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Abstract

Web content hosting, in which a Web server stores and provides Web access to doc-
uments for different customers, is becoming increasingly common. Due to the variety of
customers (corporate, individuals, etc.), providing differentiated levels of service is often
an important issue for the hosts. Most server implementations, however, are not struc-
tured to service requests based on different levels of quality of service (QoS). This paper
presents our attempts at augmenting a popular server implementation with differentiated
QoS features. We explore priority-based request scheduling at both user and kernel levels.
We find that simple strategies such as controlling the numbers of processes can improve the
response time of high-priority requests notably while preserving the system throughput.
We also find that the kernel-level approach tends to penalize low-priority requests less sig-
nificantly than the user-level approach, while improving the performance of high-priority
requests similarly. Based on our experiments, we discuss the bottlenecks and limitations
from kernel implementations that prevent the augmented server from achieving better
performance.

1 Introduction

Due to the explosive growth of the Web and the ever-increasing resource demands on the
servers [5, 6, 7], Web content hosting is an increasingly common practice. In Web content
hosting, providers who have a large amount of resources (for example, bandwidth to the In-
ternet, disks, processors, memory, etc.) offer to store and provide Web access to documents
from institutions, companies and individuals who lack the resource or the expertise to main-
tain a Web server. The service is typically provided with a fee, though some servers do not
charge fee for individual accounts. The variety of customers means that the expectations
and requirements on the quality of the hosting service differs, and the amount of money each
customer is willing to and can afford to pay differs. Naturally, customers expect that the
requests from their potential clients (users that access their web pages) are serviced with a
quality proportional to the amount of money they pay. Thus, it is an interesting and impor-
tant issue that the Web servers provide different levels of quality of service for requests to
documents belonging to different customers.

However, most Web servers today do not provide support for differentiated quality of
service. To do so would require the incoming requests be classified into different categories
and different levels of service be applied to each category. Apache [3], one of the most used
Web servers, handles incoming requests in a first-come first-served manner. All the requests
correctly received are eventually handled, regardless of the type of requests and the load on
the system. Thus, if an individual’s Web page draw many hits, those hits can monopolize the
resource on the server and lengthen the response time for requests to corporate clients’ Web
pages, even though corporate clients may have paid much higher fee than the individual.



In this paper, we investigate one way to provide differentiated quality of service: priority-
based request scheduling. Our main metric for the quality of service is the latency in handling
the HT'TP request to the Web page (in other words, the response time to the request).
We study both user-level and kernel-level approaches. In the user-level approach, Apache
was modified to include a scheduler process, responsible for deciding the order in which the
requests should be handled. The scheduler restricts the maximum number of concurrent
processes servicing requests of each priority. In the kernel-level approach, the Linux kernel
code [4] was instrumented, and request priorities were mapped into priorities assigned to the
HTTP processes handling them.

Using the Webstone benchmark suite, we measure the effect of the approaches on request
latency. We find that the user-level approach can reduce the latency of high priority requests
by up to 21%, while penalizing the low priority requests by up to 206%. The penalty, however,
mostly comes from our closed-queue experiments. The system’s throughput is not affected
by the request scheduling. While performing similarly to the user-level approach. the kernel-
level approach is more robust and is capable of providing differentiated quality of service for
more diverse workloads than the user-level approach.

In this paper, we limit our investigation to Web server systems only, without addressing
the quality of service issues in the networking infrastructure. In other words, we assume that
the order in which the request packets arrive at the server and in which the response packets
are transmitted in the Internet are completely out of the control of the Web server, and the
server has to try its best to improve the response time for high priority requests. Networking
quality of service, including differentiated quality of service, is a rich and active research field.
Obviously, a complete solution would require a combination of networking QoS and server
QoS supports; investigating the combination, however, would be out of the scope of the paper.
Here, we focus on the end systems, and investigate issues such as process scheduling and OS
resource scheduling that are not typically addressed in the networking QoS studies.

