspeculated computation, instead of entire tasks may alleviate such
misspeculation penalty. If selective squashing is supported in the hardware, the compiler
may be able to employ more aggressive speculation to select larger tasks. It is important to
note that if selective squashing aggravates PU critical paths then the gains obtained by

improved squashes may be offset by clock speed considerations.

If task selection heuristics select tasks by including data dependence chains within tasks
then load imbalance may occur due to inherent variations in the amount of computation
done by different dependence chains. Hardware support for load balancing by either mul-
tiplexing multiple tasks on one PU simultaneously or starting the next task before the pre-
vious task commits by buffering state separately, may be important. Improvements gained
by hardware load balancing may be offset by the increase in circuit complexity of PUs,
which may have to maintain state of multiple tasks simultaneously. Thus, load balancing

may result in a trade-off of parallelism for clock speed.

Static memory disambiguation combined with interprocedural analysis may improve
task selection and inter-task data communication. Similar to register dependences, mem-
ory dependences may be included within tasks to avoid inter-task data communication or

ARB misspeculations. Although memory dependences are dynamically synchronized, it



181

may be beneficial to schedule any compile-time known memory dependences, similar to
register dependences. Dynamic synchronization avoids only misspeculation squashes; any
delay from producer of memory value to consumer of memory value may result in perfor-
mance loss. Scheduling the dependences may help reduce such delays. Apart from sched-
uling, known memory dependences may be synchronized via compiler allocated
synchronization resources, instead of dynamic synchronization resources (e.g., memory

dependence prediction table entries), which may be more scarce.

This thesis has laid down the foundational infrastructure for studying the problem of
compiling for the Multiscalar architecture. Many techniques employing varying degrees of
cooperation between the hardware and the compiler to unleash the full potential of the
Multiscalar architecture are emerging. Several other projects including the MIT RAW
[107], the Stanford Hydra [79], and the CMU STAMPede [99] have adopted the approach
of the Multiscalar architecture and have set to explore the numerous opportunities pre-
sented by the Multiscalar architecture through hardware and compiler techniques. In the
future, I envision commercial Multiscalar processors overlapping execution of thousands
of instructions to achieve orders of magnitude more performance than current micropro-
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