Partial Evaluation Using
Dependence Graphs

Manuvir Das
Technical Report #1362

February 1998

PARTIAL EVALUATION USING
DEPENDENCE GRAPHS

By

Manuvir Das

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DocToRr OF PHILOSOPHY

(COMPUTER SCIENCE)

at the
UNIVERSITY OF WISCONSIN — MADISON
1998

Abstract

This thesis describes the use of program dependence graphs, as opposed to control
flow graphs, as the basis for the partial evaluation of imperative programs. Partial
evaluation is a program specialization operation in which programs with multiple inputs
are specialized to take into account known values for some of their inputs. Thus,
the result of partially evaluating a program given a division of its inputs into known
or “static” inputs and unknown or “dynamic” inputs is a specialized version of the
program, in which computations that require only the static inputs are absent. The
specialized program produces exactly the same output, when run on the dynamic
inputs, as that produced by the original program when run on all of its inputs.

A known problem with partial evaluators has been that in attempting to aggres-
sively identify static code, they may fail to terminate on some subject programs. How-
ever, partial evaluators are increasingly being developed for heavily used languages, for
which the goal is to allow an arbitrary user to improve the performance of his or her
program by using a partial evaluator as a “black box” that optimizes code, in much the
same way that optimizing compilers have been used for years. Therefore, it is necessary
to ensure that partial evaluators provide a semantic guarantee of termination, while
optimizing the common case.

A partial evaluator may fail to terminate on a subject program if its analysis phase
(termed “binding-time analysis” or BTA) fails to identify variables whose values are
built up in dynamic loops (i.e., loops whose predicates use dynamic data) as dynamic.

We use program dependence graphs, which make both data dependences and control

il

dependences explicit in their structure, as the basis for BTA algorithms that tackle this
problem. As a result, our algorithms provide a termination guarantee for partial eval-
uation in the absence of “static-infinite computations” (roughly, infinite computations
that use only static data). We argue that this is an appropriate termination guarantee
for partial evaluation of imperative programs. In order to handle a real imperative
language such as C, with complex features including arbitrary control flow and pointer
variables, we identify a new form of program dependence, called “loop dependence.”
Our BTA algorithm is able to use these dependences to provide a termination guaran-
tee, without compromising the ability of the partial evaluator to aggressively identify
static code and execute it at compile time.

In the case of functional programs that manipulate only list data, it is possible to
design analysis algorithms that provide a termination guarantee for partial evaluation
on all programs (including programs that contain static-infinite computations), without
unduly compromising the ability of the analysis to identify static code. We present an
analysis algorithm that uses generalized reachability properties on a dependence graph
representation to provide such a termination guarantee.

Dependence graphs provide a natural basis for the analysis actions of partial eval-
uation because they make program dependences explicit in their structure. Another
question that arises is whether dependence graphs provide a basis for the specializa-
tion actions of partial evaluation as well. We address this question by extending the
specialization operation to dependence graphs.

Finally, we present experimental results obtained using our implementation of the

ideas presented in this thesis.

1

Acknowledgements

I would first like to thank my advisor, Thomas Reps, for his constant help and guidance

“with this doctoral thesis. He has shown me the value of clear thinking and working
with concepts rather than detail. I would also like to thank Charles Fischer and Susan
Horwitz for their comments on this thesis, and Raghu Ramakrishnan and Kewal Saluja
for sitting on the thesis committee.

In addition, I would like to thank all the people who made my days working on
this dissertation an enjoyable experience. My officemate Michael Siff, Navin Kabra,
members of “The Family”, and everyone else who I cannot mention here.

I would also like to thank my parents, Premvir and Nalini Das. This thesis is the
result of all their guidance, love, wishes, and advice over the years.

And finally, I would like to thank my wife, Payal. Every word of this thesis was
written with thoughts of her running through my mind. Her love has made it all

possible, and meaningful. This thesis is for her.

List of Figures

10

11

12
13
14
15
16
17
18
19
20

The power function. L
Static-infinite computation.o L.

Solutions to the termination problem presented in this thesis..

Two-phase partial evaluation of the power function.
Incorrect results from a congruent BTA.
The power program and its control-flow graph.
An example of a transfer loop. e e e e e e
An example of the use of def-orderedges.
The program dependence graph of the power program.
An example of order-independence in PDGs.

In-situ-decreasing parameters in the append function.

The power program and its program representation graph.
The pointed complete partial ordering of value sequences.
The semantic equations associated with PRG vertices..
An example of “infinite” strongly static behaviour.
An example of weakly static behaviour.
An example of statically varying behaviour.
The abstract equations representing the Strong-Staticness BTA.
abs, the abstraction function used to compare the results of F and F,. .

An example of specialization using the Weak-Staticness BTA.

iv

5

13

18
23
26
29
30
31
32
35

21

22

23
24
25

27
28
29
30

31
32
33
34
35
36
37

38
39
40
41
42

Specialization using the Static-Variation BTA. 68
Conversion of PRG markings to CFG markings. 70
The system dependence graph of the power program. 79
The system representation graph for a recursive procedure program. . . 84
The semantic equations associated with SRG vertices. 86
The system representation graph of the power program. 90
The s;aquences at SRG vertices for the power program. 91
An example of weakly static behaviour in SRG programs. 92

The abstract equations for the Strong-Staticness BTA on SRG programs. 96

Application of the Weak-Staticness BTA. 97
The loop dependences in the power program. 109
The loop dependence graph of the power program.. 114
An application of the Loop-Dependence BTA. 115
The Loop-Dependence BTA applied to the binary search program. . . . 119
Incorporating pointer variables into the Loop-Dependence BTA. 122
Inter-procedural aliasing through pointer variables. 123
Experimental comparison of ¢cmiz and Spec. 125
Parameter dependence graphs for an infix expression evaluator. 139
An example of pessimistic BSV identification. 137
The APG for an infix expression evaluator. 150
Context-free languages used to specify paths of interest in the APG. . . 153

Correctness of Algorithm 3. 166

43
44
45
46
47
48
49
50
51
62

93

V1

Specialization as regrouping on the CFG. 173
PRG specialization equations for strongly static behaviour. 176
PRG specialization equations for weakly static behaviour. 177
An example of PRG execution by value-propagation. 179
An example of PRG specialization by value-propagation. 182
Distinct programs with identical PRG representations. 183
Incorrect reconstitution using topological sorting. 184
An example of witness vertices. L., 188
The use of witness vertices in reconstitution. 190
Running times for CFG and PRG specialization. 193

Comparison of execution costs for CFG and PRG specialization. 195

Contents

Abstract
Acknowledgements
1 Introduction

.2 Partial evaluation, dependence graphs, and termination analysis

2.1 Partial evaluation L oo
2.1.1 Self application and compiler generation
2.1.2 Partial evaluation as an optimization
2.1.3 Semantic foundations and correctness

2.2 Dependence Graphs oo
2.2.1 The control-flow graph
2.2.2 Flow dependences and control dependences
2.2.3 The program dependence graph

2.3 Termination analysis

2.3.1 Context-free language reachability

3 Safe BTA for PRG programs

3.1 The PRG: A representation that formalizes dependences
3.1.1 Syntactic Structure of PRGso
3.1.2 Value-sequence semanticsof PRGs

3.2 Semantic characterizations of static and finite behaviour

vil

iii

viil

3.3 Notions of safety for binding-time analyses 53
3.3.1 Specializable Vertices and Static-Infinite Computation 53
3.3.2 BTA characterizations 55
3.3.3 Termination versus computational completeness 56

3.4 BTA algorithms for single-procedure programs 56
3.4.1 The Strong-Staticness BTA 57
3.4.2 - The Weak-Staticness BTA 64
3.4.3 The Static-Variation BTA 66
3.4.4 Standardizing the Results of PRG-Based BTA 68

3.5 Limitations and related work oo 70

Extending safe BTA to programs with procedures 75

4.1 The system dependence graph 77

4.2 The system representation graph 80
4.2.1 Syntactic structure of SRGs 81
4.2.2 Semanticsof SRGs o oo 83

4.3 Semantics of static behaviour for SRG vertices 89

4.4 BTA algorithms for SRG programs 94
4.4.1 The Strong-Staticness BTA for SRGs 95
4.4.2 The Weak-Staticness BTA for SRGs 97
4.4.3 The Static-Variation BTA for SRGs 98

4.5 Limitations and related work00 98

Loop dependences and safe BTA for C programs 102

5.1 Loop dependence 105

5.2 Constructing loop dependences
5.3 The loop dependencegraph,
5.4 The Loop-Dependence BTA algorithm
55 Precision analysis L e e
5.6 Pointer variables oo oL
5.7 Implementation and experimental results
5.8 Handling The Trick
Termination analysis for functional programs
6.1 A simple functional language and its semantics.
6.1.1 Transition sequences
6.1.2 Callpaths
6.2 Semantics of BSV behaviour o oL
6.3 The augmented parameter dependence graph
6.4 Pathsinthe APG.
6.5 Identifying ISD and ISI parameters
6.6 Identifying BSV parameters
6.7 Relatedwork oo
Specialization of dependence graphs
7.1 Specialization of control flow graphs L.
7.2 Specialization of dependence graphs
7.3 An algorithm for PRG specialization
7.4 Reconstitution of sequential code

7.4.1 An algorithm for reconstitution of residual code

ix

108
113
113
117
120
123

126

131
140
141
142
143
147
149
158
161
167

7.5 Experimental results

7.6 Limitations and related work

8 Conclusions

Bibliography

Index

........................

........................

192

194

197

201

209

Chapter 1

Introduction

This thesis desfzribes the use of program dependence graphs, as opposed to control flow
graphs, as the basis for the off-line partial evaluation of imperative programs. The
primary result of this research is a new form of binding-time analysis that ensures
the termination of off-line partial evaluation without compromising the ability of the
analysis to identify static behaviour.

Partial evaluation is a program specialization operation in which programs with
multiple inputs are specialized to take into account known values for some of their
inputs. Thus, the result of partially evaluating a program given an “initial division”
of its inputs into known or “static” inputs and unknown or “dynamic” inputs is a
specialized version of the program, which when run on the dynamic inputs produces
exactly the same output as that produced by the original program when run on all of
its inputs [JGS93]. The intent of partial evaluation is that the specialized program will
require less time to execute than the original program, as some computations that can
be completed using only the known inputs will be absent in the specialized program. In
an off-line partial evaluator for imperative programs, the process of partial evaluation
is separated into two phases: The first phase is an analysis phase, termed “binding-
time analysis” (BTA), in which all of the variables in the program whose values are

computable using only the known inputs (static variables) are identified. Alternatively,

a BTA algorithm may first identify program statements as either static or dynamic, and
then convert this information into static or dynamic markings for program variables.
The second phase is the specialization phase, in which statements involving only static
variables are executed and statements involving dynamic variables are emitted, once for
each combination of values taken by the static variables in the program. The emitted
statements are combined to produce the specialized program.

The traditional approach to partial evaluation has been to aggressively identify
static program variables; this has resulted in the development of partial evaluators
that produce efficient code wherever possible, but that may not terminate on some
subject programs. This approach has sufficed in the past because partial evaluators
have typically been used by programmers who have written these tools themselves.
However, partial evaluators are increasingly being developed for heavily used languages,
for which the goal is to allow an arbitrary user to improve the performance of his or
her program by using a partial evaluator as a “black box” that optimizes code, in much
the same way that optimizing compilers have been used for years. Therefore, the old
aggressive model of partial evaluation is no longer suitable. In particular, this thesis
advocates a model similar to that of traditional optimizing compilers, which attempt
to optimize the common case while providing a semantic guarantee of safety for all
programs.

As pointed out by Jones in [Jon88], a partial evaluator will not terminate on a
subject program if it attempts to enumerate an unbounded set of values taken on
by a program variable that has been identified as static. A variable that may take
on an unbounded number of different values over all possible values of the unknown

inputs is said to fail the “bounded-static-varying” (BSV) property. Therefore, a partial

evaluator will fail to terminate if it identifies as static a variable that is not BSV.
Traditional BTA algorithms identify static and dynamic statements in a program by
tracing the flow of dynamic values forward from the dynamic inputs of a program
through the statements in the program using “flow dependences.” Informally, a flow
dependence from a statement u to a statement v indicates that a variable that is
assigned a value at statement v may be used in the computation at statement v.
Alternatively, the values computed at u may affect the values computed at v. A BTA
that uses flow dependences to trace dynamic behaviour is said to be correct if it satisfies
the “congruence” condition: A BTA is congruent if for every statement in the program
that is identified as static, all of the flow predecessors of the statement are also identified
as static.

Consider the power function shown in Figure 1, an example commonly found in early
papers explaining the concept of partial evaluation. If function power from Figure 1 is
specialized with an initial division in which the base is dynamic and the index n is
static, the loop header in the function is identified as static and the loop can therefore
be unrolled, as expected. On the other hand, if power is specialized with static base
z and dynamic index n, the assignment to a¢ within the dynamic loop controlled by
n is identified as static by a congruence-based BTA. This is because there is no path
of flow dependences from the dynamic parameter n to the assignment to @ within the
loop. However, the values taken by a cannot be bounded if the value of n is not known.
Hence, variable a is not BSV. As a result, a partial evaluator using the results of a
congruence-based BTA would not terminate on the power function, given an input
division in which base z is static and index n is dynamic. The primary focus of the

research described in this thesis is a new form of BTA that treats variables such as a

as dynamic, thus ensuring the termination of partial evaluation.

Looking at variable a in function power from Figure 1 again, the values taken
by a are unbounded because even though all of its values are built by operations on
initially static values, these values are built up under dynamic control, as pointed out
by Jones in [Jon88]. Therefore, variable a should not be treated as static. In this
thesis, we show that congruence-based BTAs are unable to identify variables that take
values built up under dynamic control as dynamic for the following reason: At the
semantic level, congruence-based BTAs are based on a control-flow based structure, in
which every statement is treated as a state-to-state transformer. Under this model, a
statement such as the assignment to a within the loop in power from Figure 1 is static
because every value computed at the statement is known, as indicated by the state
transformation function associated with the statement. The statement should in fact be
treated as dynamic, because the complete set of values computed at the statement is not
bounded, but this information is not captured by the state transformation function. At
the algorithmic level, congruence-based BTAs use flow dependences to trace dynamic
behaviour, and there is no flow dependence from a dynamic loop predicate to the
assignments within its body.

Clearly, flow dependences do not contain adequate information for tracing dynamic
behaviour through programs. However, previous work in the areas of program security
[DD77], automatic parallelization [FOW87], and program slicing [Wei84, HRB90] has
relied on another form of dependence between program statements in addition to flow
dependence, termed “control dependence.” Informally, a control dependence from a
statement u to a statement v indicates that the computation at v may determine

the number of times the computation at v is carried out during program execution.

(a) float power (float z, int n) {
float a = 1.0;
while (n > 0) {

}

return a;

}

®)

\ while (n>0)) ‘returna;

= - -
-

Figure 1: The power function.

In figure (a) above, function power assigns the value of 2™ to a and returns this value.
The dependence graph for power is shown in figure (b) above. Every program point is
represented by a vertex in the dependence graph. Vertices in the graph are connected
by two kinds of edges: Flow dependence edges, shown as dashed lines, and control
dependence edges, shown as solid lines. Vertices shown as dashed boxes are identified
as dynamic by a congruence-based BTA that follows only flow dependence edges, given
an initial division in which base z is static and index n is dynamic, while vertices
shown as dotted boxes are identified as dynamic by a BTA that also follows control
dependences.

As pointed out by Denning and Denning in [DD77], control dependences may reflect
hidden data flow through a program, as is the case in the power function from Figure 1,
in which, although there are no flow dependences from parameter n to the assignment
to a, the variable is assigned a value that is a mathematical function (in particular,
the exponentiation function) of parameters z and n.

Therefore, this thesis advocates BTA algorithms based on following both flow and
control dependences through a program. For this purpose, our work relies on program
dependence graphs [FOWS87, HRB90], representations that make both flow and control
dependences explicit in their structure and semantics, as opposed to the control-flow
representations used by congruence-based BTAs.

At the semantic level, dependence graphs have a sequence semantics in which every
program point is characterized by the sequence of values produced at the program point
during execution. Therefore, by using dependence graphs as the basis for BTA, we are
able to provide semantic characterizations of static behaviour that properly account
for the effect of dynamic control. At the algorithmic level, dependence graphs contain
control dependences, which can be use(i to correctly account for the effect of dynamic
control on the values taken by program variables.

The role of control dependences in binding-time analysis has been noted previously
in the literature, in particular by Ershov in [Ers82] and by Jones in [Jon88]. However,
previous work on defining or implementing BTA algorithms has ignored control depen-
dences. This is because it has been argued that following control dependences leads to
conservative BTA algorithms that identify too few statements as static. In particular,
it has been believed that important objectives such as self application, which refers

to the application of a partial evaluator to itself, and the ability to handle a common

modification to user code known as “The Trick” cannot be met when using control
dependences.

However, in later chapters of this thesis, we show that it is possible to define
BTA algorithms for realistic programming languages (in particular, C) that use control
dependences to ensure termination without compromising either the ability of the
partial evaluator to carry out non-trivial self application or its ability to handle code
that represents The Trick. This is because of two reasons: Firstly, it is possible to define
analyses that follow control dependences selectively, in particular, in situations where
control dependences reflect looping behaviour. Secondly, results of a BTA that uses
control dependences can be improved using a precision analysis that eliminates some
control dependence edges from the dependence graph based on conservative termination
criteria.

Thus, the BTA algorithms defined and implemented as part of this thesis research
use flow and control dependences to provide a termination guarantee for partial eval-
uation, without compromising performance in the common case. There are two issues
that require clarification with regard to our algorithm and its relationship to previous

work in this area:

e We do not insist that partial evaluation must terminate under all conditions.
In particular, some programs contain variables that fail the BSV property even
though they are built up from static values and are not built up under dynamic
control. One such program is shown in Figure 2. Intuitively, the values taken by
variable n in function st-inf from Figure 2 are unbounded even though they are

independent of the dynamic input. This behaviour has been referred to by Jones

as “static-infinite computation” in [Jon88]. He has argued that a partial evaluator
need not provide a termination guarantee on programs that contain static-infinite
computation because they reflect poor programming: If a program containing a
static-infinite loop is executed and control reaches such a loop during execution,
the program diverges. Further, a partial evaluator that guarantees termination
on programs with static-infinite computation must examine every static loop
for possible unbounded behaviour. Because precisely determining the bounded
nature of a program loop reduces to solving the halting problem, an analysis
that guarantees the termination of every static loop must produce conservative
results. Therefore, we adopt Jones’ approach by defining BTA algorithms that fail
to provide a termination guarantee in the presence of static-infinite computation.
In this thesis we have used the semantics of dependence graphs to provide the
first semantic characterization of static-infinite computation. This allows us to be
precise about what our BTA algorithms do and do not ensure. In particular, the
BTA algorithms defined in this thesis provide a semantic guarantee of termination

for partial evaluation in the absence of static-infinite computation.

Other authors have also tackled the termination problem, and have defined ter-
mination analyses that can be combined with congruence-based BTA to produce
analyses that provide a termination guarantee for all programs [Hol91, GJ96,

AH96]. The chief differences between their work and ours are:

— Other termination analyses are applicable only to restricted languages, and

can analyze only simple kinds of termination criteria. A later chapter of

int st-inf (int z) {
int n = 1;
while (n > 0) {
n=n+1;
zT=1z—1;
}

return n;

}

Figure 2: Static-infinite computation.
If function st-inf above is specialized given an initial division in which parameter z is
dynamic, the values taken by variable n cannot be bounded. Hence, n is not BSV.
However, the values taken by n are built up from static values under purely static
control. Therefore, function st-inf contains static-infinite computation. The BTA
algorithms described in this thesis would identify n as a static variable.

this thesis describes a new termination analysis that improves upon pre-
vious analyses by using an optimistic approach and context-free language
reachability (CFL-Reachability), an extended form of graph reachability.
This algorithm provides a termination guarantee even in the presence of

static-infinite computation.

— More importantly, other termination analyses are based on conservatively
identifying BSV variables, and do not consider control dependences explic-
itly. As a result, such analyses cannot distinguish between unbounded be-
haviour arising from dynamic control and unbounded behaviour arising from
static-infinite computation. Therefore, every static loop must be treated
conservatively, limiting the ability of the BTA to identify static variables. In
contrast, the approach advocated in this thesis can be explained as follows:

We selectively use control dependences to distinguish potential unbounded

10

behaviour arising from dynamic control from unbounded behaviour result-
ing from static-infinite computation. We then use a precision analysis to
conservatively treat as static some of the variables identified as unbounded

due to dynamic control.

In summary, control dependences, or the dependence graphs that make them ex-
plicit, serve two purposes in providing a termination guarantee for partial evaluation:
They represent hidden data flow through data transfer loops, such as in the power
function from Figure 1, and they provide the ability to distinguish between the two
forms of unbounded behaviour, as shown in Figure 2, so that conservative analyses can
be performed on only the programs that require a termination guarantee.

Program dependence graphs provide a natural basis for binding-time analysis be-
cause they make both data and control dependences explicit in their structure and
semantics. In addition, the BTA algorithms defined on dependence graphs in this
thesis are variations on the operation of program slicing [Wei84, HRB90] that has pre-
viously been defined on dependence graphs. The natural question that therefore arises
is whether dependence graphs provide a suitable basis for the specialization phase of
partial evaluation as well. In this thesis, we have designed a specialization algorithm
that operates on dependence graphs, and we have built a specializer for program rep-
resentation graphs (PRGs) [RR89], variants of program dependence graphs that have
a data-flow semantics. This experience has shown that whereas dependence graph spe-
cialization has the advantage that certain elements of the specialization process are
more easily defined, the use of dependence graphs in the specialization phase intro-

duces problems as well. In particular, the lack of a state in dependence graphs makes

11

reconstitution of the specialized program from the specialized dependence graph non-
trivial.

The major contributions of this thesis can be summarized as follows:

e A semantic foundation for safe binding-time analysis on imperative programs,

including a semantic characterization of static-infinite computation.

e Three BTA algorithms on dependence graphs that provide a guarantee of termi-

nation for partial evaluation in the absence of static-infinite computation.

e The definition of “loop dependence,” a property similar to control dependence,
for handling programs with arbitrary control flow, together with a BTA algorithm
for C programs that uses loop dependences to provide a termination guarantee

for partial evaluation in the absence of static-infinite computation.

e A termination analysis for functional programs that uses an optimistic approach
and more complex termination criteria to improve upon the results of previous

analyses. This analysis provides a termination guarantee for all programs.

e Extension of the program specialization operation to dependence graphs, and
an implementation of specialization on dependence graphs and reconstitution of

program text from dependence graphs.

o A safe binding-time analysis for C programs that uses loop dependences and a
precision analysis to provide a termination guarantee for partial evaluation. We
claim that this approach does not significantly compromise the range of programs
that can be specialized in practice, and present experimental evidence gathered

from our implementation of this method to back up this claim.

12

The contributions of this thesis in terms of handling the termination problem are
summarized graphically in Figure 3.

We have chosen an imperative language with side effects, in particular C, as the
basis for much of the work described in this thesis because the motivation for this
work is to make partial evaluation accessible to ordinary programmers (as opposed to
experts in partial evaluation). However, the concepts developed in this thesis can be
applied to programs written in functional languages as well.

The chapters of this thesis are organized as follows:

In Chapter 2 we present background material on the key concepts on which this
thesis is based, including partial evaluation, dependence graphs, termination analysis,
and CFL-Reachability.

In Chapter 3 we present the program representation graph (PRG), and we use
the semantics of PRGs to develop a semantic foundation for binding-time analysis.
We use this foundation to characterize static-infinite computation, and the notion of
conditionally safe BTA. We define three conditionally safe BTA algorithms that are
reachability operations on the PRG.

In Chapter 4 we extend PRGs to system representation graphs (SRGs), which
represent programs with procedures. We extend the notion of conditional safety and
the BTA algorithms defined in Chapter 3 to SRGs.

In Chapter 5 we define the notion of loop dependences, which are similar to control
dependepces. We use loop dependences to define a conditionally safe BTA for programs
with arbitrary control flow. We also define a precision analysis that we use in conjunc-
tion with conditionally safe BTA in order to provide a termination guarantee for partial

evaluation of C programs without compromising the ability of the analysis to identify

13

Safety Functional Single-procedure | Multi-procedure | Programs w/
Level programs imperative imperative arbitrary
(S-expressions) programs programs control flow
and aliasing
Unsafe Previous Work Previous Work | Previous Work | Previous Work
Conditionally SRG BTA PRG BTA SRG BTA Loop-Dep BTA
safe (Chapter 4) (Chapter 3) (Chapter 4) (Chapter 5)
Previous Work
Safe CFL-Reachability | Previous Work No Work No Work
(Chapter 6)

Figure 3: Solutions to the termination problem presented in this thesis.

The contributions of this thesis to the termination problem in partial evaluation are
summarized above. Analyses are categorized as either unsafe (no termination guarantee
for partial evaluation), conditionally safe (termination guarantee in the absence of
static-infinite computation), or safe (termination guarantee for all programs). Unsafe
BTA algorithms that use only flow dependences have been designed for all of the
language categories. The BTA algorithms designed in this thesis handle programs in
all of the language categories. They use control dependences or loop dependences in
addition to flow dependences, and are therefore conditionally safe. Safe BTA algorithms
have been designed for functional programs that manipulate only S-expression data.
Qur termination analysis algorithm extends this work. A termination analysis has been
developed for single-procedure programs with only downwards-closed integral data (for
instance, natural numbers). No such analyses exist for either multi-procedure programs
or programs with pointer variables.

14

static behaviour. We present experimental evidence based on our implementation.

In Chapter 6 we define a termination analysis for functional programs that extends
the work of Holst in [Hol91] and Glenstrup and Jones in [GJ96]. The algorithm,
which conservatively identifies BSV parameters, uses an optimistic approach and CFL-
Reachability, an extended form of graph reachability, to obtain more precise results
than previous algorithms.

In Chapter 7 we extend the operation of specialization to dependence graphs. We
define a partial semantics for PRGs, and we describe an implementation of specializa-
tion on PRGs that uses C++ classes to mimic the partial dataflow execution of PRGs
that represents the specialization operation. We discuss the reconstitution problem
and outline our solution.

Chapter 8 presents some conclusions.

15

Chapter 2

Partial evaluation, dependence

graphs, and termination analysis

The main focus of this thesis is the use of dependence graphs in defining BTA algo-
rithms that ensure the termination of partial evaluation. In this chapter we provide
background information on the two primary but previously unrelated concepts that
are central to this work, partial evaluation and dependence graphs. In Section 2.1
we provide a brief overview of the traditional approach to partial evaluation and the
role of binding-time analysis. We review the standard control-flow representation of
programs and explain dependence relationships (and the dependence graphs that are
formed from these dependences) in Section 2.2. In this thesis we also use dependence
graphs to develop a termination analysis for functional programs that can be combined
with a congruence-based BTA algorithm to produce an analysis that provides a termi-
nation guarantee for all programs. Our analysis improves upon previous termination
analyses by using an optimistic approach and more complex termination criteria based
on a generalized from of graph reachability referred to as context-free language reach-
ability (“CFL-Reachability”). In Section 2.3 we review previous work on termination

analysis, and we also review CFL-Reachability and its role in program analysis.

16

2.1 Partial evaluation

Partial evaluation is a program specialization operation in which programs with mul-
tiple inputs are specialized to take into account known values for some of their inputs.
Thus, the result of partially evaluating a program given an “initial division” of its in-
puts into known or “static” inputs and unknown or “dynamic” inputs is a specialized
version of the program, which when run on the dynamic inputs produces exactly the
same output z;,s that produced by the original program when run on all of its inputs
[JGS93]. More precisely, partial evaluation of program P, given a known subset 2; of
its input < 7,43 >, results in a specialized program P’, such that the behaviour of P’
on i is identical to the behaviour of P on < 4,1, >. Partial evaluation is carried out
by performing those parts of P’s computations that depend only on ¢; and generating
code for those computations that depend on i,. A partial evaluator therefore performs
a mixture of execution and code-generation actions. As a result, partial evaluation is
often referred to as “mixed computation” [Ers82].

The operation of partial evaluation has been known to be possible ever since Kleene
showed that every function can be specialized with respect to a subset of its parame-
ters (Kleene’s S-m-n theorem, [Kle52]). The S-m-n theorem established the equivalent
functionality of a program P with multiple arguments and the program P’ obtained by
absorbing an argument of P into the body of P, representing trivial specialization. The
technique has been considered as a method to actually improve program performance
ever since Futamura formulated his equations for compilation and compiler genera-
tion using partial evaluation (the so-called “Futamura projections” [Fut71, Ers82]).

Since then partial evaluators have been built for a variety of programming languages

17

and paradigms, including flowchart languages [Bul88, GJ89], imperative languages
[Jac90, And92], functional languages [Har78, GJ91, Mog92], logic-programming lan-
guages [Kom81, BFR90], and object-oriented languages [MS92].

The intent of partial evaluation is that the specialized program will require less time
to execute than the original program, as some computations that can be completed
using only the known inputs will be absent in the specialized program. In an off-
line partial evaluator for imperative programs, the process of partial evaluation is
separated into two phases: The first phase is an analysis phase, termed “binding-
time analysis” (BTA), in which all of the variables in the program whose values are
computable using only the known inputs (static variables) are identified. The second
phase is the specialization phase, in which statements or expressions involving only
static variables are executed and those involving dynamic variables are emitted, once
for each combination of values taken by the static variables in the program. The emitted
statements are combined to produce the specialized program. As we mentioned in the
introduction, a BTA algorithm may proceed by first identifying program statements as
either static or dynamic, and then converting this information into static or dynamic
markings for program variables.

Traditional BTA algorithms identify static and dynamic statements in a program
by tracing the flow of dynamic values forward from the dynamic inputs of a program
through the statements in the program using “flow dependences.” Informally, a flow
dependence from a statement u to a statement v indicates that a variable that is
assigned a value at statement u may be used in the computation at statement v.
Alternatively, the values computed at v may affect the values computed at v. An

example of two-phase partial evaluation is shown in Figure 4.

zna
(a) float power (float z,intn) { [DSS]
float a = 1.0; [DSS]
while (n>0) { [DSD]
n=n-—1; [DSD]
= q*T; [DSD]

}
return a; [DSD]

18

(b) float power,=» (float z) {
float a = 1.0;
a=ax*c;
a=a*Z;
return a;

Figure 4: Two-phase partial evaluation of the power function.
The power function from Chapter 1 is shown in (a) above, along with the results of a
BTA algorithm that uses flow dependences to identify dynamic behaviour. The figure
shows a division in which every program variable is marked as static or dynamic at every
program point, given an initial division in which base is dynamic and exponent n is
static. Figure (b) above shows the result of specializing the power function to the value
2 for static parameter n, using the BTA results from (a) above to selectively execute
and residuate code. Code that uses only parameter n, which is static, is executed away,
while code that uses either z or a, both of which are dynamic, is emitted.

19

In the context of imperative programs, self-applicable partial evaluators (explained
in Section 2.1.1) for flowchart languages have been constructed by Bulyonkov and Er-
shov [Bul88], and by Gomard and Jones [GJ89]. Meyer has presented a specialization
approach for a Pascal-like language that uses dynamic annotations rather than a sepa-
rate BTA phase in order to obtain more efficient residual programs [Mey91]. However,
his analysis loses some precision as a result. Furthermore, he sidesteps the issue of
termination of the partial evaluator by assuming that the program terminates for all
inputs, which is an overly strong restriction on program behaviour. Baier and Glick,
among others, have developed a partial evaluator for Fortran [BGZ94|, while Ander-
sen’s self-applicable partial evaluator for strictly-conforming Ansi C (¢-miz, [And92])
handles most of the features of Ansi C, with heap allocated storage being a notable
exception. Both of these specializers are based on control-flow representations of the
subject program, whereas we are interested in using a dependence graph representa-
tion for reasons mentioned earlier. No speedup measurements have been reported for

benchmark programs such as the Spec benchmark suite.

2.1.1 Self application and compiler generation

Historically, partial evaluation has been applied to restricted academic languages, most
often variants of the functional paradigm. These languages have small, elegant inter-
preters that are written in the same language (“meta-circular interpreters”); partial
evaluation has been used to improve the performance of these interpreters and to au-

tomatically generate compilers from them.

20

The effect of partial evaluation can be represented equationally by the pair of equa-
tions below. The first equation is the standard operational semantics of program p
with two inputs ¢; and i3, while the second equation represents the effect of partially
evaluating p with respect to input ¢; (miz represents the partial evaluator.) The resid-
ual program p’ produces the same output as p when supplied input i;. Note that
bracketed items, such as [p], denote the meaning function (or semantics) of the item;
unbracketed items denote data items. For instance, p denotes the program p treated
as a data item (the text or abstract syntax tree of p), whereas [p] denotes the function

that p implements.

[p] i1 iz = out

[miz] p iy = p’ suchthat [p'] iz = out

An interpreter can be thought of as a program that takes two inputs, namely
a source program and the input to the source program. Partial evaluation of the
interpreter (vepresented by the first Futamura projection (1) below) results in a target
program that maps the input of source to the output of source. Therefore, partial
evaluation of the interpreter has the effect of a compiler; it “compiles” (or translates)

code from one language to another.

[int] source inp = out

[miz] int source = target such that [target] inp = out (1)

If the partial evaluator (miz above) can be applied to itself (i.e., if it is self-
applicable), it can be specialized to the given interpreter to produce a mapping from
source to target, which is a compiler (the second Futamura projection (2) below.) Fi-

nally, the process can be carried a step further by applying the partial evaluator to

21

itself twice; the result is a mapping from interpreters to compilers, which is a compiler

generator (the third Futamura projection (3) below.)

[miz] miz int = compiler such that [compiler] source = target (2)

[miz] miz miz = compilerGen such that [compilerGen] int = compiler (3)

2.1.2 Partial evaluation as an optimization

The chief motivation for partial evaluation is as a program optimization: Partially
evaluated versions of programs often run faster than the original programs. In general,
partial evaluation allows a programmer to write one highly parameterized program
for solving several similar problems, yet avoid the potential inefficiency associated
with this style by automatically specializing the program with respect to different
settings of the parameters to obtain efficient versions of the program for individual
applications. Therefore, partial evaluation works well on programs that interpret static
data to determine how dynamic data must be manipulated. Large speedups have been
reported from partially evaluating circuit simulators [BW90], neural networks [Jac90],
computations using networks of processors [RP89], pattern matchers [CD89, Bon90],
and other programs that interpret part of their input. However, partial evaluation
is not a general program transformation that can change a program’s computational

method. As a result, partial evaluation usually produces no more than linear speedups

[JGS93, pp. 131].

[N]
[

2.1.3 Semantic foundations and correctness

The first formalization of the partial evaluation process was provided by Ershov in
[Ers82). He treated a program P as the source of a set of elementary computation steps
C that could be partitioned into two disjoint components C' and C” by a partition
function p. C’ would represent the permissible computations based on only known
inputs, and C” would refer to the computations for which code would be produced
(the residual program). In these terms, the binding-time analysis operation amounts
to determining the appropriate partition p, while the specialization operation involves
executing the computations in ¢’ and producing code for those in C".

While this formalization accurately expresses the operations involved in partial
evaluation, it does not provide any method to connect the markings produced by
BTA algorithms to the underlying program semantics. Jones provided the first such
characterization of a BTA algorithm based on the “data division” or S/D markings
produced by it. In his terminology, a BTA can create either “uniform” or “pointwise”
divisions. A uniform division is a mapping from the set of program variables to {5, D};
it identifies every variable in the program as either static or dynamic throughout the
program. A pointwise division, on the other hand, is a mapping from points x vars to
{S, D}; it identifies every program variable as either static or dynamic at a particular
program point (i.e., before the code at the program point is executed). For imperative
languages with updates to variables, pointwise divisions are more useful because they
can capture more static behaviour in a program: The same variable can take on static
and dynamic values in different regions of code.