Previous works have addressed the general problem of quality of service by using different
techniques such as data prefetching [8] and image compression [10]. Other approaches {12, 11]
address the problem in the context of a distributed web server. In [12], the authors developed
a system that implements fast packet interposing that can be used to balance the load across
a cluster of servers. In [11], the authors address the problem of load balancing in a cluster of
servers by using secondary IP addresses. Variation of these approaches can be used to some
degree to provide differentiated quality of service; however, they are intended for a cluster of
Web servers, while we focus on a single-machine server system.

The paper is structured as follows. Section 2 describes the methodology used. Section
3 presents the design and some highlights on implementation issues. Section 4 describes the
experimental environment and the workload used in the study. Section 5 presents the main
latency results. Finally, section 6 summarizes the results and discusses future work.

2 Methodology

We study the case where there are only two levels of quality of service needed. For example,
a hosting service may provide a high level of quality of service for corporate clients, who pay
the hosting fees, and a low level one for individual customers, who may get the service for free.
Though simple, the problem provides a good test case for any differentiated QoS mechanism.

We investigate priority-based approaches to provide differentiated quality of service, that



is, requests are attached with priorities and serviced according to the priorities. Clearly,
requests are assigned priorities based on which documents they are requesting, not where
they come from. In other words, customers who buy the high level of quality of service want
Web accesses to their documents to be fast, regardless of who is accessing the documents.

Since in current web servers, there is no difference among requests in terms of priorities,
we study two approaches to modify the Web servers:

e User-level approach: We have modified a popular web server program, Apache, by
adding a scheduler process, that decides the order in which requests should be serviced.

¢ Kernel-level approach: We have modified both Apache and the Linux kernel by
adding two new system calls that provide a mapping from request priorities into process
priorities and keep track of which processes are running at which priority level.

The performance metric used to evaluate the effectiveness of our approaches was the
average latency (elapsed time) of servicing a request, that is, the average time taken by the
server from the moment it accepts a connection until it closes the connection. We used
the server latency instead of the client latency (the response time perceived by the user) in
order to factor out extraneous load in the network, which was not dedicated during some
of our experiments. However, although the improvements reported on Section 5 are based
solely on server latency, the results are consistent with the improvements seen from a client’s
standpoint.

When using the Webstone workload, we categorize requests into a small number of classes,
each class consisting of requests that are similar in terms of the size of the requested document.
Note that a request’s class has nothing to do with its priority. We uses classes of requests
because, due to the heavy tail characteristic of typical web server workload, average latency
for the whole population of requests has no statistical meaning. Instead, we calculate per-
class average latencies, and then calculate the overall average latency using the numbers of
requests in each class as weights for the individual components.

3 Design and Implementation

In this section, we first give a general introduction of the policies used to implement priority-
based request scheduling. Then, we describe our user-level approach of modifying the Apache
code, and describe the modification to the Linux kernel in order to map the request priorities
to process priorities.

3.1 Scheduling Policies

The scheduling policy decides the order in which requests should be serviced. Scheduling
policies can be preemptive or non-preemptive. We have implemented preemptive scheduling
at kernel-level, and non-preemptive scheduling at user level, since at the user level we cannot
interrupt a running process and block it in order to allow a new process to run.

There are two important aspects of the scheduling policy. First, upon receiving a request,
the scheduling policy must decide whether to process the request immediately, or to postpone
the execution (Sleep policy). A request may be postponed for one of the following reasons :

o if the load on the system is already high, the latencies of currently executing requests
would be affected.



o if the request is of a lower priority, subsequently arriving high priority requests may get
affected.

Secondly, the scheduling policy must also decide when a postponed requests must be
allowed to continue (Wakeup policy). We allow a request to continue only in place of a
completed request. When a request is completed, the scheduling policy must decide which of
the postponed requests, if any, should be selected to execute in its place.

If the policy allows lower priority requests to execute in case sufficient higher priority
requests are not available, the scheduling policy is said to be work-conserving. Otherwise
it is said to be non-work-conserving. A work-conserving policy tries not to allow processes
to block while there are waiting requests.

In our implementation, the Sleep and Wakeup policies have been implemented by using
thresholds for maximum number of requests (max_proc) that can be concurrently handled in
each priority level. Thus, we have a fixed number of slots for each priority level, and each
arriving request must either occupy a slot (ezecutes), or wait in a queue until it is allowed to
execute (blocks).

