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Abstract—Numerous studies have characterized the
sharing patterns of programs, and it is generally
believed that widely shared data occur infrequently and
do not significantly affect performance. In practice, pro-
grammers are generally careful to avoid algorithms that
exhibit wide sharing of data, because such algorithms
are known to achieve poor performance on conventional
shared-memory multiprocessors. We argue that in fact
widely shared data is a more serious problem than pre-
viously recognized, and that furthermore, it is possible
to provide support that actually gives an advantage to
accesses to widely shared data. If a system can exploit
the redundancy of the data to improve accessibility of
widely shared data, programmers would find that the
best algorithms make extensive use of widely shared
data rather than eschewing. Thus the potential for sys-
tems that provide high-quality support for widely shared
data may be much larger than would be indicated by a
sample of current shared-memory programs, which gen-
erally avoid such data wherever possible.

Since contemporary cc-NUMA systems are build of
commodity parts additional hardware support should be
transparent and easily implementable without interfer-
ing with the rest of the system. The GLOW extensions to
cache coherence protocols previously proposed provide
transparent support for widely shared data by defining
functionality in the network domain. Modified switch
nodes (GLOW agents) intercept requests for widely
shared data and (transparently) build sharing trees that
map well on the network topology. In their static version
the extensions rely on the user to identify and expose
widely shared data to the hardware. This approach is
not appealing because: i) it requires modification of the
programs, ii) it is not always possible to statically iden-
tify the widely shared data, and iii) it is incompatible
with commodity hardware. To address these issues, we
study two dynamic schemes to discover widely shared
data at run-time. The first scheme is inspired by read-
combining and it is based on observing requests in the
GLOW agents. The agents intercept requests whose
addresses have been observed recently and employ the
GLOW extensions to handle them. We show with
detailed simulations that this dynamic scheme: i) tracks
closely the performance of the static GLOW and in
some cases surpasses it, and ii) is considerably more
stable than combining which is sensitive on network and
application characteristics. In the second scheme, the
memory directory discovers widely shared data by

counting the number of reads between writes. Informa-
tion about the widely shared nature of data is distributed
to the nodes which subsequently request them as such.
Simulations confirm that this scheme works well when
the widely shared nature of the data is persistent over
time.

1 Introduction

It has been said that shared-memory multiprocess-
ing is like virtual memory: it works very well as long as
you don’t really use it. This mostly facetious comment
nevertheless captures the essence of a problem: shared-
memory multiprocessing is only attractive if it can be
supported robustly in the presence of frequent and com-
plex memory sharing patterns. Numerous studies have
characterized the sharing patterns of programs, and it is
generally believed that widely shared data occur infre-
quently and does not significantly affect performance. In
practice, programmers are generally careful to avoid
algorithms that exhibit wide sharing of data, because
such algorithms are known to achieve poor performance
on conventional shared-memory multiprocessors. Thus
one explanation for the lack of widely shared data is the
self-fulfilling prophecy: hardware isn’t designed to sup-
port widely shared data well because it is rarely needed,
and it is rarely needed because programmers know that
hardware doesn’t support it well.

In this paper we argue that in fact widely shared
data is a more serious problem than previously recog-
nized, and that furthermore, it is possible to provide sup-
port that actually gives an advantage to widely shared
data. The idea of read-combining [6] evolved because of
the concern for network contention for widely shared
data. Unfortunately, read-combining is highly dynamic,
and only reduces traffic in the network by recognizing
that simultaneous requests can be merged. The probabil-
ity of occurrence of simultaneous requests only
becomes a factor when serious network contention
extends the latency of individual requests, and in gen-
eral, the best that combining can hope to achieve is a
reduction in latency of access to widely shared data to
the latency that would be experienced in an unloaded
network.

The presence of redundant copies of a datum in
multiple caches throughout the network offers the possi-
bility that widely shared data could actually be better
supported than non-widely shared data. If many nodes
in the system have a particular datum needed by node X,
it is likely that a copy of the data is closer than the copy



in node Y, the home node for that datum. If a system can
exploit the redundancy of the data to improve accessibil-
ity of widely shared data, programmers would find that
the best algorithms make extensive use of widely shared
data rather than eschewing. Thus the potential for sys-
tems that provide high-quality support for widely shared
data may be much larger than would be indicated by a
sample of current shared-memory programs, which gen-
erally avoid such data wherever possible.

Several classes of sharing patterns in shared-mem-
ory applications have been identified (migratory, read-
only, frequently-written sharing, etc. [3,18]). Hardware
protocols (e.g, pairwise sharing and QOLB [5] in SCI)
or software protocols (Munin [3], Treadmarks [25]), or
application specific protocols [21] have been devised to
deal with such patterns effectively. Widely shared data is
a distinct sharing pattern —previously classified within
other patterns— that imposes increasingly significant
overhead as systems increase in size [11]: when all pro-
cessors read widely shared data there is much conten-
tion in the home node for servicing the requests as well
as in the network around the home node which becomes
a hot spot [16]; similarly, when the widely shared data
are written there is a large number of invalidations (or
updates) to be sent all over the system (i.e. non-locally).
For many systems with no provision for efficient broad-
cast or multicasts these invalidations consume much
network bandwidth, perhaps in a wasteful manner.

