Active Cache: Caching Dynamic
Contents on the Web

+Pei Cao
Jin Zhang
Kevin Beach

Technical Report #1363

March 1998

Active Cache: Caching Dynamic Contents (Objects) on the Web

Pei Cao, Jin Zhang and Kevin Beach
Computer Sciences Department
University of Wisconsin-Madison

Madison, WI 53705
ca0,zj,kbeach@cs.wisc.edu

Abstract

Dynamic documents (in other words, objects) con-
stitutes an increasing percentage of contents on the
Web, and caching dynamic documents becomes an
increasingly important issue that affects the scalabil-
ity of the Web. In this paper, we propose the Active
Cache scheme to support caching of dynamic contents
at Web proxies. The scheme allows servers to supply
cache applets to be attached with documents, and
requires proxies to invoke cache applets upon cache
hits to furnish the necessary processing without con-
tacting the server. We describe the protocol, interface
and security mechanisms of the Active Cache scheme,
and illustrate its use via several examples. Through
prototype implementation and performance measure-
ments, we show that Active Cache is a feasible scheme
that can result in significant network bandwidth sav-
ings at the expense of moderate CPU costs.

1 Introduction

The growth of the Internet and the World Wide Web
has significantly increased the amount of online infor-
mation and services available to the general popula-
tion of the society. However, the client/server archi-
tecture employed by the current Web-based services
is inherently un-scalable. Caching at proxies, which
are located at network access points, has been pro-
posed as a solution to the scalability problem. Un-
fortunately, caching in the Web today has been seri-
ously limited by three factors: lack of server control
on cache accesses and the resultant “cache busting”
practice from the servers, no caching support for dy-
namic contents, and no caching support in the pres-
ence of client-specific information.

To solve these problems, we propose a scheme
called Active Cache, which migrates parts of server
processing on each user request to the caching proxy
in a flexible, on-demand fashion via “cache applets.”
A cache applet is a server-supplied code that is at-

tached with a Universal Resource Locator (URL) or
a collection of URLs. The code is typically written in
a platform-independent programming language such
as Java. When caching a particular documents, the
proxy also fetches the corresponding cache applet.
When a user request hits on the cached copy and
the proxy would like to service the request, the proxy
must invoke the cache applet with the user request
and other information as arguments. The cache ap-
plet then decides what the proxy will send back to
the user, either giving the proxy a new document to
send back to the user, or allowing the proxy to use
the cached copy, or instructing the proxy to send the
request to the Web server. Furthermore, the applet
can deposit information in a log object, which is sent
back to the server periodically or when the applet or
the document is purged from the cache.

Cache applets allow servers to obtain the benefit
of proxy caching without losing the capability to track
user accesses and tailor the content presentation dy-
namically. They can perform a variety of functions,
for example, logging user accesses, rotating advertis-
ing banners, checking access permissions, construct-
ing client-specific Web pages, etc. They also enables
proxies to be more than just caches of static infor-
mation, but rather caches of objects, i.e., data with
a method that is invoked when the data is supplied
from caches. In essence, they turn Web documents
from datagram to objects.

The proxy, when caching a document with cache
applets, has the full freedom to not invoke the ap-
plet but send the user request directly to the server.
The prozy promises to not send back o cached copy of
a document without invoking the corresponding cache
applet. On the other hand, if a document is cached
but the corresponding applet consumes too much re-
source, the proxy can simply send the request to the
Web server. Furthermore, just as the proxy is not
obligated to cache any document, it is also not obli-
gated to cache any applet. The proxy agrees to not
service a cache hit if the corresponding applet is not

in cache.

The proxy’s freedom of managing its own resource
and the association between cache applets and URLs
allow an on-demand migration of server functionali-
ties. The proxy only fetches and executes the applet
when there are user requests to the associated URL.
Controlling its own resource allocation, the proxy can
devote resources to the applets associated with the
hottest or most important URLSs to its users. Since
the proxy who receives the user request is typically
the one closely to the user, the scheme automatically
migrates the server processing to the node that is clos-
est to the users, significantly increasing the scalability
of Web-based services.

In this paper, we describe the protocol and inter-
face between the server-supplied cache applets and
the proxies in the Active Cache paradigm, and the
security mechanisms to guard the applets’ execution
and protect the proxy. We then give examples of
cache applets to illustrate the Active Cache paradigm,
and discuss proxy’s resource management policies.
Finally, we report our experience with an early Active
Cache prototype, focusing on the overhead incurred
by cache applets.