3.1.1 Non-Work Conserving Policy

The non-work-conserving policy allows requests of a certain type to occupy only slots corre-
sponding to the same type, and thus allows a request to execute only if the total number of
requests of that type is below the threshold (Sleep policy). For example, let us say we have
two levels of priority A and B, and assume max_proc of A and max_proc of B to be 6 and
3. If three requests of type A and four of type B arrive, three requests of each type occupy
their corresponding slots and one request of type B blocks. Regarding the Wakeup policy, we
can pick a request of only those types that have not exceeded their threshold. We arbitrate
among such requests using priority and age.

3.1.2 Work Conserving Policy

The work conserving policy does not allow a slot to go empty, and allows requests to occupy
slots of a different type (Sleep policy). In the above example, all the requests would execute:
three requests of each type would occupy their slots and one request of type B occupies a slot
corresponding to A. Subsequently, suppose three requests of type A arrive. In such scenario,
two of them will execute. The third one executes if the policy is pre-emptive, otherwise it
blocks (priority inversion). We have implemented pre-emptive scheduling at kernel level,
and non-pre-emptive scheduling at user level. The Wakeup policy is similar to that of the
non-work conserving policy.

3.2 User-Level Approach

We implemented the scheduling policies at user level by modifying the Apache Web server
program. Apache is a multi-process server where a master process spawns a number of child
processes that are responsible for handling the incoming HTTP requests. We changed the
master process to spawn a separate Scheduler process as well. The Scheduler is responsible
for executing the Sleep and Wakeup policies. When a process receives a request, it parses the
incoming URL to determine the file requested. It then obtains scheduling information of the
request (basically a priority value, in our current implementation) required by the Scheduler.



To determine the priority, it first determines the customer to which the file pertains, and
then maps the customer name into a priority value. We assume that the customer name is
embedded in the url.

The process then wakes up the Scheduler to execute the Sleep policy, and blocks, waiting
for a go-ahead from the Scheduler. When the child receives a go-ahead from the Scheduler,
it retrieves the file requested, completes processing the request and closes the connection. It
then wakes up the Scheduler for it to execute the Wakeup policy.

The Scheduler waits for child processes to signal it to start the Sleep or Wakeup policies.
When signalled to execute the Sleep policy, the Scheduler chooses and wakes up one child
process to proceed. The Scheduler maintains a queue of postponed requests, waiting to be
executed, and inserts the request into the queue if it has to be postponed. When signalled to
execute the Wakeup policy, the Scheduler wakes up zero or one of the child processes waiting
to be executed, as dictated by the policy.

The scheduling policy is implemented as a dispatcher function, which acts as the Scheduler.
The child processes and the Scheduler communicate by means of a Request Board and an
Event Board, implemented in shared memory. The Request Board is an array of cells, one
corresponding to each child process, which is used by the child handling a request to pass
scheduling information (priority) to the scheduler. The Event Board is used to inform the
Scheduler of a Sleep or Wakeup event.

Thus, the Scheduler works in a tight loop, waiting for a new to process. Since only shared
memory and semaphores are used, synchronization and communication are fast, the overhead
of scheduling policy is kept low. The Scheduler processes Wakeup events before Sleep events,
in order to free resources as soon as possible and to avoid race conditions.

Note that our implementation may create more processes than necessary in handling the
Web requests. This is not a problem in our current experiments, as the network links are
typically the bottlenecks. The implementation can be easily modified should the number of
processes become a problem.

3.3 Kernel-Level Approach

The motivation for a kernel-level approach is that acting directly on the priorities assigned
to the HTTP processes might be more effective in controlling their executions. Therefore, we
used a direct mapping from the user-level request priority to a kernel-level process priority.

The kernel-level scheme is based on the instrumentation of both Apache and Linux code.
Apache code was changed to have each HT'TP process call the kernel to record the priority
of the current request it is handling. The request priority is obtained as described in the
last section for the user-level approach. The kernel is responsible for mapping this priority
into the process priority (used by the kernel scheduler to decide which process should use the
CPU next) and execute the Sleep policy to decide if the process should proceed execution or
block. The kernel must keep track of all processes currently using the priority scheme and
their current state (sleeping or handling a request), in order to avoid starvation.