When widely shared data exist they are usually a
very small percentage of the dataset of a program. Stud-
ies have also shown that the average degree of sharing
(the number of nodes that simultaneously share the
same data) in application programs is low [18]. These
observations however, do not indicate the serious perfor-
mance degradation resulting from accessing such data.
Even if widely shared data are a negligible percentage of
the dataset they can be detrimental to performance if
they are accessed frequently enough. Furthermore, the
average degree of sharing is only relevant for programs
that do not have widely shared data and it is otherwise
misleading. This is because the average degree of shar-
ing does not reflect how many accesses actually corre-
spond to widely shared data. This number can be
surprisingly high even for low degrees of sharing as we
illustrate in the following example.

In Figure 1 we show a histogram (left graph) of the
write-runs [29] for the GAUSS program (discussed in
Section 5) running on 128 nodes. The horizontal axis
shows the size of the write-runs (i.e. the number of reads
between writes). The vertical axis represents the number

of times that a write-run appears in the execution of the
program. In this graph widely shared data appear as
write-runs of size 128 (the size of the machine). The
average degree of sharing for this program (computed
by taking the weighted average of write-runs) is a rela-
tively low 2.75 (i.e., on average there are less than three
copies of shared data). However, the number of reads (or
alternatively the number of invalidates) that correspond
to widely shared data is 128 times the number of times
the large write-runs appeared in the execution. For the
system we are examining, these reads (invalidates) are
about one half of all the reads (invalidates) in the pro-
gram (right graph of Figure 1). Providing for efficient
handling of such data is thus essential for scalability in
cases where such data exist.

Previously, scalable coherence protocols have been
proposed [8][14][15] but they were applied indiscrimi-
nately on all data. This diminishes the potential benefit
since the overhead of the more complex protocols is
incurred for all accesses. Building a sharing tree does
not come for free and doing so for data that is not widely
shared may result in degradation for the most common
access patterns. Only when the number of nodes that
participate in the sharing tree is large is the overhead
sufficiently leveraged. Bianchini and LeBlanc distin-
guished widely shared data (“hot” data) from other data
in their work [2]. The GLOW extensions for cache
coherence protocols were also designed exclusively to
handle widely shared data on top of another cache
coherence protocol [11]{12]. The distinguishing charac-
teristic of the GLOW extensions is that they create shar-
ing trees very well mapped on top of the network
topology of the system, thus exploiting “geographical
locality” [12]. Bennett et al also distinguished widely
shared data in their work with proxies [27]. However, in
all the aforementioned work widely shared data were
statically identified by the user (the programmer or,
potentially, the compiler). Such static methods of identi-
fying widely shared data have three major drawbacks: 1)
user involvement complicates the clean shared-memory
paradigm, ii) it may not always be possible to identify
the widely shared data statically, and most importantly
iii) mechanisms are required to transfer information
from the user to the hardware; these mechanisms are
hard to implement when the parallel system is built with
commodity parts. This last consideration is crucial since
vendors must leverage existing commodity parts (e.g.,
processors, main-boards, and networks [7]) in order to
drive development costs down and shorten the time-to-
market.
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processor system

Because of these reasons, we introduce two
dynamic schemes to detect widely shared data that differ
in where the detection takes place:

+ Agent detection: In this scheme the request stream
is observed in the network, at the exact places
where the GLOW extensions are implemented
(namely at GLOW agents that are switch nodes in
the network topology). Changes are required only
in the GLOW -specific hardware without affecting
other parts of the system. Requests for widely
shared data can be identified in the request stream if
their addresses are seen often enough. The GLOW
extensions are then invoked for such requests as in
the static GLOW. This technique is similar in spirit
to combining [6], but can better exploit requests
scattered in time because the critical information
hangs around in the combining node after a request
is gone. Simulations show that the performance of
this dynamic scheme closely tracks that of the static
scheme. We also provide evidence that it is more
stable than ordinary combining which is highly
dependent on network timing characteristics and
application characteristics.

« Directory detection: In this scheme the directory is
responsible for identifying widely shared data. This
scheme is similar to the behavior of limited pointer
directories such as DirB [30]. These directories
switch from point-to-point messaging to broadcast-
ing if the number or readers exceeds a threshold.
Similarly in our scheme, the directory detects
widely shared data (by keeping track of the number
of readers) but it then informs the nodes in the sys-
tem about the nature of the data. Subsequently,
nodes use special requests for such data that are
intercepted by the GLOW agents. This scheme

depends on widely shared data remaining as such

through multiple read-write cycles.

The rest of this paper is organized as follows: in
Section 2 we describe the GLOW extensions that handle
the widely shared data. In Section 3 we expand on the
static methods of identifying widely shared data and
their problems. We introduce the dynamic methods in
Section 4. In Section 5 and Section 6 we present our
evaluation and results. Finally, we conclude in Section
7.

2 cLow extensions

The GLOW extensions provide support for widely
shared data. They are independent of how the widely
shared data are exposed to the hardware. For purposes
of discussing the extensions we assume that special
requests are used to access widely shared data. In subse-
quent sections we describe how to generate such special
requests either statically or dynamically. GLOW exten-
sions improve on previous efforts (EC [2], STP [15],
STEM [8]) by embodying the following four character-
istics:

» TRANSPARENCY. GLOW is not a protocol itself
but rather a method of converting other protocols to
handle widely shared data. The functionality of the
GLOW extensions is implemented in selected net-
work switch nodes called GLOW agents that inter-
cept special requests for widely shared data. These
nodes behave both as memory and cache nodes
using the underlying cache coherence protocol
recursively: toward a local cluster of nodes they ser-
vice, GLOW agents impersonate remote memory
nodes; toward the home node directory, agents
behave as if they were ordinary caches.