2 The Active Cache Protocol

In Active Cache, the Web server specifies the associa-
tion between a cache applet and a URL-named docu-
ment by sending a new entity header, “CacheApplet,”
with the document:

o CacheApplet: code = “code.class”, archive =
“code.jar”, codebase = “codebase.url”

The header follows the convention for applet speci-
fication in HTML documents. It specifies that the
applet “code.class” at code base ”codebase_url” is
the cache applet for the document, and associated
classes are grouped in an archive [2]. Codebase and
archive directives are optional. Since HTTP/1.1 al-
lows the introduction of new entity headers, and re-
quires that if a proxy does not recognize an entity
header, it should forward the header, the server can
be assured that Active-Cache enabled proxies will re-
ceive the header even if they have parent proxies.

For security concerns, we require that the code-
base of the applet, if present, has the same server
URL as the document. That is, only the Web server
can supply the applet for its documents.

An Active-Cache enabled proxy agrees to fulfill
the following obligations:

o if the document is cached and a user request
hits on the document, it will either invoke the

cache applet, or send the request directly to the
server.

e if the applet’s execution fails due to any reason,
the request is sent to the server;

¢ if the applet’s execution succeeds, the proxy will
take the appropriate action based on the return
value of the FromCache method (see below);

e cach applet can deposit information in a special
log object {whose name is “appletname.log”),
and the proxy will send the log object back to
the server periodically. If the proxy evicts the
log object from the cache, it will send it back
to the server.

In other words, the proxy will not return a cached
reply to the user unless the cache applet has been
executed successfully, and the applet can deposit in-
formation in the log object which will eventually be
reflected to the server.

However, the proxy decides whether it wants to
cache the document, when it fetches the applet and
the archive, and whether it wants to invoke the ap-
plet. Furthermore, the proxy can evict any document
or any applet from its cache at any time. The only
constraint on the proxy is the above agreements.

2.1 Active Cache Interface

The cache applet must implement an interface called
“ActiveCachelnterface.” Currently, we require that
the applet be written in Java. The interface defines
a function called FromCache. The function is called
when an access hits in the document, and arguments
include the user request, the client IP address, client’s
machine name, the document in cache, and a new file
descriptor for the applet to write in the reply file. The
prototype of the function is listed below:

¢ public abstract int FromCache(String User HTTP_Request,

String Client. IP_Address, String Client_Name,
int Cache File, int New_File);

The arguments are included based on the principle
that any information that the server can gather should
the request go to the server, can be seen by the cache
applet. The function can only return three values:

e 1: the content placed in New_File is to be re-
turned to the user as the reply to the HTTP
request;

e (): the content in Cache_File can be returned to
the user as the reply;

e -1: the request must be forwarded to the server.

All other return values are treated as -1.

The cache applet can only call the ActiveProxy
class to perform its functions. The ActiveProxy class
provides the native methods for file access , cache
query, locking and unlocking as well as sending re-
quests to servers. Currently, the methods include:

¢ public native static boolean is.in_cache(String
URL);

e public native static int open(String URL, int
mode);

¢ public native static int close(int fd);

¢ public native static int create(String URL, int
mode);

e public native static int read(int fd, byte[] buf,
int size);

e public native static int write(int fd, byte[] buf,
int size);

o public native static long lseek(int fd, long off,
int where);

e public native static int send_request_to.server(String

HTTP . Request);
o public native static int lock(int fd);
e public native static int unlock(int fd);
¢ public native static String curtime();

As we gain more experience with the Active Cache
paradigm, necessary methods will be added to the
ActiveProxy class.

An applet’s execution can be aborted any time.
All changes to files and objects are voided if the ex-
ecution is aborted. In other words, file changes are
not committed until the applet finishes its execution.

The restrictions on the use of the proxy calls are
the following:

¢ is.in.cache, open for read, lseek, read and close
can only be called on the URL from the same
server; the proxy verifies that the server URL
of the document is the same as the server URL
of the cache applet;

e open for write, create, write, lock and unlock
can only be applied to URL-named objects that
the applet has created; the create call automat-
ically appends the applet’s URL to the object’s
name;

¢ send_request._to.server can only send HTTP re-
quests to the Web server; the method automat-
ically connects to the server where the cache
applet comes from.

e curtime is called that provide granularity only
at the level of a second.