When a process finishes handling a request, it calls the kernel again to release its priority
and execute the Wakeup policy. The decision of which process should be waken up has two
phases. First, the kernel decides the priority level of the process to be unblocked. This is done
based on the policy used (work conserving or non-work conserving). Then, the kernel chooses
the oldest process (the one that blocked earlier) that originally was running on that priority
level. The work conserving policy allows preemption which means that a lower priority process



may be put to sleep to allow a higher priority process to run. When choosing a process to
sleep, the kernel picks the youngest process (the one that started running later) among all
of those running on the lower priority. This guarantees fairness among processes of equal
priority.

The parameters for the kernel level approach are: the number of priority levels and the
description of each priority level, that is, the priority value and the number of processes that
are allowed to concurrently run on that priority level. These parameters are defined in a
configuration file read by Apache and passed to kernel through a system call just after the
server startup. Another parameter is the priority value assigned to a process in order to make
it block. This parameter, SLEEPING_PRIORITY, is defined in a kernel header file.

As we show in Section 5, for some experiments, there is a bottleneck in the network
interface queue where the packets are inserted for transmission. All data packets are inserted
in a single queue in a first-in first-out order. We changed the algorithm that inserts packets
into this queue to take into account the priority of the process that is transmitting. In this
way, we extended the idea of process priority to packet priority.

We implemented three new system calls:

e initialize_priority_scheme: this system call must be called in the beginning of the server
operation (standalone main) and initializes all the kernel data structures that keep
track of the processes that are using the scheme.

e my._set_priority: this system call receives as parameter the request priority, maps this
priority into a process priority and executes the Sleep policy.

e my_release_priority: this routine is called just before the connection is closed and it
informs the kernel that the handling of the request has finished so that it can execute
the Wakeup policy

To keep track of the states of all processes, the kernel maintains a table with one entry for
each process. Each entry in this table contains: a pointer to the process PCB (process control
block), the time it started to run , and its original priority. The kernel also keeps counters for
the total number of processes and the number of running (non sleeping) processes on each
priority. The mapping of request priority to process priority is done by a very simple hash
function that returns a value between 0 and 40, that is, it returns the request priority modulo
40. We did not try any other function because, as will be shown in section 5, the maximum
number of processes is the most important factor to take into account when trying to improve
performance of one type of requests.

3.4 Differences Between the Two Approaches

The user-level approach and the kernel-level approach implement very similar scheduling
policies. However, there are three significant differences in the resultant process scheduling.

First, in the user-level approach, once a low-priority request is allowed to “go”, the process
runs at the same priority as those servicing high-priority requests. The kernel-level approach,
on the other hand, allows the process’ priority to be configured higher or lower (for example,
see the configuration in Table 3.)

Second, the SLEEPING_PRIORITY in the kernel-level approach affects when a process
actually blocks. In most of our experiments, we set SLEEPING_PRIORITY equal to 0. This



actually does not make a process block, but reduces the time a process can use the CPU to
less than the interval between timer interrupts (in Linux, this interval is 10 milliseconds).
When all other processes are blocked on I/0, a process with priority 0 can assume the CPU.
However, in the next timer interrupt the kernel scheduler will try to find a better (with higher
priority) process to assume the CPU. This is different from the user-level implementation,
which blocks the process immediately if the scheduler decides that the request should be
postponed.

Finally, the kernel-level approach may preempt an already-running process if there are
many high-priority requests waiting, while the user-level approach implements only non-
preemptive scheduling.

The differences in process scheduling lead to differences in performance degradation of
low-priority requests, as we will see later.

3.5 Measuring Latency

In order to measure the server latency, we also implemented a patch file to be linked with
Apache code that provides routines for measuring time and logging the results. Each process
sums the latency for all the requests it handled in each class. Just before finishing its execu-
tion, each process writes per-class statistics - average latency and total number of requests -
in a log file. Calls to the timing routines were inserted just after a connection is established
and just after it is closed, in order to measure the server latency.

4 Experimental Setup

This section describes the workload, hardware, and software used to perform the measure-
ments and collect performance data.