Jones characterizes the correctness of a BTA in terms of the “congruence” of the

23

zna
float power (float z,intn) { [SDS]
float a = 1.0; [SDS]
while (n >0) { [SDS]
n=n-—1; [SDS]
a=ax*z; [SDS]

}
return a; [SDS]

Figure 5: Incorrect results from a congruent BTA.
The power function from Chapter 1 is shown above, along with the results of a con-
gruent BTA that uses flow dependences to identify dynamic behaviour. The BTA
is supplied an initial division in which base z is static and exponent n is dynamic.
Program variable a is identified as static, even though the data division satisfies the
congruence condition.

data division produced by it. He has provided both extensional and intensional defi-
nitions for congruence on a small imperative language. By his intensional definition,
a data division is congruent if any program point marked S has all of its flow prede-
cessors marked S as well. As we pointed out in the introduction, the drawback with
this model is that a BTA that satisfies the congruence condition may identify as static
certain variables whose values are built up unboundedly under dynamic control. Thus,
in Figure 5, the data division shown for the power function given known base z and
unknown exponent n results from a congruent BTA. However, a specializer that uses
this division to produce a residual power function will not terminate.

Partial evaluation has historically been applied to restricted academic languages,

most often variants of the functional paradigm. The typical users of these tools have

been expert programmers, who are familiar with the design of partial evaluators. There-
fore, the lack of a termination guarantee has been considered an acceptable shortcoming
of congruence-based BTA. However, partial evaluators are now being developed for im-
perative languages, in particular heavily used languages, for which the goal is to allow
an arbitrary user to improve the performance of his or her program by using a partial
evaluator as a “black box” that optimizes code in much the same way that optimizing
compilers have been used for years. It is therefore important to develop a model for
BTA that provides a termination guarantee for partial evaluation. In this thesis, we
have developed a new semantic foundation for binding-time analysis that tackles this

problem.

2.2 Dependence Graphs

In this section we present an overview of control-flow graphs and their semantics. We
then explain the concepts of flow dependences and control dependences. We describe
the program dependence graph, which is constructed using flow and control depen-
dences, and we review different approaches to providing these graphs with a semantics
that is consistent with the standard operational semantics of programs. Although
control-flow graphs can be used to represent imperative programs with a variety of
features including arbitrary control flow, we consider a restricted language of programs
that includes the following constructs: Assignments, conditionals (if), loops (while),

input (read), and output (write). The language provides only scalar integer variables.

25

2.2.1 The control-flow graph

The control-flow graph (CFG) [ASUS86] is an intermediate representation for imperative
programs that is useful for dataflow analysis and program optimization. It is a directed,
rooted graph that has three kinds of vertices: Vertices represent either (i) assignment,
input, or output statements, which have a single successor in the CFG; (ii) predicate
vertices, which have one true-successor and one false-successor; or (iii) special Entry
and Exit vertilces. The Entry vertex is the root of the CFG; it has the Exit vertex
as its false successor, and the first statement in the program as its frue successor.
The Exit vertex has no successors. Every vertex is reachable from the Entry vertex.
Similarly, the Exit vertex is reachable from every vertex. The edges in the CFG are
labeled with either true or false (in the case of edges arising from predicate vertices)
or have no label (edges that arise from assignment/input/output vertices). The CFG
for a program can be constructed in time linear in the size of the program using a
syntax-directed translation scheme [Bal93]. As an example, the power function from
Chapter 1 and its CFG are shown in Figure 6.

CFGs have a standard denotational semantics in which every program statement is
modeled as a state-to-state transformer [Sch86]. The state represents a snapshot of the
sequential execution of the program; it consists of a program point, which represents
the current point of execution in the program, and a mapping from program variables
to values, representing the values currently held by program variables. Assignment
vertices update the state, while predicate vertices use the state to make branch deci-
sions. In the operational semantics, execution starts at the Entry vertex, which is a

predicate vertex that always evaluates to true. Execution terminates normally if the

(a) z = 2.0 (b)
read(n);
a = 1.0;
while (n > 0) {

Figure 6: The power program and its control-flow graph.
Figure (a) above above depicts the power function, modified to conform to the language
described in Section 2.2. The CFG for this program is shown in figure (b) above.

27

Exit statement is reached; execution may fail to terminate normally if an infinite loop

is encountered, or if an exception occurs.

2.2.2 Flow dependences and control dependences

The control-flow graph represents the flow of control through a program. However,
the concept that is often more useful in program analysis and optimization is the flow
of data through a program. For this purpose, several forms of data dependence have
been defined in the literature. We consider one form of data dependence termed flow
dependence, defined below. We borrow all of the definitions of program dependence in
this section from [Bal93].

A flow dependence from vertex w to vertex v indicates that a value computed at w
may be used at v under some path through the control-flow graph. Reasoning about
whether a value computed at w will in fact be used at v is an undecidable problem; a
flow dependence from w to v is a conservative approximation which says that under
some conditions a value computed at w may be used at v. Flow dependences can
be computed in time quadratic in the size of the program (assuming that the used
variables sets at CFG vertices are stored in bit vectors with constant-time membership

tests) using standard techniques for computing reaching definitions.

Definition 1 Let v and w be vertices in a CFG G. There is a flow dependence from
vertex w to vertex v iff vertex w assigns to variable z, vertex v uses z, and there is a

path in G from w to v that does not include assignments to z (excluding w and v). O

Some flow dependences represent the flow of data across iterations of a loop. Such

dependences, which can be traced through the back edge of a loop in the CFG, are

28

referred to as “loop-carried” flow dependences, as opposed to “loop-independent” flow

dependences.

Flow dependences directly represent the flow of values through a program. However,
it is well known that the values of a variable may be transmitted from program point
p1 to program point p; even though there is no path of flow dependence edges from
p1 to po [DD77]. (An example of this will be given shortly.) In such instances, the
flow of values-is captured indirectly via “control dependences.” Intuitively, a vertex
v is (directly) control dependent on vertex w if the computation at w determines how
many times vertex v is executed during the execution of the program. Alternatively, if
the predicate vertex w executes and evaluates to a certain value (either true or false),
vertex v is guaranteed to execute if the program terminates normally. If w does not
evaluate to this value, v may not execute. Formally, control dependence is defined as

below.

Definition 2 Let v and w be vertices in a CFG G. Vertex v postdominates vertex w
iff v # w and v is on every path from w to the Exit vertex. Vertex v postdominates the
L-branch of predicate vertex w (where L is either ¢true or false) iff v is the L-successor

of w or if v postdominates the L-successor of w. a

If a vertex v postdominates the L-branch of predicate vertex w, then v is guaranteed
to execute whenever w evaluates to L, provided the program terminates normally. In
addition, if v does not postdominate the predicate itself, whether v executes or not is

dependent on w. Hence, v is control dependent on w.

Definition 3 Let v and w be vertices in a CFG G. There is a (direct) control depen-

dence (labeled with L) from vertex w to vertex v iff v postdominates the L-branch of

29

read(z);

y:=0;

while (z > 0) {
Ti=r-—-1
y:=y+1

}

Figure 7: An example of a transfer loop.
The program above has the effect of assigning the value of positive integer = to y.

w, and v does not postdominate w. |

Control dependences can represent the transfer of values through a program even
though there may be no flow dependences in the program that represent this transfer
of values. For instance, in the program shown in Figure 7, the loop in the program has
the effect of assigning the value of z to y, even though there are no flow dependences
from the assingment of = to the assignment of y. Accounting for this phenomenon in

BTA algorithms is the primary result of this thesis.

2.2.3 The program dependence graph

The program dependence graph (PDG) [FOWS87] of a program P is a directed graph
G(P)” = (V,E), where V is a set of vertices that is identical to the set of vertices in
the CFG of P, except for the Exit vertex, and F is a set of directed dependence edges
connecting pairs of vertices. In addition to flow and control dependences, the PDG
also contains def-order edges that maintain ordering relationships between multiple
definitions of the same variable [HPR88b]. An example of the use of def-order edges is

shown in Figure 8. Because the number of flow dependences in a program is at most

30

(a) if P thenz:=0 (b) if @ then z:=1
if Q then z:=1 if P then z:=0
y==z y=zc

Figure 8: An example of the use of def-order edges.

The programs shown in (a) and (b) above have the same set of flow and control de-
pendences, even though they have different semantics. This is because the flow and
control dependences do not capture the relative ordering of the two assignments to z.
Therefore, a def-order edge is added from the assignment z := 0 to the assignment
z := 1 in the program in (a) above, indicating their relative order. In the program in
(b) above, the def-order edge is reversed.

quadratic in the size of the program, while the number of control dependences is linear
in the size of the program, the PDG for a program can be constructed from its CFG in
time quadratic in the size of the program. The PDG for the power program is shown
in Figure 9.

Program dependence graphs have been used as an intermediate program repre-
sentation in various contexts such as program understanding, maintenance [GLI1],
debugging [LW86], testing [Bin92, BH93|, differencing [Hor90], specialization [RT96],
reuse [NEK94], merging [HPR88a], and vectorization and parallelization [KKL*81].
They have the advantage that they make both flow and control dependences explicit
in their structure, leading to efficient algorithms for tracing the relationships between
program components. In addition, dependence graphs have the advantage that they do
not impose a fixed sequential ordering on the statements in a program, making them
useful representations for applications such as parallelization. Thus, the same PDG

may represent multiple programs with different orderings of the same statements, as

long as the dependence relationships in the different programs are identical. This is

31

Entry

)

(x=20) (bt (n50) > (weite @)
\\\\ \\ \\ /\ l ‘
\\ N \\ ‘ // // !

NN N !
\ \ PR N PR [
NN . n=n-1 "’é a=a*x “é)

-~ - - —— -

Figure 9: The program dependence graph of the power program.
In the graph shown above, solid arrows represent control dependences, while dashed ar-
rows represent flow dependences. Note the control dependence from the loop predicate
to itself; this arises because the loop predicate postdominates its own true successor,
but it does not postdominate itself. Loop-carried flow dependence edges are shown
with / marks.
highlighted by the programs shown in Figure 10.

The lack of sequential order in PDGs raises two questions, both of which are relevant
to the work presented in this thesis. The first issue is whether PDGs have enough
information to remain faithful to the semantics of the programs they repfesent; this is
not readily apparent, because the same PDG may represent multiple programs, as in
Figure 10. Horwitz et al. have shown that if the PDGs of two programs are isomorphic,
given the same initial state either both programs diverge or both programs produce the
same final state [HPR88a]. Therefore, the PDG is a suitable program representation
for reasoning about the behaviour of a program.

Unlike CFGs, PDGs do not have an agreed-upon operational semantics that can be

. used to reason about the behaviour of the programs they represent. However, one of the

32

read(z); read(z);
Y=IT*T, z =22+ T
z=T+ Y =%

Figure 10: An example of order-independence in PDGs.
Both programs above have the same PDG representation, even though their statements
are ordered differently. This is because each program above has the same semantics,
modulo normal termination.

goals of this thesis is to develop the first semantic foundation for “correct” binding-time
analysis algorithms. Therefore, we use an extension of the PDG known as the program
representation graph (PRG). The PRG is an augmented version of the PDG that has
a pure data-flow semantics, which we describe in detail in Chapter 3. An alternative
approach would be to use the graph rewriting semantics for PDGs defined by Selke in
[Sel89], in which computation steps are represented as graph transformations. However,
the PRG semantics provide a more natural basis for characterizing static and dynamic
behaviour.

The other issue that arises from the lack of sequential order in PDGs is whether it
is possible to recover a sequential program from a PDG, if the original program from
which the PDG was derived is not available. This problem is referred to as the “re-
constitution” problem; Ramalingam [Ram89] has shown that the problem is in general
NP-complete. In Chapter 7 of this thesis we present an approach to specialization
that involves transforming the dependence graph rather than the control-flow graph.
Therefore, in order to produce a residual program, we must carry out reconstitution
on the transformed PDG. As explained in Chapter 7, we are able to avoid solving an

NP-complete problem by keeping around some extra information through the steps of

33

the transformation process.

2.3 Termination analysis

As we pointed out in the introduction, some authors have worked on an alternative
approach to ensuring the termination of partial evaluation, in the context of functional
programs. The goal is to conservatively identify as static only those variables that are
BSV; a variable is BSV if the set of values it takes on over all possible dynamic inputs
is bounded. These authors have designed termination analyses that conservatively
identify all loops in the program that are limited to bounded iterations over all inputs.
Intuitively, variables that take values from other BSV variables and whose values are
built up only in such bounded loops must be BSV. Termination analysis is used to
conservatively identify such variables and mark them as static. All other variables are
identified as dynamic.

For functional programs without looping constructs and infinite data structures,
non-terminating behaviour must result from infinite recursion. Holst has shown that
in programs that manipulate S-expression data (i.e., values built up using cons oper-
ations), it is possible to identify functions that are limited to finite recursion [Hol91].
He identifies parameters that are “in-situ decreasing”: An in-situ decreasing parameter
of a function f strictly decreases in size on every (recursive) chain of calls from f to
f. A function that contains an in-situ decreasing parameter can only call itself a finite
number of times before this parameter takes on the value null and recursion terminates.

Glenstrup and Jones have devised a second algorithm that identifies in-situ de-

creasing parameters [GJ96]. They define a structure, called the parameter dependency

34

graph (we refer to this graph as the PG, to avoid confusing it with the PDG described
earlier in this chapter), whose edges denote data dependences between function pa-
rameters. Edges are labeled to indicate their size-changing effects, as in Figure 11. In
this framework, a “size-decreasing path” is a path free of 1 edges but containing at
least one | edge. An in-situ decreasing parameter is one for which every path in the
PG from the parameter to itself is size decreasing. Such parameters can be identified
by solving a simple reachability problem on the PG: A parameter is in-situ decreasing
if its vertex in the PG is reachable from itself only via paths that are size-decreasing.
The presence of in-situ decreasing parameters is used to classify some static variables
as BSV. All variables not marked as BSV (including some previously marked “static”
by a congruent BTA) are reclassified as dynamic, and the modified annotations are

passed to the specialization phase.

Example 1 The append function is shown in Figure 11. In every recursive call from
append to itself, parameter [; strictly decreases in size. Hence, [, is in-situ-decreasing.
If append is specialized with static /; and dynamic [3, the function can go through at
most a bounded number of iterations regardless of the values of the dynamic parameter
l,. Therefore, parameter [, is also BSV. Also shown in Figure 11 is the parameter
dependency graph for append. The only cyclic paths from the node for I; to itself are

strictly size-decreasing. Hence, [; is in-situ-decreasing. a

Termination analyses such as the analysis reviewed above safely handle the phe-
nomenon of static values built up under dynamic control, which is one of the thrusts
of this thesis. However, they have the drawback that since they ignore control depen-

dence, they cannot distinguish between static values built up under dynamic control

35

append(l;,ls) :
case [; of

nil : Iy %__5

cons(a,b) : cons(a, append(b,ls)) Z

Figure 11: In-situ-decreasing parameters in the append function.
The append function is shown above, along with its parameter dependency graph.

and static-infinite computation. As explained in the introduction, this leads to con-
servative results for static loops. In addition, such analyses handle only functional
languages that manipulate only S-expression data, and that do not have many of the

complex features of common imperative languages such as C.

2.3.1 Context-free language reachability

In Chapter 6, we use a generalized form of graph reachability termed “context-free lan-
guage reachability” (CFL-Reachability) to improve upon the results of the termination

analysis described above. CFL-Reachability is defined formally as follows:

Definition 4 (Context-Free-Language Reachability; CFL-Reachability) Let L be a
context-free language over alphabet ¥, and let G be a graph whose edges are labeled
with members of X.. Each path in G defines a word over ¥, namely, the word obtained
by concatenating, in order, the labels on the edges on the path. A path in G is an
L-path if its word is a member of L. The all-pairs L-path problem is to determine all
pairs of vertices v1,v; € V(@) such that there exists an L-path in G from v; to v,. The
source-target L-path problem is to determine whether there exists an L-path in G from

a given source v; to a given target v,. a

36

Ordinary reachability (transitive closure) is a degenerate case of CFL-reachability: Let
all edges of a graph be labeled with the letter e; transitive closure is the all-pairs e*-path
problem. More general instances of CFL-reachability are useful for focusing on certain
paths of interest. By choosing an appropriate language L, we are able to enforce certain
types of restrictions on when two vertices are considered to be “connected” (beyond
just “connected by a sequence of edges”, as one has with ordinary reachability).

CFL-reachability problems can be solved using a dynamic-programming algorithm.
(The algorithm can be thought of as a generalization of the CYK algorithm for context-
free recognition [Kas65, You67].) There is a general result that all CFL-reachability
problems can be solved in time cubic in the number of vertices in the graph [Yan90].
Thus, CFL-Reachability affords higher precision than simple reachability, but at the
cost of a cubic-time algorithm.

In this chapter, we have reviewed the concepts that are useful in developing termi-
nation guarantees for partial evaluation. In the following chapters, we develop analyses

that use these concepts to provide such termination guarantees.

Chapter 3

Safe BTA for PRG programs

In this chapter, we describe three binding-time analysis algorithms for an imperative
language with restricted features. In Chapter 1 we argued that in order for a BTA
algorithm to guarantee termination of partial evaluation in the presence of dynamic
control, the algorithm must account for the effect of control dependences on the val-
ues taken by program variables. In this chapter, we describe BTA algorithms that
use dependence graphs to account for control dependences. First, we describe an in-
termediate form known as the program representation graph (PRG), a variant of the
program dependence graph that makes both flow and control dependences explicit in
its structure, and give a semantics for PRGs. Second, we use the semantics of the PRG
to characterize several forms of static behaviour and static-infinite computation, and
we use these definitions to characterize the safety of BTA algorithms. Third, we use the
structure of the PRG to define three BTA algorithms that are simple reachability oper-
ations on the PRG. Fourth, we use an abstract interpretation of the PRG semantics to
show that each of these algorithms conservatively identifies the program variables that
exhibit a given form of static behaviour. Finally, we show how the results of these BTA
algorithms can be converted into the markings produced by standard BTA algorithms,
which identify program variables, as opposed to program points, as static or dynamic.

The three BTA algorithms described in this chapter identify progressively larger

38

sets of static variables in a program. The first BTA follows all flow and control depen-
dences in a program, while the other two BTA algorithms follow control dependences
selectively, ignoring the effect of dynamic control where appropriate.

As we mentioned in the introduction, our goal is to define BTA algorithms that
provide a restricted termination guarantee. In particular, we are interested in pro-
viding a termination guarantee for partial evaluation in the absence of static-infinite
computation. All of the BTA algorithms defined in this chapter have this property.

A complete description of PRGs in available in [RR89]. Other material presented

in this chapter may also be found in [DR95].

3.1 The PRG: A representation that formalizes de-

pendences

In this section we describe the program representation graph, an intermediate form
in which control dependences are represented explicitly. We describe the syntactic

structure of PRGs in Section 3.1.1, and their value-sequence semantics in Section 3.1.2.

3.1.1 Syntactic Structure of PRGs

The PRG is an extension of the program dependence graph that represents programs
from a standard imperative language without procedures, in which programs contain
the following statements: Assignments, conditionals (if), loops (while), input (read),
and output (Write).‘ The language provides only scalar variables of integral types.

The PRG of a program P is a directed graph G(P) = (V,E), where V is a set of

39

vertices and E is a set of directed edges connecting pairs of vertices. V(@) includes
a unique Entry vertex representing the start point of the program, and vertices that
represent every assignment statement and predicate in the program. E(G) consists
of flow and control dependence edges as described in Chapter 2. V(@) and E(G) are
augmented by the addition of “¢ vertices,” which are used for two purposes: First,
in cases where multiple definitions of a variable reach the same use, gate vertices
are introduced in order to “mediate” between the different definition points. These
gate vertices are similar to the gate nodes in the SSA form of an imperative program
[AWZ88, RWZ88]. Second, ¢ vertices are introduced in certain places to make it easier
to define a dataflow-like semantics for PRGs. (The goal is to have a semantics in which
vertices are associated with value sequences, and the value sequence produced at every
vertex in V(G) can be computed as a function of the value sequences produced at the
predecessors of the vertex.)

The complete list of ¢ vertices present in the PRG is as follows:

e ;s vertices: For variables defined within an if statement that are used before
being defined after the if statement. These vertices are gate nodes that mediate

between definitions of the same variable in different branches of an if statement.

® Qcnier vertices: For variables defined within a loop that are used before being
defined within or after the loop. These vertices are gate nodes that mediate

between outer and inner definitions of the same variable.

® oopy Vertices: For variables used within a loop that are not defined within it.
These vertices produce multiple copies of the same value assigned to a variable

outside the loop, one copy for every iteration of the loop.

40

e ¢r vertices: For variables used before being defined within the true branch of an
if statement. These vertices filter out values that are not used if the predicate

evaluates to false.

e ¢r vertices: For variables used before being defined within the false branch of an
if statement. These vertices filter out values that are not used if the predicate

evaluates to true.

® .z vertices: For variables defined within a loop that are used before being
defined after the loop. These vertices filter out values that are not used outside

the loop.

® duhile vertices: For variables used within a loop that are defined within the loop.

These vertices filter out values produced by the last iterations of the loop.

Example 2 The PRG for the power function from Chapter 1, modified in order to

conform to the language represented by PRGs, is shown in Figure 12. O

3.1.2 Value-sequence semantics of PRGs

In the formal semantics of the PRG, every vertex is associated with a sequence of val-
ues, which represents the values computed at the corresponding program point during
program execution. At assignment, input, and ¢ vertices, the value sequences corre-
spond to values taken on at the corresponding program point by the variables defined
at the statements, while at predicate vertices the values in the associated sequence are
the true/false values computed for the expressions at the predicate. Every vertexin the

PRG computes its own value sequence using the value sequences of its predecessors,

41

(a) z=2.0;
read(n);
a=1.0;
while (n>0) {
n=n-—1;
a=ax*uz;

}

write(a);

(b) .
- 83 = tnput(posn + +) 1

sy = [1.0 - nil] §

7
a=10) (read n) (while(n>0)
\ }

/ ,’ v

- -

s12 = whileMerge(ss, s14,84)
s13 = select(true, ss, s12)

s14 = map(Aa.Ab.a x b, s13, 58)

Figure 12: The power program and its program representation graph.

In the PRG in (b) above, solid lines indicate control dependences, while dashed lines
indicate flow dependences. ¢enier vertices are control dependent on both their asso-
ciated loop predicates and the control parents of their loop predicates. However, the
latter control dependences have been omitted from the PRG above as they play no
role in the value-sequence semantics. The PRG semantics uses a different set of depen-
dences from the actual flow and control dependences in the PRG in two other ways:
Control dependences to non-¢ vertices are ignored, and loop predicates are related to
associated ¢eq;: vertices.

42

and the expression at the vertex itself. Thus, in the PRG semantics, every vertex is
modeled as a function that maps a set of input value sequences (the output sequences
of its predecessors) to an output value sequence. Since the predecessors of a vertex in
the PRG are (almost always) its flow and control dependence predecessors, the PRG
semantics summarized above makes the role of flow and control dependences explicit.
Complete details of the semantics of PRGs can be found in [RR89]; in this section, we
summarize the relevant concepts.

Formally, the PRG semantics is defined in terms of the semantic domains given

below:

Val = Booleans + Integers + Reals
Sequence = ({nil, err} + (Val x Sequence)),
Stream = (Val + (Val x Stream))

VertexFunc = Stream — Vertex — Sequence

Val is a standard domain of values related by the discrete partial order. Sequence is
the domain of value sequences described in [Sch86, pp. 252-266], members of which

are partially ordered as follows:

(i) 1L E s VYV s € Sequence
ii) s E s V s € Sequence
(i) v -8 E v- s iff 55 E s Y s1,80 € Sequence, v € Val

Sequences terminated by err indicate computational errors (such as division by zero).
The domain of value sequences is a pointed complete partial ordering, such that the

limit of every chain of elements in Sequence is also a member of Sequence, and the meet

43

v.v.nil /

v.nil v.v. L

N/

nil v. L

N/
L

Figure 13: The pointed complete partial ordering of value sequences.

The partial ordering of value sequences is shown above. Sequences are incomparable
if they have a position where the value at the position (including nil) in the two
sequences differs. Therefore, if sequences s; and s; are incomparable, then s} and s
are incomparable, where s; C s} and s; C s,
operator 1 is defined for every pair of elements. This domain is depicted graphically
in Figure 13.

Stream is the domain of input streams from which read statements obtain values
for the variables they define. It is the set of finite and infinite sequences formed from
members of Val VertexFunc is the domain of mappings to which the meaning of a

PRG belongs. For a given PRG G, the meaning is the least mapping f € VertexFunc

that satisfies the following recursive equation (see Figure 14):

fi,v) = Ea(i,v, f)

where Eg is the conditional expression of the form given in Figure 14 that is appropriate
for G. (Note that the given PRG G of interest is encoded in the predecessor-access
functions used in Eg, such as whileNode(v), innerDef(v), etc.) All of the sequence-

transformation functions (replace, select, whileMerge, etc) are continuous.

44

Ec = Ai.dvAf.
type(v) = Entry — true:nal
type(v) = read — input(:)
type(v) € {assign,if, while} —

replace(controlLabel(v), funcOf (v), f i parent(v))
if #dataPreds(v) =0
map funcOf (v) (f i dataPred;(v),...[f i dataPred,(v))

otherwise

type(v) = ¢enter —

whileMerge(f ¢ whileNode(v), f 1 innerDef (v), f 1 outerDef (v))

bexit — select(false, f 1 whileNode(v), f ¢ dataPred(v))
bwhile — select(true, f 1 whileNode(v), f ¢ dataPred(v))

o1 — select(true, f i parent(v), f ¢ dataPred(v))

oF — select(false, f i parent(v), f ¢ dataPred(v))

bi — merge(f i ifNode(v), f i trueDef (v), f 1 falseDef (v))

where replace, whileMerge, select, and merge are defined as follows:

replace :

whileMerge :

merge :

select :

replace(z, y, L) = L replace(z, y, nil) = nal
replace(z, y, 2 - tail) = if (z = z) then y - replace(z, y, tail)
else replace(z, y, tail)
whileMerge(sy, s2, L) = L
whileMerge(s1, s2, nil) = nil
whileMerge(si, sz, T - tail) = z - merge(sy, 2, tail)
merge(L, s1, sp) = L merge(nil, s1, s2) = nil
merge(true - taily, L, sp) = L
merge(true - taily, nil, s) = nil
merge(false - taily, s;, L) = L
merge(false - taily, s, nil) = nil
merge(true - taily, z - taily, s) = z - merge(taily, taily, s)
merge(false - taily, s, z - taily) = z - merge(taily, s, tail,)
select(z, L,z)= 1 select(z,y, L) = L
select(x, nil, nil) = nil
select(x, y - taily, z - taily) = if (z = y) then z - select(z, taily, taily)
else select(z, taily, taily)

Figure 14: The semantic equations associated with PRG vertices.
Some vertex types are omitted for brevity (see [RR89] for a complete definition of Eg).

45

Definition 5 The meaning function M over the domain of PRGs is:

M: PRG — VertezFunc
M [G] = fix F where F : VertexFunc — VertexFunc
F = Af. X v Eg(s,v, f)

The meaning function for PRGs associates every vertex with a value sequence that

is either an infinite sequence or a sequence terminated by nil or err.

Example 3 Figure 12 shows the power program and the semantic equations at selected

vertices in its PRG. In particular:

o At vertex 3, the function input uses the implicit input stream, indexed by posn,
the position in the input stream, to obtain its values. Also implicit at a read is

an assignment of the form posn = posn + 1;

e At vertex 4, the function replace uses the sequence from the control predecessor

vertex 1) to produce the sequence containing the single value 1.0:
g g

f 1 vy = replace(true, 1.0, fiv;)

In general, replace generates a copy of a constant value for each time the vertex

executes.

e At vertex 12, the function whileMerge produces a value sequence s;, for variable
a by merging the sequences for a from vertex 4 and vertex 14 (sequences s4 and
514, respectively). It uses the Boolean value sequence from its control-dependence

predecessor (s5) to determine how the two sequences for a should be merged:

46

fiviy = whileMerge(fivs, fivia, f1vs)

e At vertex 13, the function select filters out values from the value sequence at the
Genter vertex (vertex 12) that correspond to instances when the loop predicate

evaluates to false:

f iviz = select(true, f i vs,f ¢ vig)

e The functions at non-¢ vertices (for instance, vertices 5, 11, and 14) are map

functions. Thus M [G] associates vertex 14 with output sequences as follows:

M [G] [1 - nil] vig = [2.0- nel] M [G] [2 - nil] vig = [2.0-4.0- nil]

It should be pointed out that the PRG semantics is non-standard in one respect:
It is more defined than the standard semantics in the case of inputs on which the
program does not terminate. (Roughly, the reason is that value sequences transmitted
along dependence edges can bypass non-terminating loops.) For inputs on which the
program does not terminate, the sequence of values computed at a program point
according to the standard operational semantics has been shown to be a prefix of the
value sequence associated with the program point in the PRG semantics. For inputs
on which the program terminates normally, it has been shown that the two sequences

are identical [RR89].

47

3.2 Semantic characterizations of static and finite
behaviour

In this section we use the PRG semantics to define three increasingly general forms
of static behaviour that account for dynamic control. We then define the orthogonal
concept of bounded static variation.

As noted in the introduction, the basis for this thesis is the observation that the
usual notion of a “congruent division” is an unsatisfactory correctness criterion for BTA
algorithms. For instance, a BTA algorithm that identifies variable a in the power pro-
gram from Figure 12 as static would be congruent. As we pointed out in Chapter 1, the
problem is that the entire sequence (or set) of values taken by n cannot be determined
without the dynamic input. This leads directly to the definition of “strongly static”
behaviour in terms of the value-sequence semantics of PRGs: A vertex is strongly static

if the sequence produced at the vertex is independent of the input.

Definition 6 Vertex v in PRG G is strongly (semantically) static iff the sequences in

{M [G] i v | i € Stream} form a chain in Sequence. 0

The definition above says that a vertex is strongly static provided its behaviour (its
value-sequence) is unaffected by changes in the run-time input. Note that we require
the sequences at a strongly static vertex to form a chain, as opposed to requiring the
same sequence over all inputs. This is because PRG vertices may produce L-terminated
(incomplete) sequences in the presence of infinite loops. Intuitively, if the sequences
produced at v on two different inputs ¢; and ¢, are incomparable, then the value of the

input determines the values produced at v. For instance, for vertex vy4 in the program

48

1= -1
while (i < 0) {

vii=1—1;
}

Figure 15: An example of “infinite” strongly static behaviour.
In the program above, vertex v satisfies the strongly static property, even though the
sequence produced at v contains infinitely many different values. Vertex v is in fact
static-infinite.-

from Figure 12, M [G] [1 - nil] vi4 and M [G] [2- ntl] vy4 are incomparable. Therefore,
v14 is not strongly static.

The strongly static property defined above has the following advantage: If a vertex
represents a static computation under dynamic control, it is not strongly static. Hence,
if a BTA algorithm can be designed so that it conservatively identifies vertices that
satisfy the strongly static property (i.e, if a vertex v is marked “S”, then v is strongly
static), then we will be able to eliminate one of the reasons why a partial evaluator
may not terminate, namely because of static computations under dynamic control.

Note that the strongly static property, by itself, does not guarantee that a vertex
will produce only finitely many different values. For instance, vertex v in the program
from Figure 15 is strongly static. As discussed in the introduction, this may cause
a partial evaluator to fail to terminate. Vertices such as vertex v in Figure 15 are
precisely the “static-infinite” vertices.

The strongly static property has the following drawback: Some vertices that could

49

read(dyn);
while (dyn # 0) {
count = 0;
while (count < 3) {
v : count = count + 1;

}

vdyn = dyn — 1,

}

M[G]iv € {nil, 1-2-3 -nil, 1-2-3-1-2-3-nil,...} Vi € Stream

Figure 16: An example of weakly static behaviour.

be treated as static without compromising the requirement of termination under dy-
namic control will also fail the property. For instance, consider the behaviour of pro-
gram point v in the program from Figure 16.

In this example program, the computation represented by the inner counting loop
can be replaced by a single assignment, using a partial evaluator that treats variable
count as static. Although the program may appear contrived, this kind of nested code
is found frequently in specializable code. Unfortunately, vertex v fails the strongly
static property, because its value-sequence depends on the dynamic input. The reason
for this is as follows: The counting loop is nested within a dynamic predicate. Since
control dependences reflect the nesting structure of a program, the control dependence
from the dynamic outer loop predicate to the inner loop manifests itself in the value
sequences of the vertices in the inner loop.

However, the key observation is that for every dynamic input, the value-sequence

at v is formed from zero or more repetitions of the same base sequence (in this case,

50

[1-2-3]). Therefore, vertex v can be treated as static. Although this notion may not
seem intuitive, it says that while run-time data may control how many times the vertex
executes, it does not control the actual values it computes. In the example program, the
control dependence from the outer loop predicate to the constant assignment feeding
the inner loop represents the effect of run-time data on how many times v executes;
under our generalized notion of staticness, this dependence is irrelevant. We term this

generalized form of staticness “weakly static” behaviour.

Definition 7 Vertex v in PRG G is weakly (semantically) static iff at least one of the

following holds:

(a) 3s € Val* s.t. Vi € Stream, M [G] i v € DC({nil} U {s" - nil|n € N}U{s*})
or
(b) 3s € Val* s.t. Vi € Stream, M [G] i v € DC({nil, s})

where DC is the downwards-closure operator on Sequence. a

We call sets of the form {nil} U {s" - nilln € N'} U {s*} from property (a) above
rational repetitions. As in the case of strongly static behaviour, we generalize rational
repetitions to their downwards closures, in order to account for L-terminated sequences
(we refer to subsets of these closures as approzimate rational repetitions). Property (b)
above accounts for a situation where the base sequence is infinitely long. It is included

so that the class of weakly static vertices includes all of the strongly static vertices.

Example 4 Vertex v from the program in Figure 16 is weakly static, because the
sequences produced at v over all possible inputs are rational repetitions. In contrast,

vertex vi4 in the power program from Figure 12 does not satisfy the weakly static

91

read(z;);

if (z; #0) {
zq 1= 0;

} else { M [G]ive{0-nil,10-nil} Vi€ Stream
xq := 10;

b

VT3 = Ty

- Figure 17: An example of statically varying behaviour.

property in Definition 7 above, because there is no common base sequence from which

the sequences in {[2.0 - nil], [2.0-4.0 - nil], [2.0-4.0-8.0 - ni{]...} are formed. O

Note that both Definition 6 and Definition 7 permit vertices that produce infinitely
many different values to be classified as static. In the next section we show that
vertices which satisfy either of these definitions and produce infinitely many different
values are precisely the vertices that exhibit “static-infinite” behaviour. Both of these
definitions characterize staticness purely in terms of dependence on dynamic input and
not in terms of any finiteness condition. We define a third, more general, form of
static behaviour that does involve boundedness conditions, namely “statically varying
behaviour.” The motivation for this notion of staticness comes from, for example, the
behaviour at program point v in the program from Figure 17.

Under both Definition 6 and Definition 7, vertex v in the program from Figure 17
is not static. This is because the dynamic input determines the actual values in the
value-sequence at v. In particular, property (a) from Definition 7 is not satisfied at v as
there is no common base sequence in {0 - nil, 10 - nil}. However, there is a bounded set

of base values from which these sequences are formed, namely {0,10}. Therefore, the

52

values taken by 3 at v can be enumerated during partial evaluation without resulting
in non-termination. Hence we would like to treat such variables as static. We capture

this behaviour by generalizing weak staticness to statically varying behaviour.