Any exception is caught and result in a return of -1
for the FromCache method.

In addition to the ActiveProxy methods, the only
other packages present in the Java run-time environ-
ments are java.util, java.text, java.math, java.security
and java.sql. All other packages, including java.io,
java.lang, and java.systems, are simply not loaded.
The proxy can do so because the cache applet has
only one purpose, that is, performing per-request pro-
cessing of the document, and thus needs a very simple
security interface.

2.2 Cache Applet Examples

The Active Cache protocol allows a rich variety of
processing to be accomplished at the proxy system.
Below, we describe the applets we have implemented.

2.2.1 Logging User Accesses

One of main reasons many Web server disables caching
is to collect information on who access their docu-
ments. Both server and proxy suffer from such prac-
tice, as the former has to buy a lot of resources to
handle the volume of incoming requests, and the lat-
ter has to pay for the Internet traffic. Active cache
solves the dilemma by using a log applet.

We have implemented a log applet, whose From-
Cache method simply writes the client IP address,
the date of the access, and the HT'TP request to the
log object. The applet is assured that the log object
will be sent back to the server eventually. The Java
code looks like the following;:

public static int FromCache(

String User HTTP.Request,
String Client.IP.Address,
String Client Name,

int Cache.File,

int New.File) {

int fd = open("logapplet.log", APPEND.ONLY);
int status = lock(fd);

String date = new curtime();

log_to.file(fd, date, Client.Name,

User HTTP Request, Client.IP_Address);
status = unlock(fd);

close(fd);

return(0); // O means use the cached file

}

2.2.2 Advertising Banner Rotation

Another reason that servers disable caching is to change
the presentation of the document upon every request,
for example, putting on different advertising banners.
This again conflicts with proxy caching. Active Cache
solves the problem by attaching an ad-banner-rotation
applet with each document.

The applet, when invoked, first checks for the ob-
ject that specifies the banners, their positions in the
document, and their frequencies of appearance. If
the object is not in cache, it sends a request to the
Web server to fetch the object. The applet then goes
through the cached document, and for every image
that is specially marked to be an advertisement ban-
ner, decides which banner should be put there ac-
cording to the specifications, and changes the image
URL. It then puts the new document in the New_File
and returns 1.

The applet implements a simple frequency-based
rotation. Other algorithms can be implemented. The
applet can recode the state needed by the algorithms
in the object. It can further record the banner choices
it made in the log object.

2.2.3 Access Permission Checking

Existing caching systems for the Internet typically
provide only very limited support to access control
of server information: for example, only allowing the
same user to access the document again. Using cache
applets, the server can gain the benefits of proxy
caching without sacrificing the access control.

The cache applet, upon receiving a request from
the user, checks whether the user request is accom-
panied with an access authorization. An access au-
thorization is a cookie that contains a signed state-
ment from the server. If not, the request is sent to
the server (whose response would include a cookie for
future requests if the user is allowed to access the in-
formation). Otherwise, using the server’s public key,
the applet verifies whether the server has signed the
certificate. If so, the applet grants access to the doc-
ument. If not, the applet merely returns -1 and the
request is redirected to the server, who will send the
appropriate access violation messages.

2.2.4 Client-Specific Information Distribution

Today, many information providers allow users to
specify preferences on the categories of information to
receive. A typical example is my.yahoo.com, which
is among the busiest site on the Internet. The client-
specific pages currently cannot be cached at the Web
proxies, increasing the load at the Web server and the

traffic on the Internet. Active cache solves the prob-
lem again by using a cache applet that constructs
client-specific pages based on a database of base doc-
uments.

We have implemented a simply cache applet for
this purpose. Upon receiving the client request, the
applet first probes a database object to see if it stores
the mapping between the client ID (extracted from
the cookie) and its preferences. If not, it fetches the
preference from the server. After obtaining the pref-
erence, the applet composes the Web page. For each
individual information item, it first tries to read the
item from the cache, and if the item is not cached,
fetch it from the server and cache it. It then returns
the new page to the user.

Thus, the cache applet filters out the redundancy
in the information transmitted by the server for the
client-specific pages, and allows individual informa-
tion items to be cached and reused by the proxy. For
a proxy with a large client population, the savings in
network bandwidth can be significant. It also allows
schemes such as Pointcast [4] to not have to write its
own proxy servers, and support broadcasting schemes
such as SkyCache [5].