For the user-level approach, our Web server is a Sun SparcStation with two 66Mhz CPU’s
and 64 MB of main memory, running the Solaris operating system (version 2.4). For the
kernel-level approach, we used the Linux 2.1.54 operating system on a DEC Celebris XL590
90MHz Pentium machine with 32 MB of main memory. The server software for both setups
was Apache, version 1.3b2, a public domain HTTP server [3]. Our Apache server was con-
figured to run in standalone mode. The KeepAlive option was deactivated (only one HTTP
request was serviced per connection) and all other parameters are set as the default values.

To generate a WWW workload, we used WebStone [1] (version 2.0.0), an industry-
standard benchmark for generating HT'TP requests. WebStone is a configurable client-server
benchmark that uses workload parameters and client processes to generate Web requests. This
allows a server to be evaluated in a number of different ways. It makes a number of HTTP
GET requests for specific pages on a Web server and measures the server performance, from a
client standpoint. In order to generate load for a WWW server, client processes successively
request pages and files from the server, as fast as the server can answer the requests.

For the user-level approach, Webstone client processes were spawned in 6 machines (5
client processes per machine) similar to the one used as the server hardware platform. Clients
and server communicate through a dedicated 100Mbps Ethernet network. For the kernel-
level approach, client processes were spawned on the same machines. However, in this case,
the network connecting server and clients is a non-dedicated 10 Mbps Ethernet. In both
cases, server and client machines were always dedicated for our experiments. We started
two independent WebStone benchmarks, each one configured to spawn 15 client processes to
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Average File Size | Largest File Size | Number of Files
Workload WA 18.5 KB 115 KB 40
Workload WB 28.8 KB 2 MB 60

Table 1: Description of HTTP Workloads

send requests of only one specific type. In this way, we guarantee that the number of clients
sending requests to each type is always the same.

Webstone workload is defined by the number of client processes and by the configuration
file that specifies the number of pages, their size and access probabilities. In our experiments,
we set the number of client processes as 30 and used two different workloads, described in
Table 1. The parameters that define workload WB are representative of the kinds of workload
typically found in busy WWW servers [2].

5 Results

This section discusses the results obtained for both user and kernel level approaches. Recall
that the performance metric is the average latency of a request as perceived by the server.
Also, we used a fixed number of client processes (thirty) and for the kernel level approach,
we use two different workloads (described in Table 1). We did not use workload WB for the
user level, because our results for this workload presented a surprisingly high variance. The
variance of the results presented in this section is less than 10% (kernel level) and 4% (user
level). We used two different types of requests: A (higher priority) and B (lower priority).

Since hardware and software platforms for user and kernel level approaches are different,
we present our results separately and try to analyze the effectiveness of our schemes by
comparing the (weighted) average latency for each type of request with the correspondent
latencies when no scheme is used. We also use as a lower bound the average latency obtained
when 15 clients send requests of only one type.

5.1 Results for the User-Level Approach

In order to obtain differentiated performance, we discovered that it was necessary to restrict
max_proc_B, the maximum number of processes allowed for lower priority B, to a small
number. This has also been observed in the kernel level scheme. When this number is low,
the availability of resources for A increases, and the contention decreases. These factors are
expected to improve the performance of A.

In Figure 1, we determine the average latency when we vary maz.proc.A for the non-
work conserving policy. For larger values of max_proc_A, we note that the performance of A
is improved by 21%, while that of B falls by 206%, with respect to when no policy is used.
Thus, we can trade good performance for A with poor performance for B. We also note that
if the number of processes for A is too low, the performance of A is impaired.

Figure 2 shows results for the same configuration but with max._proc.B set to 1. Per-
formance of A improves by 26%, while that of B falls by 514% (note the change in scale
of the graphs). The experiment shows an extreme scenario, and demonstrate that there is
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Figure 1: Non-work conserving algorithm (maz_proc.B = 3)

an appropriate number of max_proc.B below which the impact on high-priority requests is
minimum.