Definition 8 Vertex v in PRG G is statically (semantically) varying iff at least one of

the following holds:

(a) 3B C Val,|B| finite, s. t. Vi € Stream,
M [G] i v € DC({nil} U {vy ... vg-nillvy,...,vx € B} U BY)
or
(b) v is weakly static.

where DC is the downwards-closure operator on Sequence. o

We refer to sets of the form {nil} U {v, - e vy - nillvy,...,v € B} U B from the
properties above as static variations. Prbperty (a) above ensures that all sequences at
the vertex are constructed from a finite set of base values. Property (b) is introduced in
order to ensure that statically varying behaviour generalizes weakly static behaviour,
in the sense that every weakly static vertex is also statically varying.

Definitions 6-8, our three progressively more inclusive definitions of static behaviour,
all allow the vertices that satisfy their conditions to produce infinitely many different
values in their output sequences. Therefore, a BTA algorithm that conservatively
approximates any of the three definitions above may still result in partial evaluation
that does not terminate under certain conditions, in particular in the presence of static-
infinite computation. In Chapter 1 we pointed out that a partial evaluator is guaranteed

to terminate under all conditions if it treats only variables that are bounded static

53

varying (BSV) as static. A variable is BSV if the set of distinct values taken on by it

over all possible dynamic inputs is finite [JGS93, pp. 300].

Definition 9 Vertex v in PRG G is (semantically) bounded static varying iff:

dB C Val,|B]| finite, s. t. Vi € Stream,
M [G]ive DC{nil}U{vy-... vg-nil|vy,...,vx € B}U BY)

where DC is the downwards-closure operator on Sequence.

Vertex v is (semantically) non-BSV iff it is not semantically BSV. O

Definition 9 above differs from Definition 8 by dropping property (b), thereby en-

suring that only a finite set of different values is produced.

3.3 Notions of safety for binding-time analyses

In the previous section we presented semantic definitions for static and BSV behaviour
in terms of the PRG semantics; we now show how these definitions can be used to

establish a framework for “safe” binding-time analysis.

3.3.1 Specializable Vertices and Static-Infinite Computation

The key concept is as follows: If the BTA algorithm is conservative with respect to
any of our definitions of staticness, partial evaluation is guaranteed to terminate in
the absence of static-infinite computation. In addition, if the BTA is conservative
with respect to our definition of BSV behaviour, partial evaluation is guaranteed to
terminate under all conditions. We argue that the former guarantee is more appropriate

for partial evaluation than the latter.

54

We group vertices in the PRG of a program with similar properties into sets as

follows:

Static(G) = {v € V(G)|v is semantically static}
BSV(G) = {v € V(G)]v is semantically BSV}
Specializable(G) = Static(G) N BSV(G)

Vertices that belong to Static(G) have the property that the set of values in their
value-sequences is independent of the dynamic input. (Note that we are really defining
three classes of specializable vertices, according to whether Static(G) refers to strongly
static, weakly static, or statically varying vertices.) Some of these vertices are also
BSV: a specializer can perform the computation at these vertices, termed specializable
vertices, without running the risk of falling into a non-terminating computation.

We can now define the semantic notion of static-infinite computation as follows:
Any vertex in Static(G) takes on values that are independent of dynamic input; in
particular, the values in the value-sequence at the vertex are not built up under dynamic

control. If such a vertex is not BSV, it must be static-infinite.
Definition 10 PRG G is static-infinite iff Static(G) — BSV(G) # 0. O

In contrast with the definition of Jones et al. in [JGS93, pp. 118], which is an
informal description of static-infinite computation as an “infinite static loop,” that ié,
“a loop not involving any dynamic tests,” Definition 10 is a semantic definition that

can be used to characterize the safety properties of a binding-time analysis algorithm.

95

3.3.2 BTA characterizations

With a formal notion of static-infinite computation in hand, we can now define the
notions of safety and conditional safety for binding-time analyses.
A binding-time analysis bta of program P (or its PRG G) is a function that maps

vertices in G to the set {5, D}. We divide V(@) into two sets S(G) and D(G) on this

basis:

S(G) = {v e V(Q)|bta Gv = 8§}
D(G) = V(G) — §(G)

By mapping vertices to S, a binding-time analysis identifies them as vertices that are
specializable. The binding-time analysis is safe only if these vertices are semantically

specializable.

Definition 11 Binding-time analysis bta is safe on a set G'set of PRGs iff V G € Giset,

S(G) C Specializable(G). O

A safe bta results in two-phase specialization that is guaranteed to terminate for all
programs, including those that contain static-infinite computations. We are interested

in BTAs that provide a weaker guarantee of termination, as follows:

Definition 12 Binding-time analysis bta is conditionally safe on a set Gset of PRGs
iff V G € Gset, S(G) C Static(G). O

This definition is the tool with which one can formalize the notion of “a BTA
for which the specialization phase terminates, assuming that the program contains no

static-infinite computations”:

56

Corollary 13 For a set of PRGs Gset that contains no static-infinite PRGs, bta is

conditionally safe on Gset < bta is safe on Gset. a

Thus, a conditionally safe BTA guarantees termination in the absence of static-

infinite computation.

3.3.3 Termination versus computational completeness

As pointed out by Jones in [Jon95], specialization involves a basic tradeoff between
“totality” and “computational completeness.” A specializer can be computationally
complete in that it executes every static computation in its subject programs, but then
on a program that contains static-infinite computations, the specializer must diverge
without producing a residual program, thereby violating the totality condition. On
the other hand, a specializer can be total (i.e., provide a termination guarantee) by
attempting to execute static computations in a conservative manner, but it will lack
computational completeness as a result.

In the context of the definitions provided in the previous section, both safe and con-
ditionally safe BTAs favour totality over computational completeness, when compared
with congruence-based BTAs. However, our experiments show that conditionally safe
BTAs can provide totality via the termination guarantee without unduly compromising

the ability of the partial evaluator to identify and execute away static code.

3.4 BTA algorithms for single-procedure programs

The definitions of static behaviour in Section 3.2 may seem somewhat arbitrary and

unintuitive. However, they have the advantage that even though they are semantic

37

properties, they are based on the PRG semantics, in which flow and control depen-
dences are explicit. Therefore, it is possible to design BTA algorithms that are simple
reachability operations on the PRG (or, that use flow and control dependence infor-
mation) such that these algorithms can be proven conditionally safe.

In this section we define three such BTA algorithms as abstract interpretations of
the PRG semantics, each of which conservatively identifies a form of static behaviour
from the definitions in Section 3.2. The first algorithm follows control dependences
blindly, and identifies only strongly static vertices as S; the second follows control
dependences selectively, and thus identifies some weakly static vertices as S as well.
The third BTA identifies some statically varying vertices as S by ignoring control
dependences to vertices that have multiple static data dependence predecessors. We
use the framework developed in the previous sections to prove the conditional safety
of these analyses. We also show how the results of these BTA algorithms can be
converted into the markings produced by standard BTA z;lgorithms, which identify
program variables as static or dynamic. Finally, we critique these algorithms and
point out their benefits and drawbacks when compared with other BTA algorithms.
All three algorithms can be viewed operationally as variants of operations for program

slicing [Wei84], and can therefore be performed in time linear in the size of the PRG.

3.4.1 The Strong-Staticness BTA

The goal of the Strong-Staticness BTA is to identify a subset of all the strongly-static
vertices in the PRG of a program. The idea is to follow all flow and control dependence

edges from the set of read vertices in the PRG, marking with D all vertices that are

58

encountered along the way. This operation is identical to a forward program slice
[HRBY0] from the set of read vertices in the PRG. Vertices that are not in this forward
slice are marked with 5.

Vertices that are not in the forward slice of any read vertex (i.e. vertices marked 5)
are guaranteed to have no read vertex in their backward slices. Intuitively, this means
that changes in the behaviour of any read vertex (in particular, the input values) will
not affect these vertices. In terms of the PRG semantics, this means that the value
sequences produced at the S vertices are independent of the input stream, which is
consistent with the characterization of strongly static behaviour in Definition 6. Thus,
the algorithm identifies a subset of the strongly-static vertices in a PRG as static.

Our task is now to justify this from a semantic standpoint — in particular, to show
that this is a conditionally safe BTA. We do this by presenting the Strong-Staticness
BTA as the fixed point of an abstract interpretation that is consistent with the PRG
semantics defined in Section 3.1.2. This interpretation is defined by the following
recursive equation (see Figure 18) which resembles the PRG equation from Section

3.1.2:

VertezxAbs = Vertex — {S,D} with ST D
fa @ VertezAbs; f, = Av.Eg& (v, fa)

All the abs.x functions in E are continuous, and propagate the value D if any
of their inputs has the value D. The abstract semantics is defined as the least

fa € VertezAbs that satisfies the equation above:

M, : PRG -+ VertezAbs

59

EX = Julfa.
type(v) = Entry — S
type(v) = read — D
type(v) €. {assign,if, while} —
abs_replace(f, parent(v))
if #dataPreds(v) =0
abs.map(f, dataPred;(v),... f, dataPred,(v)

otherwise

type(v) = QPenter —

abs_whileMerge(f, whileNode(v), f, innerDef(v), f. outerDef(v))
type(v) = dexit — absselect(f, whileNode(v), f, dataPred(v))
type(v) = ¢white — absselect(f, whileNode(v), f, dataPred(v))
type(v) = ¢r — abs.select(f, parent(v), f, dataPred(v))
type(v) = ¢ — abs.select(f, parent(v), f, dataPred(v))
type(v) = ¢ — abs_merge(f, ifNode(v), f, trueDef(v), f, falseDef(v))

where abs_replace, abs.map, abs_whileMerge, abs_select, and abs_merge
are defined as follows:

abs_replace(a) = a

abs_select(a,b) =allb

abs.merge(a,b,c)=alUblUec
abs_whileMerge(a, b, ¢) =alUbllc
abs.map(as, ..., a,) =a1U...Ua,

Figure 18: The abstract equations representing the Strong-Staticness BTA.

60

M,[G] = fix F, where F, : VertexAbs — VertexAbs
F,= A, 0.E&(v, fu)

F, is continuous on a finite domain (a given G has a finite number of vertices). Hence,
the fixed point is always reached in a finite number of steps. In fact, the abstract
semantics merely encodes a reachability problem on the PRG whose solution can be
obtained in time linear in the size of G.

In order to demonstrate that the Strong-Staticness BTA is conditionally safe (i.e.,
that a vertex is marked S at the fixed point only if it is strongly static), we compare
the results of F and F, using an abstraction function abs, as shown in Figure 19. abs
takes an element of type VertezFunc from the concrete domain, determines whether
that function maps a vertex to a chain of sequences (possibly uncompleted) over all
inputs, and abstracts the vertex output to S or D accordingly.

The conditional safety of the Strong-Staticness BTA is established by the following

sequence of lemmas. (Some of the proofs are omitted for the sake of brevity.)

Lemma 14 abs is continuous on VertezFunc.

Proof. We prove the lemma in two parts:

(a) abs is monotonic on VertexFunc:
Consider ¢, ¢ € VertezFunc s.t. ¢ £ . Then it must be that civ & ¢ i v
Vi € Stream, Y v € Vertez.
if abs(c) v = S then abs(c) v T abs(c) vsince S T D
else abs(c) v = D. From Definition 6, 3 1;, is € Stream s.t. ¢ i v and c iz v

are incomparable. Since ci; v C ¢ iy vand ciz v T ¢ iy v, it is a property of

e
LiggL,)

J=0
o g N
abs(IRl o Q F,
j=0 ,.
-—.» .

VertexFunc VertexAbs

abs : VertexFunc — VertexAbs

S if {civ]|: € Stream} is a chain in Sequence
D otherwise

abs(c) = /\v.{

61

Figure 19: abs, the abstraction function used to compare the results of F and F,

62

Sequence that ¢ 1; v and ¢’ i, v are incomparable. Hence, abs(¢') v = D.

(b) for any chain C = ¢;,...¢;,... in VertezFunc, abs(| |¢;) v = | |abs(c;) v:
i=1 j=1

if abs(|_|¢;) v =5 then Vj, abs(c

S, since abs is monotonic.
=

j) v =
Hence, | |abs(c;) v =S else abs(|_|c;) v=D. Then 34y, i, € Stream
j=1

i=1
o0

s.t. (|_]¢;) 41 v and (| |¢;) é2 v are incomparable. Let & € N be the first
=1 =1

position at which these sequences have different non-.L values. Then:
(iy3m; € N sit. |ejiyv] > kforallj > my
(i)Imy € Nsit. |¢jiav| > kforallj > my

Hence |c; 43 v| > kand |¢j 12 v| > k, forall j > max(m;,ms). Since

C is a chain, it follows that ¢; 7; v and ¢; i3 v differ at position k for all

j > max(my,my). As a result, abs(c;) v = D for all 7 > max(my, ma),
and | |abs(c;) v = D. 0
J=1

The next lemma is a statement of the property “chains beget chains.”

Lemma 15 For any PRG vertex v that is not a read vertex, {F'*! Liv|: € Stream}

is a chain in Sequence if:
Vu € preds(v), {F? Liu|i € Stream} is a chain in Sequence.

The proof of this property involves a case analysis on the PRG equations. a

Our next task is to show that, at every step, the vertex function produced by F
abstracts to a lower value than that produced by F, at the corresponding step (see

Figure 19).

63

Lemma 16 abs(F/ 1) T F,J 1, Vj € N

Proof. We prove the lemma by induction on j:

Base case (j =0): abs(L)v = S C L,v
Induction step: Assume abs(FV L) T Fi 1,
if abs(F/*! 1) v = S then abs(Fit! 1)v C Fitl L v
else ab.s(]?“j+1 1)v = D. From Lemma 15, either:
(i) v i‘s a read vertex. Then Fi*! 1, v = D by definition. Or,
(i) 3u € preds(v) s.t. abs(F? L) u = D. Hence by assumption,

F/ L,u = D. Then FI*' 1, v = D by definition of F,. O

Phrased differently, Lemma 16 says that at every step, if the value produced by F, at
a vertex is S then F produces a chain of sequences over all inputs at the given vertex.
This result, when extended to the fixed points of F, and F, demonstrates that the

Strong-Staticness BTA is conditionally safe for all PRGs:

Theorem 1 For every vertex vin PRG G, M, [G]lv = S = v € Static(G).
Proof. From Lemma 16, for all j, abs(F? L)v C FJ L, v.
Hence, L°_ o abs(FY L)v E U~ o Fi L v. Because abs is continuous (Lemma 14),

i =0

it follows that: abs(¥= ¢ 7 L)v E LU= ¢ F4 Lo v. Or, abs(M [G])v & M, [G] v.

In particular, if Ma[G]v = S, then abs(M [G])v = S. Hence {M [G]iv | i € Stream}

is a chain in Sequence. It follows that v € Static(G). o

To summarize, we have shown that the forward-slice operation, a natural algorithm
for tracing dynamic behaviour in terms of flow and control dependences, produces a

conditionally safe BTA. Because program slicing can be solved as a reachability problem

64

on the PRG, the computational complexity of the Strong-Staticness BTA is linear in
the size of the PRG. In the worst-case, the number of edges in the PRG of a program
may be quadratic in the size of the program. Hence, the Strong-Staticness BTA has
worst-case complexity quadratic in the size of the program (plus the time to construct

the PRG).

3.4.2 The Weak-Staticness BTA

As discussed in Section 3.2, the strongly-static property is rather restrictive because it
does not characterize static code nested within dynamic predicates as strongly static.
In operational terms, the Strong-Staticness BTA is restrictive because it always con-
siders control dependence edges to transmit dynamic behaviour. Therefore, we define
the Weak-Staticness BTA, an analysis that identifies a subset of all the weakly-static
vertices in the PRG of a program. The Weak-Staticness BTA is similar to the Strong-
Staticness BTA, differing only in how constant vertices are treated.

Consider constant assignments. The sequence produced at a constant assignment

vertex is given by (Figure 14):
f iv = replace(controlLabel(v), funcOf(v), f ¢ parent(v))

where funcOf (v) is the constant expression and parent(v) is the control predecessor.
The Strong-Staticness BTA would mark v with a D if parent(v) has a D value, since
f 1 parent(v) determines the length of f ¢ v (and thus determines the sequence at
v). However, regardless of the behaviour at parent(v), the sequence at v will be a
rational repetition in which funcOf(v) is repeated a variable number of times over

varying inputs. Hence, in the Weak-Staticness BTA an S value is produced at constant

65

read(dyn);
- while (dyn # 0) {
count = 3;
dyn = dyn — 1;

}

Figure 20: An example of specialization using the Weak-Staticness BTA.
The program shown above is the residual program obtained by specializing the program
from Figure 16, using the markings produced by the Weak-Staticness BTA.

assignments, in all cases. Formally, the function abs.replace in the abstract semantics

is re-defined as follows:
abs.replace(a) = S

Example 5 In the program from Figure 16, the constant assignment count = 0 within
the dynamic outer loop is marked S by the Weak-Staticness BTA. As a result, the
entire inner loop is marked S, and specialization produces the residual program shown
in Figure 20. The initialization of count has the effect of blocking the dependence from
the outer loop to the inner. If the initialization were moved outside the outer loop, the
inner loop would no longer be invariant with respect to the outer; it would be marked

D by the Weak-Staticness BTA.]

The proof that the Weak-Staticness BTA is conditionally safe mimics the one for

the Strong-Staticness BTA, with two modifications:
(a) abs is modified to capture weakly static behaviour:

S if {c i v|i € Stream} is an approximate rational repetition
abs(c) = Mv.

D otherwise

66

(b) Lemma 15 is modified to account for weakly static behaviour, as follows:

Lemma 17 For any PRG vertex v that is not a read vertex, {F’*! Liv|i € Stream}

is an approximate rational repetition if:

(a) Yu € preds(v),{F? L i u|i € Stream} is an approximate rational repetition, or
(b) funcOf(v) is a constant value. O

The functions at PRG vertices are all structured so that when predecessor sequences
uy, Uz, ..., Uy at vertex v are all rational repetitions, the output sequence at v is a
rational repetition, with a base repeating sequence that is at most as long as the least
common multiple of the lengths of the base repeating sequences in uy, ug, ..., ux. This

is the basis for the semantic justification of conditional safety for this analysis.

3.4.3 The Static-Variation BTA

The weakly-static property has the drawback that a vertex that chooses between two
static data-predecessors based on a dynamic conditional is treated as dynamic. This is
undesirable in situations where static computations nested beneath different branches
of a dynamic predicate are used in later computations, as in the program from Figure
17 in Section 3.2. Therefore, we define the Static-Variation BTA, an analysis that
identifies a subset of all the statically-varying vertices in the PRG of a program. The
Static-Variation BTA is similar to the Weak-Staticness BTA, differing only at ¢;y merge
vertices.

Consider ¢;; vertices. The sequence produced at a ¢;; vertex is given by (Figure

14):

67

f i v =merge(f i ifNode(v), f i trueDef(v), f i falseDef(v))

where ifNode(v) is the corresponding predicate and trueDef(v) (falseDef(v)) is the
data predecessor within the true (false) branch of the conditional statement. Consider
a case in which both data predecessors of v are marked S: the Weak-Staticness BTA
would mark v with a D value if ifNode(v) has a D value, since f ¢ ifNode(v) determines
the actual valges in f 1 v. In the Static-Variation BTA, an S value is produced in this
case, the idea being that if the data predecessors produce bounded values, the ¢;;
vertex produces bounded values as well, as it produces only values that are produced

at either of its data predecessors.

Example 6 In program P in Figure 21, the assignment z3 = =z, is marked S by
the Static-Variation BTA. As a result, the predicate following it is marked S, and

specialization produces the program P’ in Figure 21. a

The Static-Variation BTA is plausible because of the following observation: The
functions at PRG vertices other than ¢enser vertices all have the property that when
predecessor sequences uj, Us, ..., Ur at vertex v are all static variations, the output
sequence at v is a static variation whose base set has at most as many values as the
product of the number of values in the base sets of uy, us, ..., ug.

This BTA algorithm has the advantage that it captures a general form of static
behaviour. Like the Strong-Staticness BTA and Weak-Staticness BTA, however, it
has the drawback that it is applicable only to a small subset language of imperative
programs. In particular, it is unclear how the PRG semantics or these algorithms can

be extended to handle programs with arbitrary control-flow and aliased variables.

68

read(z); P': read(z;);
if (z1#0) { if (z; #0) {
z2 = 0; Ty =0;
} else { } else {
zy = 10; read(z,);
h }
T3 = T3
if z3 < 10 {
Ty = 0,
} else {
read(z4);

}

Figure 21: Specialization using the Static-Variation BTA.
Program P’ above is obtained by specializing the program P above, using the markings
produced by the Static-Variation BTA.

3.4.4 Standardizing the Results of PRG-Based BTA

Readers who are familiar with BTA algorithms in the literature that operate on control-
flow representations may have observed two points of incompatibility between our
algorithms and those in the literature. First, our algorithms obtain an initial division
of static and dynamic parameters using constant assignments and input statements,
respectively. In contrast, standard BTA algorithms process a goal function whose
parameters are divided into static and dynamic parameters. Second, our BTAs mark
PRG vertices as static or dynamic, whereas standard BTA algorithms mark program
variables as static or dynamic.

The first difference is a matter of style. We have chosen to use the imperative
language represented by PRGs without modification. However, we could modify the

language to name a single function that takes a finite number of parameters, without

69

changing any of the treatment in the previous sections. This is the approach that we
have taken in our implementation of these algorithms.

BTA algorithms for imperative programs can be placed in three categories, based
on the manner in which they mark program variables: Some BTAs produce “uniform
divisions,” in which every variable is marked as either static or dynamic throughout the
program; other BTAs are “flow-sensitive,” in that they mark every variable as static or
dynamic at every program point; finally, “polyvariant” BTAs assign multiple markings
to the same variable at a given program point.

Transforming PRG vertex markings to a uniform division of program variables is
trivial: Every variable that is defined at any PRG vertex that is marked dynamic
is marked dynamic. All other variables are marked static. In order to obtain static
vs. dynamic markings for every program variable at every program point, we use
the markings at PRG vertices as the input to a simple forward any-path Gen-Kill
data flow problem [Hec77] on the CFG, as shown in Figure 22. There is a one-to-one
correspondence between the nodes in the CFG of a program and the non-¢-vertices in
the PRG of a program. Thus, the basic concept behind our solution is as follows: At the
entry vertex, all variables are marked static. At every other CFG vertex, the marking
for a program variable at the vertex is obtained by joining the output markings for the
variable at all predecessors. If the vertex is an assignment vertex, the output marking
for the variable that is assigned at the vertex is obtained by joining the marking for
the corresponding PRG vertex with the marking for the variable at the vertex. For
all other variables, the output marking is identical to the marking at the vertex. For
all non-assignment vertices, the output marking for every variable is identical to the

marking for the variable at the vertex.

70

In(v)var] = || Out(v)[var]

wepreds(v)

Gen(v)[var] = if typeof(v) = assign and lhs(v) = var and v € D(G) then D
else S

Out(v)[var] = In(v)[var]U Gen(v)var]

Figure 22: Conversion of PRG markings to CFG markings.

The equations above represent a forward any-path data flow problem on a CFG. U is
the join operation on the two element domain {5, D} with S T D. D(G) is the set
of PRG vertices marked as dynamic by one of the BTA algorithms described in this
section. The set of equations above can be solved using a structured approach in which
the equations are solved for progressively larger blocks of code. This can be achieved
in time O(n * v), where n is the number of nodes in the CFG, and v is the number of
program variables.

3.5 Limitations and related work

The BTA algorithms described above have the advantage that they can be shown to
be conditionally safe, in terms of the PRG semantics. In Chapter 4 we extend the
treatment in this chapter to programs with procedures and procedure calls. However,
it is unclear how the PRG semantics or these algorithms can be extended to handle
programs with arbitrary control-flow and aliased variables. In Chapter 5 we provide an
alternative solution to this problem, by first defining the concept of “loop dependence,”
and then designing a BTA algorithm that uses flow dependences and loop dependences
to trace dynamic behaviour. This algorithm handles programs with arbitrary control-
flow as well as aliased variables. However, it is not based on a formal semantics similar
to the PRG semantics; therefore, unlike in the case of the BTA algorithms discussed

in this chapter, it has the drawback that its correctness will be argued only informally.

71

One novelty of our approach to binding-time analysis is our use of control de-
pendence to determine dynamic behaviour. Control dependences were introduced by
Denning and Denning to formalize the notion of information flow in programs, in the
context of computer-security issues [DD77]. Since then, they have played a fundamen-
tal role in vectorizing and parallelizing compilers (for instance, see [FOW87]). The role
of control dependences in partial evaluation was first noted by Ershov in [Ers82]. He
used the term-“logical dependence” to refer to transitive control dependence. Jones
hinted at the possibility of using control dependences during binding-time analysis in
a remark about “indirect dependences” caused by predicates of conditional statements
[Jon88], but this direction was not pursued. Neither author described how the con-
servative results of analyses that always follow control dependences could be avoided.
In [JGS93], Jones et al. informally presented the notions of “oblivious” and “weakly
oblivious” programs (in contrast with unoblivious programs), a distinction based on
whether a program involves tests on dynamic data. These notions are clearly related
to control dependence, but were developed not to obtain correct BTAs but to identify
when partial evaluation might produce good results.

Our approach is based on dependence graphs because they make the role of control
dependences explicit. One such graph is the program dependence graph (PDG) defined
by Ferrante et al. in [FOW8T7]. The PDG has been extended in several different
directions: Horwitz et al. defined the system dependence graph (SDG), an extension
of the PDG to handle programs with procedures [HRB90]. Alpern et al. defined the
static single-assignment (SSA) form [AWZ88] for programs, which includes ¢ or gate
statements for merging data from multiple predecessors, while Yang et al. defined the

program representation graph (PRG) as an extension of the PDG with ¢ nodes similar

72

to the gate nodes in the SSA form [YHR92].

We are able to use dependence graphs to reason about program behaviour (in this
case, static and dynamic behaviour) because they are faithful to the semantics of the
program. For instance, Horwitz et al. have shown that if the PDGs of two programs are
isomorphic, given the same initial state either both programs diverge or both produce
the same final state [HPR88a]. Such a property makes it reasonable to develop a
semantics for PDGs themselves. Selke has defined a graph rewriting semantics for
PDGs [Sel89] that represents computation steps as graph transformations. Cartwright
et al. decomposed the meaning function for a program into a function that transforms
programs into “code trees” that resemble PDGs, and an interpreter for code trees
that provides an operational semantics for code trees [CF89]. These two semantics for
PDGs are unsuitable for binding-time analysis because they do not provide a basis for
capturing static and dynamic behaviour. In particular, the behaviour of a particular
vertex or the values produced by it cannot be captured directly from the semantics.
As a result, we use Ramalingam’s semantics for extended PRGs [RR89).

Program representations such as the PRG and SSA form are similar to the con-
tinuation passing style (CPS) [App92], in that information is stored about the future
use of variables in the program. More formally, Kelsey has shown in [Kel95] that it is
always possible to convert programs written in SSA form to CPS. This might suggest
the use of CPS for BTA rather than the PRG used in our approach. Further, Consel
and Danvy have shown that conversion of a subject program to CPS style improves the
residual program produced for it by a partial evaluator [CD91]. The arguments against
using CPS are two-fold: (a) As pointed out by Kelsey in [Kel95], converting an imper-

ative program to CPS style requires the same flow analysis as that required to produce

73

the SSA form (or the PRG), and (b) Given a choice between two essentially similar
representations, the PRG is preferable as its semantics provides a straightforward way
to define a semantic foundation for partial evaluation.

The first attempt at a semantic foundation for the partial evaluation process was
provided by Ershov in [Ers82]; he defined it as a partitioning of elementary computation
steps C' into static computations C’ and dynamic computations C”. Jones provided the
first definition-of what it means for a BTA algorithm to produce “correct” markings
[Jon88] (congruence). As mentioned earlier, the notion of congruence is an unsatisfac-
tory correctness criteria for BTA algorithms; we have shown that the PRG semantics
can be used to define suitable criteria. Wand has presented a correctness criterion for
BTA-based partial evaluation of terms in the pure A-calculus in [Wan93], but it is not
clear if that can be applied to specializers for imperative programs.

Other authors have also tackled the termination problem, and have defined termi-
nation analyses that can be combined with congruence-based BTA to produce analyses
that provide a termination guarantee for all programs [Hol91, GJ96, AH96]. The chief

differences between their work and ours are:

e Other termination analyses are applicable only to restricted languages, and can
analyze only simple kinds of termination criteria. In Chapter 6 we describe a new
termination analysis that improves upon previous analyses by using an optimistic

approach and more complex termination criteria.

e More importantly, other termination analyses are based on conservatively iden-
tifying BSV variables, and do not consider control dependences explicitly. As

a result, such analyses cannot distinguish between unbounded behaviour arising

74

from dynamic control and unbounded behaviour arising from static-infinite com-
putation. As mentioned in the introduction, this results in every static loop being
treated conservatively, limiting the ability of the BTA to identify static variables.
In contrast, the approach advocated in this chapter can be explained as follows:
We selectively use control dependences to distinguish potential unbounded be-
haviour arising from dynamic control from unbounded behaviour resulting from
static-infinite computation. We then use termination analyses to conservatively
treat as static some of the variables identified as unbounded due to dynamic

control.

In this chapter, we have presented conditionally safe BTA algorithms for single-
procedure programs. In the next chapter, we extend this work to multi-procedure

programs.

75

Chapter 4

Extending safe BTA to programs

with procedures

In the previous chapter, we used the structure and semantics of PRGs to define condi-
tionally safe BTA algorithms. The class of programs that can be represented by PRGs
is restricted, since the PRG representation does not handle multi-procedure programs.
In this chapter, we extend our BTA algorithms to programs with procedure definitions
and calls.

In the case of single-procedure programs, we are able to use the PRG representation
in a straightforward manner, to develop a semantic foundation for BTA, and to design
BTA algorithms on the PRG. However, there is no equivalent representation for multi-
procedure programs. Therefore, we define the system representation graph (SRG),
which extends the dataflow semantics and structure of the PRG to programs with
procedures.

As we mentioned earlier, the PRG is an extension of the program dependence graph,
which represents single procedure programs. Horwitz et al have extended the PDG to
programs with procedures by defining the system dependence graph (SDG) [HRB90].
The SDG contains a dependence graph similar to the PDG for every procedure in the

program, and inter-procedural dependence edges that link the procedure dependence

76

graphs in order to account for the procedure calls in the program. In this context, the
SRG can be viewed as a semantic extension of the SDG, just as the PRG is a semantic
extension of the PDG.

In this chapter, we first outline the structure of the system dependence graph, and
its relationship with the program dependence graph. We then define the system repre-
sentation graph, and present its semantics. We use this semantics to define the strongly
static, weakly static and statically varying properties for vertices, as we did for PRGs
in the previous chapter. We then define BTA algorithms as simple reachability opera-
tions on the system representation graph to conservatively identify vertices that satisfy
these semantic properties. Like their single-procedure counterparts, these algorithms
provide a termination guarantee in the absence of static-infinite computation.

Procedure calls add several complications to the task of developing a dependence-
based representation for programs whose semantics is faithful to the standard oper-
ational semantics of a program. As a result, we restrict the class of multi-procedure
programs represented by SRGs to programs that have “reducible” call graphs [ASUS6].
A reducible call graph is one in which every call site on a procedure either produces
calls that are “entry” calls to the procedure, or produces calls that are recursive calls
to the procedure. Our experiments show that this class of programs is fairly general.
For instance, 15 of the 17 programs we examined from the Spec95 benchmark suite
have reducible call graphs. In Section 4.5, we discuss how we can extend our work to

handle arbitrary multi-procedure programs.

77

4.1 The system dependence graph

The system dependence graph (SDG) is an extension of the program dependence graph,
designed by Horwitz et al to extend the operations of program slicing and integration
to programs with procedure definitions and calls [HRB90].

Programs represented by SDGs have the same features as the single procedure
programs represented by PDGs, with the following extensions: There is a single main
procedure and ‘several auxiliary procedures, none of which may call the main procedure.
A procedure may have any number of parameters, each of which is passed by value-
result. Global variables are allowed; they are accommodated by adding them as extra
parameters to all procedures that either use or define them.

An SDG includes a program dependence graph for the main procedure, and sev-
eral procedure dependence graphs, one for every auxiliary procedure in the program. A
procedure dependence graph is similar to a PDG, except that it includes additional ver-
tices to handle the value-result parameters of the procedure. A procedure dependence
graph has a formal-in vertex for each parameter of the procedure, and a formal-out
vertex for every parameter that is re-defined within the procedure. For every call on a
procedure, there is a call vertex, which serves as a control predicate for the call, and
actual-in and actual-out vertices that match the formal-in and formal-out vertices in
the procedure dependence graph of the called procedure. Inter-procedural flow depen-
dence edges are added from actual-in vertices to corresponding formal-in vertices, and
from formal-out vertices to corresponding actual-out vertices. In addition, an inter-
procedural control dependence edge is added from the call vertex at a call site to the

procedure entry vertex of the procedure dependence graph of the called procedure.

78

Finally, the SDG is augmented with summary edges that enable precise slicing opera-
tions; we omit them from this discussion. The SDG for the power program, modified
to use recursive procedure calls, is shown in Figure 23.

The inter-procedural flow dependence edges between the formal and actual vertices
in the SDG implement a value-result passing mechanism. For a call from procedure P
to procedure @, P copies the values of the actual parameters into temporaries before
making the call. @ copies the actual values from the temporaries into its local param-
eter variables before executing the code in its body, and then copies the values from
its parameters to temporaries for the return values of the parameters. P then copies
the result values from the temporaries to the variables that are the actual parameters,

after which the call is complete.

Example 7 The SDG for the power program is shown in Figure 23. Although there
is no loop predicate in the program, the looping behaviour of procedure prodSum
is controlled by the dynamic predicate involving the dynamic parameter ctr. Thus,
parameter prod, which would be treated as static by a congruent BTA, is in fact in a
dynamic loop. This loop is represented in the SDG by the flow dependence cycle from
the formal-in vertex for prod to itself; the loop is controlled by a dynamic predicate.
We wish to extend the SDG in such a way that the semantics of the extended graph
indicates that the formal-in vertex for prod does not satisfy the analogues of the various

static properties defined in Chapter 3. a

79

(a) main () { prodSum (ctr, prod, amt) {
float z = 2.0; if (ctr>0){
read(n); ctr = ctr — 1
float a = 1.0; prod = prod * amt;
call prodSum(n,a, z); call prodSum(ctr, prod, amt);
write(a); }

(b) ‘ main’
— F e
(read (i n)) (a = 1.0) . (x = 2n0) . (call prodSum(n,a,x)) (write (a)) -

~

~

—

/’ \
',’4-—-——-—'-

(ctr = ctr;in) (prod = prod_in) (amt = amt_in) (if (ctr > O)J

1
(ctr_out = ¢l

r) (prod_out = prod)
!
!

v ~ T
AT N & \

A ~ - \ 1)

RN D by by

v oA X ; [Py ! \

PR ! - [=] 1k \
O X \er=cir- 1 prod = prod * amt) \ , | call prodSum(ctr,prod,amt) | | — | s

i
\\ \ N ~ o I | 1 : ‘ : ,
t .1

N

N \\ G:tr_in = ctr) “\\ *(prad_in = prod) ! (amt_in = amt) (ctr = ctr_out) ,'I (prod = prod_out)
N . 4 fl

Figure 23: The system dependence graph of the power program.
The power program, written using recursive procedures, is shown in (a) above. Its
SD@G, with summary edges omitted, is shown in (b) above. Inter-procedural flow and
control dependences are tagged with “=”. For every parameter par, par_in is the
copy-in temporary, and par_out is the copy-out temporary.