2.2.5 Server-Side Include Expansion

Similar to the ad-banner-rotation applet, another ap-
plet allows expansion of Server-Side Include (SSI) [3]
variables at the proxy site, thus allowing the correct
caching of SSI-based dynamic documents. The applet
scans the cached document, and for each specially
marked SSI variable, update the value of the vari-
able in the document, and put the new document in
New _File. The proxy can correctly expand variables
DATE.GMT, DATE.LOCAL, REMOTE.ADDRESS,
and REMOTE_HOST. Other SSI variables are typi-
cally related to the server and do not change from
request to request.

2.2.6 Delta Compression

Studies [8] have shown that transmitting the changes
(deltas) between the new and old versions of dynamic
information can reduce network traffic significantly.
Delta compression can be easily implemented with
cache applets.

We have implemented an applet that upon receiv-
ing a client request, sends a request to the original
server, including the current request and the last-
modified-time of the document. After the server re-
sponds with the difference between the new document
and the cached version, the applet constructs the re-
ply to the client request using the diff and the cached
version.

A similar cache applet can support delta compres-
sion of query responses. For example, a query of
a particular company’s stock quote can be handled
by the applet, which simply asks the server for the
number and then composes the Web page based on a
cached response.

3 Security Mechanisms

In the Active Cache environment, the proxy system
is particularly vulnerable to two types of security at-
tacks: an applet’s illegal access to information be-
longs to other servers, and denijal-of-service attacks.
To guard against the first type of attacks, we rely
on a type-safe language with built-in security mech-
anisms, a well-defined security interface, and static
examination of the code. To guard against the sec-
ond type of attacks, we rely on user-request triggered
execution of cache applets, run-time accounting of re-
source consumption, and keeping profiles of resource
requirements of applets.

3.1 Language-based Protection

For the language of the cache applet, we choose Java
because of the large amount of research invested on
Java security. Its platform-independence and the built-
in security mechanisms contribute to our decision.
In the Active Cache environment, the Java security
problem is simplified by the fact that the applet is
used for only one purpose: processing a user request
at the proxy site and constructing a response. Thus,
the java.io libraries, the process/thread management
libraries and other system-related libraries are simply
absent from the cache applet’s run-time environment,
in order to prevent the security problems associated
with their use.

The security interface of the cache applets is quite
simple: all an applet can do is to ask whether some
objects exist in the cache, read and write the objects,
and communicate with the server where the applet
comes from. Furthermore, access to objects are re-
stricted as described in Section 2.

The restriction are designed with the assumption
that each server is a security entity, applets from the
same server trust each other, and applets from dif-
ferent servers do not cooperate. Thus, an applet has
read access to all information of documents and ob-
jects from the same server. However, each applet can
only manipulate the objects that it creates or is at-
tached to. We impose this constraint for simplicity
and safety. The flexibility of the scheme is not com-
promised, because one applet can always be attached
to many documents.

The restrictions are enforced by two mechanisms:
the ActiveProxy class implements the constraints, and
Java’s type safety and run-time mechanisms prevent
applets from bypassing the ActiveProxy class and
gaining raw access to information and resources. Re-
cent research has also significantly improved the ro-
bustness of Java’s run-time environments [10]. Thus,
we rely on the existing mechanisms to force the applet
to use the ActiveProxy to access its objects as well as
the computation and networking resources. The Ac-
tiveProxy class is also the place where we keep track
of resources consumed by each applet.

We also use static examination of the classes and
functions called in the cache applet code to prevent
manipulations of Java “class” methods to circum-
vent our restrictions. When the cache applet is first
loaded, the proxy examines the symbol table to check
for “class” method calls, and calls to unloaded pack-
ages. If the applet cannot pass the inspection, the
proxy will not cache the reply.

3.2 Resource Accounting

The proxy keeps track of an applet’s resource con-
sumption in the following five aspects:

e storage size, that is, the sum of sizes of objects
created and written by the applet;

¢ disk bandwidth consumption, that is, the amount
of file bytes read and written by the applet;

e network bandwidth consumption, including all

the bytes sent and received in the Send HTTP Request

function;
e CPU usage, including user time and system time;

¢ virtual memory size (an applet can exhaust ker-
nel page table resources by allocating virtual
memory; thus, the size of the virtual address
space needs to be constrained);

Mutexes and locks are not included because each ap-
plet can only lock objects created by it, and all locks
are automatically relinquished upon termination of
the applet execution. We also do not track process-
related operations because the applet cannot spawn
new threads or processes. Rather, each applet is ex-
ecuted in a new process when a user request for the
active object arrives.