Figure 3 shows results for the work conserving policy. For lower values of maz_proc_A, the
behavior is similar to the non-work-conserving scheme. For large values of maz_proc_A, the
performance degenerates to that of when no policy is used (No-policy). When max_proc_A is
equal to 35, the three curves are within 3% of each other. This is because work conserving
schemes lose any notion of restriction when the thresholds are large, and waiting requests of
type B can overflow into slots meant for type A. This leads to the conclusion that if we have
multiple levels of priority, such overflows are likely to occur and differentiated performance
will not be achieved. Thus, it would be better to go for a non-work-conserving scheme.

We have also run experiments with the non-work conserving algorithm, keeping the value
of max._proc_A constant, namely 15 processes, and varying the max_proc_B, from 1 to 9. The
reason for these measurements is that we wanted to know the threshold for the number of
processes for B which will still keep the performance for A better than the case of no policy
at all (the original Apache). The results are shown in Figure 4. It can be seen that as
max_proc_B increases, some instability is caused to A. Thus the threshold for B should be
max._proc.B = 5.

5.2 Results for the Kernel-Level Approach

In this section, we present results for the kernel-level approach for both workloads WA and
WB, described in Table 1. Table 2 shows the average latency when we used both workloads
WA and WB for our lower bound experiment: 15 clients requesting only files of type A. It
also shows the results for 30 clients requesting both types of files but with the priority scheme
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disabled, which means that the server does not make any differentiation between types of
requests. Comparing results in Table 2, it can be seen that the lower bound latency is 32%
and 38% better than the latency obtained when the priority scheme is disabled for workloads
WA and WB, respectively. These results will be used to analyze the effectiveness of our
scheme.

Configuration for Workload WA | Average Latency | Average Latency
for A (ms) for B (ms)

a) Only requests of type A 283.13

b) Requests of types A and B 419.12 419.11

Configuration for Workload WB | Average Latency | Average Latency
for A (ms) for B (ms)

a) Only requests of type A 334.71 e

b) Requests of types A and B 544.66 546.49

Table 2: Average Latency for requests of type A and B for both workloads with no Quality
of Service policy. a) 15 clients request only files of type A. b) 30 clients request files of both
types (15 for each type).

Table 3 contains the description of the configurations used in our experiments. We will
use the labels presented in this table to identify the configurations used in any particular
experiment. Results for experiments with configurations 1, 2 and 3 show the behavior of our
scheme as we increase the maximum number of processes running at higher priority for a fixed
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maximum number of processes running at lower priority. Experiments with configurations 3,
5 and 6 show the behavior as the number of lower priority processes is increased for a fixed
number of higher priority processes. Configuration 4 is just an extreme case when the priority
value assigned to type B processes is 0.

Type A requests Type B requests
Configuration | Priority Value | Max number | Priority Value | Max number
of processes of processes
Config 1 5 5 1 1
Config 2 5 10 1 1
Config 3 5 15 1 1
Config 4 5 15 0 1
Config 5 5 15 1 2
Config 6 5 15 1 5

Table 3: Description of the configurations used in the experiments

Table 4 shows the results obtained for workload WA with both policies: work conserving
and non-work conserving. Clearly, the non-work conserving scheme is more effective than
the work conserving. The best result obtained when using the work conserving policy was a
18% improvement at a cost of a 115% degradation on the average latency for type B requests.
With a non-work conserving policy, the best improvement was 24%; however, the degradation
for type B requests was much worse (over 200%).

Work Conserving Non-Work Conserving
Configuration | Latency Latency Latency Latency
for A (ms) | for B (ms) | for A (ms) for B (ms)
Config 1 344.09 (18%) | 899.48 (115%) | 319.76 (24%) | 1290.96 (208%)
Config 2 358.54 (15%) | 850.84 (103%) | 319.41 (24%) | 1304.28 (211%)
Config 3 392.14 (6%) | 717.07 (71%) | 322.25 (23%) | 1501.78 (258%)

Table 4: Average Latency for workload WA. The improvement/degradation compared to the
no policy results is shown in the parenthesis.