80

4.2 The system representation graph

The system dependence graph described in the previous section has the same drawback
as the PDG, in that it does not have an agreed upon semantics that we can use to
develop a semantic foundation for safe BTA. As a result, we define an extension of the
SDQG, which we term the system representation graph (SRG). The SRG is a semantic
extension of the SDG; it is also an inter-procedural extension of the PRG. In this
section, we def‘ine the structure and semantics of the SRG.

Before describing the SRG itself, we present our motivation for its design. Since
the PRG has a value-sequence semantics that makes the definition of static properties
straightforward, we would like the SRG to closely resemble the PRG. In particular,
we would like to ensure that every procedure graph in ;che SRG is almost identical
to the PRG representation of the procedure. In addition, we would like to develop
a semantics for SRGs that is a generalization of the PRG semantics, so that we can
extend the definitions of static behaviour from the previous chapter to the generalized
semantics.

We assume that the call graph of the program to be represented is reducible. The
concept of reducible graphs is generally used in the context of control-flow graphs.
Reducibility can be expressed formally in many forms; for instance, a control-flow
graph is reducible iff every loop in the graph has a single entry point. In the context
of call graphs, a call graph is reducible if every call site on a procedure produces either
only entry calls to the procedure, or ;)nly recursive calls. Therefore, we can claim that
every call site on a procedure is either an “entry” call site or a recursive call site. An

entry call site on a procedure P is one through which every call on P is an entry call,

81

or a call in which there is no previous invocation of P on the call stack. In contrast,
a recursive call site produces calls on P in which there are previous invocations of P
on the call stack. This property allows us to generalize the loops in PRG programs to
recursive procedures in the SRG. In addition, a program with a reducible call graph
can be transformed into a program in which every procedure has exactly one entry or
outer call site, every recursive call site on a procedure P is contained in the body of
P itself (i.e., there are no transitive recursive calls in the program), and non-recursive
procedures have been inlined so that every remaining procedure has a recursive call site.
We assume that this transformation has been carried out.! This allows us to selectively
place appropriate ¢ nodes at the recursive call sites in the program, to account for the
looping behaviour introduced by recursive procedure calls. Finally, we assume that
every procedure has at most one recursive call site within its body. This assumption
simplifies our presentation. All of our simplifying assumptions are discussed in further

detail in Section 4.5 of this chapter.

4.2.1 Syntactic structure of SRGs

Structurally, the SRG contains a procedure representation graph for every procedure in
the program. Procedure representation graphs extend procedure dependence graphs in
exactly the same manner that PRGs extend PDGs. The distinction between PRGs and
procedure representation graphs is that the latter include call and parameter vertices.
Because of the presence of the PRG ¢ vertices in procedure representation graphs,

SRGs do not require any actual-in or actual-out vertices. In addition, formal-in vertices

1The first transformation can be achieved by producing a new copy of the procedure for every
outer call site. The remaining properties can be obtained by inlining function calls until recursive
calls are encountered.

82

are replaced by @,aie vertices, which perform the copy-in actions of the value-result
parameter passing mechanism. Similarly, formal-out vertices are replaced by ¢ esuisr
and ¢resuito vertices, which pass on return values for parameters to inner and outer
call sites, respectively. The SRG contains two kinds of call vertices, callO and calll
vertices, for entry calls and recursive calls, respectively. Finally, ¢.u vertices are added
around recursive call sites. The role of these vertices is illustrated by the program in

Figure 24, and is summarized below:

® (ualue vertices mediate between the definitions of an input parameter at the outer
and inner call sites, in much the same way that ¢en., vertices mediate between

the outer and inner definitions of a variable defined within a loop.

® resuiio vertices filter the return values for an output parameter, passing on the
appropriate values to the outer call site. They play a role similar to that of ¢z

vertices.

® (resui; vertices filter the return values for an output parameter, passing on the
appropriate values to the inner call site. They play a role similar to that of ¢unie

vertices.
e callO vertices represent entry call sites.
e calll vertices represent recursive call sites.

® .. vertices are placed at every nesting level of a procedure between the proce-
dure entry vertex and the recursive call site. Their role is to mediate between
inner and outer control predicates in such a way that a calll vertex can deter-

mine when a particular sequence of recursive calls has been completed. The label

83

on the control dependence edge in the SRG from the outer predicate to the ¢..y
vertex is identical to the label on the control dependence edge in the SDG from

the outer predicate to the inner predicate.

Construction of the SRG can be thought of as follows: The SDG for the program is
constructed (without summary edges), PRG ¢ nodes are added to each procedure de-
pendence graph, actual-in and actual-out vertices are eliminated, formal-in and formal-

out vertices are replaced by duaiues Presuito and Presuizr vertices, and oy vertices are

added around recursive call sites.

4.2.2 Semantics of SRGs

To meet our goal of generalizing PRGs to SRGs both structurally and semantically, we
have devised a semantics for SRGs in which the behaviour of every vertex is represented
by a value sequence. The value sequence contains, in order, the values computed at
the vertex during program execution. Every value is instrumented with a tag, which
is used by some vertex types to distinguish between entry calls and recursive calls.
For instance, the procedure-entry vertex of every procedure produces values that are
tagged with counts that make it possible for recursive call vertices to determine when
recursion terminates. This mechanism is explained in detail later in this section. The
SRG semantics is a generalization of the PRG semantics. In particular, all the vertices
in the PRG of a single-procedure program can be considered to have output sequences
in which values are tagged with the empty tag.

In the SRG semantics, every vertex type that is present in the PRG has exactly the

84

(a) main () { f(2) 4
int ctr = 0; if (z2<10)
call f(ctr); if(z<2){
} r=z+ I;
call f(z);

)
}

(b) 1 4
/»*-—
/\\Ts
2/\ 5 6 7

(e (o) o
T \8\ / 10 *T

w

/4

11
476~ (mrea
(e) vy = [(T€)] vg — [(0, €)]

vz — [(07 E)] Vg~ [(Oa 6) ' (Ia 6) ' (Ia 6)]
vs = [(0,€) - (1, €) - (2, ¢)] ve = [(T,€) - (T, €) - (T, €)]
vy — [(T,1)- (T,1) - (T, 1)] vg — [(0,¢€) - (1,¢€) - (2,¢€)]
vg -+ [(T,€) - (T'€) - (F€)] vio = ((T,1) - (T, 1) - (F, 1)]
U1 —* [(176) ' (’6)] viz —* {(076) ’ (176)]
V13 —* [(171) ([’1)(F’1)]

Figure 24: The system representation graph for a recursive procedure program.
A simple loop program, written using recursive procedures, is shown in (a) above. Its
SRG is shown in (b) above. Solid arrows represent control dependences, and dashed
arrows represent flow dependences. The value sequences produced at the SRG vertices

are shown in (c) above.

83

same behaviour as in the PRG semantics, with the exception that the semantic equa-
tions are modified to handle tagged values. The semantic equations at SRG vertices
are shown in Figure 25.

The new vertices introduced in the SRG behave as follows: Procedure-entry vertices
combine the sequences from their call predecessors, producing O values for entry or
outer calls and [values for recursive or inner calls. Values are tagged with a counter,
which is used by ¢ and calll vertices to determine when a given sequence of recursive
calls produced by an entry call terminates. These tags are ignored by vertices other
than ¢..; and recursive call vertices. ¢, qe vertices behave like the @ense, vertices in the
PRG, using the O/ values of their procedure-entry predecessors to mediate between
the values from their inter-procedural data predecessors, just as @enser vertices use the
T/F values from their loop predicate predecessors. ¢resuiir and ¢resuio vertices use
the values of their procedure-entry predecessors to filter the values produced by their
data predecessors, retaining those values that must be returned to entry and recursive
call sites, respectively. The behaviour at these return-value vertices is complicated by
the fact that recursive calls are stacked. Therefore, for a given sequence [o,1y,. .., ix]
of recursive calls to a procedure P, control reaches the flow dependence predecessor of
a return-value statement of invocation ¢; of P before control reaches the same flow-
dependence predecessor in invocation 7;_; of P. As a result, the values produced by
the flow dependence predecessor of a return-value vertex are in the reverse order of
the values produced by the procedure-entry predecessor, in terms of the actual calls
or invocations to which they correspond. More precisely, for the sequence of calls
[0,21,. .. ,1xa], if the sequence at the flow predecessor is given by [vy,...,v,], the value

that is returned to the entry call site is v,, not vo. The equations at return-value

86

Ec = M.wAf

type(v

¢t — select/((true, €), f 1 ctriPred(v), f i dataPred(v))
callO — replace’(controlLabel(v), (O, ¢), f t parent(v))

bvalue — parMerge(f ¢ ctrlPred(v), f © outerPred(v), f 1 innerPred(v))
bresuito — outerSel(f i ctrlPred(v), f 1 dataPred(v))

bresutts — innerSel(f 7 ctriPred(v), f 1 dataPred(v))
procEntry — callMerge(f i outerPred(v), f ¢ innerPred(v))
calll — tagReplace(controlLabel(v), f ¢ parent(v))

¢call s

o

o

callFill(outerCtriLabel(v), f 1 outerPred(v), f i innerPred(v))

where parMerge, outerSel, innerSel, tagReplace, callFill, and callMerge
are defined as follows:

parMerge:

outerSel:

innerSel:

tagReplace:

callFill:

callMerge:

parMerge((O,t,) - taily, (z,ts) - taily, s) = (z,¢€) - parMerge(taily, taily, s)
parMerge((1,t;) - taily, s, (z,t2) - taily) = (z,€) - parMerge(taily, s, taily)
outerSel((p,t1) - nil, (d,t3) - nil) = (d,¢€)
outerSel(p - (p',t1) - taily, (d,ts) - taily) = if (p' = O) then
(d,€) - outerSel((p', t1) - taily, taily) else outerSel((p',t1) - taily, tails)
innerSel((p, t1) - ntl, (d,t2) - nil) = nil
innerSel(p - (p', 1) - tasly, (d,ts) - taily) = if (p' = O) then
innerSel((p',) - taily, taily) else (d,€) - innerSel((p', t1) - taily, taily)
tagReplace(l, (z,t) - nil) = (F,t)
tagReplace(l, (z,t1) - (¢/,%2) - tail) = if (z = [) then
(1,t,) - tagReplace(l, (z',t,) - tail) else if (t; < t3) then
(F,t,) - tagReplace(l, (2',t2) - tail) else tagReplace(l, (z',t2) - tail)
callFill(l, (z,t) - tail, nil) = (6,¢) - callFill(l, tail, nil)
callFill(l, (z,t1) - taily, (y,ts) - taily) = if (z = 1) then
(y,t1) - callFill(l, taily, taily) else (6,t1) - callFill(l, taily, (y,t2) - tails)
callMerge(nil, s) = nil
callMerge((v,t) - tail, s) = (v,1) - callAux(tail, s)
callAux(s, (z,t) - tail) = if (z = I) then (I,t) - callAux(s, ta:l)
else if (s = nil) then nil else (car(s),t + 1) - callAux(cdr(s), tail)

Figure 25: The semantic equations associated with SRG vertices.
In the SRG equation above, the functions at all vertex types that are present in the
PRG are unchanged, except that they are extended to produce tagged values, as shown
for ¢ vertices. Some vertex types are omitted for brevity. € is the empty tag, while
§ is a “don’t-care” value. procEntry vertices produce O/I values rather than T'/F
values. For the comparison test in function callFill, we assume that O =T and [=T.

87

vertices are designed to accommodate this mismatch in the orderings of the predecessor
sequences. Entry call vertices use the sequences of their control predecessors to produce
O values representing procedure calls. The behaviour at recursive call vertices and ¢.qu
vertices is less intuitive, and is therefore explained in detail below.

The implicit looping behaviour introduced by recursive calls in SRG programs can
be thought of as a generalization of the explicit looping behaviour produced by while
loops in PRG programs. Consider the behaviour of a loop predicate vertex in the PRG
semantics: On each invocation of the loop, the vertex produces a series of zero or more
true values, followed by a single false value. The false values in loop predicate sequences
act as separators between invocations of the loop. They are used by ¢ vertices to merge
or filter predecessor sequences appropriately. Therefore, in order to generalize explicit
loops to recursive calls, we require procedure-entry vertices to produce similar separator
values.

A recursive procedure can be thought of as a generalized loop, in which the pred-
icates that control the execution of the recursive call site play the role of the loop
predicate. Structurally, their role in the loop construct is made explicit by the addi-
tion of @qy vertices in the superstructure of the procedure, from the procedure-entry
vertex to the recursive call site.

In the semantics, these predicates play the following role: A recursive call site
produces a single false value at the end of every sequence of recursive calls; this value
is passed on to the procedure-entry vertex, which uses the value to produce appropriate
O/ I values. A sequence of recursive calls terminates when one of the predicates above
the recursive call site in the control dependence tree of the procedure takes on a value

that does not match the label on the control dependence edge from that predicate to

88

the ¢ vertex at the next level between it and the recursive call site. The role of ¢can
vertices in the semantics is to merge values from predicates at adjacent levels so that
the recursive call site can determine when such a value, which indicates the end of a
recursive sequence of calls, is produced at some level in the control dependence tree.
It is possible that in the same sequence of recursive calls, the predicates above the
recursive call site may produce more than one value that suggests the termination of
a recursive sequence of calls (for instance, if there are loop predicates between the
procedure-entry vertex and the recursive call site). To account for this situation, we
tag values with counters, which enable recursive call-site vertices to determine the last
such value in every sequence of recursive calls. An example of the use of tags is given

in Figure 24.

Example 8 The SRG for the power program from Figure 23 is shown in Figure 26.
The sequences produced at selected vertices of the graph, given input values of 2 and

3 for variable n, are shown in Figure 27, and are explained below:

o At ¢yeue vertex vy, the sequences of the outer data predecessor v; and the inner
data predecessor vy are merged, using the sequence from the procedure-entry
predecessor vs. This is done by function parMerge, which is similar to function

merge from the PRG semantics.

e At ¢eu vertex vig, the values from the inner predicate vg are passed through,
because control reaches the inner predicate on every invocation of the outer pred-
icate vg, the procedure-entry vertex. Each value is tagged using the tag from the

outer predicate.

89

o At call vertex vq,, the function tagReplace produces an [for each value in its
predecessor sequence (s;6) that indicates that control reaches the call vertex. It
produces one false value at the end of each recursion sequence, mimicing the

behaviour of a loop predicate.

e At procedure-entry vertex ve, the sequences from its call predecessors (v4 and
vgg) are merged. The iteration tag is incremented for every new entry call value

from its outer predecessor.

o At drecuno vertex vy, the function outerSel passes on values corresponding to
return values from entry calls. outerSel accounts for the reverse order of the data
predecessor sequence ($;9) in relation to its procedure-entry predecessor sequence
(s¢). In the power program, the same value for parameter prod is returned to all

the calls on prodSum, because the procedure is tail-recursive. a

Since the SRG semantics defined in this section is a generalization of the PRG
semantics, it shares the non-standard property of the PRG semantics. In particular,
the SRG semantics is more defined than the standard semantics in the case of inputs
for which the program does not terminate normally. As is the case with the PRG
semantics, the SRG semantics is consistent with the standard operational semantics

on programs that terminate normally.

4.3 Semantics of static behaviour for SRG vertices

In this section we use the SRG semantics to generalize the three increasingly general

forms of static behaviour and the concept of bounded static variation from Chapter 3

90

1

‘ Enter ma-i__n)

9 % ;

la=10] . (callO prodSum(n,a))

\
\
6 -
\
\

et & PR

12

Y N A N —
7 A —

Vi @)T(prod)) @T(ctr)) @’ (P"Od)) @) f(ctr)) @)If(prod)J
'.‘ \\ 18 J_; N S : 419

\ , 20 ¥ el 21N 22 N e S

) (prod = prod * 2.0) h s(ctr =ctr-1) (calll prodSum(ctr,prod))

o e o . - - .. dn . o e e e

Figure 26: The system representation graph of the power program.
The SRG of the power program, written using recursive procedures, is shown above.
Inter-procedural flow and control dependences are tagged with “=". Labels on control
dependence edges are omitted; all the control dependence edges in the SRG for the
power program above are labeled with ¢true. The third parameter to procedure prodSum

has been omitted in order to make the SRG more readable. Control dependence edges
that play no role in the semantic equations have been omitted.

91

M [¢] [2] = M [C] [3] —
Vg — [10] Vg — [10]
v3 = [2] vs — [3]
vg — [O] vg = (O]
Vs — [40 Vs — [80]
v = [(0,1) - (I,1) - (I, 1)] ve = [(0,1) - (I, 1) - (I,1) - (I, 1)]
vr - [1.0 2.0 - 4.0] vr = [1.0-2.0- 4.0 -8.0]
vg = [T+ T - F] v =5 [T-T-T-F]
'U]()—)'[O 0] U}()_—)[O'O'O]
V11 —> [40] Vi [80]
o1z = [4.0 - 4.0] viz — [8.0 8.0+ 8.0]
’l)14—->[2°1] 'U14'—}[3'2'1]
V15 — [0] U1 — [0]
vie = [(T,1) - (T,1) - (6,1)] vie = [(T,1) - (T,1) - (T,1) - (6,1)]
Vrr —> [40] vy —* [80]
'Ulg-—)[O'O'O] U18—~>[0000]
V19 — [4.0- 4.0 - 4.0] V1o — [8.0-8.0- 8.0 - 8.0]
1)21"‘-)[1'0] Uzl——)[Z'l'O]
U2z —* [(Ivl) ’ ([’1)) (Fal)] V22 — [(I’l)) (171)) ([’1)) (F’l)]

Figure 27: The sequences at SRG vertices for the power program.

The sequences of tagged values produced at selected vertices of the SRG for the power
program, given two different input values for variable n, are shown above. In these
sequences, values that have empty tags are shown without tags, while values with
tags are shown as pairs (v,t), where v is the value and ¢ is its associated tag. The
sequences at SRG vertices are similar to the sequences at PRG vertices, except that
procedure-entry, ¢, and call vertices produce tagged values, and procedure-entry and
call vertices produce values from {0, I, false} as opposed to {¢rue, false}.

92

main () { outer (ctr) { inner (indez) {
read(dyn); if(ctr#0)-{ if ((index < 3) {
call outer(dyn); stat = 0; v: index = index + 1;
} call inner(stat); call inner(indez);
ctr = ctr - 1; }
call outer(ctr); }

M [G] [0] v =]
MI[G] [1]v = [1-2-3]
M[G][2lv = [1-2-3-1-2-3]

Figure 28: An example of weakly static behaviour in SRG programs.
The program above is a modified version of the program in Figure 16 from Chapter 3.

to programs with procedures. Because the value-sequence semantics of SRGs is closely
related to the PRG semantics, the definitions of these properties are unchanged for
SRG vertices. The only modification is that the meaning function M for SRGs is
implicitly modified to produce value sequences in which the tags on the values are
omitted.

We first define strongly static behaviour using the SRG semantics.

Definition 18 Vertex v in SRG G is strongly (semantically) static iff the sequences in

{M [G] i v | i € Stream} form a chain in Sequence. O

As shown by the behaviour of program point v in the program from Figure 28, the
strongly static property may be too restrictive. The notion of rational repetitions from
the PRG semantics carries over directly to the SRG semantics. The distinction is that

in SRG programs, the repetitions may be generated by recursive calls.

93

Definition 19 Vertex v in SRG G is weakly (semantically) static iff at least one of the

following holds:

(a) Is € Val* s.t. Vi € Stream, M [G] i v € DC({nil} U {s™ - nilln € N} U {5*})
or
(b) 3s € Val¥s.t. Vi € Stream, M [G] i v € DC({nil, s})

where DC is the downwards-closure operator on Sequence. o

The SRG semantics can be used to define statically varying and BSV behaviour, in

exactly the same fashion as for PRG programs.

Definition 20 Vertex v in SRG G is statically (semantically) varying iff at least one

of the following holds:

(a) 3B C Val,|B| finite, s. t. Vi € Stream,
M[G]iveDCH{nil}U{vy-... vp-nillvy,...,vx € B}U BY)
or
(b) v is weakly static.

where DC is the downwards-closure operator on Sequence. O

Definition 21 Vertex v in SRG G is (semantically) bounded static varying iff:

dB C Val,|B| finite, s. t. Vi € Stream,
M [G] i ve DC{nil} U {vy-... v nillvy,...,vx € B}U BY)

where DC is the downwards-closure operator on Sequence.

Vertex v is (semantically) non-BSV iff it is not semantically BSV.]

94

The tags on the values in the value sequences produced at SRG vertices are ignored
in the definitions above. This is because these tags do not provide any information
relevant to the static/dynamic nature of an SRG vertex. Rather, they are used as
instrumentation at procedure-entry, ¢..; and recursive call vertices, to ensure that a
false value is produced at the call vertex at the end of every sequence of recursive calls
to the procedure.

A semantic foundation for safe and conditionally safe BTA on SRG programs fol-
lows directly from the characterization of safe and conditionally safe BTA for single-
procedure programs in the previous chapter. This is achieved by replacing the defini-
tions of static and BSV behaviour for PRG programs in the treatment in Section 3.3

with the definitions above.

4.4 BTA algorithms for SRG programs

As in the case of PRG programs, we are able to define BTA algorithms that use
the flow and control dependences that are explicit in the structure of SRGs to con-
servatively identify static vertices. In this section, we define three BTA algorithms
as abstract interpretations of the SRG semantics. Operationally, these algorithms are
simple reachability operations on the SRG, and can be viewed as variants of operations
for inter-procedural program slicing [HRB90]. Therefore, each of these algorithm has
a running time that is linear in the number of edges in the SRG. Our BTA algorithms
are “context-insensitive,” in the sense that they do not account for calling context
precisely. In order to account for calling context, it is necessary to match the call and

return edges in flow dependence paths accurately, which increases the complexity of

95

the slicing algorithm. We discuss this issue in greater detail later in the chapter.

The algorithms described in this section are direct extensions of our BTA algorithms
from the previous chapter. As a result, the first algorithm follows control dependences
blindly, and identifies only strongly static vertices as S; the second follows control
dependences selectively, and thus identifies some weakly static vertices as S as well.
The third BTA identifies some statically varying vertices as S by ignoring control

dependences to vertices that have multiple static data dependence predecessors.

4.4.1 The Strong-Staticness BTA for SRGs

The goal of this BTA is to identify a subset of all the strongly-static vertices in the
SRG of a program. The idea is to follow all flow and control dependence edges from
the set of read vertices in the SRG, marking with D all vertices that are encountered
along the way. This operation is identical to a forward inter-procedural program slice
[HRBI0] from the set of read vertices in the SRG. Vertices that are not in this forward
slice are marked with S.

We present the Strong-Staticness BTA for SRGs as the fixed point of an abstract
interpretation that is consistent with the SRG semantics. This interpretation is defined
by the recursive equation in Figure 29. Because ¢, vertices are placed at every level
in the nesting structure of a recursive procedure, the Strong-Staticness BTA is able to
correctly account for the effect of a dynamic predicate on the recursion of a procedure
even when the predicate is many nesting levels higher than the call site in the control
dependence tree of the procedure.

Our correctness argument for this BTA is identical to the argument we used for the

Eg

96

= Av.Af,.
type(v) = Entry — S
type(v) = read - D
type(v) € {assign,if, while} —
abs_replace(f, parent(v))
if #dataPreds(v) =0
abs_map(f, dataPred;(v),... f, dataPred,(v)
otherwise
type(v) - ¢’enter —+
abs_whileMerge(f, whileNode(v), fa innerDef(v), f. outerDef(v))

type(v) = dexit — absselect(f, whileNode(v), fo dataPred(v))

type(v) = @white — absselect(f, whileNode(v), fo dataPred(v))
type(v) = ¢ — absselect(f, parent(v), f, dataPred(v))

type(v) = ¢r — absselect(f, parent(v), f, dataPred(v))

type(v) = ¢ — abs.merge(f. ifNode(v), fo trueDef(v), fo falseDef(v))
type(v) = callO — abs_replace(f parent(v))

type(v) = évalue — abs_cMerge(f ctriPred(v), f outerPred(v), f innerPred(v))
type(v) = éresuiwo — absselect(f ctriPred(v), f dataPred(v))

type(v) = oresuit1 —+ abs_select(f ctrlPred(v), f dataPred(v))

type(v) = procEntry — abs_call(f outerPred(v), f innerPred(v))
type(v) = calll — abs_tagReplace(f parent(v))

type(v) = decan — abs_call(f outerPred(v), f innerPred(v))

where abs.replace, abs_map, abs.whileMerge, abs_select, abs_merge,
abs_call, abs_tagReplace and abs.cMerge are defined as follows:

abs_replace(a) = a
abs_select(a,b) =alb

abs.merge(a, b, ¢) =alUbllc
abs_whileMerge(a, b, ¢) =alUbUc
abs.map(a1, ..., 0,) =a;U...Uay
abscall(a,b)=allb
abs_tagReplace(a) = a

abs_cMerge(a, b,¢c) =alUbUc

Figure 29: The abstract equations for the Strong-Staticness BTA on SRG programs.

97

S outer (ctr) { D inner (indez) { S
read(dyn); D if(ctr#0){ D if (index < 3) { S
call outer(dyn); S stat = 0; S index = index + 1; S
} call inner(stat); S call inner(indez); S
ctr=ctr—1; D }

call outer(ctr); D }

main () {

Figure 30: Application of the Weak-Staticness BTA.

Strong-Staticness BTA in the previous chapter, with the exception that Lemma 15 is

adapted to SRG vertices.

4.4.2 The Weak-Staticness BTA for SRGs

As in the case of PRG programs, we define the Weak-Staticness BTA, an analysis
that identifies a subset of all the weakly-static vertices in the PRG of a program.
The Weak-Staticness BTA is similar to the Strong-Staticness BTA, differing only at
constant assignment vertices and at entry call vertices. Entry call vertices are treated
as constant assignments; they produce sequences of O values, which are always rational

repetitions. In the abstract semantics, the function abs_replace is re-defined as follows:
abs.replace(a) = S

Example 9 The program from Figure 28 is shown in Figure 30, along with the mark-

ings produced by Weak-Staticness BTA. The SRG is omitted for brevity. a

The proof that the Weak-Staticness BTA is conditionally safe mimics the one for

the Weak-Staticness BTA on PRGs, with Lemma 17 modified to SRG vertices:

98

Lemma 22 For any SRG vertex v that is not a read vertex, {Fi*! Liv|i € Stream}

is an approximate rational repetition if:

(a) Yu € preds(v),{F? L i u|i € Stream} is an approximate rational repetition, or

(b) funcOf(v) is a constant value, or v is a callO vertex. O

The functions at SRG vertices are all structured so that when predecessor sequences
Ui, Uz, ..., Ug-at vertex v are all rational repetitions, the output sequence at v is a
rational repetition, with a base repeating sequence that is at most as long as the least
common multiple of the lengths of the base repeating sequences in uy, ug, ..., ux. This

is the basis for the semantic justification of conditional safety for this analysis.

4.4.3 The Static-Variation BTA for SRGs

We extend the Weak-Staticness BTA for SRG programs to the Static-Variation BTA
for SRG programs in exactly the same way as we did for PRG programs. The Weak-
Staticness BTA is similar to the Strong-Staticness BTA, differing only at ¢;; vertices.

Therefore, the function abs.merge in the abstract semantics is re-defined as follows:

abs_merge(a,b,c)=blUc

4.5 Limitations and related work

In our treatment of multi-procedure programs in this chapter, we have imposed certain
restrictions on the programs that are represented by system representation graphs. In

this section, we begin by discussing these restrictions. We then discuss related work.

99

The first restriction we have imposed on an SRG program is that the call graph
of the program must be reducible. The concept of reducible graphs is generally used
in the context of control-flow graphs. Reducibility can be expressed formally in many
forms; for instance, a control-flow graph is reducible iff every loop in the graph has a
single entry point. In the context of call graphs, a call graph is reducible if every call
site on a procedure produces either only entry calls to the procedure, or only recursive
calls. We impose this restriction because it allows us to introduce the ¢y vertex
superstructure in a selective manner, in particular around recursive call sites. There
are three different ways in which we can justify this restriction: First, our experiments
show that this constraint does not restrict the set of representable programs unduly.
For instance, 15 of the 17 programs we examined from the Spec95 benchmark suite have
reducible call graphs.? Second, given a program with an irreducible call graph, it is
always possible to automatically transform the program into one that has a reducible
call graph, by using an algorithm similar to the node-splitting algorithm described
in, for instance, [ASU86, pp. 664-668]. We omit the details here. The algorithm is
exponential in the worst case; however, it is unlikely that a program will have more
than a few irreducible components. Finally, we can extend the SRG itself to account for
irreducible control flow, in particular by placing ¢..u vertices conservatively. However,
this approach is not conceptually appealing.

Given that the subject programs have reducible call graphs, we have also assumed

that every procedure has exactly one entry call site, and that there are no transitive

2The exceptions are perl and li. perl has an irreducible component consisting of roughly 5% of
the total code base. Transforming perl to produce a reducible call graph should therefore not blow
up the size of the code significantly. In contrast, the lisp interpreter li has a significant irreducible
component.

100

recursive calls. These assumptions do not restrict the input language. In fact, every
program with a reducible call graph can be converted to this form through a simple
transformation. This transformation is acceptable because, in any case, the goal of the
analysis for which we have defined the SRG is to enable partial evaluation to be carried
out, which itself is a transformation of the program. The advantage of this assumption
is that we do not need to associate SRG vertices with sets of sequences, each tagged
with a context tag indicating the call site from which procedure calls relevant to the
given sequence are made. Alternatively, given a procedure that has multiple entry call
sites, we would require extra machinery in the SRG to impose the appropriate ordering
on the calls generated from these call sites. We simplify the problem by assuming a
single entry call site.

Finally, we insist that every procedure must have only one recursive call site. Again,
we impose this restriction in order to simplify the problem of ordering the recursive calls
correctly. If we removed this restriction, the BTA algorithms defined in the previous
section would remain unchanged. It might appear that the single recursive call site
restriction has the effect of restricting the recursive nature of the program to linear
chains of calls, as opposed to general recursion, which may produce a tree of recursive
calls. However, this is not the case. For instance, we allow recursive call sites within
loops, which may produce a tree of recursive calls rather than a linear chain of calls. We
have imposed the restriction of single recursive call sites only because we are interested
in associating SRG vertices with ordered value sequences. The assumption allows us
to simplify the machinery for producing values across inter-procedural edges in the
correct order. In order to handle procedures with multiple recursive call sites, we can

extend the tagging mechanism of the SRG semantics, while retaining the structure of

101

the SRG.

All of the BTA algorithms described in the previous section are “context-insensitive,”
meaning that they do not account for calling context precisely. In this respect, our al-
gorithms are similar to that of emiz, which is not context-sensitive. Horwitz et al. have
shown that this problem can be handled efficiently, in the context of program slicing,
by introducing “summary” edges in the SDG [HRB90]. We omit these edges from the
SRG, because it is not clear how we would follow summary edges in a BTA algorithm
such as Weak-Staticness BTA that followé dependence edges selectively. However, we
can use summary edges to implement a context-sensitive version of Strong-Staticness
BTA, since that algorithm follows all the dependence edges in the SRG. Reps et al. have
presented an alternative approach to this problem, which involves using context-free
language reachability to “match” parameter-in and parameter-out edges appropriately
[RHS95]. It is possible that we could phrase our BTA algorithms declaratively as
context-free language reachability problems, and use the scheme in [RHS95, Rep97] to
account for the calling context on a procedure more precisely. We have not investigated
this possibility.

In this chapter, we have extended our work on safe BTA for PRG programs in one
direction, by expanding the input language in such a way that the language retains
a dependence graph representation whose data-flow semantics can be used to argue
the correctness of BTA algorithms. In the next chapter, we use a different approach.
We develop a conditionally safe BTA algorithm for a richer language, with complex

features such as arbitrary control flow and pointer variables.

102

Chapter 5

Loop dependences and safe BTA

for C programs

In the preceding chapters, we have described BTA algorithms that provide a termi-
nation guarantee for partial evaluation, in the absence of static-infinite computation.
These BTA algorithms have the advantage that they are based on dependence graph
representations whose dataflow semantics can be used to establish their conditional
safety. In addition, the algorithms have the advantage that they are simple reachabil-
ity operations on dependence graphs. However, they are applicable only to a limited
class of imperative programs, in particular programs without arbitrary control flow
and pointer variables.

In this chapter, we describe a different approach towards our goal of safe BTA for
imperative programs. We tackle the problem of developing safe BTA algorithms for C
programs. It remains unclear how the dependence graphs from the previous chapters
can be extended to handle arbitrary control flow and pointer variables. Therefore,
we design a new kind of dependence graph, which we term the “loop dependence
graph” (LDG). This graph contains “loop dependences,” in addition to the standard
data dependences and control dependences that are present in the system dependence

graph representation of a program. Loop dependences have the advantage that they

103

can be constructed for programs with arbitrary control flow. In addition, they make the
role of dynamic control explicit, without following control dependences arising from the
nesting structure of the program. Thus, loop dependences can be thought of as selective
control dependences, appropriate for identifying situations in which a seemingly static
variable may take on unbounded values through a loop in the program.

The intuition behind our development of loop dependences is as follows: If a pro-
gram variable is built up under dynamic control, the program must have two properties:
There must be a loop in the control structure of the program (through jump state-
ments, explicit loops, recursive functions, or a combination of these) that is controlled
in part by a dynamic predicate, and the variable must be updated using its previous
values within this loop. The latter condition is represented by the presence of a flow
dependence cycle in the dependence graph of the program. We introduce loop depen-
dences from predicates to flow dependence cycles: Roughly, a loop dependence from a
predicate p to a flow cycle ¢ indicates that the behaviour of p may determine whether
the cycle c is traversed during computation. In other words, the predicate may control
how many times the loop in the control structure of the program that gives rise to
the flow dependence cycle is iterated. Therefore, a loop dependence from a dynamic
predicate to a flow cycle can be used to conservatively represent the phenomenon we
are interested in tracking, namely static computation under dynamic control.

Unlike the PRG and SRG representations defined earlier, the loop dependence
graph does not have a dataflow semantics that makes the role of the dependences in
the program explicit in the semantics. As a result, we cannot make an argument for
the conditional safety of the BTA algorithm described in this chapter using the LDG

semantics. Instead, we rely on a structural argument, based on our characterization of

104

static-infinite computation, and the definition of loop dependence.

The BTA algorithm defined in this chapter has the advantage that it can handle
programs with arbitrary control structures. Since we are interested in developing a safe
BTA for C programs, we must also extend our analysis to handle pointer variables. Our
approach to this problem is as follows: Pointer variables affect the flow dependences in
a program, not the control dependences or loop dependences. Therefore, we follow the
approach used by cmizr [And94], which is a prototype partial evaluator for C programs.
emiz employs a congruence-based BTA algorithm, which ignores dynamic control, and
therefore provides no termination guarantee. However, it uses a pointer analysis al-
gorithm [And93] that conservatively identifies aliasing relationships. We employ the
same algorithm, and use its results to conservatively add flow dependence edges to the
LDG. Thus, we are able to account for the presence of pointer variables in a manner
that is orthogonal to our use of loop dependences.

We have implemented our loop dependence algorithm for C programs, and have
tested it on several programs that have been used to measure the performance of cmiz.
Our results show that by using loop dependences, we are able to provide a termination
guarantee for partial evaluation in the presence of dynamic control, without compro-
mising the ability of the analysis to identify static behaviour. In particular, when our
loop dependence BTA is combined with a simple precision analysis, described later in
this chapter, it is able to identify as static every variable in the test suite of programs
that is also identified as static by the traditional congruence-based BTA of ¢miz. These
results suggest that control dependences may be used to provide a safety guarantee for

partial evaluation, without resulting in unduly conservative BTA algorithms. In fact,

105

as we show later in this chapter, our loop dependence BTA algorithm is able to pro-
cess programs that have been transformed using “The Trick,” by using simple user

annotations.