« GEOGRAPHICAL LOCALITY. A sharing tree out
of the GLOW agents and other caches in the system
is constructed to match the tree that fans-in from all
the sharing nodes to the actual home node of the
widely shared data. GLOW captures geographical
locality so that neighboring nodes in the sharing
tree are in physical proximity.

« SCALABLE READS. Since the GLOW agents
intercept multiple requests for a cache line and gen-
erate only a new request toward the home node, a
similar effect to read-combining is achieved, elimi-
nating hot spots [16].

« SCALABLE WRITES. Upon a write, GLOW
invokes in parallel the underlying protocol’s invali-
dation or update mechanisms: on receipt of an
invalidation (update) message, an agent starts recur-
sively the invalidation (update) process on the other
agents or nodes it services. The parallel invalidation
(update), coupled with the geographical locality of
the tree permits fast, scalable writes that require low
bandwidth.

2.1 cLow extensions to scI

The first implementation of GLOW [12] is done on
top of SCALABLE COHERENT INTERFACE! (SCI)
[7]. A version of this implementation (described in
[11]) defines the functionality of network switch nodes
and it is fully compatible with current SCI systems.

SCI has two characteristics that make it an ideal
match for GLOW. The first is that its invalidation algo-
rithm is serial and making a tree protocol especially
attractive for speeding up writes to widely shared data.
The second concerns SCI topologies. SCI defines a ring
interconnect as a basic building block for larger topolo-
gies. GLOW extensions can be implemented on top of a
wide range of topologies constructed of SCI rings,
including hypercubes, meshes, trees, butterflies[9] and
many others. GLOW can also be used in irregular topol-

' The ANSI/IEEE standard 1596 Scalable Coherent Inter-
face represents a robust hardware solution to the challenge
of building cache-coherent, shared-memory multiprocessor
systems. It defines a network interface, a basic ring net-
work, and a cache coherence protocol. SCI defines a dis-
tributed, directory-based cache coherence protocol. Unlike
most other directory-based protocols (such as DASH [13})

that keep all the directory information in memory, SCI dis-
tributes the directory information to the sharing nodes in a
doubly-linked sharing list. The sharing list is stored with
the cache lines throughout the system.

ogies (e.g., an irregular network of workstations). In this
paper, we study GLOW on highly scalable K-ary N-
cube topologies [23] constructed of rings. As we men-
tioned in the general description, all GLOW protocol
processing takes place in strategically selected switch
nodes (the GL.OW agents) that connect two or more SCI
rings in the network topology.

GLOW agents cache directory information; cach-
ing the actual data is optional. Multilevel inclusion [1] is
not enforced to avoid protocol deadlocks in arbitrary
topologies. This allows great flexibility since the
involvement of the GLOW agents is not necessary for
correctness: it is at the discretion of the agent whether it
will intercept a request or not. In the following two sub-
sections we describe in more detail how the sharing
trees are created and invalidated.

2.1.1 Creation of gGLOW trees

A GLOW sharing tree is created when SCI lists
form under the agent. An agent can connect multiple
rings and it can accommodate (for a single cache line)
multiple SCI lists, one per ring. These lists are called
child lists and the agent is their parent. The child lists
contain nodes whose requests are intercepted and satis-
fied by the agent pretending to be the remote memory
locally on the ring.

Intercept of a request for widely shared data results
in a lookup in the agent’s directory storage. If the lookup
results in a miss, the agent sends its own request for the
widely shared data toward the home node. The agent
inserts the requesting node in a child list and instructs it
to wait for the data. As soon as the agent gets a copy of
the cache line it will pass it to its child lists. If the
lookup results in a hit, the requesting node is instructed
to attach to the appropriate child list. The requester will
get the data from either the agent (if it caches data) or
the previous head of the child list. If the appropriate
child list is empty and the agent does not cache the data
it fetches the data from one of its non-empty child lists.

2.1.2 Invalidation of gLOW trees

Similarly to SCI, a node must be the root of a shar-
ing tree (connected directly to the memory directory) to
write a cache line. A root node writing a cache line
invalidates the highest level list sending invalidation
messages serially to all the nodes in that list (standard
SCI invalidation protocol). Upon receiving an invalida-
tion, an SCI node invalidates itself and returns to the
writer the identity of next node in the list. However, a
GLOW agent concurrently forwards the invalidation to
its downstream (i.e., away from memory) neighbor and



invalidates its child lists appearing as a writer attached
in front of them. When the agent is done invalidating its
child lists it waits until it becomes tail in its list. This
will happen because it will either invalidate all its down-
stream nodes (if they are SCI nodes) or they will delete

themselves (if they are GLOW agents). When the agent
finds itself childless and tail in its list, it deletes itself
from the tree, freeing in turn upstream (i.e., toward
memory) nodes to delete.