The storage size, disk bandwidth and network band-
width consumptions are kept track of by the Active-
Proxy class methods, since they must be called in
order for the applet to gain access to those resources.
The process running the applet also sets a one-second
alarm and record the CPU time and virtual memory

sizes in the alarm handler. Limiting the CPU and
virtual memory sizes is implemented by the setrlimit
system call before branching to the applet’s execu-
tion.

To prevent denial of service attacks, the proxy as-
signs upper-limits on all five aspects. By default, the
upper limit for CPU time is proportional to the la-
tency of sending the request to the server and receiv-
ing the response. The virtual memory size is pro-
portional to the length of the response to the client
request. The storage size and disk bandwidth limit
are also proportional to the response size. Finally,
the network bandwidth consumption cannot exceed
the response size. The limits are designed with the
assumption that the goal of caching the documents is
to reduce network traffic. If the goal of caching is for
reliability or other reasons, the limits can be raised
by the proxy.

4 Resource Management Poli-
cies

An important design question for Active-Cache en-
abled proxies is the resource management policy. Es-
sentially, the policy must make three decisions:

e should a document (with or without a cache
applet) be cached?

e when a user request arrives, should the proxy
invoke the applet or send the request to the
server?

e what are the upper resource limits for each ap-
plet?

The decisions are made depending on the reason for
the cache applet.

There are typically two reasons why a proxy wants
to cache a document or object: to reduce outgoing
network traffic, and to improve the availability of a
distributed service. When the proxy’s goal is to re-
duce network traffic, the proxy is willing to cache the
most-frequently requested documents or objects, even
if they are from untrusted servers. When the proxy’s
goal is to improve service availability, the proxy of-
ten knows about the service’s importance to its users,
trusts the server, and is willing to invest more re-
source to host it.

Thus, we have two categories of applet-attached
documents (in other words, objects): un-negotiated
ones and negotiated ones. Un-negotiated objects are
from untrusted servers; their primary purpose is to
perform processing at the proxy site to avoid net-
work traffic to the server. Negotiated objects are

from servers that go through a negotiation protocol
with the proxy. They receive more resources and are
cached at the proxy for as long as necessary.

Un-negotiated objects Resource management for
un-negotiated objects is relatively straightforward. To
decide whether an object should be cached, the proxy
estimates the benefit and the cost of caching, and pass
the information to the cache replacement module. A
cost-aware cache replacement algorithm is used to de-
cide whether an active object is cached, for example,
the GreedyDual-Size algorithm [1]. The benefit of
caching is calculated in terms of saved network band-
width, estimated by the size of the response to each
client request. The cost of caching includes the stor-
age cost of the active object, the CPU cost of the
applet, and the network communication incurred by
the applet to the server in the send.request_to_server
calls. When an active object is first loaded, all costs
are assigned a default value. The cost estimates are
then adjusted every time the applet is invoked.

The proxy always attempts to invoke the cache
applet if the object is cached. However, if the CPU
or the disk arm is overloaded during the execution
of the applet, the proxy terminates the execution of
the applet, voids all file changes made by the applet,
relinquishes all its locks, and directs the user request
to the server.

In general, the upper resource limits for un-negotiated

applets should be kept proportional to the size of the
responses to client requests, that is, the savings in the
network bandwidth. The exact scaling factors need
more investigation. Currently, we set scaling factors
that are suitably large so that normal applets func-
tion properly. As we build more applets on top of
Active Cache, we expect to gain more insight into
the issue.

Negotiated objects To establish a negotiated ob-
ject, a server and a proxy enters a protocol in which
the server identifies the service, specifies the esti-
mated storage, networking and CPU needs of the ap-
plet, and specifies the desired duration of caching.
The proxy examines the amount of interests in the
distributed service from its users, the importance of
the service, the credential of the server, and decides
whether to host the service or not. If the proxy hosts
the service, it caches the object and the applet for
the specified duration, always invokes the applet upon
user requests, and imposes the resource upper limits
as specified by the server.

5 Prototype Implementation and

Performance

We have implemented a prototype Active Cache as an
extension of the the CERN httpd proxy [6]. The orig-
inal CERN httpd software offers traditional caching
of Web documents and HTTP protocol support. We
modified the daemon to recognize the CacheApplet
header, and to invoke the appropriate applet upon
cache hit.