The difference between the performance of requests of types A and B may seem excessive
at a first glance. However, the Webstone-Apache interaction represents a closed system -
as soon as a Webstone client gets the response of a previous request, it immediately issues
the next request. Since requests of type A have higher priority, a WebStone client that
issued a type B request will be pushed back in the processing queue. The overall result is
that requests of type A finish much earlier than requests of type B. Therefore, the throughput
observed at the client should be greater for type A requests than for type B requests, although
the sum of them should be about the same for all experiments. Otherwise, the priority
scheme would be imposing a significant overhead. That is exactly what we observed in our
experiments. For all experiments, the total throughput was always around the same value.
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As an example, the throughput for workload WA when the priority scheme is disabled is
27.6 connections/sec and 25.7 connections/sec for type A and type B requests, respectively.
Table 5 shows the throughput for experiments with configurations 1 and 3 for both work
and non-work conserving policies. As can be seen, the total throughput remains the same,
around 52 connections per second.

Work Conserving Non-Work Conserving
Configuration | Connection | Connection | Connection | Connection
rate for A rate for B rate for A rate for B
Config 1 36.16 15.54 39.90 12.17
Config 3 32.38 20.36 41.44 10.68

Table 5: Throughput (connections per second) for workload WA.

For work conserving policy, as the maximum number of processes running with priority A
increases, the improvement for requests of type A actually decreases. This seems to indicate
that limiting the total number of processes that can concurrently run (including those running
with higher priority) reduces contention for resources and improve performance. For non-work
conserving policy, the results obtained for workload WA were not very sensitive to the number
of processes running with priority A.

Table 6 shows the results obtained for workload WB for both policies. Also for this
workload, the results obtained for the non-work conserving policy are better . The best
result was obtained for configuration 4, when the priority value assigned to type B processes
is equal to 0. This means that these processes will run only when no type A process is
waiting for assuming the CPU. As observed for workload WA, an increase in the number of
processes running on priority A actually contributes to degrade the performance for the work
conserving policy, but not for the non-work conserving policy. Also, comparing results for
configurations 3, 5 and 6, we can see that as we increase the maximum number of processes
running on priority B, the gains in performance for A drops significantly. For a maximum of
5 B requests, the gains in performance are lower than 7%. This shows that in order to get
improvement in performance for higher priority requests, it is necessary to severely restrict
the number of processes allowed to run in lower priorities. An increase in this limit from 1 to
2, causes the average latency of type A requests to increase by more than 15% (lines six and
seven in table 6).

We reran the experiments for non-work conserving policy and set the value assigned to
SLEEPING _PRIORITY equal to -1. We changed the process scheduler inside the kernel
to not choose a process if its priority is equal to -1, even if there is no other process in the
ready queue. Thus, a priority equal to -1 means that the process is actually blocked until its
priority is assigned to a non negative value. We used SLEEPING_PRIORITY equal to -1 only
for the non-work conserving policy where there is no preemption. We observed that when
using this artifact for work conserving policy, several processes were blocked and could not
even be killed when the experiment finished. Table 7 shows the results obtained for this new
configuration. As can be seen, effectively blocking a process makes a significant difference
in performance. This is basically due to a great number of requests to very small files that
can be handled very fast. The timing resolution in Linux (10 milliseconds), which affects the
time a process with priority 0 can run before being preempted, is actually very long for a web

13



Work Conserving Non-Work Conserving
Configuration | Latency Latency Latency Latency
for A (ms) for B (ms) for A (ms) for B (ms)
Config 1 476.12 (13%) | 724.98 (33%) | 462.72 (15%) | 834.47 (53%)
Config 2 502.57 ( 8%) | 651.01 (19%) | 446.63 (18%) | 843.28 (54%)
Config 3 516.36 (5%) 593.81 (9%) | 447.94 (18%) | 821.19 (50%)
Config 4 461.58 (15%) | 1173.68 (115%) | 415.04 (24%) | 1203.65 (120%)
Config 5 527.57 (3%) 604.94 (11%) | 480.03 (12%) | 821.32 (50%)
Config 6 536.21 (2%) 609.18 (12%) 507.85 (7%) 654.88 (20%)

Table 6: Average Latency for workload WB. The improvement/degradation compared to the
no policy results is shown in the parenthesis.

server operation. Even with a priority equal to 0, a process can do work and increase the
contention at the server that, ultimately, affects other processes performance and prevents

our scheme from reaching better results.