5.1 Loop dependence

As we have shown in the previous chapters, a partial evaluator may fail to terminate
because a variable that is built up from static values under dynamic control is treated as
static. The goal of all of our BTA algorithms is to conservatively identify the variables
in a program that exhibit this behaviour. In this section, we define a new kind of
dependence termed “loop dependence,” which enables us to identify such variables in
the presence of arbitrary control flow.

To motivate loop dependences, we first recap the intuition behind our approach for
PRG and SRG programs: A program variable that is re-defined within a loop in the
program is potentially built up under dynamic control, if the loop predicate is dynamic,
and if the variable is built up from its own previous values in the loop. In the case
of PRG programs, every loop is explicitly represented by a while loop. In our BTA
algorithms, we approximate the above condition by treating all ¢genter nodes controlled
by dynamic predicates as dynamic. In the case of SRG programs, we follow the same
approach, but we identify loops that result from recursive procedure calls as well.

In the case of programs with arbitrary control flow, therefore, we are interested in
identifying the loops in the control structure of the program. These loops could be
contained in a single procedure, or they could span several procedures in the program.

For each such loop, we conservatively identify the predicates that control the exit

106

conditions on the loop, and the variables whose values are built up within the loop.
We introduce loop dependences between the predicates controlling the exit conditions
on the loop and the variables whose values are built up in the loop, represented by
flow dependence cycles. Intuitively, a loop dependence can be regarded as a control
dependence from a predicate to a flow dependence cycle, as opposed to a control
dependence to a program statement.

More formally, we consider the language of programs represented by PRGs, aug-
mented with procedure definitions and calls, and goto, return, break and continue
statements, with the usual meaning. Parameter passing is by value-result, and only
scalar variables are permitted. In a later section of this chapter, we extend the language
to include pointer variables.

We first characterize a flow dependence cycle. The definition of flow dependences
from Chapter 2 says that there is a flow dependence from a vertex u that defines a
variable z to a vertex v that uses z iff there is a path in the control flow graph of the
program from u to v such that z is not defined at any vertex along the path except u
and v. There may be multiple paths from u to v in the control flow of the program along
which this property holds, all of which may be represented by a single flow dependence
edge from u to v. A flow dependence cycle consists of a sequence of flow dependence

edges, some of which may be inter-procedural parameter edges.

Definition 23 A flow dependence cycle c is a sequence of edges [e;...¢€;...e,] such
that each edge e; is a flow dependence edge from vertex v;_; in the extended CFG G

of program P to vertex v; in G, and vg = v,. a

In the definition above, the extended CFG of a program is composed of the CFGs of

107

all the procedures in the program, augmented with call and return edges representing
procedure calls.

Consider a vertex v such that v is in a flow dependence cycle. By the definition
above, there is at least one path p in the extended CFG such that v depends on itself
along p. The flow dependence cycle conservatively indicates that each time control
proceeds from v back to v along p during the execution of the program, the variable
assigned at v takes a new value, which may be derived from its value on the previous
occasion that control reached v. In such an instance, the values taken on by the variable
may be built up on each occasion that control passes around the loop represented by
p during program execution.

We are interested in identifying the predicates that determine whether the flow
dependence cycle ¢ from v to itself is realised during program execution. Consider a
flow dependence edge e that is part of the cycle. If a predicate u controls the execution
of e, then u may also control the execution of c. This is the basis for our definition of
loop dependence. Predicate u controls flow edge e if the behaviour of u (i.e. the value
computed at u) determines whether execution flows in such a way that the dependence

represented by e is realised. This is formalized in Definition 24 below.

Definition 24 Let c be a flow dependence cycle of edges [e;...¢€;...e,], and let u be
a predicate vertex in the extended CFG G of program P. There is a loop dependence
from u to c iff there is an edge ¢; in ¢ from vertex v;—; that defines variable z to vertex

v; that uses = for which both of the following properties hold:

(a) there is a path p from v;_; to v; via u in G such that z is not re-defined

at any vertex in p except v;_; and v;, and

108

(b) there is an edge e from v in G such that if every edge from u other than e is

removed from G, there is no flow dependence from v;_; to v;. a

In the definition above, property (a) says that there is at least one branch direction
from u along which flow cycle ¢ is present, while property (b) says that there is at least
one other branch direction from u along which ¢ cannot be realised. In other words,
the execution of ¢ depends on the behaviour of u. Hence, there is a loop dependence

from u to c.

Example 10 The loop dependences in the power program, modified to use jump state-
ments, are shown in Figure 31. The loop dependences from the if predicate that controls
the exit condition of the loop in the program are closely related to the control depen-
dences from the while loop predicate in the power program from Figure 1 in Chapter
1. The remaining control dependences from Figure 1 are not replaced with loop depen-
dences. This is because they do not control any flow dependence cycles in the program.

|

5.2 Constructing loop dependences

In the previous section, we outlined a new kind of dependence called loop dependence,
~ which is useful in designing BTA algorithms for programs with arbitrary control flow.
In this section, we describe an algorithm that constructs loop dependences by solving
several dataflow problems on the extended CFG. We assume that flow dependences are
constructed in the usual way, resulting in a system dependence graph representation

of the program, as described in the previous chapter.

109

(a) float power (float z, int n) {
float a = 1.0;
L:if(n>0){

n=mn-1;

a=a*c;

goto L;
}

return a;

}

®)

! -
' rd
/7
*/
!
. -

float a = 1.0 float x intnj~-——--%{if n>0) returna
>
\
\
\
\
AY
\
Y

T - - -

Figure 31: The loop dependences in the power program.
The power function, written with goto statements, is shown in figure (a) above. The
flow dependences and loop dependences for power are shown in figure (b) above. Flow

dependence edges are shown as dashed lines, while loop dependence edges are shown
as solid lines.

110

Loop dependences as defined in the previous section connect a program’s predicates
to flow dependence cycles. Unfortunately, the number of simple flow dependence cycles
in a program is exponential in the size of the program text, in the worst case. Therefore,
we identify an approximation of the precise loop dependence property from Definition
24. In particular, we build loop dependences from predicates to strongly connected
components in the flow dependence graph. In other words, if a predicate controls the
behaviour of a flow dependence edge, we introduce loop dependences to every strongly
connected component that contains the given flow dependence edge. Because we limit
the precision of loop dependences in this manner, we can introduce a loop dependence
edge from a predicate to the target vertex of the flow dependence edge that it controls,
rather than the flow dependence edge or flow dependence cycle.

Our algorithm for constructing loop dependences is shown as Algorithm 1 below.

The algorithm has three steps:

e In the first step, we identify strongly connected components in the flow depen-
dence sub-graph of the SDG, which includes intra-procedural and inter-procedural
flow dependence edges, using a standard algorithm from [CLR90, pp. 488-493].
This operation is linear in the size of the flow dependence graph, which is at most

quadratic in the size of the program.

e In the second step, we identify predicates that control intra-procedural flow de-
pendence edges. We do this by solving two dataflow problems on every CFG.
First, for every vertex that defines a variable, we identify the predicates that
are reachable from the definition without the variable being re-defined. This in-

formation can be extracted directly from the reaching definitions sets at CFG

111

vertices. The worst-case complexity of this step is therefore quadratic in the size
of the given procedure. Next, for every predicate and every variable, we identify
the uses of the variable that are reachable along at least one outgoing CFG edge
from the predicate without the variable being re-defined, and not reachable along
at least one outgoing CFG edge from the predicate without the variable being
re-defined. If the procedure has only if predicates or while predicates, which have
exactly two outgoing CFG edges, this operation requires solving two reachability
problems on the CFG for every predicate. Its worst case complexity is therefore
quadratic in the size of the given procedure. If the procedure includes switch
predicates with multiple branch possibilities, the worst case complexity of this
operation is cubic in the size of the procedure, because it requires solving a linear
number of reachability problems on the CFG for every predicate. We store the
predicate information at definitions and uses in bit-vectors to obtain constant-
time access for the final step of the algorithm. If the source of a flow dependence
edge includes a predicate p in its set of predicates that are reachable from the
previous step, and if the target of the edge includes p in its set of predicates from
which it may/may not be reached, then the predicate (conservatively) controls

the flow dependence edge, as per Definition 24.

In the final step, we introduce a loop dependence edge from a predicate to the
target vertex of a flow dependence edge it controls, as per the above criteria, if
the flow dependence edge connects two vertices that are in the same strongly
connected component of the flow dependence sub-graph of the SDG. This opera-

tion involves relating flow dependence edges with predicates, and therefore has a

112

worst-case complexity that is cubic in the size of the program. Hence, Algorithm

1 below has a worst-case running time that is cubic in the size of the program.

Algorithm 1 Construct Loop Dependences.

Given a program p with procedures P;, corresponding CFGs G, and 5DG G:

1. Identify strongly connected components in the flow dependence sub-graph of G.
2. For each Gi:
(a) Vu,v € V(G;),Yvar € Vars(G;): set forw(u)[v] = false, back(u)[var,v] = false.
(b) Compute reaching definitions on G;.
(¢) Yu,v € V(G;), if v is a predicate vertex and u € RDefsIn(v) then
set forw(u)[v] = true.
(d) For each p € V(G;) s.t. p is a predicate vertex, for each var € Vars(G;):
(i) Let E be the set of outgoing edges from p in G;. Remove E from G;.
(i) Set lhs(p) = var. Vv € V(G;), set count(v) = 0.
(iii) For each edge e in E:
Add e to G;. Compute ReachingUses(p,var).
Vv € ReachingUses(p, var), increment count(v).
Remove e from G;.
(iv) Add all edges in E to G;. Set lhs(p) = e.
(v) Vv € V(G)), if 0 < count(v) < outdegree(p) then
set back(v)[var, p] = true.
(e) For each predicate vertex p in Gj, for each flow dependence in G from u in G;
to v in Gy s.t. sccF(u) = scc#(v), if forw(u)[p] and back(v)[lhs(u), p] then

add a loop dependence from edge p to v. a

113

5.3 The loop dependence graph

The loop dependence graph (LDG) of a program is constructed by augmenting the flow-
dependence graph of the program with loop dependences. Therefore, it includes the fol-
lowing kinds of dependence edges: Intra-procedural flow dependences, including loop-
carried flow dependences and loop-independent flow dependences, inter-procedural flow
dependences linking actual-in vertices with formal-in vertices and formal-out vertices
with actua,l—ou:c vertices, and loop dependences. The LDG does not contain summary
edges.

The number of edges in the loop dependence graph is quadratic in the size of the
program, in thé worst case. However, the cost of building the LDG, using Algorithm
1, is cubic in the size of the program in the worst case. Therefore, the LDG is more ex-
pensive to build than a standard dependence graph such as the SDG (with no summary
edges). However, it affords greater precision for binding-time analysis in the presence
of arbitrary control low. The LDG for the power program from Figure 31 is shown in

Figure 32.

5.4 The Loop-Dependence BTA algorithm

The loop dependence graph defined in the previous section provides a basis for the
development of a BTA algorithm that identifies static computations under dynamic
control in programs with arbitrary control flow. As is the case with our BTA algo-
rithms for PRG and SRG programs, the Loop-Dependence BTA is a simple reachability
operation on the LDG, and can be thought of as a variant of the operation of program

slicing on dependence graphs.

114

N >
\\\ \\ \\ : ,/’

~ \ ‘
\ N \ * ! [
\ A ! [
I

i

1

i

~ i

\\ N ~ L7 l N s 1
!

i

\
7
]
\
\
-~

Figure 32: The loop dependence graph of the power program.
In the LDG above, flow dependence edges are shown as dashed lines, control depen-
dence edges are shown as solid lines, and loop dependence edges are shown as thick
lines.

Operationally, the algorithm proceeds as follows: Initially, all the vertices in the
LDG are marked as static, except for read vertices, which are marked as dynamic,
and call and procedure entry vertices, which are not marked. The algorithm follows
all flow dependence and loop dependence edges forward from the set of read vertices,
marking as dynamic all vertices that are encountered along the way. As is the case
with our BTA algorithms for SRG programs described in the previous chapter, the
Loop-Dependence BTA is context-insensitive, in the sense that it does not account for
calling context precisely. This is because it does not match parameter-in edges with
parameter-out edges in flow dependence paths. An example of the application of this
BTA is shown in Figure 33.

We have defined the Loop-Dependence BTA operationally, as a reachability opera-

tion, rather than as an abstract interpretation of a concrete semantics. This is because

115

(a) main () { outer (ctr) {
read (dyn); if (ctr>0){
call outer(dyn); if (ctr>10) {
} z = 0;
L:if(z<3){
r=c+ 1;
goto L;

}

call outer(ctr ~ 1);
}
}

(b) § (outer’

P e
D - D D
‘ctr:ctr__inl"" if (ctr>0) ‘if (ctr>.10)}
A 4 P
-~ - /,’
e N -7 ,,/
D . /” [’ /,S S .
’ P x= -=if (x<3) call outer
- S D
G

VoM 4
-

-~ -

D(read (c dyn)) (call outea

-~

-
~ - -

T e - -

Figure 33: An application of the Loop-Dependence BTA.
The program in (a) above is a modified version of the nested loops program from Figure
16 in Chapter 3. The LDG of the program is shown in (b) above. Control dependences
have been omitted to avoid clutter. The results of the Loop-Dependence BTA are
shown as markings on every LDG vertex. The inner counting loop is marked static, as
expected. Note that the call and procedure entry vertices have not been marked, as
they cannot be targets of flow dependence or loop dependence edges. Call vertices are
emitted depending on whether the given call is unrolled, as determined by the markings
on the parameters of the called procedure. The results of the Loop-Dependence BTA
can be converted into markings for program variables using the algorithm in Section

3.4.4 of Chapter 3.

116

the LDG does not have a dataflow semantics that relates the behaviour of a vertex to
that of its dependence predecessors. In particular, it is not clear how ¢ vertices can
be added to the SDG to account for the role of jump statements in the program. As
a result, we argue the correctness of the Loop-Dependence BTA using the structure of
the LDG.

We claim that the Loop-Dependence BTA is conditionally safe. By the definition
of Conditionally safe BTA in Definition 12 from Chapter 3, a BTA is conditionally safe
if every vertex identified as static by the BTA that fails the BSV property is static-
infinite. Accordingly, the correctness of the Loop-Dependence BTA is established by

the theorem below.

Theorem 2 If vertex v in the LDG G of program p is marked static by the Loop-
Dependence BTA, and v does not satisfy the BSV property, then v is static-infinite.
Proof Sketch. The proof is by induction on the strongly connected components of
the sub-graph of the LDG obtained by eliminating control dependence edges and def-
order dependence edges. Because the flow and loop dependence sub-graph may not be
connected, there may be more than one scc that has no incoming edges from other sccs
in the graph. The markings produced by the Loop-Dependence BTA are such that for
every scc, either every vertex in the scc is marked static, or every vertex in the scc is
marked dynamic. We consider only sccs in which every vertex is marked static by the
Loop-Dependence BTA.

Base Case: Scc s has no incoming flow or loop dependence edges from other sccs.
Consider a vertex v in s that defines variable z, such that v is not BSV. Because s

has no incoming flow edges from other sccs, it must be that z is initialized within s.

117

Therefore, since v is not BSV, the value of z must be built up in a flow cycle c contained
in s. If ¢ is not controlled by any predicates, v must be static-infinite. If ¢ is controlled
by one or more predicates p, then consider each such predicate p. By the definition
of loop dependence, there must be a loop dependence edge from p to a vertex in c.
Therefore, p must be in s. As a result, the variables used in the expression at p are
initialized and built up in s. Hence, p must be static. Hence, v must be static-infinite.
Induction Step: Assume that for all sccs s’ such that there is a flow dependence or
loop dependence from a vertex u in s’ to a vertex v in s, the vertices in s’ are marked
correctly by the Loop-Dependence BTA. We show that it must be the case that the
vertices in s are also marked correctly by the Loop-Dependence BTA. Suppose s has
an incoming edge from vertex u that is not in s. By assumption, u is marked correctly.
Therefore, if u is not BSV and not static-infinite, it must be marked dynamic. By
the definition of the Loop-Dependence BTA, every vertex in s must then be marked
dynamic. We are left with the case where all incoming edges from outside the scc are

from vertices that are static. Then, the proof is identical to that for the base case. O

5.5 Precision analysis

The Loop-Dependence BTA algorithm described in the previous section has the ad-
vantage that it uses loop dependences to account for the role of control dependences
in a selective manner. In particular, loop dependences represent control dependences
that feed values built up in the loops in a program. Therefore, the Loop-Dependence
BTA is able to guarantee termination in the presence of dynamic control while differ-

ing from the standard congruence-based BTA algorithms only to the extent that loop

118

dependerices representing dynamic control are also followed by the analysis.

However, loop dependences are constructed using flow dependences, which have
the following drawback: Flow dependences are built using only the defined and used
variable sets at CFG vertices. The actual expressions at the vertices are ignored. As
a result, a flow dependence cycle may be present from a vertex to itself even though
the variable defined at the vertex does not take on new values on every iteration of the
program loop represented by the flow dependence cycle. Consider a flow dependence
cycle that is controlled by a dynamic predicate. All of the vertices in the cycle will be
marked as dynamic by the Loop-Dependence BTA, under the argument that the value
of a variable may be built up unboundedly through the loop. However, this may not
always be the case. For instance, consider the following assignment statement within
a dynamic loop in the structure of a program, where z is an array whose elements are

shifted in a loop:
zff] = =i - 1];

A dependence analysis that does not look inside the index expressions would add a flow
dependence from the assignment to itself, which would result in a loop dependence from
the predicate controlling the loop to the assignment. However, the assignment above
does not generate new values for z on every iteration of the loop. We term flow cycles
such as the one above “grounded flow dependence cycles”.

Grounded cycles can be identified by adding a simple criterion to the loop depen-
dence construction algorithm that conservatively determines whether a flow dependence
cycle can produce new values on every iteration. We omit the details here.

It is also possible that a flow dependence cycle may generate new values for a

119

int bsearch (int z, intArr a) {
int low = 0, high = 99, mid;
while (low < high) {
mid = (low + high)/2;
if (a[mid] < z)
low = mid + 1;
else if (a[mid] > z)
high = mid — 1;
else return mid;

}

return —1;

whvisiwivlwhw

}

Figure 34: The Loop-Dependence BTA applied to the binary search program.
The binary search program is shown above. The markings from the Loop-Dependence
BTA, given an input division in which parameters z and a are both dynamic, are shown
for certain vertices. intArr is assumed to be an integer array type.

variable on every iteration, but it may do so in such a manner that the number of
iterations of the loop is bounded. For instance, consider one version of the binary
search program, shown in Figure 34. Variables mid, low, and high are involved in
flow dependence cycles that are controlled by all three predicates in the program, of
which the predicates involving parameters a and z are clearly dynamic. As a result,
all of the vertices in the loop are marked as dynamic by the Loop-Dependence BTA.
This marking appears reasonable, because the predicates involving a and z do in fact
determine the iteration count of the program loop that is associated with the flow
dependence cycles for mid, low, and high.

However, examination of the expressions in the program loop shows that the number
of iterations of the loop is in fact bounded by the initial values of low and high, because

the loop monotonically approaches its exit condition on every iteration. In particular,

120

on every path through the loop, either low takes on a new value that is greater than its
previous value, or high takes on a new value that is smaller than its previous value. We
term such loops “grounded loops”. Loop dependences from dynamic predicates can
be ignored if the flow cycles that are their targets are in grounded loops. Grounded
loops can be identified by solving an any-path dataflow problem: If there is any path of
control flow through the loop such that the variables in the loop predicate expression
do not take o new values given which the loop approaches its exit condition, the loop
is conservatively identified as a loop that is not grounded. Given a particular path
of control flow through the loop, the condition above can be tested by symbolically
evaluating the expressions at vertices along the path, and then testing these expressions
to determine whether they approach the exit condition for all possible values of the
variables in the expressions.

The analyses described above can be used to improve the precision of the Loop-
Dependence BTA as follows: First, the LDG is constructed. Next, groundedness analy-
sis is performed to identify grounded loops and grounded flow cycles. Loop dependence
edges to or from grounded vertices are eliminated from the LDG. Finally, the Loop-

Dependence BTA is performed on the modified LDG.

5.6 Pointer variables

The Loop-Dependence BTA has the advantage that it can handle programs with arbi-
trary control structures. Since we are interested in developing a safe BTA for C pro-
grams, we must also extend our analysis to handle pointer variables. In this section,

we summarize our approach to integrating pointer variables into the Loop-Dependence

121

BTA.

Conceptually, pointer variables have the effect of creating aliasing relationships
among program variables. Alternatively, every program variable “points-to” zero or
more other program variables. A variable z points-to a variable y if the value of x may
represent the address of y. We borrow the pointer analysis algorithm of Lars Andersen
from [And93], and use it to build “points-to sets” for all the variables in the program.
Note that Andeérsen’s pointer analysis is “flow-insensitive,” in the sense that a variable
has a single points-to set throughout the program. This leads to a loss of precision in
the case of pointer variables that point to distinct variables in different areas of the
program.

We use the points-to sets for program variables to augment the sets of “defined” and
“ysed” variables at LDG vertices. This transformation has the effect that vertices that
appear to assign to a single variable may in fact define multiple variables. Our dataflow
algorithms for building flow dependences and loop dependences are extended to handle
definition sets with multiple variables in a straightforward manner. Therefore, we are
able to incorporate pointer variables in a manner that is orthogonal to our use of loop
dependences for providing a termination guarantee. In other words, our BTA algorithm
does not depend on the algorithm used to produce defined and used sets at program
points. Therefore, any pointer analysis algorithm can be used in place of the algorithm
from [And93]. An example of our approach is shown in Figure 35.

In the case of multi-procedure programs, aliasing relationships may span procedure
boundaries. This is especially true in C programs, which frequently use pointer-valued
parameters to simulate call-by-reference parameters. We approach this problem as

follows: Consider a procedure P that transitively calls a procedure @, such that a

122

void ptrProg() { Used Defined

int z, *y, z; S

read (z); {} {z} (ptrProz)
y = &az; {+ Ay} %\
2 = *y; {z} {} D S o D

write (z); {Z} {} (read (xﬂ (y = &:a . (z = *)) - - (write (z))

Points-to sets: z: {}, y: {z}, z: {}

Figure 35: Incorporating pointer variables into the Loop-Dependence BTA.
In the program above, pointer variable y points-to variable . The resulting defined
and used sets are shown above, along with the LDG of the program and the results of
the Loop-Dependence BTA on the LDG. Notice that variable y is static even though
the object it points to is dynamic. This is because the value of y is statically known to
be equal to the address of z. During specialization, occurrences of y can be replaced
with the static expression “&z”.

pointer variable that is dereferenced in @ has a local variable from P in its points-to
set. We add an extra parameter to the procedures between P and @ in the call graph,
including @, to represent the local variable of P that is referenced in Q). Parameter-in
vertices are added, with appropriate defined and used sets, at appropriate call sites.
If the variable is updated through a pointer, parameter-out vertices are added as well.
An example of our solution is shown in Figure 36.

Finally, the static or dynamic behaviour of a pointer variable can be thought of
on two levels: The pointer itself may be static or dynamic, while the objects it points
to may be static or dynamic. Here again, we copy the approach used by Andersen
in [And93]. Therefore, our approach to incorporating pointer variables is identical to
that of cmiz [And94], with the exception that we use extra parameters to handle flow
dependences induced by aliasing relationships across procedures, whereas cmiz uses a

type-inference engine to deduce these dependences. In addition, the results of pointer

123

void outer() { 5

in =

read (IIZ), D /N., b
?:;tzeng g&x), (read (x)) (call inch (write (x))

’ ~‘\\
} 8 /m// D

(y__in = &aa (outer_x_in = x) (x = outer,_x__out)
7’
'd
rd

void iner(int *y) { 7
* — * . ‘ II ‘\\
y - y + 1’ ,’ /7 ~

’ ’ ~

s I D D ~.D

(outer_x = outer,x__in) - (*y = ¥y 4 a - | outer_x_out = outer_aa

Figure 36: Inter-procedural aliasing through pointer variables.
In the program above, parameter y of procedure incr points-to local variable z of
procedure outer. In the LDG for the program, also shown above, parameter outer_z is
added to account for the update to z within incr.

analysis affect the construction of loop dependences.

5.7 Implementation and experimental results

We have implemented the Loop-Dependence BTA for a subset of C that includes almost
all of the features of Ansi C, with the following exceptions: We do not handle sepa-
rate compilation, setjmp and longjmp function calls, pointer arithmetic, and dynamic
memory allocation via calls to malloc. We disallow separate compilation because the
implementation of the pointer-analysis algorithm we used does not support separate
compilation. We do not handle calls to malloc because it is not clear how pointers to
dynamically allocated storage should be treated in the specialization phase. However,

our BTA algorithm is able to process calls to malloc. In these respects, we impose

124

the same restrictions that are imposed by cmiz, the partial evaluator for C programs
developed by Lars Andersen at DIKU [And95a]. Finally, we assume that all pointer
arithmetic arises from array accesses, because it makes the task of building defined and
used sets from points-to sets in the presence of array pointers significantly simpler.

The goal of the work presented in this chapter is a BTA algorithm that provides
a termination guarantee without compromising the ability of the analysis to identify
static behaviotur. Therefore, we have implemented only the first phase of partial eval-
uation for C programs, i.e the BTA phase. In evaluating our results, we use the BTA
markings produced by the BTA phase of c¢miz, which uses a standard congruence-based
BTA algorithm, as our reference point. Because we have followed the pointer analysis
algorithm and programming model of ¢miz, we claim that differences in the results of
cmiz and our implementation can be attributed solely to our use of loop dependences
in tracing dynamic behaviour, modulo imprecisions in our implementation.

We have developed our implementation, which we refer to as Spec (safe partial
evaluation for C), on top of a version of the Wisconsin Program-Slicing Tool developed
at the University of Wisconsin [oWM97]. This tool provides an infrastructure for
building dependence graph representations of C programs. The system has a front-end
for Ansi C programs, and a back-end that generates a system dependence graph, given
a set of input C programs. The front-end includes an implementation of Andersen’s
pointer analysis algorithm. However, the results of this analysis are not transmitted
to the back-end of the system.

To this framework, we have added the following components: An algorithm to
augment the defined and used sets at CFG vertices using the results of pointer analysis,

an algorithm to add parameters to procedures in order to account for inter-procedural

Test Program | Specialized w.r.t. || Terminates? || Identifies All Static Variables?
cmiz | Spec || cmiz | Spec- Spec+
power base No Yes Yes | Yes Yes
bsearch array bounds Yes | Yes Yes | No Yes
miz! program Yes | Yes Yes | Yes Yes
miz® program Yes | Yes || Yes | VYes Yes
ray scene Yes Yes Yes | No Yes

Figure 37: Experimental comparison of cmiz and Spec.

In the table above, Spec- refers to our implementation of the Loop-Dependence BTA
without precision analysis, while Spec+ includes our precision analysis algorithm.
power is the power function, bsearch refers to several versions of the binary search
function, miz! and miz? are different versions of a specializer for an imperative lan-
guage, and ray is an implementation of ray tracing (approx. 2000 lines of C code) by
Peter Andersen at DIKU [And95b].

aliasing information, an algorithm for constructing loop dependences, and a component
that identifies grounded flow dependence cycles and grounded loops using a linear
constraint solving technique.

We evaluate the performance of the Loop-Dependence BTA as follows: We run
the input program through emiz, obtaining a division of the program variables into
static and dynamic variables. We then run the same program through Spec, and we
compare the data divisions obtained. We do not report the run-time performance of
the specialized programs in each case, using the argument that if two BTA algorithms
produce the same division of program variables, they must produce the same residual
program, given the same specialization algorithm. Our set of test programs represents
the programs for which results of ¢miz have been reported. Our experimental results
are presented in Figure 37.

The table from Figure 37 shows that emiz does not terminate on the power function,

when specialized to a known base value, as reported earlier. This is because the

126

congruence-based BTA of cmiz ignores dynamic control. Exactly the same problem
arises in, for instance, the NORMA interpreter from [JSS85]. We have not included
these programs here because we have not obtained the source code for them. The
goal of our experiments is to show that the Loop-Dependence BTA can handle the
common occurrences of static behaviour. As shown in the table of results, our BTA
algorithm identifies all the static variables identified by ¢miz in the specializer miz’.
The more intetesting case is m4z?, which is a version of miz’ that uses The Trick to
obtain non-trivial specialization of a specializer, given a known input program. For
this program, the Loop-Dependence BTA is able to identify static variables as desired.
The binary-search function requires the use of precision analysis, as discussed earlier.
Finally, the ray-tracing program ray contains one grounded loop and one use of The
Trick. These are identified as grounded by the precision analysis. All other parts of
the program are identified consistently with c¢miz. The ability of the BTA to process

loops produced by The Trick is discussed in detail in the next section.

5.8 Handling The Trick

It has been argued in the literature that dynamic control should be ignored in designing
BTA algorithms, because programs that have been transformed using The Trick cannot
be processed suitably. In this section, we clarify this statement, and then argue that
this is not the case, in particular with the BTA algorithm that has been described in
this chapter.

The motivation for The Trick comes from the self-application of partial evaluators,

as described by the Futamura projection equations in Chapter 2. The second Futamura

projection indicates that a compiler can be generated by applying a partial evaluator
to itself, where the static argument to the partial evaluator is an interpreter, and
the dynamic argument contains the inputs to the interpreter. The idea is to use the
knowledge of the text of the interpreter to simplify the code of the partial evaluator.
Consider a partial evaluator miz of the form described by Jones et al. in [JGS93,
pp. 85-87]. The specialization component of miz has a pending loop, which selects
a program point from the pending list and performs specialization actions at that
program point. The pending list in turn may be updated by the specialization actions
at that program point. For each program point, the specializer examines the statements
in the code at the program point and processes the code accordingly. Consider the

fragment of code within the pending loop of miz below, taken from [JGS93, pp. 91-93]:

bb = lookup(pp, prog);

In the code above, pp is current program point being processed, bb is the basic block
at pp, and prog is a linked list of the basic blocks in the interpreter. pp is dynamic,
because it is taken from the pending list, which depends on the values for the dynamic
parameters to the interpreter. Therefore, bb, which is obtained through the lookup on
prog using pp, is also dynamic. This causes the rest of the code within the body of the
pending loop to be treated as dynamic, leading to trivial specialization.

However, pp always refers to one of the statically known set of program points in
prog. In other words, pp is BSV. This information can be exploited by replacing the

code above with the loop shown below:

pp’ = ppo;

128

while (pp’ # pp) {
pp’ = next(pp’, prog);

}

bb = lookup(pp’, prog);

In the loop above, pp, is the initial program point in the program prog, while next
returns the program point immediately after pp’ in the list prog.

Given a BTA algorithm that follows only flow dependences, the variable pp’ in
the loop above is treated as static, even though it is built up under dynamic control.
Because pp is BSV, specialization can proceed safely even with pp’ marked as static,
since the values enumerated for pp’ are limited to the program points in prog. During
specialization, the remaining code in the body of the pending loop is specialized for
every value taken by bb, resulting in non-trivial specialization.

In contrast, a BTA algorithm that uses control dependences — even selectively -
such as the Loop-Dependence BTA, would identify pp’ as dynamic, because it is built
up under dynamic control. The result would be trivial specialization.

The transformation described above, in which the lookup using a dynamic pp is
replaced by a search loop, is referred to as The Trick. This transformation is done
by hand, by a user whose examination of the code has uncovered the fact that the
dynamic control variable (pp in the example above) is in fact BSV. The example above
has been used to argue against the use of control dependence in BTA algorithms, as
follows: In order to properly exploit BSV behaviour, many programs are transformed
using The Trick. If a BTA algorithm that accounts for dynamic control is applied to

these programs, variables that have been enumerated using The Trick (for example, pp’

129

in the example above) are treated as dynamic. This eliminates the advantage provided
by using The Trick.

Let us re-phrase the argument above: In cases where The Trick is applied, it is
convenient to ignore dynamic control, because this leads to better results. Therefore,
the model that should be used for BTA is one that does not use control dependence,
even though this leads to incorrect results in all the other cases where The Trick is not
employed and dynamic control does lead to non-BSV behaviour.

Our claim is that this model is not suitable for partial evaluation. We approach the
problem as follows: The key point is that The Trick is a manual transformation, which
is not automated. In fact, it relies on the user observing that a dynamic variable in the
program is BSV. Consider the lookup loop in the example above. In the terminology of
the Loop-Dependence BTA, the loop above is a grounded loop. In other words, there
is a loop dependence from a dynamic predicate to a flow dependence cycle, where the
flow dependence cycle is in a loop whose iteration count is bounded.

Therefore, we modify The Trick by requiring the user to add a simple annotation to
the loop header of the transformed lookup loop, indicating that the loop is grounded.
This annotation is used by the precision analysis of the Loop-Dependence BTA to
eliminate the loop dependences from the loop predicate to the flow dependence cycles
controlled by it. As a result, variables enumerated in the search loops produced by

The Trick are treated as static, as desired.

In summary, we have designed a BTA algorithm that guarantees termination of
partial evaluation in the presence of dynamic control, without compromising the ability

of the analysis to identify static behaviour. As we have argued and demonstrated above,

130

our BTA algorithm is able to suitably process programs that have been transformed
using The Trick, by using the notion of grounded loops. Note that the notion of
grounded loops can be applied to the Static-Variation BTA algorithms for PRG and
SRG programs as well. Therefore, these algorithms are also able to suitably process
code produced by The Trick, using the user annotation scheme described above.

The Loop-Dependence BTA has the advantage that it handles a large class of
imperative programs. As is the case with all of our BTA algorithms, it provides only a
partial termination guarantee. In particular, it guarantees termination in the absence
of static-infinite computation. As we argued in the introduction, we believe that this is
the most appropriate model for partial evaluation. This is especially true in the case of
real imperative programs, which have complex features that make termination analysis
of all static loops in a program unduly conservative.

In the next chapter, we explore an alternative approach to the termination problem.
We devise a termination analysis algorithm that can be used to provide a termination

guarantee for partial evaluation on all programs that belong to a restricted functional

language.

131

Chapter 6

Termination analysis for functional

programs

In previous chapters of this thesis, we have tackled the termination problem in partial
evaluation by designing BTA algorithms that conservatively identify static behaviour in
the presence of dynamic control. In this chapter, we present work on another approach
to solving the termination problem. In particular, we present a termination-analysis
algorithm that guarantees termination of partial evaluation under all conditions. Qur
work improves upon previous termination analyses in two respects: Our algorithm is
optimistic, whereas previous algorithms are pessimistic, and we use a richer language
of shape-modification operators. Both of these differences allow our analysis to obtain
greater precision.

In contrast with our BTA algorithms described in previous chapters, termination
analyses are limited in the language features and data types they can handle. This is
because such analyses must look inside the expressions at program points an’d reason
about the possible shapes of data values. Therefore, our termination analysis operates
only on functional programs with list data types, as is the case with previous work
in this area. Since the functional programs are essentially a subset of the procedural

imperative programs, we can compare the approach described in this chapter with our

132

other BTA algorithms in the following way: The termination analysis of this chapter
has the advantage that it guarantees that the partial evaluator will terminate on a pro-
gram even if the program contains static-infinite computations. However, it sacrifices
precision, because every static loop is treated conservatively. Further, only a restricted
class of programs can be handled.

In the context of functional programs without explicit looping constructs and in-
finite data stractures, non-terminating partial evaluation results from infinite recur-
sion (or, infinite unfolding). Holst has shown that in programs that manipulate S-
expressions or list data it is possible to identify functions that are limited to finite
recursion [Hol91]. He identifies parameters that are “in-situ decreasing”: An in-situ
decreasing parameter of a function f strictly decreases in size on every (recursive)
;:hain of calls from f to f. A function that contains an in-situ decreasing parameter
can only call itself a finite number of times before this parameter takes on the value
null. Hence, such a function can go through only a finite number of levels of recursion.
In addition, if the initial or entry values for the parameter are bounded, the function
can go through only a bounded number of recursive calls. Thus, even a parameter
whose values increase in size on successive recursive calls can be treated as BSV as
long as it belongs to such a function (i.e., one that has some other parameter that is
in-situ-decreasing), and its initial values are bounded.