A cache-applet attached document is stored as a
regular document in the CERN proxy. The CacheAp-
plet header is stored as part of the document and
identifies the associated applet and archive. The CERN
httpd proxy handles each user request in a separate
process. (Despite its process-forking overhead, CERN
httpd performs amazingly well compared to a highly
sophisticated proxy [7].) The process model signifi-
cantly simplifies our implementation, because we can
limit the resource consumption of applets by using
setrlimit calls prior to calling the applet. Sending the
log object back to the server is implemented via a
HTTP “POST” request to the server. If the server is
unreachable, the proxy retries the transmission peri-
odically.

The prototype implements the active cache proto-
col and the security mechanisms described before. If
an applet does not pass the static examination, both
the document and the applet are deleted from the
cache. All objects created by the applet are stored
in a special directory with the applet’s URL as the
name. The implementation of the write and lock
methods limit the operations to the objects in the spe-
cial directory only. The implementation of the read
method verifies that the object has the same URL
as the server URL of the applet. The Java run-time
environment is set up with the appropriate security
manager.

5.1 Applet Overhead

To measure the overhead incurred by the cache ap-
plets, we use the WebStone 2.0 standard Web server
benchmark [9] and compare the response times of the
original CERN httpd proxy and the Active Cache
proxy with various cache applets. In each of our Ac-
tive Cache tests, we assume that all the documents
are associated with the same applet. We tested the
“null” applet, the user access logging applet “log,”

the advertising banner rotation applet “ads,” the server-

side include expansion applet “ssi,” and the client-
specific information distribution applet “csid.”
Though WebStone is a Web server benchmark, it
can be used to test the performance of the proxy upon
cache hits of different sizes. We use the filelist.standard

Proxy | 1 client | 10 clients | 20 clients
null 1.47 1.75 1.73
log 2.16 2.31 2.24
ads 1.40 2.44 3.23
ssi 3.81 4.00 3.80
csid 1.06 2.04 2.23

Table 1: Ratio between the response time when the
cache applet is used and the response time under the
original CERN httpd proxy.

in the WebStone 2.0 benchmark and create five files of
size 500B, 5KB, 50KB, 500KB and 5MB. The clients

request the files with the specified frequency in filelist.standard.

The proxy machine is installed between the clients
and the server. Since there are only five files involved,
once the proxy cache is warmed up, all requests are
cache hits and the test stresses the proxy system, in-
stead of the server system. We run experiments with
1, 10 and 20 WebStone clients, and the experiments
all last over 10 minutes to obtain stable results. Our
test platform includes SPARC 20 workstations run-
ning Solaris 2.4 as the client and the server machines.
Our proxy machine for the “null”, “log”, and “ssi”
applets is a 99MHz Intel x86 workstation running So-
laris 2.5. Our proxy machine for the “ads” and “csid”
applets is a SPARC20 running Solaris 2.6; due to a
bug in the Java thread library on the Intel platform,
these two applets hang on the Intel platform. We are
working on resolving the problem.

Table 1 lists the response time degradation of each
applet, that is, the ratio between the client response
time when invoking the applet and the response time
under the original CERN httpd. The “null” applet
result shows that the mechanics of establishing a Java
virtual machine and invoking the applet costs 47% to
75% degradation in response time. There are a num-
ber of reasons for it, including the increase in the
process image and the corresponding increase in the
forking cost, and the CPU overhead for finding the
class, finding the method, and invoking the method.
The other applet increases the client latency by a fac-
tor of 1.5 to 4.

Monitoring the proxy system using “vmstat” shows
that the performance degradation is mostly caused
by CPU overheads. In particular, the “ads” applet
and the “ssi” applet incurs CPU overhead that is
proportional to the document size because they scan
the cached document. The CPU overhead appears
to heavily depend on the coding of the applet and
the efficiency of Java implementations, particularly
string operations. As the speed of Java improves and
as we fine-tune our applet implementation, the CPU
overhead will be reduced.

The measurement show that for a proxy system
to support the Active Cache protocol and yet main-
tain the same throughput, its CPU resource needs
to be increased. Fortunately, the workload is easily
parallelizable and multi-processor systems or clusters
of workstations can improve the throughput signifi-
cantly. In most proxy systems today, disk arms and
network connections are typically the bottlenecks, not

the CPU resources. Whether the Active Cache paradigm

will change this remains to be seen.