3 Statically identifying and
exposing widely shared data

In the previous section we described the GLOW
mechanisms to handle requests for widely shared data.
These mechanisms are independent of how the widely
shared data are distinguished from other data. Here, we
describe the static methods to define the widely shared
data (also discussed in [12]).

The main characteristic of the static methods is that
the user identifies either the widely shared data or the
code that accesses widely shared data. As of yet it has
not been investigated whether this can be done automat-
ically by a compiler. In cases where identification is dif-
ficult, profiling tools can possibly help.

Identifying the widely shared data in the source
program is only the first step. The appropriate informa-
tion must then be passed to the hardware so special
requests for widely shared data can be generated and
invoke the GLOW agents. We divide the static methods
depending on whether the programmer identifies the
actual data that are widely shared or the instructions that
access such data. The following two subsections
describe the two alternatives.

3.1 Identifying addresses of widely
shared data

This is the simplest method to implement and we
have used it for the evaluations in later sections. A pos-
sible implementation of this method uses address
tables, structures that store arbitrary addresses (or seg-
ments) of widely shared data. The address tables can be
implemented in the network interface or as part of the
cache coherence hardware. In both cases the user must
have access to these tables in order to define and “un-
define” widely shared data. Implementing such struc-
tures, however, is not trivial because of problems relat-
ing to security, allocation to multiple competing
process, and address translation. The address tables
could be virtualized by the operating system, but this
solution is also unsatisfactory since (i) it requires oper-
ating system support and (ii) it will slow down access to
these tables.

3.2 ldentifying instructions that access
widely shared data

If specific code is used to access widely shared
data, the programmer can annotate the source code and
the compiler can generate memory operations for this
code that are interpreted as WIDELY SHARED DATA
requests. We have proposed the following implementa-
tions:

* COLORED OR FLAVORED LOADS: The processor is
capable of tagging load and store operations explic-
itly. Currently this method enjoys little support
from commercial processors.

e EXTERNAL REGISTERS: A two-instruction sequence
is employed. First a special store to an uncached,
memory mapped, external register is issued, fol-
lowed by the actual load or store. This special store
sets up external hardware that will tag the following
memory operation as a widely shared data opera-
tion. The main drawback of this scheme is that it
requires external hardware close to the processor.

*  PREFETCH INSTRUCTIONS: If the microprocessor has
prefetch instructions they can be used to indicate to
the external hardware which addresses are widely
shared. Again, external hardware is required close
to the processor making this a “custom hardware”
approach.

3.3 Disadvantages of the static
methods

All the static methods have three serious disadvan-
tages:

1. Involvement of the programmer (and/or possibly the
compiler) is required. This puts a certain burden on
the user that contradicts our desire to keep the
shared-memory paradigm simple while increasing
its efficiency.

2. Tt is not always trivial to determine the addresses of
widely shared data statically or the instructions that
access such data. Especially in cases when the nature
of data changes frequently and unpredictably, the
static approaches may be inadequate.

3. Implementation difficulties: Both alternatives (iden-
tifying addresses or identifying instructions) have
serious implementation problems. Address tables
may require operating system support for their virtu-
alization. Identifying instructions that access widely
shared data requires custom hardware, unless the
processor itself provides appropriate support.



4 Dynamically identifying widely
shared data

Because of the problems of the static methods it is
highly desirable to provide hardware support that is
transparent from the user and the rest of the system. For
this we need to dynamically detect widely shared data
and in this section we describe two schemes to accom-
plish this. The first scheme relies exclusively on the
GLOW agents for the detection while the second
scheme relies on the memory directories.

4.1 Agent detection of widely shared
data

Conceptually a GLLOW agent could intercept every
request that passes through and do a lookup in its direc-
tory cache. This would result in slowing down the
switch node, polluting the directory caches with non-
widely shared data, and incurring the overhead of build-
ing a sharing tree for non-widely shared data. Instead,
we want to filter the request stream and intercept only
the requests that are likely to refer to widely shared data.
The dynamic scheme described here is intended to per-
form such filtering.

Agents observe the request traffic and detect
addresses that are repeatedly requested. Requests for
such addresses are then intercepted in the same way as
the special requests in the static methods. In an imple-
mentation of this scheme each agent, besides its ordi-
nary message queues, keeps a small queue (possibly
implemented as circular queue) of the last N read
requests it has observed. The queue contains the target
addresses of the requests, hence its name: recent-
addresses queue. Using this queue each agent maintains
a sliding window of the request stream it channels
through its ports.

When a new request arrives at the agent, its address
is compared to those previously stored in recent-
addresses queue. If the address is found in the queue the
request is immediately intercepted by the agent as a
request for widely shared data’. Otherwise, the request
is forwarded to its destination. In both cases its address
is inserted in the queue. This method results in some lost
opportunities: for example we do not intercept the first
request of an address that it is later repeated in other
requests. Also, if a stream of requests for the same
address is diluted sufficiently by other intervening
requests we fail to recognize it as a stream of widely

2 A small threshold can be applied requiring an address to be
present in the queue more than once for a request to be
intercepted.

shared data requests. This scheme might also be con-
fused by a single node repeatedly making the same
request frequently enough to appear more than once
within the agent’s observation window (this could hap-
pen in producer-consumer or pairwise sharing). A safe-
guard to protect against this is to avoid matching
requests from the same node against each other.