Glenstrup and Jones have defined a second algorithm that identifies in-situ de-
creasing parameters [GJ96]. They define a structure, called the parameter dependency
graph (we refer to this as the PG to distinguish it from the PDG described in Chap-

ter 2), whose edges denote flow dependences between function parameters. Edges are

133

labeled to indicate their size-changing effects, as in Example 11 below. In this frame-
work, a “size-decreasing path” is a path free of 1 edges but containing at least one |
edge. An in-situ decreasing parameter is one for which every path in the PG from the
‘para,meter to itself is size decreasing. Such parameters can be identified by solving a
simple reachability problem on the PG: A parameter is in-situ decreasing if its vertex
in the PG is reachable from itself only via paths that are size-decreasing, and there is
at least one path from the vertex to itself. A standard congruent BTA is applied to
identify static and dynamic parameters, following which termination analysis is used
to re-classify non-BSV static parameters as dynamic.

In this chapter, we characterize BSV behaviour in terms of the in-situ-decreasing
and in-situ-increasing properties for parameters of functions. We then use these prop-
erties as the basis for a termination-analysis algorithm that generalizes the algorithm
of Glenstrup and Jones.

The first difference between our algorithm for identifying BSV parameters and
Glenstrup and Jones’s algorithm is that our algorithm uses a more precise technique for
identifying in-situ-decreasing parameters. Their approach requires that size-decreasing
paths must be free of 1 edges. In general, size-decreasing paths may include 1 edges

that are “matched” by | edges, as is the case for a path in Example 11 below.

Example 11 In the program shown in Figure 38 (a), eval is an infix expression eval-
uator that takes a list of operators (ops), a list of values (vals), the current value of
the expression (tot), and an error token (err) that it returns if an invalid operator is
encountered. Function checkValid sets the list of remaining values to null if an invalid

operator is detected, while accum updates the expression value at each step.

134

On each successive call to eval, the operations cdr, cons, and cdr are applied to
parameter vals. The net effect is that cdr(vals) (or null) is passed to the next call on
eval. The graph shown in Figure 38 (b) is a snippet of the PG for the program as
defined by Glenstrup and Jones, while the graph in Figure 38 (c) is a snippet of the
dependence graph used in our approach. Each graph represents the same cycle from
vertex vals to itself that is present in the two dependence graphs.

The path from wvals to itself in (b) contains an 1 edge, and is therefore not a
size-decreasing path under Glenstrup and Jones’s approach. For the corresponding
path in (c), the label ¢/ on the edge from v, to vs indicates that the expression
cons(car(ops),cdr(vals)) has the expression cdr(vals) as its tail, while the label ti~!
from vy to v indicates that the expression cdr(state) is obtained by extracting the tail
of state. This allows our technique to determine that the path is size-decreasing: Be-
cause the cons operation on cdr(vals) (shown by the edge from v, to v3) is “balanced”
by the cdr operation on state (shown by the edge from vy to vs), the net effect is that

just a single cdr is applied to vals (as indicated by the edge from v; to vs). 0

To handle such cases, we use CFL-Reachability [Yan90, Rep95], a generalized form
of graph reachability. A CFL-Reachability problem is one in which a path is considered
to connect two vertices in a graph only if the concatenation of the labels on the edges of
the path is a word in a certain context-free language. Thus the path from parameter vals
to itself in (b) from Figure 38 above has the concatenated label tr tlad t dd.ad.id,
which is in the language decr_path defined later in the paper (decr_path is a context-free
language that defines the notion of size-decreasing paths).

Andersen and Holst have also addressed the problem of identifying in-situ-decreasing

135

accum(op,val,totVal)

eval(ops,vals,tot,err) checkValid(state)

if ops = null and vals = null if invalid(car(state)) if op = '+

tot null totVal + val
else if vals = null else else if op = -

err cdr(state) totVal - val
else i

eval(cdr(ops),newVals,newTot,err)

where newVals := checkValid(cons(car(ops),cdr(vals)))

newTot := accum(car(ops),car(vals),tot)
(¢)
1
4

state |

-1
5 1

vals

- =]

] 3] id 6

checkValid

cons(car(ops),cdr(vals)

(c)

checkValidy

U

(b)

Figure 38: Parameter dependence graphs for an infix expression evaluator.
An infix expression evaluator is shown in figure (a) above. A snippet of the PG for this
program is shown in figure (b) above. The corresponding snippet from the dependence

graph used in our work is shown in (c) above.

136

parameters more precisely, in the context of higher-order languages, using a different
approach than the one we use. A comparison of our work with their results is given in
a later section of this chapter.

The second difference between our algorithm for identifying BSV parameters and
Glenstrup and Jones’s algorithm is that whereas their algorithm is pessimistic, our
algorithm is optimistic. In ﬁarticular, Glenstrup and Jones treat every parameter as
non-BSV until it can be argued to be BSV. Their algorithm proceeds by alternating
two BSV-identification steps, as follows: In the first step, a parameter is treated as
BSV if all of its acyclic predecessors in the PG are BSV and if no cycles that involve
the parameter are size increasing. In the second step, a parameter is identified as
BSV if all of its acyclic predecessors are BSV, if one of its sibling parameters (i.e., a
parameter associated with the same function) is in-situ-decreasing and has only BSV
predecessors, and if all of its sibling predecessors are BSV. This process may result in

some BSV parameters never being identified as BSV, as is shown in Example 12 below.

Example 12 In the program shown in Figure 39 (a), game is a function that plays a
game involving two players, whose holdings are represented by plyr! and plyr2. moves
is a list of moves that are executed during the game. Two possible moves are swapping
the players’ holdings, and moving a holding from one player to another. When the
moves are exhausted, the players’ holdings are returned as a pair.

The parameter dependency graph for the game program is shown in Figure 39
(b). Given an input division under which initial values for all three parameters are
BSV, it is the case that all three parameters are BSV. This is because even though

parameters plyr! and plyr2 may increase in size on successive iterations, the number

137

(a) game(plyrl,plyr2,moves)
if moves = null
cons(plyrl,plyr2)
else if car(moves) = ’swap
game(plyr2,plyr1,cdr(moves))
else if car(moves) = ’capture
game(cons(car(plyr2),plyrl),cdr(plyr2),cdr(moves))

(b) “"'“" [moves
o’ ‘\9/ O& <>+

Figure 39: An example of pessimistic BSV identification.
A game playing function is shown in figure (a) above. The PG for this program is
shown in figure (b) above. ‘

of iterations is bounded by parameter moves. However, the algo;ithm of Glenstrup
and Jones will identify parameters plyr! and plyr2 as non-BSV, because initially, each
parameter depends on the other, which is a non-BSV sibling. Under our optimistic
approach, in which every parameter is initially BSV, both plyr! and plyr2 are identified
as BSV, as desired. O

In contrast, our algorithm is optimistic, and proceeds as follows: Every parame-
ter is initially identified as BSV. A pre-processing phase is applied to identify in-situ-
decreasing parameters. All parameters that are in-situ-decreasing are initially classified
as “anchors”. Parameter markings are then updated at every step, until no further pa-
rameters can be updated, as follows: Any parameter that has a possibly size-increasing

path to itself and that has no sibling anchors is re-classified as dynamic. Such an update

138

may be propagated in two ways: Any successor of a dynamic parameter is re-classified
as dynamic, and any anchor that is re-classified as dynamicis no longer an anchor. This
change may result in previously anchored parameters to be re-classified as dynamic,
and so on. For the program shown in Example 12 above, this optimistic algorithm will
identify plyrl and plyr2 as BSV.

Thus, we are able to improve upon the precision of Glenstrup and Jones’s algorithm
in two orthogonal directions: (i) By using a richer language of paths, and (ii) by using
an optimistic approach.

The contributions of the work presented in this chapter can be summarized as

follows:

o We give a formal characterization of in-situ-decreasing, in-situ-increasing, entry-

BSV, and anchoring parameters.

— A parameter is in-situ-decreasing iff it strictly decreases in size on every

recursive call from its associated function to itself.

— A parameter is in-situ-increasing iff it strictly increases in size on some

recursive call from its associated function to itself.

— A parameter is entry-BSV iff the set of values taken by the parameter on

“entry” or non-recursive calls to its associated function is finite.

— A parameter is anchoring iff the parameter is in-situ-decreasing and entry-

BSV.

e We provide an algorithm that identifies a subset of all the in-situ-decreasing

parameters and a superset of all the in-situ-increasing parameters in a program.

139

— The algorithm uses CFL-Reachability to identify a broader class of strictly

size-decreasing paths than the algorithm of Glenstrup and Jones.

e We provide an algorithm that identifies a subset of all the BSV parameters in a

program.

— Our algorithm has a different structure than that of Glenstrup and Jones.
Their algorithm treats all vertices as non-BSV until proven otherwise, and
uses two BSV identification phases that must be iterated in order to identify
as many BSV vertices as possible. On the other hand, our algorithm is
optimistic, in the sense that it treats every vertex as BSV until there is
evidence (conservatively) that the vertex may not be BSV. By identifying
the roots of non-BSV behaviour using the in-situ-increasing property, we
are able to propagate enough non-BSV information through the program to

produce correct results.

— Whereas Glenstrup and Jones use a single constant vertex for all the con-
stants in the program, we use a distinct constant vertex for every function
that defines a constant. This allows us to distinguish between constants that
represent “entry” values for a parameter and those that represent recursive

values, leading to greater precision.

It should be pointed out that our algorithm for identifying BSV parameters, like
other termination-analysis algorithms, does not use control dependences explicitly.
However, it does account for non-BSV behaviour arising from dynamic control, because

it implicitly accounts for control dependences by considering both branch possibilities

140

at all predicates. Because the analysis ignores control dependences, however, it cannot
distinguish between non-BSV behaviour arising from dynamic control and non-BSV
behaviour arising from static-infinite computation, leading to conservative treatment
of all static loops.

This chapter is organized as follows: In Section 6.1, we present an overview of the
subject functional language and its semantics. In Section 6.2, we use this semantics to
define the BSV, in-situ-decreasing, in-situ-increasing, entry-BSV, and anchoring prop-
erties. In Section 6.3, we present the augmented parameter dependence graph (APG),
an extended form of the parameter dependency graph. In Section 6.4, we define several
context-free path languages on the APG. In Section 6.5, we present an algorithm that
uses these languages to identify in-situ-decreasing and in-situ-increasing parameters in
a program. In Section 6.6, we present an algorithm that uses in-situ-decreasing and
in-situ-increasing markings to identify a subset of all the BSV parameters in a program.

In Section 6.7, we summarize related work.

6.1 A simple functional language and its semantics

In this section we present a simple, first-order call-by-value functional language, F, and
the semantics of programs in F. The language and its description are taken directly from
Glenstrup and Jones’s work in [GJ96]; we use the same language so that our results
can be compared with previous work, while we reproduce the language description here

for completeness. The language F is defined by the grammar below:

P : Program = fUzy ey Tmy) = € ... (21,00, 2m,) = €

e : Ezpression = se|if e; then e; else e3 | e, where z = e

141

= fi(sery...,S€m;)
se : SimpleEzpression = be | basefen(be;, ..., bex)
be : BasicEzpression = x| constant

z,z : Variable

Base functions consist of cons, car and cdr, all of which have the usual meanings.
Constants may be list constants or integers. f1 (or main) is the main function, and
is not called anywhere in the program. We follow Glenstrup and Jones in treating the

tail recursive subset of F for ease of presentation.

6.1.1 Transition sequences

A state is a pair (f,7) with f defined in p, where ¥ is a shorthand for (vy,...,v.),
n = arity(f), and ©; is the ith component of a tuple. Given a value set V, call-free

evaluation of expression e is defined as:

lel,7 w, if e’s value on ¥ is computed without making any function calls.
el =

(g,w), if ¢’s value on ¥ is ¢’s value on .
A single step state transition, written (f, %) — (g, W), occurs if p contains f7 = e, and

[el,# = (g, w). Total evaluation of an expression is then defined as:

v, if e’s value on ¥ is computed without making any function calls.

[body(g)]w, if [e],@ = (g, %)

[l =

A multi-step transition sequence T = [(f*,7%),...,(f*,7*)] is obtained by composing
several state transitions (f1,') — (f2,9%), (f%,9%) — (f%,7°), etc. Every recursive

call from a function f to itself is associated with a transition sequence of the form

142

[(f,3),-..,(f,0%)] where ¢! is the vector of parameter values with which the caller f

is called, and ¥ is the vector of parameter values with which the callee f is called.

6.1.2 Call paths

We can approximate the transition sequences from the concrete semantics with the
abstract call path constructs defined by Glenstrup and Jones in [GJ96]. A call path is
an abstraction“ of a transition sequence where every vector of values is replaced by a
vector of syntactic expressions. More precisely, a call path of length k—1 from a function
f! to a function f* is a sequence 7 = [(f1, Z), (f%,€%),..., (f¥,&")], where p (assumed
to be tail recursive) contains definitions fi='g = ... f'¢... for2 <i < k. €2 is a vector
of arguments for f2 obtained by unfolding the call from f! to f? without doing any
computation, and is expressed in terms of Z. Similarly, € is obtained by unfolding the
calls from f! to f? ... f*~! to f* without doing any computation, and is expressed as
a function of &. Argument € is said to “depend” on argument &; iff the “simplified”
expression for é'f in terms of & contains the symbol #;. An expression is simplified
by applying the following simplification rules to the expression: car(z,?) = z, and
cdr(?,z) = z.

We define the size operators << and << on expressions as follows: Given two ex-
pressions e; and ez, € << e iff V¥ s.t. [e1]¥ and [e2]7 are well defined : [e;]v <
[e2], and e; XK e, iff VU s.t. [e1]7 and [ez]7 are well defined : [e;]7 < [e2]¥, where
< is the “proper-substructure-of” relation on S-expressions, and < is the substructure

relation on S-expressions. In particular, we will often be interested in whether the rela-

tions e << z and e << z hold between an expression e and (the degenerate) expression

143

Example 13 In the program from Example 11, one call path that represents a possible
call from eval to itself is the path [(eval, [0,v,1, €]), (eval, [edr (o), cdr(v),t + car(v), €])].
Parameter tot (¢ for short) depends on parameters tot (t) and vals (v) because the

expression t -+ car(v) contains the symbols ¢ and v. 0

In general, every real computation or transition sequence is represented by some call
path, although the converse does not hold. Hence, we can use the abstract semantics of
call paths to define the properties of interest in termination analysis, with the guarantee
that if a parameter satisfies a property defined in terms of the abstract semantics, the

property holds over all real computations.

6.2 Semantics of BSV behaviour

In this section, we are concerned with semantics and, in particular, semantic properties
of parameters to functions. We first define the BSV and “entry-BSV” properties in
terms of the transition sequence semantics. We then define two related properties -
“in-situ-decreasing”, and “in-situ-increasing”. In later sections, we will develop static-
analysis algorithms that (safely) identify subsets (or supersets) of the parameters that
possess these two properties. These algorithms are subroutines of our algorithm for
identifying (a subset of the) parameters with the BSV property. We define the “anchor-
ing” property and show how this property can be used to establish the BSV behaviour
of in-situ-increasing parameters.

A parameter is BSV if the set of all the different values taken by the parameter,

144

given fixed static inputs to main, is finite. We borrow the definition used by Glenstrup

and Jones in [GJ96] as Definition 25 below.

Definition 25 A parameter f; of function f in p is bounded-static-varying (BSV) ift
for every static input ! € V, { o |3 = [(f2, (8L, B4, - .., (%, 0%)] s.t. 0} € Vi,

f! = main, f* = f } is a finite set. a

In general,'every function other than main may be called either through a recursive
call, or through an entry call. (We made the same distinction in our discussion of SRG
programs in Chapter 4.) An entry call is one in which there is no previous invocation of
the function on the stack. In terms of transition sequences, an entry call is represented
by a sequence from main to the function with no other instances of the function in the
sequence. For a parameter of a recursive function, its values on entry calls are termed
“entry values”. We say a parameter is “entry-BSV?” if this set of values is finite, given

fixed static inputs to main.

Definition 26 A parameter f; of function f in pis entry bounded-static-varying (entry-
BSV) iff for every static input ¥} € Vi, { Fl3r= [(fL, [8Y, B, . .., (f%,0%)] s.t.

vy € Vi, f! = main, f* = f and Vi € (2,k — 1) f' # f } is a finite set. O

A parameter f; that is identified as static by a congruent BTA may exhibit non-BSV
behaviour if it depends on a parameter g; such that parameter g; takes larger values
on successive recursive calls to its associated function g, and function g goes through
an unbounded number of recursive calls. However, if function g has another parameter
g such that g is in-situ-decreasing and the entry values of g are bounded, then
parameter g; may be BSV even though it takes larger values on successive recursive

calls.

145

We formalize this idea by first characterizing in-situ-decreasing behaviour in terms
of the abstract call paths defined in the previous section. A parameter of a recursive
function is in-situ-decreasing if its values strictly decrease in size on every recursive

call to the function from itself, as in Definition 27 below.

Definition 27 A parameter f; of function f in p is in-situ-decreasing if for every call

pa.th?l‘:[(fl,‘:f:‘),.,_,(fk,é*)] Whereflsz:faé?«fj' =

Since every real computation is represented by a call path, it follows that any
parameter that satisfies the property above must take successively smaller values on all
recursive calls to its associated function. The property above is stricter than required,
because every call path may not correspond to any real computation. However, it is
useful because call paths are closely related to the edges in the dependence graph that
we use as the basis for our termination-analysis algorithm. Thus, the set of parameters
that satisfy the property above is in general a subset of the set of semantically in-situ-
decreasing parameters.

A parameter f; that has the in-situ-decreasing property as defined above limits its
associated function f to finite recursion. In addition, if the set of entry values for the
parameter is finite, the parameter places a bound on the number of levels of recursion
the function can go through. Thus, for every static input, there is a number n such
that recursions of f always “bottom-out” after at most n levels. We refer to such a

parameter as “anchoring”:

Definition 28 A parameter f; of function f in p is anchoring iff f; is in-situ-decreasing

and f; is entry-BSV. i

146

From Definitions 25 and 26 above, it follows that a parameter that is BSV must
also be entry-BSV. Conversely, a parameter that is entry-BSV and in-situ-decreasing

must also be BSV. This leads to the lemma below:

Lemma 29 A parameter f; of function f in p is anchoring iff f; is in-situ-decreasing

and f; is BSV.]

As discuss«;:d earlier in this section, the “seeds” of non-BSV behaviour in static
parameters (as identified by a congruent BTA) are parameters that build up their values
on successive recursive calls to their associated functions. We say that a parameter
is “in-situ-increasing” (ISI) if it takes larger values on recursive calls to its associated
function, and if the larger values on successive recursive calls are built (at least partly)
from previous values of the same parameter. This concept is formalized in Definition

30 below.

Definition 30 A parameter f; of function f in p is in-situ-increasing if there is a call
path 7 = [(f1,Z),...,(f*,&)] where f!' = f* = f, such that & <K &; and & depends

on EEJ'. (]

Once again, the characterization of in-situ-increasing behaviour in terms of call
paths is more conservative than a characterization of the property in terms of transition
sequences, since a call path may not correspond to any transition sequence, while every
transition sequence is conservatively represented by some call path. Thus, the set of
in-situ-increasing parameters according to Definition 30 is in general a superset of the
set of semantically in-situ-increasing parameters.

Although no parameter can be both in-situ-decreasing and in-situ-increasing, a

parameter may satisfy neither property. The relationship between the two properties

147

can be expressed as follows: If a parameter that is identified as static by a congruent
BTA is not BSV, and if the parameter is entry-BSV and does not depend on any non-
BSV sibling parameters or recursive predecessors, then it must be that the parameter
has no siblings that are anchoring. In other words, even if a parameter is in-situ-
increasing, it will satisfy the BSV property as long as it is entry-BSV, it depends only
on other BSV parameters, and if it is “anchored” by one or more siblings that are

anchoring. This idea is formalized in Lemma 31 below.

Lemma 31 If parameter f; of function f in p is not BSV and f; does not depend on

any dynamic parameters, then one of the following must hold:

(a) f; is not entry-BSV, or

(b) f; depends on a sibling parameter f; that is not BSV, or
(c) f; depends on a parameter g; that is not BSV, or

(

d) f; is in-situ-increasing, and f; has no sibling f; such that f; is anchoring. 0O

The lemma above expresses the intuition behind both the algorithm of Glenstrup
and Jones, which is pessimistic as it initially treats all parameters as non-BSV, and our
algorithm, which is optimistic as it treats every parameter as BSV and then re-classifies

some parameters as non-BSV. The lemma is a re-statement of Theorem 8 from [GJ96].

6.3 The augmented parameter dependenée graph

In this section we present the augmented parameter dependence graph (APG), an
extension of Glenstrup and Jones’ parameter dependency graph, in which flow depen-

dences between parameters are captured through edges in the graph. The APG differs

148

from the parameter dependency graph defined by Glenstrup and Jones in four ways:

An APG includes nodes for every intermediate expression in the program,

e An APG may have multiple constant vertices,

Flow edges in the APG are labeled differently, and

The call graph is embedded in the APG.

Control dependences are not represented explicitly. This is because, as we argued
carlier in this chapter, termination-analysis algorithms account for the effect of dynamic
control implicitly, by considering all possible branch directions at predicates.

Formally, the augmented parameter dependence graph for a program p is a directed
graph G(p) = (V, E), where V is a set of vertices and E is a set of edges. V(G) includes
a header vertez and return-value verter for each function in p, one constant vertex cg
for every function f in p whose body includes one or more constants (we say that f
“encloses” c;), a vertex for every intermediate expression in the body of any function
in p, a vertex for each variable in p, and a vertex for every parameter of a function in
p. E(G) includes flow edges and control edges (these control edges are distinct from
the control dependence edges in program dependence graphs). Control edges in E(G)
are a superset of the call edges in the call graph of p: A control edge exists from f to
g iff the expression body of f contains a call on g, or if g is a constant vertex that is
enclosed by f. Every controlyedge has the label control. Flow edges in E(G) represent
standard flow dependence relationships between vertices. (A flow edge exists from u

to v if the expression at v is defined in terms of the expression at u.) Every flow edge

149

in G has a label from the set {id, hd, tl,hd™",tl™'}, where the label on the edge is

determined as follows: Edge e from vertex u to vertex v has the label [where:

[=1d if v is a parameter vertex or if v is a return-value vertex
l=nhd if v = cons(u,w)

[=1t if v = cons(w,u)

| =hd™ ifv=car(u)

I =tl"! if v = cdr(u)

Essentially, it is the flow-edge labels that distinguish APGs from parameter depen-

dency graphs.

Example 14 The APG for the program from Example 11 is shown in Figure 40.
Consider the path in the graph from vertex vals to itself with concatenated label
t7t¢l.id.tl" id.id.id. This path arises from a recursive call on eval from eval in which

the value taken by vals at the callee is the tail of the value of vals at the caller. O

The number of vertices in the APG G of a program p is bounded by O(F + P +
Var + Ops), where F is the number of functions in p, P is the number of parameters
in p, Var is the number of where variables in p, and Ops is the number of cons/car/cdr

operations in p. The number of edges in G is bounded by O(F?+ (P + Var)? + Ops).

6.4 Pafhs in the APG

In Section 6.2, we gave a semantic characterization of in-situ-decreasing parameters and

in-situ-increasing parameters. Qur purpose in this section is to characterize a subset of

150

l

control ()

’ control -‘accumg
e

7
o

eval [

~.

T
control *l checkValid

-

id

L \
D ! @ (val] | rotVal }‘-{ tot l i err l »\
-1 . _ T _ 7
» . m\\)ﬂl hil i/’ 0\ ;d / :d/ y ,‘_“ |
id |
() (] (o] [mem] (me] =
hd tl

. L
A N -1

; d] id ; id
! cons(car(ops),cdr{vals)) i - '{ state } : ‘J| cdristate) }—‘l—“'{ checkValid L}M’{ newVals }*"

Figure 40: The APG for an infix expression evaluator.
The APG for the infix expression evaluator from Example 11 is shown above. Edges
in the APG have labels from the set {id, hd, tl,hd™", tl™'}, as described earlier.

the in-situ-decreasing parameters and a superset of the in-situ-increasing parameters
in a program, in terms of properties of the augmented parameter dependence graph.
We are able to do this because the paths in the APG of a program are directly related
to the dependence relationships in the calls paths of the program.

However, not every path in the APG represents a dependence between expressions.
For instance, the following example illustrates that an arbitrary path of flow edges
from a vertex u to a vertex v in the APG may represent a “false” dependence because
the values at u and v have no common substructure (later in this section, we show how

“false” dependences can be identified):

Example 15 In the APG for the program shown in Example 11, the path from vertex
ops to vertex vals with label hd™'.hd.id.tl" .id.id.id suggests that the value of vals
depends on the value of ops. However, the path represents a “false” dependence,

because the t/~! (or cdr) operation on parameter state extracts its tail, whereas the

151

hd (or cons) operation on car(ops) places car(ops) in the the head of state. Similarly,

the path from ops to vals with label 7Y id.hd . hd.id.tl"* id.id.id represents a “false”

dependence. a

We use the presence or absence of certain kinds of paths in the APG to determine
whether given parameters in the program satisfy the in-situ-decreasing and in-situ-
increasing properties. We do this by solving several path problems in which a path is

considered to connect two vertices if and only if the concatenation of the labels on the

edges of the path is a word in a certain context-free language.

Definition 32 (Context-Free-Language Reachability; CFL-Reachability) Let L be a
context-free language over alphabet ¥, and let G be a graph whose edges are labeled
with members of £. Each path in G defines a word over X, namely, the word obtained
by concatenating, in order, the labels of the edges on the path. A path in G is an
L-path if its word is a member of L. The all-pairs L-path problem is to determine all
pairs of vertices vy, v, € V(@) such that there exists an L-path in G from v; to va. The
source-target L-path problem is to determine whether there exists an L-path in G from

a given source v; to a given target vs. a

Ordinary reachability (transitive closure) is a degenerate case of CFL-Reachability:
Let all edges of a graph be labeled with the letter e; transitive closure is the all-
pairs e*-path problem. More general instances of CFL-Reachability are useful for
focusing on certain paths of interest. By choosing an appropriate language L, we are
able to enforce certain types of restrictions on when two vertices are considered to be
“connected” (beyond just “connected by a sequence of edges”, as one has with ordinary

reachability).

152

CFL-Reachability problems can be solved using a dynamic-programming algorithm.
(The algorithm can be thought of as a generalization of the CYK algorithm for context-
free recognition [Kas65, You67].) There is a general result that all CFL-Reachability
problems can be solved in time cubic in the number of vertices in the graph [Yan90,
MR97]. (This holds even if the context-free language is specified with an ambiguous
grammar.) Because the number of vertices in the APG for a program p is bounded
by O(F + P + Var + Ops), the problem of identifying whether an L-path exists from
every vertex in the APG to every other vertex (the all-pairs L-path problem) can be
solved in time O((F + P + Var + Ops)°®).

Every flow edge from a vertex u in the APG to a vertex v in the APG has a
label from the alphabet {id, hd,tl, hd™",¢{"'}, indicating the relationship between the
expressions at u and v along a certain execution path. Similarly, the concatenated label
on a path from vertex u to vertex v indicates the relationship between the structures
of the expressions at u and v along a certain execution path. Therefore, we can define
context-free languages such that all paths whose labels are in a given language L relate
the values at their source and target vertices in some particular manner. In particular,
we are interested in three kinds of relationships between vertices in the APG: Size-
decreasing, possibly size-increasing, and equal. In addition, for some purposes we may
want to exclude the empty path from consideration, and so sometimes we are interested
in languages that do not derive ¢, the empty path. We define the following context-free

languages, which are described in detail below and summarized in Figure 41:

o The language L, represents paths in which each hd (resp. t[) is balanced by a

hd~' (resp. tI™!); these paths correspond to values transmitted along execution

153

paths in which each cons operation (which gives rise to a hd or t/ label on an

edge in the path) is eventually “taken apart” by a car (or hd™") or cdr (or t/7")

operation:
Li: eq_path®
eq_path®
. eq-path®
eq.-path®

— hd eq.path® hd™' eq_path
— tl eg_path® tI™' eq_path®
— id eq._path®

—¥ €

e The language L, is similar to Ly, but excludes empty paths:

Ly: eq_path — hd eq_path® hd™' eq_path®

eg-path — t1 eq.path® tI™' eq_path®

eq_path — id eq.path®

e An Ls-path is a path that has one or more hd™" (resp. t/™') labels that is not

balanced by any hd (resp. ¢l) label. Such paths are “strictly decreasing” in the

sense that they correspond to execution paths in which the expression at the

target vertex of the path is a proper substructure of the expression at the source

vertex:

L3: decr_path
decr_path
decr.path

decr_path

— eq_path® hd™' decr_path
— eq.path® t17' decr_path
— eq_path® hd™' eq_path®

— eq_path® t17' eq_path®

154

o Similarly, L4-paths have zero or more hd™! (resp. tI™') labels that are not bal-

anced by any hd (resp. tl) label. Such paths are “equal or decreasing”:

Ly eq-or_decr_path® — eq.path® hd™' eg_or.decr_path®
eq.or_decr_path® — eq_path® tI™' eq_or_decr_path®

eq-or_decr_path® — eq_path®

e The languages Ls and Le represent paths that have one or more hd (resp. tl)
labels that are not balanced by any hd~' (resp. t/™') labels. Ls paths are
“strictly increasing” and correspond to execution paths in which the expression
at the source of the path is a proper substructure of the value at the target, while

Le paths are “equal or increasing” (with empty paths allowed):

Ls: incr_path — eq_path® hd incr_path
incr_path — eq.path® tl incr_path
incr_path — eq_path® hd eq_path®

incr_path — eq.path® tl eq_path®

Le: eq_or_incr_path® — eq_path® hd eq.or_incr_path®
eq_or.incr_path® — eq.path® tl eq_or_incr_path®

eq-or_incr_path® — eq_path®
p q-p

The path languages L; — Lg defined above all represent certain kinds of flow de-
pendence relationships between expressions, or the APG vertices that represent ex-

pressions. All of these languages are subsets of a language consisting of paths that

155

| Language | Root Nonterminal | Informal Characterization | € in Language? |
L, eq..path® Equal Yes
L, eq-path Equal No
L3 decr.path Strictly decreasing No
Ly eq_or.decr_path® Equal or decreasing Yes
Ls incr.path Strictly increasing No
Le eq-or_incr _path® Equal or increasing Yes
L, dependence_path® Shared substructure Yes
Lg eq_or_possibly_incr_path Ly ~A{e} - Ls No
Lo possibly_incr_path Ly —{e} =Ly~ L3 No
Lo - control_path Function call No

Figure 41: Context-free languages used to specify paths of interest in the APG.

do not represent “false” dependences. This language is defined as language L7 below.
Vertices u and v in an APG are connected by an Ls-path from u to v if and only if the

expressions at u and v may share a common substructure:
L7: dependence_path® — eq-or.decr_path® eq_or_incr_path®

The intuition behind the definition of L; is as follows: The first component of a
dependence path from u to v represents operations that “dig into” the structure of
the value at u to retrieve a substructure of the value. The second component of the
dependence path builds up the value at v by combining this substructure of the value
at u with other values.

Paths in the language L, provide a test for the notion of dependence between
parameters in a call path. In other words, if a,eparameter f; depends on parameter g;
along some call path, then there must be a path in L7 from g; to f;. This is expressed

in Lemma 33 below.

Lemma 33 Parameter f; of function f in p depends on parameter g; of function g in

156

p along some call path iff there is a path p from vertex g; to vertex f; in the APG of

p such that the concatenated label of p is in dependence_path®. a

We would like to use the path languages defined above to identify parameters that
must have the in-situ-decreasing property. More precisely, if every (non-¢) path from
a parameter vertex to itself that is in the language L7 is also in the language Ls, and if
successive values of the parameter on recursive calls are determined completely by the
previous value; of the same parameter, then the parameter must be in-situ-decreasing.
The reason for excluding ¢ is that there is always an empty path from a parameter
vertex to itself, but this does not represent a transmission path to a recursive invocation
of the function.

The characterization of in-situ-decreasing behaviour above presents a subtle diffi-
culty: CFL-Reachability can only be used to test whether there ezists an L-path from a
source to a target. Fortunately, there is a way to finesse this difficulty: We can identify
the language Lsg of all paths in L7 - {¢} — L3, and we can use CF L-Reachability to test
the existence of paths in Lg. If there are no paths in Lg from a parameter vertex to
itself, then every path in L from the parameter to itself is also in Lz. The language

of paths in Lg is defined as follows:

Lg: eq_or_possibly_incr_path ~ — eq_or_decr_path® incr_path

eq_or_possibly_incr .path ~ — eq_path

Paths in the language of Lg are either equal (i.e., balanced) or contain at least one
hd (resp. tl) label that is not balanced later in the path by a hd~* (resp. tI”'). Such
paths are not strictly-size-decreasing because the expression at the target of the path

may not be a proper substructure of the expression at the source of the path. It can

157

be shown that I = Lz U {e} U Lg, and furthermore, that Ls, {¢}, and Lg partition
L-. In other words, every Lr-path is either an Ls-path or an Lg-path or the empty
path.

We would also like to use the path languages defined above to identify parameters
that may have the in-situ-increasing property. For this purpose, we can once again
partition the language L7 so as to group together all paths that are possibly size

increasing, as follows:

Lo: possibly_incr._path — eq_or_decr_path® incr_path
Ly = Ly U Ly

L7 = [/3 U {8} U L2 U Lg

Paths in Lg are size increasing because they contain at least one hd (resp. t/) label that
is not balanced later in the path by a hd™' (resp. t/™'), and are of interest because of
the following property: If a parameter v is in-situ-increasing, then there exists a cyclic
path from v to itself in the APG such that the path is in L.

The final path language of interest in the APG is the language of control paths. A
control path from function f to function g indicates that a call on f may produce a

call on g, and is a sequence of one or more edges labeled with control:

Lio: control_path — control control_path

control_path — control

Constant vertices may also be targets of edges labeled with control. A path in Lo from
a function f to a constant vertex c indicates that ¢ is enclosed by a function that may
be transitively called by f. (This represents the fact that a call on f may generate an

instance of a constant represented by c.)

158

The languages of path labels defined in this section are all context-free languages.
Every source-target L-path problem for each of these languages can therefore be solved

in time cubic in the number of nodes in the APG.

6.5 Identifying ISD and ISI parameters

In this section, we define an algorithm that uses the presence or absence of certain
paths in the APG to identify in-situ-decreasing and in-situ-increasing parameters in
a program. This algorithm serves as a pre-processing phase for our algorithm for
identifying BSV parameters, which is defined in Section 6.6.

In any recursive call from a function f to itself, represented by a call path from f
to f, a parameter f; of f can only receive values from previous values of f; itself, from
previous values of other sibling parameters f; of f, from constant values, or from a
combination of these. Therefore, a parameter must be in-situ-decreasing if it satisfies

two basic conditions:

(i) it does not take values from sibling parameters or constants, and

(ii) it receives a value from itself in only a size-decreasing manner.

Condition (i) can be tested using APG paths as follows: From Lemma 33 in the previous
section, we can conclude that the absence of any paths in dependence_path® from sibling
vertices f; to vertex f; ensures that f; does not depend on sibling parameters, while the
absence of any paths in dependence_path® to vertex f; from constant vertices enclosed
by functions that are transitively called by f ensures that f; does not take on constant

values on recursive calls to f. Condition (ii) can be tested in two parts: The presence of

159

a path in decr_path from vertex f; to itself ensures that parameter f; depends on itself,
while the absence of any paths in eq_or_possibly_incr.path from vertex f; to itself ensures
that these dependences are strictly size-decreasing. The sufficiency of these tests for
identifying a subset of the in-situ-decreasing parameters in a program is formalized in

Lemma 34 below.