To summarize, our prototype implementation shows
that Active Cache is a practical and feasible scheme
to implement in proxies. It increases the CPU de-
mands, and in a sense, trades local CPU resources for
network bandwidth savings. Given that in today’s
technology, microprocessors are typically the cheap
resources, the tradeoff is well worthwhile. We believe
that the benefits of Active Cache greatly outweigh its
implementation cost, and every proxy should support
the Active Cache protocol.

6 Related Work

The section will be fleshed out in the final version.

Many prior work influenced the design of the Ac-
tive Cache scheme, in particular, mobile objects and
agents. The evolution of Java as a mature language
for mobile code greatly made the scheme possible.

Cache applets are similar to regular browser ap-
plets and servalets. Compared with regular browser
applets, cache applets have a simple, uniform security
interface, which greatly simplifies the security prob-
lem. Compared with servalets, cache applets run at
proxy sites as “guests” and face many resource con-
straints.

There are many studies on Web proxy caching.
However, very few has addressed the caching of dy-
namic contents. One study has proposed a macro-
encoded HTML documents that are expanded at the
browser site. The work is similar to ours in the sense
that in both cases the work is moved away from the
server. Indeed, the cache applets can easily imple-
ment, the macro processing.

7 Conclusion and Future Work

We propose the Active Cache protocol to support
caching of dynamic documents on the Web. We have
described the motivation behind the protocol, its de-
sign, interface, security mechanisms and resource man-
agement strategies. Using examples, we illustrate the
flexibility and the potential of the scheme. Using

prototype implementation and WebStone-based per-
formance measurement, we show that cache applets
typically increase the client latency by a factor of 1.5
to 4, and the degradation is mainly due to CPU over-
head.

Much future work remains. We are currently ex-
tending Active Cache to support caching continuous
media in the proxies. In particular, we are investigat-
ing cache applet implementations of RTSP, a protocol
for transmitting continuous media on the Web. We
are also extending Active Cache to support the noti-
fication protocol NTSP and its applications. Another
important area that we are currently working on is re-
source management of the proxies. We are investigat-
ing appropriate resource limits and negotiation pro-
tocols, and the performance of our cost-aware cache
replacement algorithms. Finally, we are investigating
ways to optimize Active Cache implementations and
cache applets.

References

[1] Pei Cao and Sandy Irani. Cost-aware WWW
proxy caching algorithms. In Proceedings of the
1997 USENIX Symposium on Internet Technol-
ogy and Systems, December 1997.

[2] Javasoft Inc. The jar guide.
hitp://www.javasoft.com/products/far/, 1997.

[3] Netscape Inc. Generating dynamic html doc-
uments. http://www.netscapeworld.com/nw-05-
1997 /nw-05-clue.html, 1997.

[4] Pointcast Inc. Redistribute pointcast.

hitp://pioneer.pointcast.com/company/isp..overview.himl,

July 1997.

[6] SkyCache Inc. Skycache solutions.
http://www.skycache.com/, March 1998.

[6] A. Luotonen, H. Frystyk, and T. Berners-Lee.
CERN HTTPD pub-
lic domain full-featured hypertext/proxy server
with caching. Technical report, Available from
http://www.w3.org/hypertext/ WWW/
Daemon/Status.html, 1994.

[7] Carlos Maltzahn, Kathy Richardson, and Dirk
Grunwald. Performance issues of enterprise
level web proxies. In Proceedings of the 1997
ACM SIGMETRICS International Conference
on Measurement and Modelling of Computer
Systems, pages 13-23, June 1997.

(8]

(10]

Jeffrey C. Mogul, Fred Douglis, Anja Feld-
mann, and Balachander Krishnamurthy. Poten-
tial benefits of delta encoding and data com-
pression for http. In Proceedings of ACM
SIGCOMM’97, August 1997. Available from
http://www.research.att.com/ douglis/.

Gene Trent and Mark Sake. WebSTONE:
The first generation in HTTP server bench-
marking. Technical report, MTS, Silicon
Graphics Inc., February 1995. available
from http:/ /www-europe.sgi.com/TEXT/ Prod-
ucts/ WebFORCE/WebStone/paper.html.

Dan S. Wallach, Dirk Balfanz, Drew Dean, and
Edward W Felten. Extensible security architec-
ture for java. In The 16th Symposium on Oper-
ating System Principles, May 1997.