In the absence of congestion (i.e., when the agent’s
message queues are empty) we need to search the
recent-addresses queue in slightly less time than it takes
for a message to pass through the agent. Since the
recent-addresses queue is a small structure located at the
heart of the switch it can be searched fairly fast. Of
course, the minimum latency through the switch will
dictate the maximum size of the queue. For the switches
we model in our simulations we expect that a size of up
to 128 entries to be feasible.

When the agents observe the reference stream only
when there is congestion (in other words when multiple
requests are queued in the agent’s message queues) our
method defaults to read-combining as was proposed for
the NYU Ultracomputer [6]. In this case, the observable
requests are only the ones delayed in the message
queues. The problem with such combining (that our
method effectively solves) is that it is based too much on
luck: requests combine only if they happen to be in the
same queue at the same time which might happen only
in the presence of congestion. Combining is highly
dependent on the network timing and queuing character-
istics as well as the congestion characteristics of the
application. In the Section 6 we show that we can effec-
tively discover widely shared data using a sliding win-
dow whereas combining fails in most cases.

4.2 Directory detection of widely
shared data

In this scheme the memory directory is responsible
to discover widely shared data. In contrast to the previ-
ous scheme that is transparent to the rest of the system
this scheme requires some modifications to the coher-
ence protocols. This is feasible in many commercial or
research systems where the cache coherence protocols
are implemented as a combination of software and hard-
ware and they can be upgraded (e.g., STIiNG [19]).

The directory is a single point in the system that can
observe the request stream for its data blocks. It is there-
fore in a position to distinguish widely shared data. In
directories such as Dir;X [30] the number of readers is

readily available. However, in SCI where the directory
keeps a single pointer to the head of the sharing list, the
directory must count the number of reads between
writes. A counter, associated with each data block,
counts up for each read and it is reset with a write. Data



blocks for which the corresponding counter reaches
some threshold value are deemed widely shared. In SCI
this is a heuristic since the directory might incorrectly
deem a data block as widely shared just by seeing multi-
ple reads from the same node. Determining whether
read requests actually come from different nodes is pos-
sible if we keep a bitmap of the readers (similarly to
Dir;X). However, this would be an expensive addition to

the SCI directory and we do not examine it further. In

our evaluations we extended the SCI directory tag with a
small 2-bit saturating counter.

The first time a data block is widely accessed all the
read requests reach the directory without any interven-
tion from the GLOW agents. If the directory finds that
the data are widely shared it notifies the nodes in the
system so the next time they access the block they will
use special requests that can be intercepted by the
GLOW agents. This information is transferred to the
nodes when the data block is written. Upon a write the
directory {or the writer in SCI) sends invalidation mes-
sages that notify the nodes about the nature of the data
block. Only the nodes that participated in the first read
will learn about the data block. This information is
stored in each node in the invalidated cache tag which
we call “hot tag.”3 If a node tries to access a “hot tag” it
will send a request for widely shared data which will be
handled by the GLOW agents.

This scheme is based on the premise that data
blocks are widely shared for many read-write cycles.
Since the opportunity to optimize the first read-write
cycle is lost, this scheme does not provide any perfor-
mance improvement when data blocks are widely shared
only once. Furthermore, it may degrade performance by
incorrectly treating such data blocks as widely shared
when they are not.

A further consideration about this scheme is that it
is easier to adapt from non-widely shared to widely
shared than the other way around. If a data block is
widely accessed only once, the directory will observe
very few read requests between writes after the first
read-write cycle. However, it cannot determine whether
it sees very few requests because the data block is not
widely shared anymore or because the GLOW exten-
sions absorb most of the requests in the network. Even if
the directory recognized a transition to a non-widely

3 Alternatively, the information about which data blocks have

been found to be widely shared can be kept in address
tables similar to those described for the static GLOW.
However, address tables would make the whole scheme
more difficult to implement and are not examined further.

shared state, it would have to notify again the nodes in
the system about this change. Fortunately, the “hot tag”
concept provides a natural way to adapt from widely
shared to non-widely shared. If the data block is not
widely accessed the “hot tags” around the system will
be replaced —they are invalid tags after all— and the
nodes will lose the information that the block was
widely shared®.

5 Experimental evaluation

A detailed study of the methods we propose
requires execution driven simulation because of the
complex interactions between the protocols and the net-
work. The Wisconsin Wind Tunnel [17] is a well-estab-
lished tool for evaluating large-scale parallel systems
through the use of massive, detailed simulation. It exe-
cutes target parallel programs at hardware speeds (with-
out intervention) for the common case when there is a
hit in the simulated coherent cache. In the case of a
miss, the simulator takes control and takes the appropri-
ate actions defined by the simulated protocol. The
WWT keeps track of virtual time in processor cycles.
SCI has previously been simulated extensively under

WWT [10] and the GLOW extensions have been
applied to this simulation environment. We simulated
systems that resemble SCI systems made of readily
available components such as SCI rings and workstation
nodes.