Lemma 34 Parameter f; of recursive function f in p is in-situ-decreasing if all of the

following properties hold on the APG of p:

(a) there does not exist a vertex f; such that f; is a sibling parameter of f; and
there is an Lr-path (dependence_path®) from f; to f;;

(b) there is no constant vertex c such that there is an Lr-path (dependence_path®)
from c to f; and there is an Lio-path (control_path) from f to c;

(c) there exists an Lz-path (decr_path) from f; to f;, and there does not exist an

Lg-path (eq-or_possibly_incr_path) from f; to f;.

Properties (a) and (b) above ensure that successive values of f; are derived only from
previous values of f;, while property (c) above ensures that successive values of f; in
a recursive call on f are always derived from previous values of f; in a size-decreasing

manner. O

Similarly, we can use APG paths to identify a superset of all the in-situ-increasing
parameters in a program. In particular, a parameter may be in-situ-increasing for the
following reason: The parameter depends on itself in a size-increasing manner. This
condition can be tested via the presence of paths in the language possibly.incr_path

from the parameter vertex to itself.

160

Lemma 35 If parameter f; of function f in p is in-situ-increasing, then:

(a) there is an Lg-path (possibly_incr_path) from f; to f; in the APG of p. a

The lemmas above lead directly to Algorithm 2 defined below, which conserva-
tively identifies in-situ-decreasing and seed-in-situ-increasing parameters using CFL-

Reachability.

Algorithm 2 Identify in-situ-decreasing and in-situ-increasing parameters.

Input: APG G
Output: APG G, in which forall p in params(G),

ISD(p) = p is in-situ-decreasing, and p is in-situ-increasing = 15I(p).
Construct the relations ISD and IST defined below.!

ISD(v) if —sibl-dep(v) and —const-dep(v) and decr(v,v)

and —eq.or_incr(v,v)

ISI(v) if incr(v,v)
where
decr(m,n) if decr_path(m,n)

eg-or_incr(m,n) if eq.or_possibly_incr_path(m,n)
iner(m,n) if possibly.incr_path(m,n)
sibl-dep(m) if dependence_path®(n,m) and function(n) = function(m)

const-dep(m) if 3 ¢ s.t. control_path(function(m),c) and dependence.path®(c,m)

1We use the notation foo.path(m,n) to mean that that n is reachable from m in G via a path in the
language foo_path. Function params returns the set of parameters in an APG, while function returns
the function associated with a parameter.

161

Every parameter in an APG may belong to one of ISD or ISI; the parameter is in
ISD if it is identified as definitely in-situ-decreasing, while the parameter is in IST if
it is possibly in-situ-increasing. Thus ISD and ISI are mutually exclusive, but not

complementary. i

Example 16 The result of applying Algorithm 2 to the program from Example 11 is
as follows: All parameters of functions checkValid and accum are trivially included in
ISD, because these functions are non-recursive. Parameter err is not in relation ISD
because there is an eg_or_possibly_incr_path from err to itself (with label id.) Similarly,
parameter tot is not in ISD because of the path with label id.id.1d.id from tot to
itself. Parameter ops (similarly, vals) is included in ISD because the only path in
dependence_path® that has ops (similarly, vals) as its target originates at ops (similarly,
vals) and is in decr_path. Finally, there are no paths in possibly_incr_path in the APG

of the program. Hence, there are no parameters in relation ISI. O

Since CFL-Reachability problems can be solved in time cubic in the number of
vertices in the graph [Yan90], Algorithm 2 has running time O((F' + P + Var + Ops)?),
where F' is the number of functions in p, P is the number of parameters in p, Var is
the number of where variables in p, and Ops is the number of cons/car/cdr operations

in p.

6.6 Identifying BSV parameters

The algorithm for identifying ISD and ISI parameters defined in the previous section

serves as a pre-processing phase for our main algorithm for identifying BSV parameters,

162

which is described in this section. This algorithm has a structure that is significantly
different from that of Glenstrup and Jones’ algorithm in [GJ96]. Their algorithm is
pessimistic, in the sense that every static parameter is treated as non-BSV until proven
otherwise through the steps of the algorithm. In contrast, our algorithm is optimistic:
Every static parameter is treated as BSV until (conservatively) shown otherwise. As
shown by Example 12 earlier in this chapter, this difference sometimes allows the
optimistic approach to produce better results.

Our algorithm for identifying BSV parameters is shown as Algorithm 3 below. The
algorithm is described declaratively, as a fixed-point procedure on a recursive equation
involving several properties of function parameters. Operationally, the algorithm can
be thought of as a reachability operation on the APG, with additional information
concerning anchoring parameters. The intuition behind the procedure is as follows: A
static parameter whose predecessors in the APG are all BSV and which is not involved
in any size-increasing loops must be BSV. Further, a static parameter that is involved
in size-increasing loops will be BSV if its predecessors are BSV, and it is anchored
by one or more siblings that are anchoring. A sibling parameter is anchoring if it is

in-situ-decreasing and BSV.

Algorithm 3 Identify bounded-static-varying parameters.
Obtain the least fixed-point of equation (1) below. Re-classify all static parameters for
which predicate D is true as dynamic.

D(v) = (\ " D(w)) Y (ISI(U) A (A ﬂAnchoring(w)))

wEpreds wEsiblings(v)

Anchoring(v) = ISD(v) A -D(v) (1)

where initially, D(v) = false for all static parameters, and

163

ISI and ISD are determined by Algorithm 2.

The equation above is solved over the domain {true, false}, where false C true. The

predicates D, ISI, and ISD are either true or false for every parameter. a

Equation (1) from the algorithm above involves negation on a predicate that is not
a base predicate. However, the equation can be re-written as equation (2) below, in
which negation is restricted to the base predicate ISD:

D(v):(\/(D(w)) v ([Sl(v) A (A (—JSD(w)VD(w)))) (2)
)

wEpreds wEsiblings(v)

This formulation makes it clear that the least-fixed point of Equation (2) (and hence
of Equation (1)) is well-defined.

Algorithm 3 proceeds as follows. Initially, every static parameter is treated as
BSV (D is false for the parameter vertex), and every parameter in ISD is treated as
anchoring, since it is also treated as BSV. Parameter markings are then updated at
every step, until no further parameters can be updated, as follows: Any parameter
that is in ISI and that has no anchoring siblings is marked as non-BSV (D is set
to true for the parameter vertex). Such an update may be propagated in two ways:
Any successor of a parameter marked as non-BSV is re-classified as non-BSV, and
any anchoring parameter that is re-classified as non-BSV is no longer anchoring. This
change may cause previously anchored parameters to be re-classified as non-BSV, and
SO om.

The correctness of our algorithm for identifying BSV parameters is established by

Theorem 3 below.

164

Theorem 3 If parameter f; of function f in p is identified as static by Algorithm 3,
then parameter f; is BSV.

Proof Sketch. The proof is by induction on the “level” of a function. The level of
a function is defined as a number assigned to a function by topologically sorting the
call graph of the program, as follows: The function main has level 1. All functions in
the same strongly connected component (scc) of the call graph have the same level.
If a function in one scc can call a function in another scc, the functions in the scc of
the caller have a lower level than those in the scc of the callee. We prove the theorem
by induction; we assume that BSV parameters are marked correctly at all functions
whose level number is less than the current level. We then show that the parameters
of the functions at the current level must be marked correctly.

Base Case: Level 1, function main. The hypothesis is trivially true.

Induction Step: Assume that for all parameters f; of functions f such that the level
of f is less than 7, if D(f;) = false then f; is BSV. We must show that this is true for
all parameters f; of functions f at level i. We first show that anchoring parameters
are marked correctly at level ¢:

We give an argument by contradiction. Suppose parameter f; is identified as An-
choring by Algorithm 3, but is not in fact anchoring. Then by Lemma 29, f; is either
not BSV, or not in-situ-decreasing. But if f; is marked as ISD (as it must be, for
Algorithm 3 to have identified f; as having the Anchoring property), it must be in-
situ-decreasing, by Lemma 34. Hence f; must not be BSV.

We now obtain a contradiction as follows: Since f; is identified as in-situ-decreasing,
it cannot depend on sibling parameters or on constants enclosed by functions in the

same scc of the call graph as function f. Also, if f; depends on a parameter g; of

165

function ¢ in the same scc as f, g; must also depend on f;. This is because g; must
depend on some parameter of f or on a constant enclosed by f, since it can be called
through f. Now if g; depends on any other parameter fi of f or on a constant enclosed
by f, this dependence would be transitively passed on to f;, but that is ruled out
because f; is identified as ISD by Algorithm 2. Hence, the predecessors of f; consist
of parameters in an scc of the APG consisting of parameters of functions g that are in
the same scc of the call graph as f, or parameters of functions g whose level is lower
than the level of f. Let us call the latter set P. The parameters in P must be marked
as BSV, or f; would not be marked as anchoring. By assumption, the parameters in
P are marked correctly.

The final step is to show that the BSV-ness of the parameters in P permits us to
conclude that all the elements of the scc containing f; (and hence f;) are also BSV.
The predecessors g; in the same scc of the APG as f; must have the following property:
Let S be the scc containing g; and f;; then all cycles in S (even those not containing f;)
must be in eq_or_decr_path®. Otherwise, f; would not have only strictly size decreasing
paths to itself. This means that the values taken on by the parameters in S can only be
substructures of the (bounded sets of) values taken on by the members of P. Hence, all
the parameters g; in the scc of f;, including f; itself, must be BSV, which contradicts
our assumption. Hence, f; must be anchoring (i.e., Anchoring(f;) = anchoring(f;)).
This argument is described pictorially in Figure 42.

Through a similar argument, using the property that anchors at level 1 must be
marked correctly, we can show that all other parameters of functions at level ¢ that are

marked as BSV must be BSV. We omit the proof for brevity. O

166

Figure 42: Correctness of Algorithm 3.

The figure above represents an scc S of the APG involving [SD parameter fj, which
is marked as Anchoring by Algorithm 3. All cycles in S are in eq.or_decr.path®. In
addition, all parameterss not in S that have flow dependence edges to parameters in .5
are BSV. Therefore, all parameters in S, including f;, must be BSV.

The algorithm above is a reachability operation that is linear in the sum of the
number of edges in the APG and the number of anchor links from sibling parameters,
which is O(F? 4+ (P + Var)? + Ops). If we use simple reachability to identify in-situ-
decreasing and in-situ-increasing parameters, our algorithm has the same worst-case
complexity as that of Glenstrup and Jones, with better results due to its optimistic
approach. If we use CFL-Reachability in the pre-processing phase, the running time of
the algorithm is controlled by the running time of the pre-processing phase, which is
O(F + P+ Var—+ Ops)®). This option yields better results, as it identifies a broader

class of in-situ-decreasing parameters, and a narrower class of in-situ-increasing pa-

rameters.

167

6.7 Related work

The work described in this chapter is also presented in [DR96]. The basis for this
work is Holst’s definition of the in-situ-decreasing property for function parameters in
[Hol91]: An in-situ decreasing parameter of a function f strictly decreases in size on
every (recursive) chain of calls from f to f.

Glenstrup and Jones define a second algorithm for identifying in-situ-decreasing
parameters, w};ich uses the markings 1, | and = on edges in the parameter dependency
graph [GJ96]. The algorithm described in this paper extends their work by using
CFL-Reachability to identify a broader class of size-decreasing paths, and by using an
optimistic algorithm.

Andersen and Holst have described an extension of Holst’s analysis to a higher-order
lambda calculus [AH96]. Although their primary emphasis was termination analysis for
programs with higher-order functions, they observe that their technique for handling
higher-order functions can be adapted to discover some size-decreasing paths containing
1 edges.

Our approach was conceived independently of their work, but we became aware of

it shortly after it was presented at SAS '96. Some of the differences between their work

and our approach are:

o Their approach is based on tree grammars, whereas our approach is an extension
of Glenstrup and Jones’s approach, which is based on graph reachability. In order
to identify a greater number of in-situ-decreasing parameters than Glenstrup and
Jones, we extend the parameter dependency graph with new nodes and new edge

markings and we use CFL-Reachability rather than a closed semi-ring graph

168

algorithm [AHU74, GJ96].

e There is a general result that all “context-free language reachability problems”
can be solved in time cubic in the number of vertices in the graph [Yan90]. This
allows us to obtain a cubic-time bound for our algorithm. (Andersen and Holst
did not report a bound on the running time of their algorithm, although we
suspect that for the class of problems we are addressing, their methods would

also run in cubic time.)

o We are able to provide a formal justification of our method for identifying in-

situ-decreasing parameters.

CFL-Reachability has also been used for a number of other program-analysis prob-
lems: Reps, Sagiv, and Horwitz have used CFL-Reachability techniques to solve inter-
procedural dataflow-analysis problems [RSH94, RSH95] and to perform interprocedural
slicing [RHSR94]. Reps has used CFL-Reachability to develop a shape-analysis algo-
rithm [Rep95]. He used edge markings that are identical to the markings used on the
edges of the APG defined in this paper.

Melski and Reps have shown that CFL-Reachability problems are convertible into
a class of set-constraint problems (and vice versa) [MR97]. Because set-constraints are
related to regular tree grammars, this result also has some bearing on the relationship
between our work and that of Andersen and Holst. The exact relationship is somewhat
fuzzy at this point because the tree grammars used in the Andersen and Holst paper
do not make a direct application of the Melski-Reps result possible. (Even if it were
applicable, the details of the general-case construction would obscure the relatively

simple concepts expressed by the context-free grammars given in Section 6.4.)

169

Chapter 7

Specialization of dependence graphs

As we explaingd in the introduction, partial evaluation can be implemented as a two-
step process, in which the first phase is an analysis phase where static and dynamic
program variables are identified, while the second phase is a specialization phase in
which static parts of the program code are executed away and dynamic code fragments
are emitted as the specialized program. In previous chapters of this thesis, we have
shown how dependence graphs can be used to enable the analysis phase of partial
evaluation. The natural question that arises is whether dependence graphs provide a
suitable basis for the specialization phase of partial evaluation as well.

In this chapter, we show that dependence graphs can be used as a basis for the
specialization phase. In particular, we develop this phase of partial evaluation as an
operation that transforms the dependence graph representation of the subject program,
as opposed to its CFG representation. Dependence graphs have the advantage that
they do not explicitly order independent statements within a program, allowing greater
flexibility during execution. Under a control-flow-based model of execution, program
statements are executed in a particular sequential order. In contrast, a dependence
graph is executed as a data-flow graph, in which every vertex in the graph is a producer
of output values that consumes input values produced by its dependence predecessors.

In this chapter, we describe our work on developing a specializer for dependence

170

graphs. We show how specialization on PRGs can be modeled as a partial execution
of the PRG semantics, in exactly the same way that specialization of CFGs can be
modeled as partial execution of the CFG’s state-transformation semantics. We describe
a data-flow specialization algorithm for PRGs that transforms a PRG with static and
dynamic markings into a residual PRG that represents the specialized program. We
also outline a reconstitution algorithm that allows us to construct a sequential program
from the residual PRG. These algorithms are applicable to imperative programs that
have PRG representations.

We have implemented our specialization scheme, using the results of BTA algo-
rithms that identify both strongly static and weakly static vertices. Our experiments

reveal that dependence-graph-based specialization has the following drawbacks:

° Data-flow execution of the PRG is slower than sequential execution of the CFG.
In our experiments, over a range of programs with looping constructs, PRG spe-
cialization is roughly 20% slower than CFG specialization. This is because the
data-flow execution engine requires the transmission of every value through the
PRG. Each value must be tagged at the source vertex, and this tag must be
matched as the destination vertex, which leads to expensive tests. In addition,
values must be queued at consumer vertices, in case values from other produc-
ers are not available. Finally, the PRG representation of a program may have
a greater number of edges than its CFG representation. The running time of
the specializer is related to the number of edges in the graph, in both CFG spe-
cialization and PRG specialization. However, the higher execution cost of PRG

specialization does not affect the running time of the residual program itself.

171

e Reconstitution of sequential code from the residual PRG is an expensive opera-
tion. Qur reconstitution algorithm has a worst-case running time that is equal to
the cost of sorting the vertices in the residual PRG. In practice, this cost appears
to be linear in the size of the residual PRG, because vertices are almost always

emitted in sorted order. However, this is not guaranteed to be the case.

e At this time, only a limited class of programs can be specialized, in particular
the programs represented by PRGs. It is not clear how we would extend the

specialization algorithm to handle programs with arbitrary control flow.

Regardless, our work on specialization of dependence graphs serves as a useful

exercise in examining the role of dependence graphs in partial evaluation.

7.1 Specialization of control flow graphs

In this section, we describe the traditional method used in the specialization phase
of partial evaluation. In particular, we are interested in identifying the difference
between the total execution of a CFG during computation and the partial execution of
a CFG during specialization, so that we can develop a specializer for PRGs by similarly
modifying the operational behaviour of PRGs.

At the semantic level, the specialization phase of partial evaluation can be thought
of as a partial execution of the program given incomplete input values, as opposed
to total execution given complete inputs. Under the conventional approach to partial
evaluation, the specialization phase is carried out on the control flow graph. In the

total or operational semantics of the CFG, every program point is a state-to-state

172

transformer, where the program state contains a mapping from every program variable
to a value. In the partial semantics of the CFG, every program point either transforms
the “partial state”, if it can be computed using values of static variables, or it has a
side-effect of producing a residual program point. The partial state contains a mapping
of every static program variable to a value.

Operationally, total execution of the CFG is carried out by an interpreter, which
sequentially executes program points in the CFG, updating the state at every assign-
ment vertex, and choosing a branch direction at every predicate vertex. In contrast,
the specialization phase of partial evaluation can be thought of as a partial execution
of the CFG. A specializer either executes or residuates program points in the CFG, as

follows:

e If the code at the current program point pp can be evaluated using only static
values, the partial state of the specializer is updated or a branch direction is

chosen, and the specializer moves on to the next statement pp'.

e If dynamic values are required to evaluate the code at the current program point
pp, code is generated in the residual program; the program point in the residual

program is labeled (pp, state), where state is the current partial state.

The actions of a specializer as described above can be thought of as a regroup-
ing of the control flow graph. The original program has‘ run-time states of the form
(pp, (stateS, stateD)), where pp is the program point, stateS is the part of the state
mapping static variables to values, and stateD is the part of the state mapping dy-
namic variables to values. In the specialized program, program points are of the

form (pp, stateS), and so run-time states are of the form ((pp, stateS), stateD). Thus,

173

e E]—
T

F %T F
vy read (¥); Re-grouping v : read (Y);
| —————————)
/ Y .
j
./ /T F\ - /T/ F \\\

— ==

- F ™.
7 v \

(vs,x->1) : x<2 (vs, x->2 1 x<2
T /

| (ve,x—>1): write (x); I / e

T/“
ve : write (X);

—

- \} B R

Figure 43: Specialization as regrouping on the CFG.

states of the specialized program can be identified with states of the original program:
((pp, stateS), stateD) corresponds to (pp, (stateS, stateD)).

An example of specialization via regrouping on the CFG is shown in Figure 43.

7.2 Specialization of dependence graphs

As we described in the previous section, partial execution of CFGs is similar to their to-
tal execution, with the distinction that some CFG vertices may produce code-generation
actions rather than state-transformation actions. In this section, we show that the PRG
semantics can be similarly extended to define a specialization operation on PRGs.

In the total semantics of PRGs described in Chapter 3, every vertex is associated
with a value sequence, which represents its behaviour during computation, or total
execution. Operationally, a PRG can be executed :;s a data-flow graph, in which every

vertex is both a producer and a consumer of values. A vertex produces a new value

174

when it has “enough” values from its predecessors to compute another value; this
value is then passed on to its successors, which serve as consumers for the value, and
which may, in turn, produce a new value when supplied with the given value from the
producer.

Similarly, we define a partial semantics for PRGs that represents the behaviour of
PRG vertices during specialization, or partial execution. In the partial semantics, every
vertex either produces a value sequence, as in the total semantics, or code-generation
actions, depending on the static/dynamic nature of the vertex and its dependence
predecessors.

During specialization, the PRG is executed as a data-flow graph, in which the ac-
tions of a vertex are triggered when it receives values from its predecessors. Therefore,
it is necessary even for dynamic vertices that perform code-generation actions to pro-
duce special wild-card values that are passed on to their successors. This distinction
from CFG specialization arises because in PRG execution, the “execution” of individ-
ual nodes is controlled locally, according to received values from predecessors, whereas
in CFG execution, there is a unique locus of control (and thus control flow is a global
concept of the semantics).

The partial semantics for PRGs that represents PRG specialization is determined
by the form of static behaviour that is identified by the BTA phase. For instance, when
the BTA phase identifies only strongly static vertices, a constant assignment that is
nested within a dynamic conditional is treated as dynamic, and must perform a code-
generation action and produce suitable wild-card output values. In contrast, when

the BTA phase identifies weakly static vertices, a constant assignment nested within

175

dynamic conditionals is treated as static, and does not perform any code-generation ac-
tions. The partial semantics for PRG specialization, given a BTA phase that identifies
strongly static vertices, is shown in Figure 44.

The equation shown in Figure 44 is a straightforward extension of the equation
representing the total semantics of PRGs in Figure 14 from Chapter 3. PRG vertices
that have only static predecessors have the same behaviour in both the total semantics
and the partial semantics. Vertices with dynamic predecessors have code-generation
actions in the partial semantics, and produce only wild-card values.

When weakly static vertices are identified by the BTA phase, some vertices that
have dynamic predecessors may also be treated as static. Such vertices will not per-
form any code-generation actions. The semantics for specialization with weakly static
behaviour is shown in Figure 45.

Specialization on dependence graphs, as represented by the partial semantics for
PRGs, can also be thought of as a regrouping of the dependence graph. The origi-
nal PRG has local run-time states (v, (sPred[i], dPred]i])), where sPred[i] represents
the values in the sequences produced at the static dependence predecessors of ver-
tex v, and dPred[i] represents the values in the sequences produced at the dynamic
dependence predecessors of v. In the specialized PRG, the values from static prede-
cessors are absorbed into the vertices, resulting in run-time local states that are of
the form ((v,sPred|i]), dPred[i]). As in the case of CFG-based specialization, the
states of the specialized PRG can be identified with states of the original PRG:

((v, sPred|[i]), dPred[i]) corresponds to (v, (sPred(i], dPred]i])).

176

Ec = M.Af
type(v) = Entry — true - nil, {emit Entry}
type(v) = read, ctrlPred(v)is S —
replace(controlLabel(v),?, f ctrlPred(v)), {emit read}
type(v) = read, ctrlPred(v) is D — copySeq(f ctrlPred(v)), {emit read}
type(v) € {assign, if, while}, #dataPreds(v) = 0, ctrlPred(v) is 5 —
replace(controlLabel(v), funcOf (v), f ctriPred(v)), {}
type(v) € {assign, if, while}, #dataPreds(v) = 0, ctrlPred(v) is D -+
copySeq(f ctriPred(v)), {emit assign/if/while}
type(v) € {assign, if, while}, w is § Vw € dataPreds(v) —
map funcOf (v)(f dataPred;(v)...f dataPred,(v)), {}
type(v) € {assign,if, while}, 3 w € dataPreds(v) s.t. wis D —
map funcOf (v)(f dataPred;(v)...f dataPred,(v)), {emit assign/if/while}
type(v) = ér, ctriPred(v) is S — select(true, f parent(v), f dataPred(v)), {}
type(v) = ¢, ctriPred(v) is D — copySeq(f ctrlPred(v)), {emit ¢r}
type(v) = ¢, ctriPred(v)is S —
merge(f ifNode(v), f trueDef (v), f falseDef(v)), {}
type(v) = i, ctriPred(v) is D — copySeq(f ctriPred(v)), {emit ¢ie}
type(v) = Penter, ctriPred(v)is S —
whileMerge(f whileNode(v), f innerDef (v), f outerDef (v)), {}
type(v) = Qenter, ctriPred(v) is D, outerPred(v) is S —
copySeq(f ctriPred(v)), {emit denter, €mit outer assign}
type(v) = denter, ctriPred(v) is D, outerPred(v)is D —
copySeq(f ctriPred(v)), {emit genter}

where replace, whileMerge, select, and merge are defined as in Figure 14
and copySeq is defined as follows:

copySeq : copySeq(L)= L copySeq(nil) = nal
copySeq(a - tail) = a - copySeq(tail)

Figure 44: PRG specialization equations for strongly static behaviour.

In the equation above, code-generation actions are shown in braces. 7 is the wild-card
value. Every vertex with an emit action emits a residual vertex for every value it
computes in its output value sequence. A @enter vertex within a dynamic loop that has
a static outer predecessor must residuate the outer predecessor as well, once for every
value it receives from the predecessor. We have omitted the machinery for determining
how emitted residual vertices are linked to their predecessors in the residual PRG. This
is discussed in Section 7.3. Some vertex types have been omitted for brevity.

177

Ec = Mv.Af
type(v) € {assign, if, while}, #dataPreds(v) = 0, ctriPred(v) is 5 —
replace(controlLabel(v), funcOf (v), f ctriPred(v)), {}
type(v) € {assign, if, while}, #dataPreds(v) = 0, ctrlPred(v) is D —
blindReplace(funcOf (v), f ctrlPred(v)), {}

where blindReplace is defined as follows:

blindReplace : blindReplace(v, L) = L blindReplace(v, nil) = nil
blindReplace(v, z - tail) = v - blindReplace(v, tail)

Figure 45: PRG specialization equations for weakly static behaviour.
In the equation above, only those vertex types are shown for which the partial semantics
for weakly static specialization differs from the partial semantics for strongly static
specialization. Vertices with constant expressions are not emitted even if their control
predecessors are dynamic.

7.3 An algorithm for PRG specialization

The partial semantics defined in the previous section gives us a handle on a method
for specializing dependence graphs. In this section, we describe an algorithm that
specializes a PRG by mimicing its data-flow execution. The algorithm is an extension
of our algorithm for total execution of PRGs, described below.

We use a round-robin iteration scheme, in which a vertex that is ready to produce
a new value does so by placing this value, tagged with the vertex identifier, on a global
worklist queue. At every step of the main execution engine, a value is taken off the
worklist and forwarded to all of the PRG successors of the vertex that produced the
value. Fach such successor receives the value and updates its local state, determining
whether is has “enough” pending values from all of its predecessors in its local state

to produce a new value. If it does, it produces the value, consumes the corresponding

178

predecessor values by updating its local state, and adds the new value to the global
worklist. PRG execution is initiated by the production of a true value from the Entry

vertex, and terminates when no values remain on the global worklist.

Example 17 An example PRG is shown in Figure 46 (a). The values propagated
through the PRG during its data-flow execution are shown in Figure 46 (b). Vertex v,
produces a single true value. It propagates this value, tagged with the identifier of the
source vertex {vl). Vertex v, produces the value 1 when it receives a true value from
its control dependence predecessor (v;). Vertex vs consumes a value from the input
stream when it receives a true value from its control dependence predecessor (v1). It
propagates this value (10 in this example). Finally, vertex vy produces the value 11,

when it has received values from its predecessors (vz and vs). O

The PRG semantic equations guarantee that if the program terminates normally,
every value that is on the worklist is eventually consumed by all of the PRG successors
of the vertex that produced the value. The vertex-identifier tag on a value is necessary
so that each successor can determine which of its predecessors produced the value, in
order to correctly update its local state. In addition, a successor vertex that cannot
consume a propagated value immediately on receiving it must store this value in a local
queue for the corresponding predecessor. Queues are necessary because one predecessor
of the vertex may propagate several values before its other predecessors are able to
supply corresponding values required for the computation at the vertex.

Apart from its structure itself, this algorithm differs from the standard execution

of a CFG by an interpreter in the following ways:

e The algorithm has an overhead when compared with CFG execution, because at

(a) U1
:
Vg A 4
y=1 --

N 4

v

(b) Value propagation:

vi: [T,v1] to vy and vs
ve: [1,v2] to vy
vs: [10,v3] to vy
t

V4 11, '04]

179

Figure 46: An example of PRG execution by value-propagation.

An example PRG is shown in figure (a) above.The values propagated through the PRG

during execution are shown in figure (b) above.

180

every vertex, the tags associated with received values must be matched against
all of the predecessors of the vertex, possibly resulting in several tests at each
step. Also, every value is pushed and popped off value queues at vertices that

are successors of the vertex that produced the value.

e The PRG has no global state. Therefore, every vertex maintains its own local
state, which determines the state of the computation at the vertex at any given

point during PRG execution.

The specialization algorithm is an extension of the total execution scheme above.
The central “execution-by-value-propagation” engine is unchanged. Static vertices be-
have as before, placing new values on the worklist and consuming values from predeces-
sors. Dynamic vertices emit residual PRG vertices when they are supplied with values
from their predecessors, in addition to propagating wild-card values. In order to ensure
that an emitted residual vertex is linked correctly with its dependence predecessors in
the residual PRG, we use the following scheme: A vertex that produces a new residual
vertex obtains a unique identifier for this vertex. The output value that is produced
at the vertex (a wild-card value) is tagged with two identifiers: The identifier of the
source vertex in the original PRG, and the identifier of the residual vertex in the resid-
ual PRG. The latter identifier represents the vertex that will serve as a dependence
predecessor for.the vertices emitted by the successors of the source vertex. Thus, when
a dynamic vertex produces a residual vertex, its state has the information necessary
to create the appropriate dependence edges in the residual PRG that have this resid-
ual vertex as their target. This scheme is sufficient because no residual vertex can be

emitted before the residual vertices that serve as its predecessors in the residual PRG

181

have been emitted. This property is guaranteed by the partial semantics in Figure 44

and Figure 45.

Example 18 An example PRG is shown in Figure 47 (a). The residual PRG produced
by applying our specialization algorithm to this PRG is shown in Figure 47 (b). The
values propagated through the PRG during specialization are shown in Figure 47 (c).
Vertex vy produces a single true value, and performs a code-generation action by emit-
ting a residual Entry vertex. It propagates the value true, tagged with the identifier of
the original vertex that produced the value (v;) and the identifier of the residual ver-
tex (w;). Vertex v, is static, and therefore has no code-generation action. It produces
the value 1 when it receives a true value from its control dependence predecessor (v).
The second tag on this value is a don’t-care, because v, does not produce any residual
vertex. Vertex vs is dynamic, and emits a residual read. It propagates a don’t-care
value. The second tag on this value indicates the residual read vertex (w;) that is
emitted. This residual obtains the identifier of its control dependence predecessor from
the second tag on the value propagated by v;. Finally, vertex vy emits a residual as-
signment (w3), in which the static value from predecessor v; has been absorbed into
the right-hand-side expression. The residual assignment obtains the identifier of its

flow-dependence predecessor from the second tag on the value produced by vs. o

7.4 Reconstitution of sequential code

The specialization algorithm described in the previous section allows us to transform a

PRG representing the subject program into a residual PRG, which in turn represents

182

(a) Yy D (b) w,
M v, . w2 / w,
e M ey B ey,

(c) Value propagation:

vi: [T,v1,w;] to va and v3 {emit Entry(id=1)}

ve: [1,v2,7] to vy {}

v3: [7,v3,ws] to vy {emit read(id=2,cPred=1)}

va: {7, v4,w3) {emit assign(id=3,dPreds=[2])}

Figure 47: An example of PRG specialization by value-propagation.
An example PRG is shown in figure (a) above. The residual PRG produced by applying
our specialization algorithm to this PRG is shown in figure (b) above. The values
propagated through the PRG during specialization are shown in figure (c) above.

183

(a) read(z); (b) read(z); (c) Entry
Y=2IT*T; z=a+ T m
z =1+ T, Y =1T%*I

Figure 48: Distinct programs with identical PRG representations.
The programs shown in (a) and (b) above have the same PRG representation, shown
in (c). Although the programs are different, they have identical semantic behaviour.

the specialized program. Because specialization is carried out by a data-flow execution
of the PRG, it is not possible to modify the CFG of the program at every step of the
specialization process. Hence, at the end of the specialization process, there is no CFG
corresponding to the residual PRG. In order to obtain sequential code that can be fed
to a conventional compiler or code generator, it is therefore necessary to “reconstitute”
sequential code from the residual PRG.

In general, a given dependence graph or PRG may represent multiple sequential
programs. This is because statements that are independent in terms of dependences
are not explicitly ordered in the PRG. An example of two different sequential programs
that have the same PRG is given in Figure 48. Because the same PRG may represent
multiple programs, the residual PRG obtained by specialization may not correspond
to a unique program. Therefore, the goal of reconstitution is to generate a sequential
program that corresponds to the given PRG. Any program that is represented by the
residual PRG would be satisfactory. This is because, as shown by Horwitz et al in
[HPRS8b], if two programs share the same PDG, they must have the same behaviour

in the standard semantics. This result has been extended to PRGs as well, in [RR89)].

184

(a‘) (Entry (b) y= 1; (C) ‘Ent‘ry}

Figure 49: Incorrect reconstitution using topological sorting.
Reconstitution of sequential code from the PRG shown in (a) above may yield the
program shown in (b) above, if a topological sort of the PRG is used to order the
generated code. The program generated does not have the same behaviour as the
program represented by the PRG in (a). It is represented by a different PRG, shown
in (c) above, than the PRG in (a).

In other words, a PRG contains, in its dependence edges, enough information to ensure
that a PRQG is faithful to the semantics of any programs it represents.

However, the information contained in the dependence edges of a PDG or PRG is
not in the correct form for making sequential code generation simple. In particular,
the intuitive idea of code generation via a topological sort of the PRG may not yield
a sequential program that corresponds to the PRG. For instance, consider the PRG in
Figure 49 (a). Topological sort may yield the program in Figure 49 (c), which has a
different semantics, and therefore a different PRG representation.

The problem arises because program dependence graphs do not contain explicit
“output-dependences” and “anti-dependences”, which can be used to order vertices
that are not connected by flow and control dependences, but whose relative order
affects the behaviour of the program. These data dependences were defined by Kuck
et al in [KKL*81]: An output-dependence edge connects two definitions of the same

variable, indicating that one definition must appear before the other in the program

text. Similarly, an anti-dependence edge links a use of a program variable to a definition

185

of the same variable. Such an anti dependence indicates that the use of the variable
must occur before the definition in the program text. For instance, for the PRG shown
in Figure 49 (a), there is an output-dependence from the assignment y = 0 to the
assignment y = 1, indicating that the assignments must appear in that order in the
program text. The program in Figure 49 (b) violates this requirement.

Horwitz et al. have described a method to reconstitute sequential code from PDGs
for which program text is not available, in the context of program integration [HPRS8a].
Their solution involves constructing dependence edges similar to output-dependence
and anti-dependence edges from the PDG, and then emitting program text using a
topological sort on the augmented dependence graph. However, the problem of con-
structing output-dependence and anti-dependence edges from an arbitrary PDG is
NP-complete [Ram89]. In the case of reconstitution from the residual PRG, the prob-
lem is NP-complete in the size of the residual PRG, which is directly related to the
amount of loop unrolling performed by the specialization phase.

Fortunately, we are able to side-step this problem in the following manner: The
PRG that exists at the beginning of the specialization phase has a corresponding se-
quential representation, which is the subject program. We can build certain output-
dependence and anti-dependence edges on the original PRG, and meodify this infor-
mation through the steps of specialization. At the end of the specialization process,
we then have enough ordering information to produce sequential code using a simple
matching scheme that has a worst-case running time limited by the cost of sorting the
vertices in the residual PRG. We describe our reconstitution algorithm in detail in the

following section.