Config Latency Latency Config Latency Latency
for A (ms) for B (ms) for A (ms) for B (ms)
Config 1 | 407.36 (25%) | 1710.82 (213%) | Config 4 | 404.88 (26%) | 1988.5 (264%)
Config 2 | 406.58 (25%) | 1699.93 (211%) | Config 5 | 437.59 (20%) | 1243.05 (127%)
Config 3 | 405.97 (25%) | 1566.92 (188%) | Config 6 | 518.1 (5%) 697.37 (28%)

Table 7: Average Latency for workload WB using non-work conserving policy and SLEEP-
ING_PRIORITY equal to -1. The improvement/degradation compared to the no policy results
is shown in the parenthesis.

During the experiments, we observed that the network interface was a bottleneck. We
instrumented the kernel to sample the average length of the network interface queue, where IP
packets are inserted to be transmitted. The average queue length was around 40 for workload
WA and 65 for workload WB.

Thus, in an attempt to improve our results, we extended the process priority to a packet
priority scheme. Basically, each outgoing IP packet was assigned the priority of the process
that was sending it. The priorities were used to sort the network interface queue. Unfortu-
nately, we could not get good results with this scheme. Table 8 show the system performance
for workload WB and configuration 3. Apparently the overhead of the sorting contributes
to a slowdown in performance. We also suspect that some hardware issue may prevent the
scheme from being effective. Thus, prioritization at the network interface level needs further
investigation.
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Policy Latency for A (ms) | Latency for B (ms)
Work Conserving 555.74 (-2%) 905.644 (65.72%)
Non-work Conserving 443.317 (19%) 1204.65 (120%)
(SLEEPING_PRIORITY = 0)
Non-work Conserving 424.091 (22%) 1440.45 (165%)
(SLEEPING_PRIORITY = -1)

Table 8: Average Latency for workload WB using configuration 3 and sorting in the network
interface queue. The improvement/degradation compared to the no policy results is shown
in the parenthesis.

6 Conclusions and Future Work

We have investigated approaches to provide differentiated quality of service by assigning
priorities to requests based on the requested documents. We implement the priority-based
scheduling at both user and kernel levels. We find that restricting the number of processes that
are allowed to run concurrently is a simple and effective strategy in obtaining differentiated
performance. Using a closed-queue experiment with WebStone, we were able to observe up to
26% improvement in performance for the higher priority level, with an accompanying 504%
fall in performance for B, for the user-level approach with a light workload (WA). For the
kernel-level approach, the best improvements were achieved when using a non-work conserving
policy. For the light workload (WA) we observed up to 24% of improvement at the cost of a
208% of slowdown for lower priority requests. For the more heavy-tailed workload (WB), the
best improvement was 26% at the cost of a slowdown around 260%.

Based on these results, we believe that it is simple and easy to extend a Web server
implementation to incorporate differentiated quality-of-service features. Though the user-level
approach is the most portable one, tighter integration with the kernel’s process scheduling
lead to a more robust system that handles diverse workloads.

In choosing between work-conserving and non work-conserving policies, we observe that
work conserving policies lose any notion of restriction when the thresholds are large. Thus,
we expect that if we have multiple levels of priority, we are likely to encounter overflows of
lower priority tasks into higher priority slots, and lose differentiated performance. Thus, it
might be better to choose a non-work conserving policy for multiple levels of priority. We are
planning to run some experiments with multiple levels of priority to check if our conjecture
is true.

Linux’s timing granularity affects the performance of the work-conserving policy. In the
kernel-level approach, the work-conserving policy is not very effective at preventing the exe-
cution of type B processes from interfering with the execution of type A processes. This is
because the timing granularity in Linux, which affects the time a low priority process can run
before being preempted, is actually very long for a web server operation. Thus, even if a type
A process is ready to run, it may not be able to preempt the type B process immediately and
gain the CPU. In other operating systems, such as Solaris, where the timer interrupt rate is
higher, the work-conserving scheme might work better.

Our results on sorting IP packets in the network interface queue appear preliminary. The
results were not consistent and more research is needed on the effect of such schemes.
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