We have simulated K-ary N-cube systems from 16
to 128 nodes in two and three dimensions. The nodes
comprise a processor, an SCI cache, memory, memory
directory, a GLOW agent, and a number of ring inter-
faces. Although we assume uniprocessor nodes, GLOW
applies equally well to symmetrical multiprocessor
(SMP) nodes. In this case the GLOW agent resides in
the network interface of the SMP node and is responsi-
ble to service the processors inside the node. The pro-
cessors run at 400MHz and execute one instruction per
cycle in the case of a hit in their cache. Each processor is
serviced by a 64K 4-way set-associative cache with a
cache line size of 64 bytes. The cache size of 64K is
intentionally small to reflect the size of our benchmarks.
Processor, memory and network interface (including

4 The only pathological case that can result from the inability
of this scheme to adapt quickly from widely shared to non-
widely shared is when the data block becomes migratory
after it was widely shared. In this case many subsequent
reads will incur the overhead of widely shared data because
it will take many read-write cycles to erase the information
about the nature of the data block from all the nodes.



GLOW agents) communicate through a 133 MHz 64-bit
bus. The SCI K-ary N-cube network of rings uses a 400
MHz clock; 16 bits of data can be transferred every
clock cycle through every link. We simulate contention
throughout the network but messages are never dropped
since we assume infinite queues. Each GLOW agent is
equipped with a 1024-entry directory cache and 64K of
data storage. In order to minimize conflicts the agent’s
directory it is organized as a 4-way set-associative
cache.

To evaluate the performance of GLOW we used

five benchmark programs: GAUSS SPARSE, All Pairs
Shortest Path, Transitive Closure, and Conjugate Gradi-
ent (CG). Although these programs are not in any way
representative of a real workload, they serve to show
that GLOW can offer improved performance. Addition-
ally, these programs represent the core of many scien-
tific applications used for research in many engineering
and scientific disciplines. We did not consider programs
without widely shared data because such programs
would hardly activate the GLOW extensions.

The GAUSS program solves a linear system of
equations using the well known method of Gaussian
elimination. Details of the shared-memory program can
be found in [12]. A coefficient matrix NxN is filled with
random numbers and then the linear system is solved
using a known vector (N is 512 for our simulations). In
every iteration of the algorithm a pivot row is chosen
and read by all processors while elements of previous
pivot rows are updated. Potentially every row of the
coefficient matrix can be widely shared. For the static
methods, we define a pivot row as widely shared data for
the duration of the corresponding iteration.

The SPARSE program solves AX=B where A and B
are matrices (A being a sparse matrix) and X is a vector.
The main data structures in the SPARSE program are A,
the NxN sparse matrix and X, the vector that is widely
shared (N is 512 for our simulations). In the static meth-
ods we define vector X as widely shared data.

The All Pair Shortest Path (APSP) and the Transi-
tive Closure (TC) programs solve classical graph prob-
lems. For both programs we used dynamic-
programming formulations, that are special cases of the
Floyd-Warshall [4] algorithm. In the APSP, an N vertex
graph is represented by an NXN adjacency matrix. The
input graph used for the simulations is a 256 vertex
dense graph (most of the vertices are connected). In the
TC program an NxN matrix represents the connectivity
of the graph with ones and zeroes. The input is a 256

vertex graph with a 50% chance of two vertices being
connected. For both programs and for the static methods
the whole main matrix is defined as widely shared data.

In the CG program the conjugate gradient method is
applied to solve a Poison equation. The code is struc-
tured similarly to the NAS CG benchmark [31]. CG is
computationally intensive and we were only able to sim-
ulate it with a small input matrix of 64x64. Because of
the small dataset we did not examine CG in systems
with more than 64 nodes.

6 Resulis

In this section we present simulation results for the
five programs and for the various system configurations
(2-dimensional and 3-dimensional networks, 16 to 128
nodes). We use the 3 dimensional topologies to show
how network scalability affects the GLOW extensions.
In general our results show that GLOW offers greater
performance advantage with higher dimensionality net-
works because it can create shorter trees with larger fan-
out.

We compare SCI, static GLOW, and three versions
of the dynamic GLOW. The first version of the dynamic
GLOW observes only requests delayed in the message
queues because of congestion and it is therefore equiva-
lent to read-combining (we simply refer to this as COM-
BINING). The second version employs a [28-entry
recent-addresses queue to discover repetition in the
addresses (we refer to this as REACTIVE AGENTS). In
the third version the directory discovers the widely
shared data and we refer to this as REACTIVE DIREC-
TORIES.

We measure execution time, and for each program
we present speedup normalized to a base case. We
selected the base case to be SCI on the appropriate num-
ber of nodes and with the appropriate 2- or 3-dimen-
sional network. The actual speedups over a single node
for the base cases are shown in Table 1. Note here that
the programs we are using do not scale beyond 32 or 64
nodes for SCI. The GLOW extensions allow these pro-
grams to scale to 128 nodes but the performance differ-
ence between 64 and 128 nodes is small. A limitation of
our simulation methodology is that we keep the input
size of the programs constant and —because of practical
constraints— relatively small. With larger datasets these
programs scale to more nodes for the base SCI case and
the GLOW extensions yield performance improvements
for even larger numbers of nodes.