186

7.4.1 An algorithm for reconstitution of residual code

The key observation behind our reconstitution algorithm is as follows: Every vertex
in the original PRG is replicated zero or more times in the residual PRG. No vertices
that do not correspond to vertices in the original PRG are ever produced. As a result,
the output-dependences and anti-dependences in the residual PRG are directly related
to those in the original PRG. In particular, for every pair of vertices in the original
PRG that are related by an output-dependence or anti-dependence, there are zero or
more pairs of vertices in the residual PRG that are related by the same dependence.
The complication lies in determining, for a pair of vertices in the original PRG, which
copies of these vertices in the residual PRG must be related to each other by the given
dependence.

Our algorithm proceeds as follows: First, we build the output-dependences and anti-
dependences in the original PRG, by solving straightforward data-flow problems on the
CFG of the subject program. We classify these dependences as either loop-independent
or loop-carried, as with flow dependences. Next, we perform the BTA phase, which
marks every vertex static or dynamic. We are interested in ordering vertices in the
residual PRG, not in the original PRG. Therefore, we consider only output-dependences
and anti-dependences that connect dynamic vertices. For each such pair, we determine
the highest (closest to Entry) ancestors in the control dependence tree such that the
ancestors are dynamic, and will be siblings in the residual PRG. These ancestors must
be ordered correctly in the residual PRG (we refer to these vertices as source and target
for the remainder of this discussion). Pairs source and target can be identified through

simple reachability operations on the PRG.

187

We first consider loop-independent or forward dependences. In such dependences,
both source and target may in fact be nested within multiple static predicates that will
not appear in the residual PRG. This complicates the problem of “matching up” the
incarnations of the vertices in the residual PRG correctly. We solve this problem by
using “witness” vertices. Recall that both source and target are dynamic. In addition,
they share a common ancestor in the control dependence tree that is also dynamic,
such that every predicate between this dynamic ancestor and either source or target in
the control dependence tree of the original PRG is static. For both source and target,
we identify ancestors in the control tree that are one step below the common dynamic
ancestor in the control tree. These serve as the witnesses to the dependence. During
specialization, we must keep track of iteration counts for these vertices, so as to ensure
that an output-dependence or anti-dependence edge is introduced between every copy
of source and every copy of target for which the iteration counts of the witness vertices

are identical.

Example 19 In the program shown in Figure 50 (a), vertices u and v are related
by an output-dependence. A snippet of the control-dependence tree for the program
is shown in Figure 50 (b). The output dependence from u to v is relevant because
copies of u in the residual PRG will be siblings of copies of v in the residual PRG. The
vertices that are involved in our processing of this dependence are shown in Figure 50
(c). Vertices vz and v, are the source and target of the dependence, respectively. They
have a common dynamic ancestor in v;; copies of v3 and vy have copies of v; as their
common parent in the residual PRG. Vertices vs and v, have the same witness vertex,

vy, which is a static predicate. m|

188

(a) z=.0; (b) vy D
read(y);
z=y;
while(z < 2) { vy * s

ury=y+1 while (x < 2)
v: Y=z
z=1x+1 Us A/D\DL Uy
}
=y+ 1 =z
) vite(y): y

(c) source: w3 source witness: v

target: vy target witness: v

common ancestor: v

Figure 50: An example of witness vertices.
In the program shown in figure (a) above, vertices u and v are related by an output-
dependence. A snippet of the control dependence tree for the program is shown in figure
(b) above. The vertices that are involved in our processing of the output-dependence
from u to v are shown in figure (c) above.

189

In the specialization phase, we maintain iteration counts for all vertices that are
witnesses for any output-dependences or anti-dependences. Every time a witness vertex
produces a new value, it increments its iteration count, and adds a tag to its output
value that stores the current iteration count. When a residual vertex is produced by
either the source or target vertex of a dependence, the vertex stores iteration counts
for the witness along with the particular residual vertex. It also maintains a list of all
the residual vertices generated by it. After the specialization phase is complete, and all
the residual PRG vertices have been generated, dependences are added to the residual
PRG as follows: The lists of residuals for source and target are sorted, and then walked

in tandem. Ordering edges are added between vertices with identical witness counts.

Example 20 The PRG produced by specializing the program from Figure 50 (a) is
shown in Figure 51 (a). Note that a topological sort on the PRG may produce code in
which the assignment at wg appears before the assignment at wy, which would violate
the semantics of the residual PRG. The lists of residual vertices produced by vertices
v3 and vy from Figure 50 (b) are shown in Figure 51 (b). During specialization, we
maintain an iteration count for v, from Figure 50 (b). Each residual copy of vertices
v3 and vy is tagged with an iteration count for v;. These counts are used to “match
up” incarnations of vz with incarnations of v4. The resulting output-dependence edges
are added to the residual PRG, resulting in the graph shown in Figure 51 (¢). Output-
dependence edges are shown as dotted arrows. The addition of these edges ensures that
the assignment at wy appears before the assignment at wg, as desired. Note that there
are other output dependences in the program as well. We ignore those dependences in

this discussion. 0O

190

Entry

-

~
~

- Qiz) (write ()
Y

(b) residuals from vs: (ws,l), (wr,2)
residuals from vy: (ws,1), (we,2)

Figure 51: The use of witness vertices in reconstitution.
The PRG produced by specializing the program from Figure 50 (a) is shown in figure
51 (a) above. The lists of residual vertices produced by vertices v3 and v, from Figure
50 (b) are shown in figure (b) above. Output-dependence edges are added between
these residual vertices, resulting in the graph shown in figure (c) above.

191

Finally, we use a code generation phase, in which we generate sequential code using
a simple topological sort on a graph that includes the flow and control dependence
edges in the residual PRG, as well as the dependence edges introduced as described
above. We have omitted many of the details of the procedure from this discussion, for
brevity.

In the case of loop-carried output-dependences and anti-dependences, the solution
is more involved. A loop-carried dependence is relevant only if the predicate of the
loop that carries the dependence is static. In such a case, the loop that carries the
dependence will be unrolled during specialization. Therefore, the vertices at the ends
of the dependence must be ordered correctly across iterations of the loop. For this
purpose, we maintain a second counter at loop vertices, namely the loop count. For a
loop vertex, the iteration count represents how many times the loop has been reached,
while the loop count represents how many times the loop has been unrolled after being
reached on a given occasion. A vertex emitted by the source of a dependence must
be placed before a vertex emitted by the target of the dependence if the loop count
of the carrying loop corresponding to the source residual is exactly one less than the
loop count corresponding to the target residual. In addition, any static loops that are
ancestors of the carrying loop in the control dependence tree of the original PRG must
have the same loop counts at both the source residual and the target residual. To test
this condition, we use a similar matching scheme to the one we use for loop-independent
dependences, modified to account for the different nature of the witness vertices.

The reconstitution algorithm sketched above introduces an overhead in the special-

ization process, even though it is not NP-complete. As the amount of loop unrolling

192

(in terms of the number of iterations of the loop being unrolled in the subject pro-
gram) increases, the cost of reconstitution increases. For each pair of vertices in the
original PRG linked by a dependence edge, the cost of the matching process includes
the cost of sorting each vertex’s list of residuals by iteration count, and then scanning
the lists, matching residuals with related counts. Therefore, the cost of the reconstitu-
tion algorithm is controlled by the cost of sorting the vertices in the residual PRG. In
practice, the list of residuals corresponding to a given vertex appears to be in sorted

order, resulting in a linear sorting cost. However, this cannot be guaranteed.

7.5 Experimental results

We have implemented our specializer using a version of the Wisconsin Program-Slicing
Tool developed at the University of Wisconsin [oWM97]. The specializer includes
two independent components: The first component parses the source program, con-
structs the PRG, builds output-dependence and anti-dependence edges, and performs
the BTA phase. This component is implemented on top of the Wisconsin slicing tool,
which contains modules to construct and slice PDGs. The second component of the
implementation is the specializer and code generator.

In the first phase, we use the algorithm described by Cytron et al in [CFR*88]
to introduce ¢;; and @enter gate vertices into the CFG. For the remaining filtering
¢ vertices, we use a procedure described partially by Ramalingam in [RR89] to add
the appropriate vertices to the PDG augmented with ¢;f and @enser vertices. The
BTA algorithms are implemented as slicing operations on the PRG, while output-

dependences and anti-dependences are constructed by solving straightforward data-flow

193

Loop Iterations || CFG Specialization l PRG Specialization | PRG Specialization
(running time in seconds) with Reconstitution
1000 0.54 0.63 1.18
5000 2.62 3.15 5.82
10000 5.32 6.25 11.75
20000 10.74 12.56 23.51
30000 16.27 19.00 35.42

Figure 52: Running times for CFG and PRG specialization.
The table above shows running times for CFG specialization (using cmiz) and PRG
specialization using our implementation. The table shows running times for our spe-
cializer both with and without reconstitution of sequential code enabled. The numbers
in the table above were obtained on a Sparcl0 workstation with 64MB RAM, running
AFS.

problems on the CFG.

The specialization engine is implemented as a data-flow execution of the PRG,
using an abstract vertex class and virtual methods: A vertex class is derived for every
kind of PRG vertex, with a local state and a code-generation component. The local
state determines how values supplied by predecessor vertices are used to produce new
output values and code-generation actions at the given vertex. The code-generation
component emits residual vertices, tagged appropriately for reconstitution.

The table in Figure 52 shows the results of one experiment using our implementa-
tion. We wish to compare the cost of PRG specialization with the cost of conventional
CFG specialization. For purposes of comparison, we use the specialization phase of
cmiz [And94] as the reference CFG-based specializer. The subject program contains
a simple static loop with dynamic code nested within it. We report results for our
specializer both with and without the reconstitution algorithm enabled.

As shown by the execution times in Figure 52, all three forms of specialization scale

194

linearly with the size of the residual program. PRG specialization without reconstitu-

tion is roughly 20% slower than CFG specialization. This is because:

o Every value is tagged with a source vertex identifier and the identifier of the

residual vertex corresponding to the source vertex in the residual PRG.

o When a value is received by a target vertex, it must place the value in the

appropriate predecessor queue. This can involve several test operations.
e Every value is pushed and popped off queues at successor vertices.

A graphical comparison of the execution times is shown in Figure 53. As shown in
the figure, PRG specialization with reconstitution has a running time that is linear in
the size of the residual program. This is because vertices are emitted in sorted order,
making the running time of the sorting algorithm (we use an insertion sort algorithm)
linear. However, this is not guaranteed. It appears reasonable to assume that vertices
will almost always appear in sorted order, resulting in linear performance if we use
an insertion sort algorithm. The overhead of reconstitution is significant, because

iteration-count and loop-count information must be transmitted through the PRG.

7.6 Limitations and related work

We have not designed a PRG-specialization scheme for use with a BTA phase that
identifies statically varying vertices rather than weakly static vertices. Extending our
algorithm in this direction would involve modifying the reconstitution strategy to ac-
count for PRG vertices that may move across the control tree during specialization.

When only weakly static vertices are identified, a PRG vertex may only move up the

195

50 T T T
CFG specialization ——
45 PHAG specialization -+-- 1
PRG specialization with reconstitution -e--
o 40 +
o
8
g 35t LB
]
£ 30+
2]
£
= 25 |
o L
2
5 20+ ‘
® 15}
&
S 10
5 L

0 : L) . . .
0 5000 10000 15000 20000 25000 30000 35000

loop iterations

Figure 53: Comparison of execution costs for CFG and PRG specialization.
The figure above compares the running time of CFG specialization with that of PRG
specialization, using the data from Figure 52. All three methods scale linearly. PRG
specialization with reconstitution enabled is roughly twice as slow as CFG specializa-
tion.

control tree, as the PRG is “flattened” via loop unrolling and evaluation of branch
predicates.

The class of programs that can be specialized is limited to the set of programs that
can be represented by PRGs. In particular, it is not clear how we would extend our
specialization scheme to handle programs with arbitrary control flow. Extending the
algorithm to programs with procedures appears straightforward, although we have not
implemented such an extension as of this time.

Much work has been done in the past on executing data-flow graphs, and in design-
ing data-flow machines that can execute data-flow graphs directly. For instance, see
[Pap88], [NA89], and [GKW85]. All of these designs use a producer-consumer model,

in which a consumer is ready to fire or produce a new output value when it has values,

196

tagged appropriately to ensure that input values are matched correctly, available on
all of its input arcs from its predecessors. The same concept has also been applied to
other structures such as petri nets [Pet81]. Our PRG execution model is similar to this
model. The difference is that we are interested in partial execution of the graph, rather
than total execution. The PRG semantics allows us to express PRG specialization as
a data-flow computation. As a result, we are able to use the same data-flow execution

method to perform the specialization operation.

197

Chapter 8

Conclusions

This thesis has tackled a known problem in the area of partial evaluation, namely the
lack of a termination guarantee. As we have shown and argued in this thesis, the lack
of termination arises in two distinct ways: A program may have variables whose values
are built up in loops controlled by dynamic data, or a program may have infinite loops
that are controlled by only static data. Therefore, we are able to place BTA algorithms
in three categories, based on the strength of the termination guarantee they provide

for partial evaluation:

(a) Algorithms that provide no termination guarantee.

(b) Algorithms that provide a termination guarantee in the absence of static-infinite

computations.

(¢) Algorithms that provide a termination guarantee for all programs.

Traditional BTA algorithms that use only flow dependences fall in category (a). We
have argued that these algorithms are unsuitable for certain applications. As we showed
in Chapter 1, using the power function as an example, values can be transmitted from
one program point in a program to another, even though there may be no path of flow

dependences relating these program points.

198

The BTA algorithms presented in Chapters 3, 4, and 5 account for the transmission
of values through transfer loops controlled by dynamic data. They use either control
dependences or loop dependences, in addition to the usual flow dependences, in order
to trace the flow of dynamic values through a program. Therefore, these algorithms can
be placed in category (b). Our argument for developing BTA algorithms that provide
this partial termination guarantee is as follows: Providing a termination guarantee
for programs with static-infinite computations requires conservative analysis of all the
static loops in every program, even though static-infinite computations are unlikely to
occur in practice, and represent poor programming practice. In imperative programs
with complex expressions (in particular, data types that are not downwards closed)
and complex control constructs, this leads to conservative results. In Chapter 3, we
used the PRG to define a conditionally-safe BTA for single-procedure programs. In
Chapter 4, we extended the PRG representation by designing the SRG, and we used this
representation to extend our BTA algorithms for single-procedure programs to those
with multiple procedures. In Chapter 5, we tackled the problem of developing BTA
algorithms in category (b) for programs with arbitrary control flow and pointer-valued
variables. It is not clear how we would design a dependence graph representation with
a dataflow semantics for such programs. Therefore, we devised a new form of program
dependence termed “loop dependence”. We used these dependences to develop a BTA
algorithm whose correctness can be argued less formally, using the structure of the loop
dependence graph. We presented experimental evidence using our implementation to
show that the Loop-Dependence BTA is able to identify static behaviour where desired.
For this purpose, we used a set of programs that has been used to demonstrate the

capability of cmiz. We claim that this is a reasonable experiment, because cmiz uses

199

a BTA algorithm that is in category (a).

The drawback of the Loop-Dependence BTA is that the algorithm for constructing
loop dependences has a running-time that may be cubic in the size of the program. This
clearly limits the applicability of the BTA algorithm to large programs. A conservative
alternative is to use control dependences in place of loop dependences, which would
eliminate the cost of constructing loop dependences. However, this will result in an
unduly conservative BTA algorithm. Identifying a less expensive approximation to loop
dependence that retains it selectivity in terms of ignoring dynamic predicates where
possible remains an open area for future investigation. The applicability of the Loop-
Dependence BTA is also limited by the treatment of heap-allocated storage. However,
this problem is independent of our use of loop dependence.

Another area of partial evaluation that remains open to examination is the develop-
ment of termination analysis algorithms for imperative programs, for use in applications
where BTA algorithms in category (c¢) may be more suitable.

A further open question in the area of partial evaluation of imperative programs is
the handling of arrays — for example, identifying partially static arrays. Here depen-
dence graph structures like PRGs may also play some role, as there is a substantial
literature, in the context of automatic program parallelization, on array subscript anal-
ysis for the purpose of identifying independent statements.

In the context of functional programs with limited data types, BTA algorithms in
category (c) appear most suitable. Several such algorithms have already been devised
and reported in the literature. In Chapter 6, we extended one of these algorithms in
two ways: (i) By using CFL-Reachability in place of ordinary graph reachability, and

(i1) by using an optimistic approach.

200

In this thesis, we have also used dependence graphs, in particular the PRG, as the
basis for the specialization phase of partial evaluation. Our experiments show that
there is a significant overhead in partially executing the PRG of a program, when
compared with the cost of partially executing the CFG representation of the program.
In practice, PRG specialization with reconstitution is roughly twice as slow as CFG
specialization, while in the worst case, it may be asymptotically slower. It remains to be
determined whether PRG specialization offers any advantages over CFG specialization
that would make the additional overhead of the specialization operation worthwhile.

Finally, with partial evaluators increasingly being developed for real imperative
languages such as C, there is a need for a standard set of test programs that can be
used to evaluate the practical applicability of a particular partial evaluation scheme or
implementation. Any such set of programs should include multimedia programs, which
appear to hold promise as an application area for partial evaluation of imperative pro-
grams [KR96]. This remains as one of the many steps that must be taken before partial

evaluation is adopted as a practical technique for improving program performance.

201

Bibliography

[AH96)

[AHU74]

[And92]

[And93]

[And94]

[And95a]

[And95b]

[App92]

[ASUS6]

[AWZ88]

P. H. Andersen and C. K. Holst. Termination analysis for offline partial
evaluation of a higher order functional language. In Proceedings of the
Third International Static Analysis Symposium, 1996.

A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

L.0. Andersen. Self-applicable C program specialization. In Partial Eval-
uation and Semantics-Based Program Manipulation, San Francisco, Cali-
fornia, June 1992 (Technical Report YALEU/DCS/RR-909), pages 54-61.
New Haven, CT: Yale University, June 1992.

L.0. Andersen. Binding-time analysis and the taming of C pointers. In Par-
tial Evaluation and Semantics-Based Program Manipulation, Copenhagen,
Denmark, June 1993, pages 47-58. New York: ACM, 1993.

L.O. Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, Denmark, 1994.
DIKU Research Report 94/19.

P. H. Andersen. C-Miz User Manual (DRAFT). DIKU, Copenhagen, Den-
mark, 1995.

P.H. Andersen. Partial evaluation applied to ray tracing. DIKU Research
Report 95/2, DIKU, University of Copenhagen, Denmark, 1995.

A. W. Appel. Compiling with Continuations. Cambridge University Press,
Cambridge, 1992.

A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and
Tools. Addison-Wesley, Reading, MA, 1986.

B. Alpern, M.N. Wegman, and F.K. Zadeck. Detecting equality of variables
in programs. In Conference Record of the Fifteenth ACM Symposium on
Principles of Programming Languages, (San Diego, CA, January 13-15,
1988), pages 1-11, 1988.

[Bal93]

[BFR90]

[BGZ94]

[BH93]

[Bin92]

[Bon90]

[Bulss]

[BW90]

[CD8Y)

[CD91]

202

T. J. Ball. The Use of Control-Flow and Control Dependence in Software
Tools. PhD thesis, Computer Sciences Department, University of Wisconsin-
Madison, 1993. UW Computer Sciences Technical Report #1169.

A. Bondorf, F. Frauendorf, and M. Richter. An experiment in automatic
self-applicable partial evaluation of Prolog. Technical Report 335, Lehrstuhl
Informatik V, University of Dortmund, Germany, 1990.

R. Baier, R. Gliick, and R. Zochling. Partial evaluation of numerical pro-
grams in Fortran. In Partial Fvaluation and Semantics-Based Program
Manipulation, Orlando, Florida, June 1994 (Technical Report 94/9, De-
partment of Computer Science, University of Melbourne), pages 119-132,
1994.

S. Bates and S. Horwitz. Incremental program testing using program de-
pendence graphs. In Conference Record of the Twentieth ACM Symposium
on Principles of Programming Languages, (Charleston, SC, January 10-13,
1993), pages 384-396, 1993.

D. Binkley. Using semantic differencing to reduce the cost of regression
testing. In Proc. of the IEEE Conf. on Softw. Maint. Orlando, FL, Nov.
9-12, 1992, pages 41-50, 1992.

A. Bondorf. Self-Applicable Partial Evaluation. PhD thesis, DIKU, Uni-
versity of Copenhagen, Denmark, 1990. Revised version: DIKU Report
90/17.

M.A. Bulyonkov. A theoretical approach to polyvariant mixed computation.
In D. Bjgrner, A.P. Ershov, and N.D. Jones, editors, Partial Evaluation and
Mized Computation, pages 51-64. Amsterdam: North-Holland, 1988.

A. Berlin and D. Weise. Compiling scientific code using partial evaluation.
IEEE Computer, 23(12):25-37, December 1990.

C. Consel and O. Danvy. Partial evaluation of pattern matching in strings.
Information Processing Letters, 30:79-86, January 1989.

C. Consel and O. Danvy. For a better support of static data flow. In
J. Hughes, editor, Functional Programming Languages and Computer Ar-
chitecture, Cambridge, Massachusetts, August 1991 (Lecture Notes in Com-
puter Science, vol. 523), pages 496-519. ACM, Berlin: Springer-Verlag,
1991.

[CF89]

[CFR+88)

[CLR90]

[DD77]

[DR95]

[DR96]

[Ers82]

[FOWS7]

[Fut71]

[GJ8Y]

(GI91]

R. Cartwright and M. Felleisen. The semantics of program dependence. Pro-
ceedings of the ACM SIGPLAN 89 Conference on Programming Language
Design and Implementation, (Portland, OR, June 21-23, 1989), ACM SIG-
PLAN Notices, 24(7), July 1989.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and K. Zadeck. An
efficient method of computing static single assignment form. In Conference
Record of the Sizteenth ACM Symposium on Principles of Programming
Languages, (Austin, TX, January 11-13, 1989), pages 25-35, 1988.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction To Algo-
rithms. McGraw-Hill Book Company, New Tork, 1990.

D.E. Denning and P.J. Denning. Certification of programs for secure infor-
mation flow. Commun. of the ACM, 20(7):504-513, July 1977.

M. Das and T. Reps. Semantic foundations of binding-time analysis for
imperative programs. In Conference Record of the ACM SIGPLAN Sym-
posium on Partial Evaluation and Semantics-Based Program Manipulation,
San Diego, CA, June 1995, pages 100-110, 1995.

M. Das and T. Reps. BTA termination using cfl-reachability. Technical
Report 1329, Computer Sciences Department, University of Wisconsin-
Madison, November 1996.

A.P. Ershov. Mixed computation: Potential applications and problems for
study. Theoretical Computer Science, 18:41-67, 1982.

J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph
and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319-
349, July 1987.

Y. Futamura. Partial evaluation of computation process — an approach to
a compiler-compiler. Systems, Computers, Controls, 2(5):45-50, 1971.

C. K. Gomard and N. D. Jones. Compiler generation by partial evaluation.
In G. X. Ritter, editor, Information Processing '89. Proceedings of the IFIP
11th World Computer Congress, pages 1139-1144. IFIP, Amsterdam: North-
Holland, 1989.

C.K. Gomard and N.D. Jones. A partial evaluator for the untyped lambda-
calculus. Journal of Functional Programming, 1(1):21-69, January 1991.

(GI96]

[GKWS5]

[GLY1]

[Har78]

[Hec77]

[Hol91]

[Hor90]

[HPRS8a)

[HPR88b)]

[HRB90]

204

Arne J. Glenstrup and Neil D. Jones. BTA algorithms to ensure termi-
nation of off-line partial evaluation. Andrei Ershov Second International
Conference ‘Perspectives of System Informatics’, Lecture Notes in Com-
puter Science, 1996, 1996.

J. R. Gurd, C. C. Kirkham, and I. Watson. The manchester prototype
dataflow computer. CACM, 28(1):34-52, January 1985.

K.B. Gallagher and J.R. Lyle. Using program slicing in software mainte-
nance. IEEE Trans. on Softw. Eng., SE-17(8):751-761, August 1991.

A. Haraldsson. A partial evaluator, and its use for compiling iterative state-
ments in Lisp. In Fifth ACM Symposium on Principles of Programming
Languages, Tucson, Arizona, pages 195-202. New York: ACM, 1978.

M. S. Hecht. Flow analysis of computer programs. North-Holland, New
York, 1977.

C.K. Holst. Finiteness analysis. In J. Hughes, editor, Functional Program-
ming Languages and Computer Architecture, Cambridge, Massachusetts,
August 1991 (Lecture Notes in Computer Science, vol. 523), pages 473-495.
ACM, Berlin: Springer-Verlag, 1991.

S. Horwitz. Identifying the semantic and textual differences between two
versions of a program. Proceedings of the ACM SIGPLAN 90 Conference
on Programming Language Design and Implementation, (White Plains, NY,
June 20-22, 1990), ACM SIGPLAN Notices, 25(6):234-245, June 1990.

S. Horwitz, J. Prins, and T. Reps. Integrating non-interfering versions
of programs. In Conference Record of the Fifteenth ACM Symposium on
Principles of Programming Languages, (San Diego, CA, January 13-15,
1988), pages 133-145, 1988.

S. Horwitz, J. Prins, and T. Reps. On the adequacy of program dependence
graphs for representing programs. In Conference Record of the Fifteenth
ACM Symposium on Principles of Programming Languages, (San Diego,
CA, January 13-15, 1988), pages 146-157, 1988.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using depen-
dence graphs. ACM Trans. Program. Lang. Syst., 12(1):26-60, January
1990.

[Jac90]

[JGS93]

[Jon88]

[Jon95]

[JSS85]

[Kas65)

[Kel95)

[KKL*81]

[Kle52]

[Kom81]

205

H.F. Jacobsen. Speeding up the back-propagation algorithm by partial
evaluation. Student Project 90-10-13, DIKU, University of Copenhagen,
Denmark. (In Danish), October 1990.

N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Englewood Cliffs, NJ: Prentice Hall, 1993.

N.D. Jones. Automatic program specialization: A re-examination from basic
principles. In D. Bjgrner, A.P. Ershov, and N.D. Jones, editors, Partial
Evaluation and Mized Computation, pages 225-282. Amsterdam: North-
Holland, 1988.

N. D. Jones. Mix: Ten years after. In Conference Record of the ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, San Diego, CA, June 1995, page 77, 1995.

N.D. Jones, P. Sestoft, and H. Sgndergaard. An experiment in partial eval-
uation: The generation of a compiler generator. In J.-P. Jouannaud, editor,
Rewriting Techniques and Applications, Dijon, France. (Lecture Notes in
Computer Science, vol. 202), pages 124-140. Berlin: Springer-Verlag, 1985.

J. Kasami. An efficient recognition and syntax analysis algorithm for
context-free languages. Scientific Report AFCRL-65-758, Air Force Cam-
bridge Research Laboratory, Bedford, MA, 1965.

R. A. Kelsey. A correspondence between continuation passing style and
static single assignment form. In ACM SIGPLAN Workshop on Intermedi-
ate Representations (IR ’95) (Technical Report MSR-TR-95-01, Microsoft
Research, Microsoft Corporation), pages 13-22, 1995.

D. J. Kuck, R. H. Kuhn, B. Leasure, D. A. Padua, and M. Wolfe. De-
pendence graphs and compiler optimizations. In Conference Record of
the Eighth ACM Symposium on Principles of Programming Languages,
(Williamsburg, VA, January 26-28, 1981), pages 207-218, 1981.

S.C. Kleene. Introduction to Metamathematics. Princeton, NJ: D. van
Nostrand, 1952.

H.J. Komorowski. A Specification of an Abstract Prolog Machine and Its
Application to Partial Evaluation. PhD thesis, Link6éping University, Swe-
den, 1981. Linkoping Studies in Science and Technology Dissertations 69.

[KR96]

[LW86]

[Mey91]

[Mog92]

[MR97]

[MS92]

[NASY]

[NEK94]

[oOWMY7]

206

T. Knoblock and E. Ruf. Data specialization. Proceedings of the ACM SIG-
PLAN 96 Conference on Programming Language Design and Implementa-
tion, (Philadelphia, PA, May 21-24, 1996), ACM SIGPLAN Notices, pages
215-225, 1996.

J. Lyle and M. Weiser. Experiments on slicing-based debugging tools. In
Proc. of the First Conf. on Empirical Studies of Programming, June 1986,
pages 133-145, 1986.

U. Meyer. Techniques for partial evaluation of imperative languages. In Par-
tial Evaluation and Semantics-Based Program Manipulation, New Haven,
Connecticut (Sigplan Notices, vol. 26, no. 9, September 1991), pages 94~
105. New York: ACM, 1991.

T. Mogensen. Self-applicable partial evaluation for pure lambda calcu-
lus. In Partial Evaluation and Semantics-Based Program Manipulation,
San Francisco, California, June 1992 (Technical Report YALEU/DCS/RR-
909), pages 116-121. New Haven, CT: Yale University, 1992.

D. Melski and T. Reps. Interconvertibility of set constraints and context-free
langauge reachability. In PEPM ’97: Proceedings of the ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-Based Program Manipu-
lation, Amsterdam, The Netherlands, June 12-13, 1997, pages 74-89. New
York: ACM, 1997.

M. Marquard and B. Steensgaard. Partial evaluation of an object-
oriented imperative language. Master’s thesis, DIKU, University of
Copenhagen, Denmark, April 1992. Available from ftp.diku.dk as file
pub/diku/semantics/papers/D-152.ps.Z.

R. S. Nikhil and Arvind. Can dataflow subsume von neumann computing?
In Proceedings of the 16th International Symposium on Computer Architec-
ture, IEEE/ACM, Jerusalem, Israel, May 1989, 1939.

J.Q. Ning, A. Engberts, and W. Kozaczynski. Automated support for legacy
code understanding. CACM, 37(5):50-57, May 1994.

University of Wisconsin-Madison. Wisconsin Program-Slicing Tool 1.0 Ref-
erence Manual. University of Wisconsin-Madison, Madison, WI, USA, 1997.

[Pap8§]

[Pet81]

[Rams89)]
[Rep95]

[Rep97]

[RHS95]

[RHSR94]

[RP89)

[RRSY]

[RSH94]

207

G. M. Papadopoulos. Implementation of a General Purpose Dataflow Mulit-
processor. PhD thesis, Massachussetts Institute of Technology Laboratory
for Computer Science, 1988. MIT Laboratory for Computer Science Tech-
nical Report 432.

J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-
Hall, New Jersey, 1981.

G. Ramalingam, 1989. Personal communication to Tom Reps.

T. Reps. Shape analysis as a generalized path problem. In Partial Eval-
uation and Semantics-Based Program Manipulation, La Jolla, California,
June 1995, pages 1-11. New York: ACM, 1995.

T. Reps. Program analysis via graph reachability. In Proc. of ILPS ’97:
International Logic Programming Symposium, (Port Jefferson, NY, Oct.
12-16, 1997), J. Maluszynski (ed.), pages 5-19, Cambridge, MA, 1997. The
M.LT. Press.

T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In Conference Record of the Twenty-Second ACM
Symposium on Principles of Programming Languages, (San Francisco, CA,
January 23-25, 1995), pages 49-61, 1995.

T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding up slicing. In
SIGSOFT 94: Proceedings of the Second ACM SIGSOFT Symposium on
the Foundations of Software Engineering, (New Orleans, LA, December 7-
9, 1994), ACM SIGSOFT Software Engineering Notes 19(5), pages 11-20,
December 1994.

A. Rogers and K. Pingali. Process decomposition through locality of refer-
ence. Proceedings of the ACM SIGPLAN 89 Conference on Programming
Language Design and Implementation, (Portland, OR, June 21-23, 1989),
ACM SIGPLAN Notices, 24(7):69-80, July 1989.

G. Ramalingam and T. Reps. Semantics of program representation graphs.
Technical Report TR-900, Computer Sciences Department, University of
Wisconsin, Madison, WI, December 1989.

T. Reps, M. Sagiv, and S. Horwitz. Interprocedural dataflow analysis via
graph reachability. Technical Report 94/14, DIKU, University of Copen-
hagen, Denmark, April 1994.

[RSH9S]

[RT96]

[RWZ88]

[Sch86]

[Sel89]

[Wan93]

[Wei84]

[Yan90]

[YHR92]

[You67]

208

T. Reps, M. Sagiv, and S. Horwitz. Precise interprocedural dataflow analysis
via graph reachability. In Conference Record of the Twenty-Second ACM
Syposium on Principles of Programming Languages, (San Francisco, CA,
Jan. 23-25, 1995), pages 49-61, 1995.

T. Reps and T. Turnidge. Program specialization via program slicing. Pro-
ceedings of the Dagstuhl Seminar on Partial Evaluation, Schloss Dagstuhl,
Wadern, Germany, Feb. 12-16, 1996, Lecture Notes in Computer Science,
1110:409-429, January 1996.

B. K. Rosen, M.N. Wegman, and F.K. Zadeck. Global value numbers and
redundant computations. In Conference Record of the Fifteenth ACM Sym-
posium on Principles of Programming Languages, (San Diego, CA, January
18-15, 1988), 1988.

D. Schmidt. Denotational Semantics. Allyn and Bacon, Inc., Boston, MA,
1986.

R. P. Selke. A rewriting semantics for program dependence graphs. In
Conference Record of the Sizteenth ACM Symposium on Principles of Pro-
gramming Languages, (Austin, TX, Januvary 11-13, 1989), pages 12-24,
1989.

M. Wand. Specifying the correctness of binding-time analysis. In Twentieth
ACM Symposium on Principles of Programming Languages, Charleston,
South Carolina, January 1993, pages 137-143. ACM, New York: ACM,
1993.

M. Weiser. Program slicing. IEEE Transactions on Software Engineering,
SE-10(4):352-357, July 1934.

M. Yannakakis. Graph-theoretic methods in database theory. In Proceedings
of the Symposium on Principles of Database Systems, 1990, pages 230-242,
1990.

W. Yang, S. Horwitz, and T. Reps. A program integration algorithm that
accommodates semantics-preserving transformations. ACM Trans. Software
Engineering and Methodology, 1(3):310-354, July 1992.

D.H. Younger. Recognition and parsing of context-free languages in time
n3. Information and Control, 10:189-208, 1967.

Index

Anchoring, 161 in-situ decreasing, 144
anchoring, 144
anti-dependence, 183
APG path languages
dependence_path®, 154
eq-or_decr _path®, 153
eq.path, 152
eq_path®, 152
control_path, 156
decr_path, 152
eq_or_posstbly_incr_path, 155
incr_path, 153
possibly_incr_path, 156
augmented parameter dependence graph

in-situ increasing, 145
ISD, 159
ISI, 159

loop dependence, 106
loop dependence graph (LDG), 112
Loop-Dependence BTA, 112

output-dependence, 183

parameter dependency graph (PG), 131
postdomination, 28

program dependence graph (PDG), 29
program representation graph (PRG)

(APG), 147

binding-time analysis (BTA), 55
bounded-static-varying (BSV)
function parameter, 143
PRG vertex, 53
SRG vertex, 92

call path, 141
CFL-Reachability, 35
conditionally safe BTA, 55

control dependence, 28
control-flow graph (CFG), 25

def-order dependence, 29
entry BSV, 143
flow dependence, 27

grounded flow dependence cycle, 118
grounded loop, 118

209

semantics, 40
structure, 38

safe BTA, 55
static-infinite, 54
Static-Variation BTA
PRG programs, 65
SRG programs, 97
statically varying
PRG vertex, 52
SRG vertex, 92
Strong-Staticness BTA
PRG programs, 57
SRG programs, 94
strongly static
PRG vertex, 47
SRG vertex, 91
system dependence graph (SDG), 76
system representation graph (SRG)
semantics, 83
structure, 80

The Trick, 126
transition sequence, 140

Weak-Staticness BTA
PRG programs, 63
SRG programs, 96

weakly static
PRG vertex, 50
SRG vertex, 91

210