Nodes |Gauss |SPARSE |apsp |TC |cG
2D |16 1657 |5.86 11.70 |14.45 [3.27
32 2534 |8.57 1936 |20.10 |3.26
64 2295  |12.68 21.02 |19.27 |3.78
128 1202|1253 14.74 |13.20 |—
3D |16 16,77 [6.00 11.77 [14.51 |3.31
32 2633 |10.01 19.88 |20.60 |3.87
! 2527 |15.73 2193 120.14 |4.66
128 16.18  |18.54 1504 |14.28 |—

Table 1: Actual speedups of the base cases (SCI on 16 nodes)

Figure 2 shows the normalized speedups for the
GAUSS program. The two graphs present results for the
2- and 3-dimensional networks. GAUSS on SCI does not
scale beyond 32 nodes, showing serious performance
degradation with higher numbers of nodes. The GLOW
extensions, however, scale to 64 nodes in 2 dimensions
and to 128 nodes in 3 dimensions (although the addi-
tional speedup is negligible).

Static GLOW outperforms the other alternatives
and is up to 2.22 times faster than SCI in 2 dimensions
and up to 2.44 times faster in 3 dimensions. COMBIN-
ING reaches about halfway the performance improve-
ment of static GLOW while the REACTIVE AGENTS
remain within 5% of the performance of static GLOW.
The REACTIVE DIRECTORIES scheme also works
well staying within 10% of the static GLOW.

To explain the behavior of the various GLOW
schemes we examine how they appear to change the
write-runs of the program from the directories’ point of
view. Specifically, for each scheme we plot the reads
that correspond to write-runs of different sizes. The
GLOW schemes “compress” these accesses toward the
small write-run sizes. Each scheme’s “compression”
relates to its performance improvement.

Figure 3 plots the number of reads that correspond
to write-runs ranging in size from 1 to 128. The data are
for GAUSS on 128 nodes on a 2 dimensional network.
These data correspond to what the SCI directories
observe and as such they are not an entirely accurate
picture of the write-runs of the program. The difference
is that SCI directories count the same node multiple
times in the same write-run if —because of replace-
ments— it sent multiple requests. Because these graphs
contain very large and very small numbers we use a log-
arithmic scale in the vertical axis. This tends to empha-
size the small numbers that would otherwise be invisible
as in Figure 1.

The graph for SCI shows a large number of accesses

corresponding to large write-runs. COMBINING,
REACTIVE AGENTS, static GLOW, and REACTIVE
DIRECTORIES absorb a large number of requests in the
network and as a result the directories see fewer requests
between writes. Static GLOW compresses many
accesses to write-runs of size 9. This number corre-
sponds to 8 GLOW agents plus an extra node: for any
widely shared data block in the 2-dimensional 128-node
system (8x16 nodes) there are 8 agents covering all
nodes except the data block’s home node. In contrast
COMBINING, which does not perform as well, manages
to compress the write-runs from a size of 128 down to a
size of 40. REACTIVE AGENTS manage to compress
most of the large write-runs to a size of 24. This means
that before all 8 GL.LOW agents are invoked for a widely
shared block, 16 requests slip by and reach the directory.
REACTIVE DIRECTORIES eliminate the largest write-
runs and convert them to write-runs of size 9 (similarly
to the static GLOW). However, they still leave a signifi-
cant number of accesses corresponding to large write~
runs unaffected.

SPARSE scales to 128 nodes for both 2- and 3-
dimensional networks (although the increase in perfor-
mance from 64 to 128 nodes in 2 dimensions is negligi-

ble). For this program the REACTIVE AGENTS
outperform the static GLOW (in the 64- and 128-node
systems in 2 dimensions and in the 128-node system in
3 dimensions). This is because SPARSE actually con-
tains more widely shared data than just the vector X and
REACTIVE AGENTS can handle them at run-time.
REACTIVE AGENTS perform up to 1.29 times faster
than SCI in 2 dimensions and up to 1.33 times faster in 3
dimensions. COMBINING fails to provide any signifi-
cant performance improvement and REACTIVE
DIRECTORIES perform on a par with static GLOW.
Figure 5 shows the compression of write-runs for
SPARSE (again on 128 nodes with a 2 dimensional net-
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FIGURE 2. Normalized speedup (over SCI) for GAUSS in 2 and 3 dimensions (16 to 128 nodes).

FIGURE 3. Write-run compression for GAUSS (128 nodes 2-dimensions). Accesses corresponding to large

write-runs are shifted toward smaller write-runs using GLOW extensions.

work). COMBINING does not perform very well for
SPARSE and this is also evident in its failure to affect
the large write-runs, REACTIVE AGENTS spread the
largest write-runs all over the write-run spectrum. This

means that the number of requests that slip through the
agents before they detect widely shared data has signifi-

cant variance. Static GLOW again performs very well,
most of the time allowing the directories to see only 9
requests (8 GLOW agents and the local node).

APSP and TC show similar behavior. With SCI
APSP does not scale beyond 64 nodes and TC does not

scale beyond 32 nodes. For APSP, static GLOW is 2.20
times faster than SCI in 2 dimensions and 2.59 times
faster in 3 dimensions. Similarly, for TC static GLOW is
2.22 and 2.64 times faster than SCI for 2 and 3 dimen-
sions respectively. For both programs COMBINING and
REACTIVE DIRECTORIES fail to show any perfor-
mance improvement while REACTIVE AGENTS per-
form closely to the static GLOW,

APSP and TC exhibit similar behavior so we only
demonstrate write-run compression for APSP (Figure
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FIGURE 5. Compression of write-runs for SPARSE (128 nodes, 2 dimensions). Accesses corresponding to
large write-runs are shifted toward smaller write-runs using GL.OW extensions.

8). A significant percentage of the reads of the program
correspond to large write-runs. As expected COMBIN-
ING is not successful in hiding accesses from the direc-

tories. Although it shifts accesses to smaller write-runs,
it is not enough to make a difference in performance.

REACTIVE AGENTS are quite successful compressing
the write-runs to a size of around 30 (this translates to
about 22 requests slipping trough 8§ GLOW agents while
the rest are intercepted). Static GLOW works very well
leaving only write-runs of size 9 (similarly to the previ-
ous two programs). A common characteristic of the

APSP and TC programs is that their data blocks are
widely shared only once. Not surprisingly REACTIVE
DIRECTORIES fail to change the write-runs of the pro-
gram.

The behavior of the CG prograrm is somewhat pecu-
liar, mainly because we run it with a very small dataset.
GLOW extensions exhibit the largest speedups over SCI
in 16 nodes (1.9 and 2 times faster than SCI in 2 and 3
dimensions). REACTIVE DIRECTORIES perform very
well and actually take the performance lead from the
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static GLOW in 32 and 64 nodes in 2 dimensions.
COMBINING does not provide any performance
improvement while REACTIVE AGENTS are competi-
tive (within 25% of the performance of the static
GLOW)

Figure 10 shows the write-run compression for CG:
COMBINING does not affect accesses corresponding to
the largest write-runs; REACTIVE AGENTS shift many
accesses to write-runs of size 23 but still leave some
accesses corresponding to the large write-runs unaf-
fected; static GLOW again eliminates large write-runs
leaving only those of size 9 and REACTIVE DIRECTO-
RIES are also very successful shifting many accesses to
write-runs of size 9.

To summarize the results: REACTIVE AGENTS

consistently track the performance of the static GLOW
while COMBINING only works for one program

(GAUSS). The results show that COMBINING is indeed
sensitive to the congestion characteristics of the applica-
tion. From limited experimentation we have indications

that the behavior of COMBINING also changes depend-
ing on the network characteristics (e.g., link and switch
latency, bandwidth) while the behavior of the REAC-
TIVE AGENTS with regard to the number of intercepted
requests remains largely unaffected. REACTIVE
DIRECTORIES give mixed results working only for
three of the five programs.
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write-runs are shifted toward smaller write-runs using GLLOW extensions.

6.1 Sensitivity of Agent detection to
Window Size

An interesting result is that the REACTIVE

AGENTS scheme is largely insensitive to the size of the
recent-addresses queue especially for the larger systems
for the five programs we examined. In Figure 11 we
show the performance of the GAUSS and APSP pro-
grams for four different sizes of the recent-addresses
queue: 8, 32, 128 and 256. The other three programs
exhibit similar behavior. It is evident in Figure 11 that
the window size does not seriously affect the perfor-
mance of the REACTIVE AGENTS. In fact for GAUSS
the smallest windows of size 8 perform slightly better
than the larger windows. This is because with larger
windows there is the possibility of intercepting requests
for non-widely shared data (thus incurring the overhead
of the extensions when there is no benefit) simply
because they are repeated often. The implication of the
insensitivity to the window size is that the recent-
addresses queue can be made small and fast (i.e., with-
out unwanted side-effects in the performance of the
switch nodes) while still performing well

7 Conclusions

In this paper we argued that accesses that corre-
spond to widely shared data can be excessively many

even if the widely shared data in programs are not.
There is considerable benefit in providing transparent
hardware support for widely shared data. This benefit
increases with system size since large systems suffer the
most from widely shared data.

For economic reasons, hardware support for spe-
cific sharing patterns must be transparent and non-intru-
sive to the commodity parts of the system. The GLOW
extensions to cache coherence protocols are designed
with transparency in mind: they are implemented in the
network domain, outside commodity workstation boxes,
and they are transparent to the underlying coherence
protocol. The GLOW extensions work on top of another
cache coherence protocol by building sharing trees
mapped well on top of the network topology thus pro-
viding scalable reads and writes. However, in their static
form they require the user to define the widely shared
data and issue special requests that can be intercepted by
GLOW agents. This is undesirable for various reasons
including implementation difficulties that inhibit trans-
parency. In this paper we propose and study two
schemes that can detect widely shared data at run-time
and obtain performance comparable to the static version
of GLOW.

The first scheme discovers widely shared data more
reliably than read-combining by expanding the window
of the observable requests. Switch nodes remember
recent requests even if these have long left the switch.
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Requests whose addresses have been seen in the
window are intercepted (as requests for widely shared
data) and passed to the GLOW extensions for further
processing. The interesting characteristic of this scheme
is that in large systems even a small window performs
very well. This scheme achieves a significant percentage
of the performance improvement of the static GLOW
and has the potential to outperform the static version in
programs where it is difficult for the user to define the
widely shared data.

In the second scheme the memory directories dis-
cover the widely shared data by counting reads between
writes. When a directory finds a data block to be widely
shared it notifies the nodes in the system to subsequently
request this data block as widely shared data. This
scheme works well when data blocks are widely
accessed more than once.

Finally, we have used the changes of the write-runs
of a program as seen by the memory directories to
explain the behavior of the different schemes.
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